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Abstract—We exploit the SO(3)-symmetry of the
Hamiltonian dynamics of N point vortices on the sphere
to derive a Hamiltonian system for the relative dynamics
of the vortices. The resulting system combined with the
energy–Casimir method helps us prove the stability of the
tetrahedron relative equilibria when all of their circulations
have the same sign—a generalization of some existing re-
sults on tetrahedron relative equilibria of identical vortices.

1. Introduction

1.1. Dynamics of Point Vortices on Sphere

Consider N point vortices on the two-sphere S2
R ⊂ R3

with (fixed) radius R > 0 centered at the origin. Let
{xi ∈ S2

R}N
i=1 be the positions of the point vortices with

circulations {Γi}N
i=1. Then the equations of motion of the

point vortices are

ẋi =
1

2πR

∑
1≤ j≤N

j,i

Γ j
x j × xi

|xi − x j|2
(1)

for i ∈ {1, . . . ,N}; see, e.g., Bogomolov [1], Kimura and
Okamoto [3], and Newton [7, Chapter 4].

This system of equations is Hamiltonian in the following
sense: Let Ωi be the area form of the i-th copy of S2

R and
define the following two-form on (S2

R)N :

ΩS2
R

:=
N∑

i=1

Γiπ
∗
i Ωi with Ωi(xi)(vi,wi) :=

1
R

xi · (vi ×wi)

where πi : (S2
R)N → S2

R is the projection to the i-th copy.
Define the Hamiltonian on (S2

R)N as

HS2
R
(x1, . . . , xN) := − 1

4πR2

∑
1≤i< j≤N

ΓiΓ j ln
(
2(R2 − xi · x j)

)
.

Then we man write (1) as the following Hamiltonian sys-
tem on (S2

R)N :
iXΩS2

R
= dHS2

R
,

where X is a vector field on (S2
R)N .
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1.2. Relative Motion and Shape Dynamics

The focus of this paper is the relative motion or the shape
dynamics of the point vortices, i.e., we are interested in the
set of equations that governs the evolution of the “shape” or
relative positions of the point vortices—regardless of where
the vortices are located on the sphere. For example, for
N = 3, it is the dynamics of the shape of the triangle formed
by the three point vortices, regardless of its position and
orientation on the sphere.

Defining the inter-vortex (Euclidean) distance ℓi j :=
|xi − x j| for i, j ∈ {1, . . . ,N} with i , j and the (signed)
volume Vi jk := xi · (x j × xk) of the parallelepiped formed
by vectors xi, x j, xk for i, j, k ∈ {1, . . . ,N} with i , j , k,
we can derive the equations of relative motion

d
dt
ℓ2i j =

1
πR

N∑
1≤k≤N

k,i, j

ΓkVi jk

 1
ℓ2jk

− 1
ℓ2ki


from (1); see, e.g., Newton [7, Section 4.2].

There are a couple of issues with this formulation:
(i) The variables {ℓi j}1≤i< j≤N ∪{Vi jk}1≤i< j<k≤N are redun-
dant as those to describe the shapes; (ii) it is not easy to find
the invariants of the system. Our goal is to find a formula-
tion of the shape dynamics that addresses these issues.

1.3. SO(3)-Symmetry

In principle, one may obtain the relative/shape dynamics
of N point vortices by exploiting the invariance of (1) under
the following SO(3)-action:

SO(3) × (S2
R)N → (S2

R)N ;
(R, (x1, . . . , xN)) 7→ (Rx1, . . . ,RxN).

However, the reduction by SO(3)-symmetry is quite in-
tricate. Let I : (S2

R)N → so(3)∗ � R3 be the associated
momentum map. Then the difficulty is that the reduced
space or the Marsden–Weinstein quotient I−1(c)/SO(3)c
with c ∈ R3 is tricky to work with when describing the
reduced dynamics; see Kirwan [4].

