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Abstract—Safety and resilience are critical for autonomous
unmanned aerial vehicles (UAVs). We introduce MAVFI,  the micro
aerial vehicles (MAVs) resilience analysis methodology to assess
the effect of silent data corruption (SDC) on UAVs’  mission
metrics, such as flight time and success rate, for accurately
measuring system resilience. To enhance the safety and resilience
of robot systems bound by size, weight, and power (SWaP), we
offer two low-overhead anomaly-based SDC detection and
recovery algorithms based on Gaussian statistical models and
autoencoder neural networks. Our anomaly error protection
techniques are validated in numerous simulated environments. We
demonstrate that the autoencoder-based technique can recover
up to all failure cases in our studied scenarios with a compu-
tational overhead of no more than 0.0062%. Our application-
aware resilience analysis framework, MAVFI,  can be utilized to
comprehensively test the resilience of other Robot Operat-ing
System (ROS)-based applications and is publicly available at
https://github.com/harvard-edge/MAVBench/tree/mavfi.

I . INTRODUC T I ON

Silent data corruptions (SDCs) have become an important
problem [1]. It has been shown as a major issue for server scale
systems [2], [3]. However, there are many emerging application
areas where SDC effects extend beyond just computational
reliability into safety. Such an emerging area is unmanned aerial
vehicles (UAVs) where resilience and safety are critical.

SDCs caused by external radiation and voltage noise [4] in
the computational element like the compute subsystem present
a major threat to the safe deployment of UAVs [5], whose
deployment can be impeded in many real-world scenarios. To
assess SDC’s impact on UAVs, we propose the first system-
level metrics for fault characterizations on a ROS-based
autonomous system. The autonomous UAV consists of an end-
to-end perception-planning-control (PPC) pipeline (Fig. 1) that
generates real-time flight commands based on the environment.
The PPC pipeline is the decision-making center for a UAV to
maneuver safely. A  SDC could cause a UAV to detour or crash.

Prior works adopt redundancy [6] at the hardware or software
level to improve autonomous vehicles (AVs) resilience. While
existing techniques are effective, they are infeasible for size,
weight, and power (SWaP)-constrained AVs such as UAVs due
to both the power and form factor limitations of a UAV system.
Recent software technique [7], [8] for the resilience of deep
neural networks (DNNs) on GPU does not apply to UAVs that
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Fig. 1: End-to-end perception-planning-control (PPC) comput-
ing paradigm. Each PPC stage contains multiple kernels, and
we study the safety and resilience of the end-to-end pipeline.

typically do not have access to power-hungry GPUs onboard.
Besides, UAVs have a strict limit on total flight time due to
the limited onboard battery capacity. Therefore, UAVs need a
lightweight fault mitigation technique to prevent harmful SDC
from detouring or even crashing the UAV without degrading
the total flight time and system availability.

We propose two anomaly detection and recovery meth-
ods. First, we propose a Gaussian-based anomaly detection
(GAD) and recovery mechanism (§IV-C). We leverage the
characteristics that UAVs ’  movements are continuous and each
temporal transition of inter-kernel states is close to a Gaussian
distribution. This technique features Gaussian-based range de-
tectors for each inter-kernel state that cease error prorogation
once an outlier is detected. Second, we propose and evaluate an
autoencoder-based anomaly detection (AAD) technique to im-
prove UAV resilience (§IV-D). AAD adopts a neural network-
based autoencoder to learn normal UAVs ’  kinematics and detect
anomalies according to the reconstruction error of the input
delta values, leveraging correlation among inter-kernel states.

We evaluate the effectiveness of the two techniques across
four vastly different types of environments on two compute
platforms with the simulated micro aerial vehicle (MAV) [9].
Our results demonstrate that the Gaussian-based technique
recovers up to 89.6% of failure cases, and the autoencoder-
based method can recover 100% failures in the best-case sce-
nario. Moreover, the overhead of AAD is only up to 0.0062%
and much smaller than 2.22% of the Gaussian-based technique.

