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Abstract

Continual graph learning routinely finds its role in a vari-
ety of real-world applications where the graph data with dif-
ferent tasks come sequentially. Despite the success of prior
works, it still faces great challenges. On the one hand, exist-
ing methods work with the zero-curvature Euclidean space,
and largely ignore the fact that curvature varies over the com-
ing graph sequence. On the other hand, continual learners in
the literature rely on abundant labels, but labeling graph in
practice is particularly hard especially for the continuously
emerging graphs on-the-fly. To address the aforementioned
challenges, we propose to explore a challenging yet prac-
tical problem, the self-supervised continual graph learning
in adaptive Riemannian spaces. In this paper, we propose a
novel self-supervised Riemannian Graph Continual Learner
(RieGrace). In RieGrace, we first design an Adaptive Rie-
mannian GCN (AdaRGCN), a unified GCN coupled with a
neural curvature adapter, so that Riemannian space is shaped
by the learnt curvature adaptive to each graph. Then, we
present a Label-free Lorentz Distillation approach, in which
we create teacher-student AdaRGCN for the graph sequence.
The student successively performs intra-distillation from it-
self and inter-distillation from the teacher so as to consolidate
knowledge without catastrophic forgetting. In particular, we
propose a theoretically grounded Generalized Lorentz Pro-
jection for the contrastive distillation in Riemannian space.
Extensive experiments on the benchmark datasets show the
superiority of RieGrace, and additionally, we investigate on
how curvature changes over the graph sequence.

Introduction
Continual graph learning is emerging as a hot research topic
which successively learns from a graph sequence with dif-
ferent tasks (Febrinanto et al. 2022). In general, it aims at
gradually learning new knowledge without catastrophic for-
getting the old ones across sequentially coming tasks. Cen-
tered around fighting with forgetting, a series of methods
(Kim, Yun, and Kang 2022; Galke et al. 2021) have been
proposed recently. Despite the success of prior works, con-
tinual graph learning still faces tremendous challenges.

Challenge 1: An adaptive Riemannian representation
space. To the best of our knowledge, existing methods work
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with Euclidean space, the zero-curvature Riemannian space
(Zhang, Song, and Tao 2022; Zhou and Cao 2021; Wang
et al. 2020). However, in continual graph learning, the cur-
vature of a graph remains unknown until its arrival. In par-
ticular, the negatively curved Riemannian space, hyperbolic
space, is well-suited for graphs presenting hierarchical pat-
terns or tree-like structures (Krioukov et al. 2010; Nickel
and Kiela 2017). The underlying geometry shifts to be posi-
tively curved, hyperspherical space, when cyclical patterns
(e.g., triangles or cliques) become dominant (Bachmann,
Bécigneul, and Ganea 2020). Even more challenging, the
curvature usually varies over the coming graph sequence as
shown in the case study. Thus, it calls for a smart graph en-
coder in the Riemannian space with adaptive curvature for
each coming graph successively.

Challenge 2: Continual graph learning without super-
vision. Existing continual graph learners (Cai et al. 2022;
Wang et al. 2022) are trained in the supervised fashion, and
thereby rely on abundant labels for each learning task. La-
beling graphs requires either manual annotation or paying
for permission in practice. It is particularly hard and even
impossible when graphs are continuously emerging on-the-
fly. In this case, self-supervised learning is indeed appeal-
ing, so that we can acquire knowledge from the unlabeled
data themselves. Though self-supervised learning on graphs
is being extensively studied (Veličković et al. 2019; Qiu et al.
2020; Yin et al. 2022), existing methods are trained offline.
That is, they are not applicable for continual graph learn-
ing, and naive application results in catastrophic forgetting
in the successive learning process (Lange et al. 2022; Ke
et al. 2021). Unfortunately, self-supervised continual graph
learning is surprisingly under-investigated in the literature.

Consequently, it is vital to explore how to learn and mem-
orize knowledge free of labels for continual graph learning
in adaptive Riemannian spaces. Thus, we propose the chal-
lenging yet practical problem of self-supervised continual
graph learning in adaptive Riemannian spaces.

In this paper, we propose a novel self-supervised
Riemannian Graph Continual Learner (RieGrace). To ad-
dress the first challenge, we design an Adaptive Rieman-
nian GCN (AdaRGCN), which is able to shift among
any hyperbolic or hyperspherical space adaptive to each
graph. In AdaRGCN, we formulate a unified Riemannian
graph convolutional network (RGCN) of arbitrary curva-
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ture, and design a CurvNet inspired by Forman-Ricci cur-
vature in Riemannian geometry. CurvNet is a neural mod-
ule in charge of curvature adaptation, so that we induce
a Riemannian space shaped by the curvature learnt from
the task graph. To address the second challenge, we pro-
pose a novel label-free Lorentz distillation approach to con-
solidate knowledge without catastrophic forgetting. Specifi-
cally, we create teacher-student AdaRGCN for the graph se-
quence. When receiving a new graph, the student is created
from the teacher. The student distills from the intermedian
layer of itself to acquire knowledge of current graph (intra-
distillation), and in the meanwhile, distills from the teacher
to preserve the past knowledge (inter-distillation). In our ap-
proach, we propose to consolidate knowledge via contrastive
distillation, but it is particularly challenging to contrast be-
tween different Riemannian spaces. To bridge this gap, we
formulate a novel Generalized Lorentz Projection (GLP).
We prove GLP is closed on Riemannian spaces, and show
its relationship to the well-known Lorentz transformation.

