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Abstract—Introducing additional tunable parameters to
quantum circuits is a powerful way of improving per-
formance without increasing hardware requirements. A
recently introduced multiangle extension of the quantum
approximate optimization algorithm (ma-QAOA) signifi-
cantly improves the solution quality compared with QAOA
by allowing the parameters for each term in the Hamilto-
nian to vary independently. Prior results suggest, however,
considerable redundancy in parameters, the removal of
which would reduce the cost of parameter optimization.
In this work we show numerically the connection between
the problem symmetries and the parameter redundancy
by demonstrating that symmetries can be used to reduce
the number of parameters used by ma-QAOA without
decreasing the solution quality. We study Max-Cut on
all 7,565 connected, non-isomorphic 8-node graphs with
a nontrivial symmetry group and show numerically that in
67.4% of these graphs, symmetry can be used to reduce the
number of parameters with no decrease in the objective,
with the average ratio of parameters reduced by 28.1%.
Moreover, we show that in 35.9% of the graphs this
reduction can be achieved by simply using the largest
symmetry. For the graphs where reducing the number of
parameters leads to a decrease in the objective, the largest
symmetry can be used to reduce the parameter count by
37.1% at the cost of only a 6.1% decrease in the objective.
We demonstrate the central role of symmetries by showing
that a random parameter reduction strategy leads to much
worse performance.

Index Terms—QAOA, Max-Cut, Graph automorphism

I. INTRODUCTION

Quantum hardware has improved rapidly in recent
years [1]–[4], opening up the possibility of demonstrat-
ing quantum advantage on a relevant practical problem.
Combinatorial optimization problems are commonly
considered targets for near-term quantum devices [5],
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[6], with the quantum approximate optimization algo-
rithm (QAOA) [7], [8] as a promising candidate al-
gorithm because of its low hardware resource require-
ments [9]–[12].

QAOA solves optimization problems using a pa-
rameterized circuit composed of layers of alternating
operators, with two operators being evolutions with
a Hamiltonian encoding the objective function and a
problem-instance-independent mixer Hamiltonian. The
evolution times are free parameters (often called angles),
which are optimized with the goal of maximizing the
expected quality of the measurement outcomes. The
success of variational quantum algorithms with a large
number of trainable parameters such as quantum neural
networks and the variational quantum eigensolver [13]
motivated the introduction of additional parameters in
QAOA. Intuitively, adding additional parameters to the
algorithm based on the structure of the problem can only
increase the circuit expressiveness and thereby can only
improve the algorithm’s performance.

Multiangle QAOA (ma-QAOA) is a modification of
QAOA that incorporates additional parameters [14] by
allowing the parameter associated with each term in the
problem and mixer Hamiltonian to vary independently.
ma-QAOA has been shown to solve Max-Cut on star
graphs exactly using only one layer, whereas QAOA
achieves an approximation ratio of only 0.75. The im-
provement in the quality of the solution achieved by
the introduction of the parameters is modest, however,
suggesting that the large number of parameters does
not translate to a highly expressive circuit. Moreover,
preliminary ma-QAOA research has shown that param-
eters tend to cluster around multiples of 0.25π [15].
Together, these observations suggest that the number
of parameters in ma-QAOA can be reduced without
affecting the solution quality.

In this work we demonstrate the connection between
the redundancy in ma-QAOA parameters and the prob-
lem symmetries. Specifically, we reduce the number of
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parameters by setting the parameters connected by a cho-
sen symmetry to be equal. We consider the problem of
Max-Cut and show numerically that on 68.0% of graphs
that have a nontrivial symmetry group, the number of
parameters can be reduced on average by 28.1% by using
one of the symmetries without decreasing the objective
function value. Inspired by this observation, we propose
a modification of ma-QAOA that uses the full symmetry
group (max-sym-QAOA). The full symmetry group
can be obtained efficiently for many classes of graphs,
and fast heuristic solvers can be used in practice [16].
We show that max-sym-QAOA reduces the number of
parameters by 37.1% at the cost of only a 6.1% decrease
in the objective. Moreover, we provide evidence of the
centrality of the symmetries by showing that a random
strategy with the same number of parameters yields
much worse performance.

This paper is organized as follows. First, we introduce
binary optimization, QAOA, and graph symmetry back-
ground material in Sec. II. In Sec. III we then discuss
the methods used in this work. In Sec. IV we discuss our
results, and we conclude with a discussion in Sec. V.