We also show that our autoencoder-based anomaly de-
tection and recovery technique can reduce UAV flight-

time energy usage by up to 1.91 more than traditional

https://github.com/harvard-edge/MAVBench/tree/mavfi
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Fig. 2: End-to-end MAVFI resilience analysis framework.

redundancy-based hardware solutions (e.g., DMR, TMR).
The redundancy-based solutions increase the weight and form
factor of UAVs and lead to performance overheads. Regarding
quality-of-flight (QoF) efficiency metrics, the Gaussian-based
technique can recover the SDC-degraded flight time by up to
63.5% and 73.0% for the autoencoder-based technique.

In summary, the contributions of this work are as follows:
 We present MAVFI, the first ROS-based application-aware

resilience analysis framework, to analyze UAVs ’  fault
tolerance characteristics with proper system-level metrics.

 We conduct fault tolerance characterizations of the end-to-
end PPC pipeline and show that application-aware metrics
are essential to understanding fault’s impact on kernels.

 We propose two low-cost anomaly error detection and
recovery schemes and evaluate them on different UAV
configurations, and show that SDC impact on safety can
be rectified in real-time with negligible overhead in ROS.

I I . M AV F I FAU LT  IN J E C T I O N F R A M E W O R K

To analyze SDCs’ impact on UAVs, we first and foremost
need a fault injection framework in the ROS middleware for
injecting faults into the end-to-end UAV application pipeline to
assess their impact systematically. This section presents MAVFI
that supports fault injection with QoF metrics for evaluation.

A. MAV Fault Injector Implementation
Fig. 2 illustrates our fault injection infrastructure for a ROS-

based UAV system. It includes the simulated environment and
UAV on the host system. The UAV’s PPC pipeline is integrated
with MAVFI on a “companion” computer. The companion
computer processes high-level tasks, while a microcontroller
typically handles the low-level flight controller commands.

Each PPC stage contains one or multiple ROS nodes. Each
ROS node comprises a single compute kernel, such as a
motion planner. ROS node communicates through ROS topics
(one-to-many communication) and ROS services (one-to-one
communication). MAVFI is built as a ROS node to maintain
our framework’s portability, and it leverages the ROS commu-
nication protocol and Linux system calls to inject faults. Fig. 2
illustrates an error propagation example when a fault is injected
in the Motion Planner kernel—it manifests as a corruption of
execution in Multidoftraj, Trajectory, which eventually corrupts a
flight command and impacts the quality of flight (QoF).

To establish UAV experiments, we integrated the fault in-
jection with a ROS-based UAV simulator, MAVBench [9].
MAVBench includes Unreal Engine to simulate the surrounding
environment, AirSim to capture a UAV’s kinematics, and PPC
pipeline to generate flight commands in real-time. The PPC
pipeline processes the sensor data and generates flight com-
mands continuously until the mission is complete. Finally, the
real-time mission QoF metrics are recorded. Although we use a
MAV as an example, the fault analysis methodology is broadly
applicable to any ROS-based AV  use case.

B. Fault Model

MAVFI emulates instruction-level fault injection, which is in
line with prior work [10]–[12]. A  limitation is that it does not
consider faults in the memory and caches. Typically, E C C  is
used to protect caches and memory for robots as is the case
with the NVIDIA TX2/Xavier series of hardware, which we
use. We also assume no faults in the processor’s control logic,
which constitutes a small portion of the processor [10], [12].

I I I . END-TO-END PPC P I P E L I N E FAU LT- T O L E R A N C E

This section presents the fault tolerance analysis with
application-aware system-level performance metrics. We ex-
plore how errors would impact a single kernel and propagate
through the whole PPC pipeline to affect UAV QoF metrics.