1.4. Lifting to C2 and Reduction by U(2)

We sidestep the difficulty of the SO(3)-reduction as de-
scribed in the figure below.
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(C2)N � C2×N

(S2
R)N O ⊂ u(DΓ)∗

shape space

Reduction by TN Reduction by U(2)
(Section 3)

Reduction by SO(3)

Lifting
(Section 2)

Reduction by TN−1

(Section 4)

Namely, instead of reducing the dynamics on (S2
R)N by

SO(3) directly, first lift it to (C2)N (which picks up TN-
symmetry) and then apply reduction by U(2) (which is fa-
cilitated by a dual pair); this results in a Lie–Poisson dy-
namics in a coadjoint orbit O ⊂ u(DΓ)∗. We may then
further reduce the system by TN−1-symmetry to get rid of
the extra symmetry picked up in the lifting process; see [8]
for details.

This geometric treatment results in fewer variables for
the shape dynamics compared to those “internal” variables
of Borisov and Pavlov [2]. In fact, our shape dynamics is
described using (N − 1)2 variables. On the other hand, the
number of the “internal” variables of [2] is N(N2 − 1)/6.

Another advantage of our formulation is that we can find
a family of Casimirs exploiting the underlying algebraic
structure of the Lie–Poisson bracket on O. This is not easy
with the Poisson bracket of [2] because its algebraic struc-
ture is not clear.

2. Lifted Vortex Dynamics in C2

We would like to first lift the vortex dynamics from S2
R

to C2. This idea is inspired by Vankerschaver and Leok
[11], where they lift the dynamics from S2

R to S3√
R

via the

Hopf fibration S3√
R

→ S2
R. As we have shown in [8],

our approach naturally gives rise to the Hopf fibration by
identifying the reduced space S2

R = S3√
R
/S1 as a Marsden–

Weinstein quotient.

2.1. Vortex Equations in C2

First define a Hamiltonian H : (C2)N → R as

H(φ) := − 1
4πR2

∑
1≤i< j≤N

ΓiΓ j

ln
[(
∥φi∥2

+ ∥φ j∥2)2
− 4|φ∗i φ j|2

]
, (2)

where we used the shorthand φ = (φ1, . . . , φN) ∈ (C2)N ,
and defined the norm ∥φ∥ :=

√
φ∗φ induced by the natural

inner product on C2. We also write

φi =

[
zi

ui

]
with zi, ui ∈ C ∀i ∈ {1, . . . ,N}.

We define a symplectic form Ω on (C2)N as follows:

Ω := − 2
R

N∑
i=1

Γi Im
(
dφ∗i ∧ dφi

)
,

or Ω = −dΘ with

Θ := − 2
R

N∑
i=1

Γi Im
(
φ∗i dφi

)
. (3)

Then the Hamiltonian vector field X = φ̇i
∂
∂φi

+ c.c. (“c.c.”
stands for the complex conjugate of the preceding term)
defined by the Hamiltonian system iXΩ = dH gives the
following Schrödinger-like lifted vortex equation on C2 for
i = 1, . . . ,N:

Γiφ̇i = − i
2
∂H
∂φ∗i
. (4)

3. U(2)-Reduction of N-vortex Dynamics in C2

The lifted dynamics (4) of N point vortices evolves in
(C2)N . We identify it with the space of 2 × N complex
matrices as follows:

(C2)N → C2×N ; φ = (φ1, . . . , φN) 7→ Φ = [φ1 . . . φN].

Then we may rewrite the one-form (3) as

Θ(Φ) = − 2
R

Im
(
tr
(
DΓΦ

∗dΦ
))
, (5)

where we defined

DΓ := diag(Γ1, . . . ,ΓN). (6)

3.1. U(2)-Reduction via a Dual Pair

Now consider the (left) U(2)-action on C2×N defined as

U(2) × C2×N → C2×N ; (Y,Φ) 7→ YΦ.

One can easily check that this is a symplectic action and
also that the Hamiltonian (2) is invariant under this action.
Therefore, the associated momentum map

K : C2×N → u(2)∗; K(Φ) = − i
R

N∑
i=1

Γiφiφ
∗
i

is an invariant of the system (4), where we identified
the dual u(2)∗ with u(2) via this inner product ⟨ξ, η⟩ :=
2 tr(ξ∗η).