II. BACKGROUND

We first briefly review the relevant background mate-
rial and introduce the notation.

A. Binary Optimization Problem

We consider binary optimization(BO) problems of the
form maxx∈{0,1}n f(x), where f(x) is a non-negative
objective function over the Boolean cube {0, 1}n. It is
often a sum of other functions that describe the system,
called clauses.

When solving BO problems on quantum hardware, we
construct a cost Hamiltonian Hc that encodes f(x), so
that Hc |x⟩ = f(x) |x⟩ . Then the optimization problem
becomes

max
x∈{0,1}n

⟨x|Hc |x⟩ .

The outcome of the algorithm is marked as x∗, and
algorithm performance is typically quantified by the
approximation ratio r ∈ [0, 1] given by

r :=
f(x∗)

max f(x)
=
⟨x∗|Hc |x∗⟩

max ⟨x|Hc |x⟩
. (1)

B. QAOA

QAOA is a hybrid quantum-classical algorithm that
finds approximate solutions to combinatorial optimiza-
tion problems [8]. To solve a given optimization problem
with QAOA, one must construct a cost Hamiltonian
Hc that encodes the objective function and a mixer
Hamiltonian Hm. Let U(γ,C) = e−iHcγ and U(β,B) =
e−iHmβ , where γ and β are free parameters. These two
unitaries are applied to an initial state |s⟩, which is an

eigenvector of Hm. The outcome of p iterations of the
algorithm is denoted |γ⃗, β⃗⟩p and is

|γ⃗, β⃗⟩p =U(βp, Hm)U(γp, Hc) . . .

U(β1, Hm)U(γ1, Hc) |s⟩ .

The parameters γ and β are chosen to maximize

E(γ⃗, β⃗) = ⟨γ⃗, β⃗|Hc |γ⃗, β⃗⟩ .

Measuring the state |γ⃗, β⃗⟩ gives an approximate solution
to the BO problem encoded by Hc.

ma-QAOA is similar to QAOA; however, the defini-
tions of U(γ,C) and U(β,B) are changed to

U(γ⃗, C) = e−i
∑

a Caγa

and
U(β⃗, B) = e−i

∑
b Xbβb ,

where Ca is a clause in the objective function and Xb is
the Pauli-x operator acting on qubit b. Throughout this
work, ry refers to the approximation of y-QAOA, where
y is a variation of QAOA.

C. QAOA on Max-Cut Problem

The Max-Cut problem is well studied in QAOA
literature (e.g. [9], [17]) and is thus a natural problem
to consider when studying QAOA variants. Given a
simple graph G = (V,E), the Max-Cut problem aims
to partition V into two disjoint sets so that the number
of edges with endpoints in both sets is maximized. This
problem is NP-hard to solve exactly.

When solving the Max-Cut problem using QAOA, the
cost Hamiltonian is

Hc =
∑
uv∈E

1

2
(I − ZuZv),

and the mixer Hamiltonian is typically

Hm =
∑
v∈V

Xv,

where Zv and Xv are single-qubit Pauli operators acting
on qubit v. Each layer of the QAOA circuit has one γ
for all edges and one β for all vertices. The number of
tunable parameters is just 2p, independent of the graph
size.

In ma-QAOA, each vertex and each edge has its own
angle. Thus, there are (|E| + |V |) · p parameters to
optimize in this modified algorithm. One drawback to
this approach is that finding (|E| + |V |) · p parameters
can be difficult, especially as the size of the problems
grows. However, the algorithm has better performance
than QAOA has on average [14].
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D. Graph Symmetries

A graph automorphism is a permutation of the vertex
set of a graph, σ : V → V , that satisfies the condition
that a pair of vertices, (u, v), forms an edge if and only
if the pair (σ(u), σ(v)) also forms an edge. Automor-
phisms can be represented by products of disjoint cycles,
σ = π1 . . . πk, where πl = (i1, i2, . . . , ij) and each
entry in the cycle is a unique integer. In this notation,
σ(ia) = ia+1 modulo j. Any set of automorphisms can
generate a corresponding vertex and edge orbit, which
are the equivalence classes of the vertices (edges) of a
graph G under the action of the automorphism.

A generator of a group is a set of automorphisms
(σ1, . . . , σn) containing group elements so that (possibly,
repeated) application of the generators on themselves and
each other can produce all elements in the group. In this
work, we call the group generator of the automorphism
group of the graph G the symmetry generator, and it can
generate corresponding vertex and edge orbits. In this
paper we denote the vertex (edge) orbit of the symmetry
generator as the maximum vertex (edge) orbit, written as
Ov(Oe).