A. End-to-End, System-level Fault Tolerance Analysis

We conduct the first end-to-end system-level analysis on
how kernel errors would propagate through PPC pipelines
and impact UAV performance. We perform 100 fault injection
runs per kernel. Besides the fault injections we perform, 100
error-free experiment runs are defined as Golden. In each
experiment, all kernels in the PPC pipeline are launched by
ROS to complete a given navigation task. Only one of the
kernels would have a one-time single-bit fault injection during
each flight mission for fault injection runs. Without loss of
generality, we limit our discussion to a navigation task in the
Sparse environment here. More results are demonstrated in §V.

Finding: The visual perception stage is the least critical
when a SDC manifests as the downstream perception tasks
make up for it. The typical PPC pipeline includes Point cloud
generation (P.C. Gen.), OctoMap, Collision check (Col. Ck.) for
perception, RRT* for planning, and PID for control. Two other
planning algorithms are evaluated, i.e., RRT and RRTConnect.

Prior works often tend to overly focus on error resilience of
the perception stage [1], [7]. However, as Fig. 3 shows, for the
perception stage both Point Cloud Generation and OctoMap
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We propose two software-level low-overhead anomaly de-
tection and recovery schemes. The proposed schemes detect
anomalous behavior of the inter-kernel states in the PPC
pipeline and cease the error propagation, ensuring UAV’s safety.

Fig. 4: Flight time and task success rate of end-to-end fault
tolerance analysis by corrupting inter-kernel states.

have little to negligible impact on the system. The reason that
OctoMap is resilient in the end-to-end analysis is that even if
an occupied voxel is corrupted and mistaken as a free voxel,
all other voxels around it are still occupied. So this means
that the UAV can still determine obstacles’ locations provided
the OctoMap’s resolution to make the correct flight action
decisions. The critical observation is that this is a counter-
intuitive observation that is difficult to discover without end-to-
end analysis. Collision Check is critical in the perception stage
since a false alarm can lead to re-planning or collisions.

Finding: Planning and control are more critical than per-
ception. The corrupted outputs (e.g., yaw, roll, pitch, velocity)
from these Planning and Control stages can directly lead to
a detour or crash of the UAV. From Fig. 3a, even though the
average flight time is similar, the range of RRT, RRTConnect,
RRT*, and PID is much wider than Octomap and Golden.
The error propagation of the corrupted execution results could
greatly increase the flight time by up to 57.3% and even lead
to degradation of success rate by up to 8% as shown in Fig. 3b.

Hence, the planning and control stages are more critical than
the perception stage from an end-to-end application perspective.

B. Error Propagation Across PPC Stages
To understand error propagation across kernels, we analyze

the impact of corrupted inter-kernel states in the PPC pipeline,
which provides insights to improve the PPC kernels and fa-
cilitate error detection and mitigation in §IV. We do 100
navigation task runs for each evaluation. As shown in Fig. 4,
inter-kernel states exhibit different resilience and impact on
UAV QoF metrics based on their functionality. For example, in
the perception stage, future collision seq is much more robust
than time to collision, whose QoF metrics noticeably vary
when compared to the golden run. Faults in time to collision
can skew the UAV’s perceived distance to obstacles. Similarly,
data corruption of (x, y, z) and yaw of way-points planned by
motion planner can lead to a wrong direction or crash into
obstacles, and faults in (vx, vy, vz) could make the UAV fail to
keep track of a trajectory. As a result, the distorted trajectory
leads to collision or increased flight time and mission energy.

Bit-flips in different data fields impact UAV behavior dif-
ferently. Prior works have evaluated data field impact on the
processor and neural network [1], and we further corroborate
this in end-to-end UAV systems from the application-level
perspective. Our results show that faults in sign and exponent
fields have a greater impact on the UAV’s resilience and result
in increased flight time, energy, and failure cases. We leverage
this insight in lightweight UAV anomaly detection in §IV.