Let us also define

U(DΓ) :=
{
U ∈ CN×N | UDΓU∗ = DΓ

}
,

using DΓ from (6), and its (right) action on C2×N :

U(DΓ) × C2×N → C2×N ; (Z,Φ) 7→ ΦU. (7)

The Lie algebra of U(DΓ) is given by

u(DΓ) :=
{
ζ̃ ∈ CN×N | ζ̃DΓ + DΓζ̃

∗ = 0
}
.

Now let us now equip the unitary algebra u(N) with the
modified Lie bracket

[ξ, η]Γ := ξD−1
Γ
η− ηD−1

Γ
ξ.
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to define a Lie algebra u(N)Γ. Then we have the Lie algebra
isomorphism u(DΓ) → u(N)Γ; ζ̃ 7→ ζ̃DΓ =: ζ.

It is clear that the above action (7) leaves Θ invariant as
well; see (5). The associated momentum map is then

L : C2×N → u(N)∗Γ; L(Φ) = − i
R
Φ∗Φ.

However, the Hamiltonian (2) is not invariant under this
action, and so L is not an invariant of the system (4).

It turns out that the above momentum maps K and L con-
stitute a dual pair (see Skerritt [9] and Skerritt and Vizman
[10]) defined on C2×N :

u(2)∗ C2×N u(N)∗
Γ
.

K L

This implies that the U(2)-reduced dynamics is given by a
(−)-Lie–Poisson equation on u(N)∗

Γ
:

λ̇ = ad∗δh/δλ λ or λ̇ = {λ, h} , (8)

where h : u(N)∗
Γ
→ R is defined so that h ◦ L = H:

h(λ) := − 1
4πR2

∑
1≤i< j≤N

ΓiΓ j ln
(
R2

(
1
2

(
λi + λ j

)2
− |λi j|2

))
,

(9)
and the (−)-Lie–Poisson bracket on u(N)∗

Γ
is given by

{ f , h} (λ) := −
〈
λ,

[
δ f
δλ
,
δh
δλ

]
Γ

〉
for any smooth f , h : u(N)∗

Γ
→ R.

Note that the Hamiltonian systems (4) and (8) are then
related via

λ = − i
2



√
2λ1 λ12 λ1N

λ̄12
√

2λ2

λN−1,N

λ̄1N λ̄N−1,N
√

2λN


= L(Φ)

or more concretely, for i, j ∈ {1, . . . ,N},

λi =

√
2

R
∥φi∥2

, λi j =
2
R
φ∗i φ j.

Furthermore, one can show the above Lie–Poisson
bracket has the following family of Casimirs [8]:

C j(λ) := tr
(
(iDΓλ) j

)
j ∈ {1, . . . ,N}. (10)

4. Further Reduction by TN−1-symmetry

4.1. TN−1-symmetry

Consider the action

TN−1 × u(N)∗Γ → u(N)∗Γ(
(eiθ1 , . . . , eiθN−1 ), λ

)
7→ Ad∗e−iθ̃ λ = eiθ̃λe−iθ̃

(11)

where

eiθ̃ := diag
(
eiθ1 , . . . , eiθN−1 , 1

)
∈ U(DΓ).

It is easy to see that the Hamiltonian (9) is invariant under
this action. However, note that the action (11) is not free.
Thus we restrict the action to the open subset

ů(N)∗Γ := {λ ∈ u(N)∗Γ | λi j , 0 if i , j }

so that it becomes free.
Now, let us define

µi j := λi jλ̄iNλ jN = λi jλNiλ jN ∈ C̊ := C\{0}

for any i, j ∈ {1, . . . ,N − 1} with i < j. Then we may
parametrize λ ∈ ů(N)∗

Γ
as follows:

λ = (λ1, . . . , λN , λ1N , . . . , λN−1,N , µ12, . . . , µN−2,N−1)

∈ RN × C̊N−1 × C̊(N−1)(N−2)/2.