III. METHODS

We use the symmetry structure of the problem to re-
duce the number of parameters in ma-QAOA. Symmetry
is known to impact QAOA performance [16]. To analyze
the role of symmetries, we introduce three modifications
called best-1sym-QAOA, max-sym-QAOA, and rand-
group-QAOA.

sym-QAOA selects a single automorphism of the tar-
get graph and assigns the same angle to all vertices in the
same vertex orbit and the same angle to all edges in the
same edge orbit. It then optimizes the QAOA parameters
and executes the resulting QAOA circuit. best-1sym-
QAOA runs sym-QAOA over all automorphisms of G
and selects the one that gives the largest Max-Cut value.

When using max-sym-QAOA to solve Max-Cut on
a graph G, the first step is to compute the symmetry
generator of G and determine the corresponding maxi-
mum vertex orbit, Ov , and edge orbit, Oe. The algorithm
requires |Ov|+ |Oe| parameters, where each element in
the same vertex orbit or edge orbit receives the same
parameter. The algorithm samples |Ov|+|Oe| parameters
randomly as initial parameters and runs the QAOA
variational quantum circuit as a subroutine using those
parameters. QAOA optimization steps are applied until
the solution converges to the optimal solution or until the
desired number of iterations has been performed. The
formal algorithm is described in Alg. 1.

Finding the generating set of the automorphism group
of a graph is an extra step in max-sym-QAOA compared
with ma-QAOA. The time complexity of this step is at

Algorithm 1: max-sym-QAOA
Input : Graph G, number of layers p.
Output: Optimized {β⃗, γ⃗} approx. max-cut Ã

1 Construct cost Hamiltonian Hc from G
2 Find the symmetry generator of G and

corresponding maximum vertex/edge orbit sets
Ov , Oe

3 Sample |Ov|+ |Oe| initial parameters
{β⃗, γ⃗} = {β0, . . . , β|Ov−1|, γ0, . . . , γ|Oe−1|}.
Fix vertices/edges in the same orbit to have the
same value |ψ(β⃗, γ⃗)⟩ ← QAOAcirc({β⃗, γ⃗}, p)

4 E(β⃗, γ⃗)← ⟨ψ(β⃗, γ⃗)|Hc |ψ(β⃗, γ⃗)⟩
5 {β⃗, γ⃗}, x∗ ← classical optimization algorithms to

optimize E(β⃗, γ⃗)

most quasi-polynomial since its polynomial time equiv-
alent graph isomorphism problem can be solved by a
quasi-polynomial algorithm [18]. Also, many polynomial
time heuristics exist for specific classes of graphs such
as nauty [19], [20] used in this work.

rand-group-QAOA groups vertices in the problem
graph randomly into |Ov| sets and edges randomly into
|Oe| sets, so that the number of parameters is the same
as that of max-sym-QAOA.

The generator used in max-sym-QAOA is usually
a set of automorphisms, so max-sym-QAOA is not
always contained in best-1sym-QAOA, which ranges
over all single automorphisms. Thus, max-sym-QAOA
may perform better than best-1sym-QAOA.

IV. RESULTS

In this work we implement one iteration of max-sym-
QAOA, rand-group-QAOA, and best-1sym-QAOA,
using the graph descriptions from [21]. We then compare
the algorithms with one another and ma-QAOA using
the data found in [22]. We use COBYLA to optimize the
QAOA parameters, although we expect similar results to
be obtained with other gradient-free and gradient-based
local methods.

A. best-1sym-QAOA vs. ma-QAOA
Among all 7, 565 graphs with nontrivial symme-

tries, best-1sym-QAOA has fewer parameters than ma-
QAOA has on 5, 918 graphs. Thus, we analyze only
best-1sym-QAOA on those graphs. Figure 1 shows the
difference in approximation ratios between best-1sym-
QAOA and ma-QAOA for these 5, 918 graphs. best-
1sym-QAOA has the same approximation ratio as ma-
QAOA has on 5, 097 graphs, which is approximately
86.1% of the studied graphs, while using on average
28.1% fewer parameters than ma-QAOA uses.