A. Overview of Detection and Recovery

Anomaly detection has been used to distinguish anomaly
from normal data distribution in many applications [13]. How-
ever, there is no effective general anomaly detection technique
for different domains. Moreover, autonomous machines are
complex systems that typically involve multiple kernels’ hetero-
geneous computing. It is infeasible to separate normal data from
anomaly based on the system’s input (e.g., sensor readings) and
output (e.g., flight commands). The heterogeneity also makes it
hard to extract information from the system for anomaly
detection. As a consequence, no prior work has focused on
anomaly detection to enhance the resilience of UAVs.

We propose two anomaly detection techniques to detect SDC
that could cause safety hazards for UAVs, including Gaussian-
and autoencoder-based techniques. It is observed that both
techniques can greatly enhance the safety and resilience of
UAVs with low computational overhead. Fig. 5a shows the
proposed anomaly detection and recovery scheme for UAVs.

According to the analysis in Section III-B, the inter-kernel
states, as shown in Fig. 4, are monitored for anomalous SDC.
The monitored states pass their data through a data preprocess-
ing module to increase the detection performance while further
reducing the computational overhead. After data preprocessing,
the processed states go into either of the proposed anomaly
detection techniques for supervision.

Error recovery is a feedback loop from the detection modules
to the PPC pipeline. Once an anomalous behavior is detected,
an alarm signal will be raised by the detection modules,
triggering the recomputation of the corresponding stage, which
prevents the corrupted inter-kernel states from propagating to
the other kernels. The proposed detection and recovery system
can greatly increase the resilience of UAVs ’  PPC pipeline
against SDCs that degrades the safety and flight performance of
UAVs. Our approach focuses on SDC as ROS node crash can
be detected by the ROS system. The ROS master node would
restart the node automatically if it crashes.

B. Data Preprocessing

In Fig. 5a, the monitored inter-kernel states from the PPC
pipeline are processed in the data preprocessing block before
sent to the anomaly detection block. Data preprocessing has
two steps, including data format transformation and delta
calculation. First, for data format transformation, the sign and
exponent bits of float64 states are transformed into 16-bits
integer states. Since SDC at the mantissa bits of float64 is
insignificant for value changes, only the sign and exponent bits
are monitored to reduce the detection overhead. Second, the
deltas of the incoming states are calculated. We define delta as
the number of value changes from the previous time point to the
current time point for an inter-kernel state. We found that the
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Fig. 5: The proposed anomaly detection and recovery scheme
for UAV computational pipeline.

delta value distribution is close to a Gaussian distribution and
has a much smaller value range than the original data, making
the differences between normal and anomaly data even larger.

C. Gaussian-based Anomaly Detection

Fig. 5b shows the design of the Gaussian-based Anomaly
Detection (GAD). Each PPC stage has a corresponding GAD
that consists of several customized GAD (cGAD) for each inter-
kernel state. If the value of an incoming state is outside the
range of its normal data distribution, its cGAD will send out an
alarm. The alarms from each cGAD are gathered for each PPC
stage, respectively. An alarm from a GAD would trigger the
recomputation path of its corresponding stage, stopping the error
propagation to the next stage.

The Gaussian model parameters (i.e., mean, standard devia-
tion) for each cGAD are estimated as following equations:

Mk =  Mk 1 +  (x k       Mk 1)=k (1)
S k  =  S k  1 +  (x k       Mk 1 )(xk       Mk ) (2)

where k is the number of samples, Mk is the mean value
for the k samples, and S k  is an auxiliary term used to compute
standard deviation . At initialization, we introduce and set the
terms M1 =  x1 ; S1 =  0. The parameters are updated online
with the recurrence formulas above for new incoming data x k
[14]. For k  2, the standard deviation  can be derived by  =

Sk =(k      1). Whenever the value of the incoming
data is n sigma away from the mean value, the alarm of the
cGAD will be raised. The number of sigma n is a configurable
variable that can be optimized based on task complexity.