Then the TN−1-action (11) becomes trivial on the variables
{µi j}1≤i< j≤N−1, and hence we have

ů(N)∗Γ/T
N−1 = RN ×

(
C̊N−1/TN−1

)
× C̊(N−1)(N−2)/2

= RN × RN−1
+ × C̊(N−1)(N−2)/2

={(λ1, . . . , λN , |λ1N |, . . . , |λN−1,N |, µ12, . . . , µN−2,N−1
)} .

Then the Poisson bracket on ů(N)∗
Γ

drops to the quotient
by the standard Poisson reduction; see [8] for the resulting
reduced Poisson bracket.

Furthermore, we may disregard (λ1, . . . , λN) from the
variables because λi =

√
2

R ∥φi∥2
=

√
2 for i = 1, . . . ,N.

Also, since we have |λi j|2 = 4 − (ℓi j/R)2, we impose that
0 < ℓi j < 2R ⇐⇒ 0 < |λi j| < 2 to avoid collisions and
having vortices at antipodal points. As a result, we have
the following parametrization for the shape dynamics of N
point vortices:

SN := (0, 2)N−1 × C̊(N−1)(N−2)/2

= {(|λ1N |, . . . , |λN−1,N |, µ12, . . . , µN−2,N−1) =: ζ}.

Note that the dimension of this manifold is (N −
1)2, whereas the number of the “internal” variables
{ℓi j}1≤i< j≤N ∪ {Vi jk}1≤i< j<k≤N in Borisov and Pavlov [2]
is N(N2 − 1)/6.

Rewriting the collective Hamiltonian (9) in terms of our
variables, we have the Hamiltonian H : SN → R defined as

H(ζ) := − 1
4πR2

( ∑
1≤i< j≤N−1

ΓiΓ j ln
(
R2

(
4 −

|µi j|2

|λiN |2|λ jN |2

))

+ ΓN

∑
1≤i≤N−1

Γi ln
(
R2

(
4 − |λiN |2

)))
. (12)

To summarize our main result (see [8] for details), we
have
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Theorem 1.

(i) The relative/shape dynamics of N point vortices on
the sphere is the Hamiltonian dynamics on

SN := (0, 2)N−1 × C̊(N−1)(N−2)/2

={(|λ1N |, . . . , |λN−1,N |, µ12, . . . , µN−2,N−1
)
=: ζ}

with respect to the reduced Poisson bracket (see [8])
and the Hamiltonian (12).

(ii) The Casimirs {C j} j∈N from (10) are invariants of the
shape dynamics.

5. Application

5.1. Tetrahedron Relative Equilibria

Let us consider the special case with N = 4. The shape
variables in this case are

{ζ = (|λ14|, |λ24|, |λ34|, µ12, µ13, µ23)} ∈ S4 = (0, 2)3 × C̊3.

We are particularly interested in the stability of the tetrahe-
dron relative equilibrium as shown in the figure below.

Using our shape variables, let us set

|λ14| = |λ24| = |λ34| =
2
√

3
, µ12 = −µ13 = µ23 =

8

3
√

3
i.

Notice that Im µ13 is the negative of Im µ12 and Im µ23 be-
cause the orientation of the triangle formed by (x1, x3, x4)
is the opposite of those by (x1, x2, x4) and (x2, x3, x4) as one
can see (from the origin) in the figure. It is easy to check
that we then have

ℓ12 = ℓ13 = ℓ14 = ℓ23 = ℓ24 = ℓ34 = 2

√
2
3

R.

5.2. Stability of Tetrahedron Relative Equilibria

We would like to find a sufficient condition for stability
of the tetrahedron relative equilibria. To our knowledge,
existing stability results for tetrahedron equilibria are lim-
ited to the case with identical vortices, i.e., Γ1 = Γ2 = Γ3 =

Γ4; see Kurakin [5] and Meleshko et al. [6]. We have gen-
eralized this result to the non-identical case with N = 4 as
follows:

Proposition 2. The tetrahedron configuration of four point
vortices on the sphere is a stable equilibrium of the shape
dynamics if all the circulations {Γi}4

i=1 have the same sign.

Proof. By the energy–Casimir method. See [8]. □
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