We also quantify the ratio of the difference in the
Max-Cut (approximation ratio) values of ma-QAOA and
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Fig. 1: Difference of approximation ratio r between ma-
QAOA and best-1sym-QAOA, as defined in (1). For
most graphs with symmetry, one symmetry can be used
to reduce the number of parameters without affecting the
solution quality.

best-1sym-QAOA to the difference in the Max-Cut
(approximation ratio) values of ma-QAOA and QAOA
as

kbest-1sym-QAOA :=
f(x∗ma)− f(x∗best-1sym-QAOA)

f(x∗ma)− f(x∗QAOA)
, (2)

where f(x∗y) denotes the approximate Max-Cut found
by y−QAOA. When k = 0, best-1sym-QAOA recov-
ers ma-QAOA; and when k = 1, best-1sym-QAOA
performs the same as QAOA. Thus, this ratio indicates
whether best-1sym-QAOA performance is closer to
ma-QAOA performance or QAOA performance. In this
study, the denominator of the ratio is always nonzero.

It is encouraging that the approximation ratios for
best-1sym-QAOA and ma-QAOA are similar. But this
finding is of limited value if both methods use the same
number of parameters. We therefore consider the quan-
tity lbest-1sym-QAOA, which is the relative difference in
parameters between ma-QAOA and best-1sym-QAOA
(as compared with the difference in the number of
parameters between ma-QAOA and QAOA). That is,

lbest-1sym-QAOA :=
|E|+ |V | − (|Oe(σ)|+ |Ov(σ)|)

|E|+ |V | − 2
,

(3)

where |Ov(σ)| and |Oe(σ)| are the number of vertex
orbits and edge orbits, respectively, induced by the
automorphism σ. This ratio determines how close the
number of parameters in best-1sym-QAOA is to either
ma-QAOA or QAOA, depending on whether the ratio
is closer to 0 or not.

B. max-sym-QAOA vs. ma-QAOA

Of the 11,117 connected, non-isomorphic 8-vertex
graphs, 3, 552 have only trivial symmetries. In these

Fig. 2: Difference of approximation ratio r between ma-
QAOA and max-sym-QAOA, as defined in (1). In a
plurality of graphs with symmetry, simply using the
largest symmetry leads to a reduction in the number of
parameters with no impact on solution quality.

cases max-sym-QAOA is ma-QAOA. Thus, our analy-
sis focuses on the 7, 565 graphs that contain nontrivial
symmetry, where max-sym-QAOA has fewer parame-
ters to optimize over. As shown in Fig. 2, max-sym-
QAOA performs as well as ma-QAOA on 2,713 of these
graphs. Furthermore, it performs the same as QAOA on
30 graphs, which is only about 0.4% of the graphs with
nontrivial symmetry. These results indicate that max-
sym-QAOA performance is comparable, even though it
requires fewer parameters.

We define the ratio of the difference in the Max-
Cut values of ma-QAOA and max-sym-QAOA to the
difference in Max-Cut values of ma-QAOA and QAOA
as

kmax-sym :=
f(x∗ma)− f(x∗max-sym)

f(x∗ma)− f(x∗QAOA)
. (4)

When k = 0, max-sym-QAOA recovers ma-QAOA;
and when k = 1, max-sym-QAOA performs the same
as QAOA. Thus, this ratio indicates whether max-
sym-QAOA’s performance is closer to ma-QAOA’s
performance or QAOA’s performance. In this study, the
denominator of the ratio is always nonzero.

We quantify the ratio of the reduction of parameters
from ma-QAOA to max-sym-QAOA over the differ-
ence in parameters between ma-QAOA and QAOA as

lmax-sym :=
|E|+ |V | − (|Oe|+ |Ov|)

|E|+ |V | − 2
, (5)

since ma-QAOA uses |E|+ |V | parameters, max-sym-
QAOA requires |Oe|+|Ov| parameters, and QAOA uses
two parameters.

Figure 3 shows that a positive correlation exists be-
tween the quantities k and l. Among results that achieve
the result equivalent to ma-QAOA, the number of pa-
rameters reduced is spread nearly evenly over [0.1, 0.8].
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Fig. 3: Comparison of kmax-sym and lmax-sym for max-
sym-QAOA, as defined in (4) and (5). There is a positive
correlation between these two variables.

Since there are almost no points between [0, 0.1], max-
sym-QAOA almost always requires at least 10% fewer
parameters than ma-QAOA requires. lmax-sym averaged
over all those graphs with nontrivial symmetries is 0.37.