D. Autoencoder-based Anomaly Detection

Fig. 5c shows the Autoencoder-based Anomaly Detection
(AAD). The AAD block collects the processed states from all

PPC stages as input. An alarm will be raised and triggers the
recomputation of the control stage if an anomaly is detected.
The proposed autoencoder comprises an encoder with three
fully connected (FC) layers of size 13, 6, and 3 neurons,
and a decoder with two FC  layers of size 13 and 3 neurons.
The decoder takes the compressed data from the encoder and
outputs the reconstructed input data. The reconstruction error is
the difference between the input and output of the autoencoder.
We use the mean squared error during the unsupervised training
as the reconstruction error minimized by the Adam optimizer. If
the reconstruction error is beyond the threshold at the inference
phase, the alarm will be raised. The threshold is the upper
bound of the reconstruction error in the error-free run.

Rather than a separate Gaussian-based detection module for
each PPC stage, we use a single autoencoder for the whole
PPC pipeline to leverage the correlation among the inter-kernel
states. Once an anomaly is detected, the alarm triggers the
recomputation of the control stage. In this way, the autoencoder
scheme achieves higher detection performance while reducing
the recomputation overhead as shown in §VI-C.

E. Anomaly Detection and Recovery on ROS
The anomaly detection and recovery scheme is built as a

ROS node that contains the data preprocessing and anomaly
detection functions. The detection node subscribes to the topics
containing the inter-kernel states in the PPC pipeline as input
and publishes recomputation signals to the corresponding stages
once an anomalous inter-kernel state is detected. The detection
node can thus supervise inter-kernel states of the PPC pipeline,
avoiding error propagation, thus increasing the resilience of
UAV’s computational pipeline with negligible overhead.

V. E X P E R I M E N TA L S E T U P

Hardware-in-the-loop Simulator. We use the state-of-the-
art closed-loop simulator, MAVBench [9], as the experimental
platform. We use sensors, including RGB-D camera and IMU.
An Intel i9 CPU and an NVIDIA 2080 Ti GPU are used as
the host machine to simulate environments and the UAV. The
companion computer is equipped with an i9 that takes sensory
data and generates flight commands. We also evaluated ARM
based platforms and the conclusions are unchanged (§VI-D).

Evaluation Environments. The anomaly detection and re-
covery schemes are evaluated in four different environments,
including Factory, Farm, Sparse, and Dense, which are un-
known to the UAV. The Factory and Farm are provided by UE,
representing common navigation scenarios with blocks, walls,
and hedges. We define [obstacle density, side length of cuboid
obstacles (meters)] as an environment configuration pair. We
generate the Sparse with [0.05, 6] and the Dense with [0.2,
10] using a UAV environment generator [15].

Training Environments. Autoencoder-based and Gaussian-
based techniques are trained in a hundred of error-free random-
ized environments generated by the environment generator.

V I . E VA L UAT I O N

We run 100 error-free simulations for each environment
as the baseline (golden run). Then, we conduct 900 single-bit
injections at the instruction level for each environment,



(a) UE Factory. (b) UE Farm. (c) Sparse. (d) Dense.
Fig. 6: Flight time for golden, FI, D&R(Gaussian), and D&R(Autoencoder). D&R is detection & recovery.

including 300 runs for each setting (i.e., fault injection (FI),
detection & recovery with Gaussian (D&R(G)), and detection
& recovery with autoencoder (D&R(A))), as shown in Fig. 6. In
each setting, we have 100 fault injections for each PPC stage.
Each run includes a one-time single-bit injection. A  total of
1000 runs is chosen and each run takes about 5 minutes. The
UAV experiment time is a limiting factor for the total runs.