Note that specifically for those graphs where reducing
the number of parameters leads to a decrease in the
objective, max-sym-QAOA can reduce the parameter
count by 37.1% at the cost of only a 6.1% decrease
in the objective.

C. Evidence for Central Role of Symmetries

max-sym-QAOA is also compared with rand-group-
QAOA, which groups vertices and edges randomly so
that the corresponding number of parameters is the
same as that of max-sym-QAOA. Figure 4 demonstrates
the centrality of symmetries to ma-QAOA parameter
redundancy by showing that the parameter reduction
strategy of max-sym-QAOA has a clear advantage over
rand-group-QAOA in terms of solution quality.

Fig. 4: Fraction of graphs achieving ratio k for max-
sym-QAOA and rand-group-QAOA. If a random pa-
rameter reduction is used, the performance deteriorates
significantly, suggesting the central role of symmetries.

Fig. 5: Fraction of graphs achieving ratio k for max-
sym-QAOA and best-1sym-QAOA, as defined in (2)
and (4).

D. max-sym-QAOA vs. best-1sym-QAOA

In this section we compare max-sym-QAOA and
best-1sym-QAOA on the 5,918 graphs for which
best-sym-QAOA requires fewer parameters than does
ma-QAOA.

Figure 5 indicates that best-1sym-QAOA has k = 0
on nearly twice as many graphs as max-sym-QAOA.
Additionally, k < 0.6 for the majority of graphs solved
with best-1sym-QAOA while k is spread over [0, 1]
with max-sym-QAOA.

Although max-sym-QAOA does not perform as well
as best-1sym-QAOA on the majority of graphs, the av-
erage lmax-sym is around 0.39 while the average lbest-sym
is only 0.31, so best-1sym-QAOA has more parameters
than max-sym-QAOA, on average.

V. DISCUSSION

In this work we demonstrate the connection between
the parameter redundancy in ma-QAOA and the sym-
metries of the problem to be optimized. Specifically,
we show that the number of parameters in ma-QAOA
can often be dramatically reduced without affecting the
solution quality. To that end, we introduce three QAOA
variations that require fewer parameters than ma-QAOA:
best-1sym-QAOA, max-sym-QAOA, and rand-group-
QAOA. The three algorithms assign classical parameters
based on the symmetries (automorphisms) of the under-
lying problem graph. We evaluate these algorithms on all
connected, non-isomorphic 8-vertex graphs and compare
the results with those of ma-QAOA.

In most cases, max-sym-QAOA requires at least 10%
fewer parameters than ma-QAOA does, while main-
taining a comparable approximation ratio, which is the
primary metric of QAOA success. In fact, in over one-
third of the connected 8-vertex graphs with nontrivial
symmetry, max-sym-QAOA finds the same approximate
Max-Cut as does ma-QAOA. Furthermore, a positive
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correlation exists between the number of parameters
reduced and the reduction in the approximation ratio, as
expected. Additionally, significantly more graphs have
k = 0 when solved with max-sym-QAOA than rand-
group-QAOA, implying that max-sym-QAOA outper-
forms rand-group-QAOA in general. On the other hand,
significantly more graphs have k = 0 when solved with
best-1sym-QAOA than max-sym-QAOA, yet max-
sym-QAOA needs fewer parameters (on average) than
does best-1sym-QAOA.

Thus, out of best-1sym-QAOA, max-sym-QAOA,
and rand-group-QAOA, rand-group-QAOA appears to
have the worst performance while best-1sym-QAOA
appears to have the closest performance to ma-QAOA
on these small graphs. The failure of rand-group-QAOA
demonstrates the importance of symmetry to parameter
setting in QAOA.

Approximately one-third of the graphs considered
in this study had only trivial symmetry, and max-
sym-QAOA is equivalent to ma-QAOA in these cases.
Nonetheless, numerical evidence in [14] suggests that
for these graphs the redundancy in parameters is also
present. Therefore, an interesting future direction is
understanding how the redundancy in parameters can be
reduced for graphs with no symmetries.

Sauvage et al. proposed using symmetries to improve
the performance of variational quantum algorithms [23].
They observed that in ma-QAOA applied to the Max-
Cut problem, the number of parameters can be reduced
and the trainability improved by using an approach
equivalent to max-sym-QAOA described in this work.
Unlike [23], we highlight the role of symmetries in
quantum optimization by showing that symmetry-based
parameter reduction leads to much better performance
than does a random approach. Moreover, we consider
utilizing a part of the symmetry group (best-1sym-
QAOA).
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