A. Safety Metrics
Improvement of success rate. Tab. I  shows the success rates

of UAV flights across four environments. In the fault injection
runs, the success rate drops 9.7% in the Dense environment.
Faults may easily cause collisions or fail to find a collision-
free path in complex environments. By contrast, Farm is an
obstacles-free environment. Even if a UAV detours from its
path, there are more feasible paths toward the destination
than a complex environment. With the anomaly detection and
recovery scheme, Gaussian- and autoencoder-based techniques
recover up to 89.6% and 100% (fully recover) of failure cases,
respectively. Generally, the autoencoder recovers more failure
cases than the Gaussian-based scheme and increases the success
rate close to or the same as the error-free runs.

Improvement of QoF metrics. Fig. 6 shows the flight time
of all successful cases in Tab. I. The fault injection runs result
in a much wider range of flight time than the golden run and
increase the flight time by 73.8%, 74.2%, 62.6%, and 93.3%
in the worst case for each environment, respectively. However,
with Gaussian-based anomaly detection and recovery, many
outliers can be recovered, and the worst-case flight time is
recovered by 56.4%, 63.5%, 49.0%, and 58.7%. On the other
hand, the autoencoder-based technique recovers most of the
outliers and can recover the worst-case flight time by 64.2%,
68.4%, 57.8%, and 73.0%, outperforming the Gaussian method.

Comparison of Gaussian-based and autoencoder-based
schemes. The autoencoder-based technique consistently outper-
forms the Gaussian-based technique in success rate and QoF
metrics. The reason is that the autoencoder can leverage the
correlation among the inter-kernel states; thus, it can detect the
subtle discrepancy of the states. However, the Gaussian-based
technique does not have correlation information among states.
Therefore, it can only detect each variable separately, which
may fail to detect anomalies if the corrupted data is still inside
the range of the normal data distribution.

Comparison of environments. Environments with a higher
density of obstacles make it difficult to recover from errors. For
the Dense environment, a UAV has more complex trajectories to
follow and more dynamic actions in response to the obstacles,
making the range of the variable distribution wider. The wider
distribution increases the number of false-negative detection.
Thus, there is still a 20.1% gap between recovery and golden
for the worse case. On the other hand, for the obstacle-free
Farm or Sparse environment, the autoencoder-based technique
can achieve a similar performance as the golden run.

B. Flight Trajectory Analysis

To show the impact of faults and the effectiveness of our
detection and recovery schemes, we visualize UAV’s trajec-
tories in the Dense environment. We present the trajectories
with the autoencoder-based technique, while the Gaussian-
based technique has similar results when successful.

Fig. 7 shows the scenario where a single-bit injection in the
PPC stage can lead to a flight detour and how the detection and
recovery scheme improves the flight. Without fault injection
(blue curve), the UAV takes off at the start point and flies
towards the endpoint in the beginning phase. Then, when facing
an obstacle, it stops at a safe distance and re-plans a new
trajectory that flies back slightly and bypasses the obstacle.

When faults corrupt critical inter-kernel states, such as the
coordinate of a way-point, the path may be distorted. The UAV
may not stop until it faces an obstacle (orange curve), which
causes the UAV to fly back or re-plan its trajectory. The more
often the UAV re-plans and detours from its path, the longer it
takes to reach the destination, which increases the flight time by
21.9% and 24.5% for Fig. 7a and Fig. 7b, respectively. With the
detection scheme, the corrupted way-point will be abandoned
once an anomaly is detected. The alarm raised by the detection
module triggers the stage recomputation. Therefore, the UAV
would follow a better trajectory (green curve) without detour.

end end
point                                                                    point

Obs- Obs-
tacle tacle

start start

TA B L E  I: The flight success rate in 4 evaluation environments. point point

Environment
Golden Run
Injection Run
Gaussian-based
Autoencoder-based

Factory Farm
100.0% 100.0%
91.7% 97.3%
98.7% 99.3%
99.3% 100.0%

Sparse Dense
95.0% 85.0%
88.3% 75.3%
94.3% 83.0%
95.0% 84.7%

(a) Fault injection in perception. (b) Fault injection in planning.

Fig. 7: Trajectories of a golden run, with fault injection, with
both fault injection and error detection and recovery.
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TA B L E  II: Compute time overhead of detection and recovery.
Environment Factory Farm Sparse Dense

DE T R E C OV DE T R E C OV DE T R E C OV DE T R E C OV
Perception <0.0001%         0.9603%         <0.0001%         1.0902%         <0.0001%         0.9788%         <0.0001%         1.1932%
Planning <0.0001%         1.0199%         <0.0001%         0.7801%         <0.0001%         0.9421%         <0.0001%         1.0279%
Control                 0.0008%         <0.0001%         0.0007%         <0.0001%         0.0009%         <0.0001%         0.0012%         <0.0001%

sum (Gaussian) 1.9810% 1.8710% 1.9218% 2.2223%
PPC 0.0042%         <0.0001%         0.0037%         <0.0001%         0.0047%         <0.0001%         0.0062%         <0.0001%

sum (AutoE) 0.0042% 0.0037% 0.0047% 0.0062%

Core Number

Core Freq. (GHz)

Power (Watt)

Flight time (s)

Flight energy (kJ)

i9-9940X

14

3.3

165

115

61.7

Cortex-A57

4

2

<15

322

177.1

Fig. 9: Comparison of detection and recovery schemes.

Time Energy
Time Energy V I I .  CO NC L U S I O N

(b) AirSim UAV. (c) DJI Spark.
Fig. 8: Comparison of DMR, TMR, and the anomaly detection
and recovery schemes on ARM Cortex-A57.

C. Compute Overhead
Software-level protection. Since UAVs can be compute-

constrained, we study the overhead of the proposed software-
level anomaly detection and recovery scheme across the tested
environments. Tab. I I  shows the average overhead of D&R(G)
and D&R(A)) in Fig. 6. The autoencoder overhead is much
smaller than the Gaussian-based technique’s overhead. The
overhead of the Gaussian-based technique is dominated by the
recovery of perception and planning stages, around 289 ms
for each occupancy map update and 83 ms for each trajectory
generation. On the other hand, even if the autoencoder-based
technique’s detection overhead is higher, the recovery overhead
is negligible as the control stage recomputation only takes
0.46 ms. As the scheme is operated at the software level with
negligible overhead, it is possible to deploy multiple anomaly
detection nodes to improve the robustness of detection nodes.

Hardware-level protection. To demonstrate the benefits
of our schemes over redundancy-based hardware protections,
we adopt a UAV visual performance model from [16] to
evaluate the performance overhead of microarchitecture-based
redundancy schemes (DMR and TMR) on UAV. Two types
of UAVs, AirSim UAV and DJI Spark (with the same specs
as [16]), are used as experimental platforms. Fig. 8 shows
that TMR incurs a flight time increase by 1.06 on AirSim
UAV and 1.91 on DJI compared to the anomaly detection
scheme. The rationale is that hardware redundancy brings
higher compute power with higher thermal design power and
weight, thus lowering flight velocity and increasing flight time.
Given the tight resource constraints of the UAV system, our
scheme demonstrates negligible performance overhead.

D. Computing Platform Comparison
To show the portability we conduct fault injection on differ-

ent platforms by introducing a single bit-flip at the inter-kernel
states. Fig. 9 shows a similar error trend for both platforms.
On the TX2, the worst flight time increases 2.8 since TX2  is an
edge platform that has slower responses to environmental
changes. However, with the anomaly detection ROS node
continuously monitoring the anomaly of inter-kernel states, the
flight time is recovered by 79.3% and 88.0% with Gaussian-
based and autoencoder-based techniques, respectively.

Safety is paramount for UAVs. Yet, to date, there is no SDC
evaluation for them. We present the first fault analysis frame-
work to enable system-level resilience analysis. To enhance
the safety and resilience of UAVs, we propose two anomaly
detection and recovery schemes and demonstrate that with
<0.0062% compute overhead, the autoencoder-based scheme
can recover up to 100% failure cases in the tested scenarios.
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