In short, noteworthy contributions are summarized below:

• Problem. We propose the problem of self-supervised
continual graph learning in adaptive Riemannian spaces,
which is the first attempt, to the best of our knowledge, to
study continual graph learning in non-Euclidean space.
• Methodology. We present a novel RieGrace, where we

design a unified RGCN with CurvNet to shift curvature
among hyperbolic or hyperspherical spaces adaptive to
each graph, and propose the Label-free Lorentz Distilla-
tion with GLP for self-supervised continual learning.
• Experiments. Extensive experiments on the benchmark

datasets show that RieGrace even outperforms the state-
of-the-arts supervised methods, and the case study gives
further insight on the curvature over the graph sequence
with the notion of embedding distortion.

Preliminaries
In this section, we first introduce the fundamentals of Rie-
mannian geometry, and then formulate the studied problem,
self-supervised continual graph learning in general Rieman-
nian space. In short, we are interested in how to learn an en-
coder Φ that is able to sequentially learn on coming graphs
G1, . . . , GT in adaptive Riemannian spaces without external
supervision.

Riemannian Geometry
Riemannian Manifold. A Riemannian manifold (M, g)
is a smooth manifoldM equipped with a Riemannian metric
g. Each point x on the manifold is associated with a tangent
space TxM that looks like Euclidean. The Riemannian met-
ric g is the collection of inner products at each point x ∈M
regarding its tangent space. For x ∈ M, the exponential
map at x, expx(v) : TxM→M, projects the vector of the
tangent space at x onto the manifold, and the logarithmic
map logx(y) :M→ TxM is the inverse operator.

Curvature. In Riemannian geometry, the curvature is the
notion to measure how a smooth manifold deviates from be-
ing flat. If the curvature is uniformly distributed, the mani-

fold M is called the space of constant curvature κ. In par-
ticular, the space is hyperspherical S with κ > 0 when it is
positively curved, and hyperbolic H with κ < 0 when nega-
tively curved. Euclidean space is flat space with κ = 0, and
can be considered as a special case in Riemannian geometry.

Problem Formulation
In the continual graph learning, we will receive a sequence
of disjoint tasks T = {T1, . . . , Tt, . . . , TT }, and each task is
defined on a graph G = {V, E}, where V = {v1, · · · , vN}
is the node set, and E = {(vi, vj)} ⊂ V × V is the edge
set. Each node vi is associated with node feature xi and a
category yi ∈ Yk, where Yk is the label set of k categories.

Definition 1 (Graph Sequence). The sequence of tasks in
graph continual learning is described as a graph sequence
G = {G1, . . . , GT }, and each graph Gt corresponds to a
task Tt. Each task contains a training node set Vtrt and a
testing node set Vtet with node features Xtr

t and Xte
t .

In this paper, we study the task-incremental learning in
adaptive Riemannian space whose curvature is able to suc-
cessively match each task graph. When a new graph arrives,
the learnt parameters are memorized but historical graphs
are dropped, and additionally, no labels are provided in the
learning process. We give the formal definition as follows:

Definition 2 (Self-Supervised Continual Graph Learn-
ing in Adaptive Riemannian Space). Given a graph se-
quence G with tasks T , we aim at learning an encoder
Φ : v → h ∈ Md,k in absence of labels in adaptive Rie-
mannian space, so that the encoder is able to continuously
consolidate the knowledge for current task without catas-
trophically forgetting the knowledge for previous ones.

Essentially different from the continual graph learners of
prior works, we study with a more challenging yet practical
setting: i) rather than Euclidean space, the encoder Φ works
with an adaptive Riemannian space suitable for each task,
and ii) is able to learn and memorize knowledge without la-
bels for continuously emerging graphs on-the-fly.

Methodology
To address this problem, we propose a novel Self-supervised
Riemannian Graph Continual Learner (RieGrace) We illus-
trate the overall architecture of RieGrace in Figure 1. In the
nutshell, we first design a unified graph convolutional net-
work (AdaRGCN) on the Riemannian manifold shaped by
the learnt curvature adaptive to each coming graph. Then,
we propose a label-free Lorentz distillation approach to con-
solidate knowledge without catastrophic forgetting.

Representation Space. First of all, we introduce the Rie-
mannian manifolds we use in this paper before we construct
RieGrace on them. We opt for the hyperboloid (Lorentz)
model for hyperbolic space and the corresponding hyper-
sphere model for hyperspherical space with the unified for-
malism, owing to the numerical stability and closed form
expressions (Liu, Nickel, and Kiela 2019).

Formally, we have a d-dimensional manifold of curvature
κ,Md,κ = {x ∈ Rd+1| 〈x,x〉κ = 1

κ} with κ 6= 0, whose
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Figure 1: Overall architecture of RieGrace. We design the AdaRGCN which successively adapts its curvature for current task
graph with CurvNet, and propose Label-free Lorentz Distillation for continual graph learning. In each learning session, i)
the student is created from the teacher with the same architecture, ii) jointly performs intra-distillation from itself and inter-
distillation from the teacher with GLP to consolidate knowledge, and iii) becomes the teacher for the next learning session.

Operator Unified formalism inMd,κ

Distance Metric dM(x,y) = 1√
|κ|

cos−1
κ (κ〈x,y〉κ)

Exponential Map expκx(v) = cosκ (α) x + sinκ(α)
α v

Logarithmic Map logκx(y) =
cos−1

κ (β)

sinκ(cos−1
κ (β))

(y − βx)

Scalar Multiply r ⊗κ x = expκO (r logκO(x))

Table 1: Curvature-aware operations in manifoldMd,κ.

origin is denoted as O = (|κ|− 1
2 , 0, · · · , 0) ∈ Md,κ. The

curvature-aware inner product 〈·, ·〉κ is defined as

〈x,y〉κ = x> diag(sign(κ), 1, · · · , 1)y, (1)

and thus the tangent space at x is given as TxMd,κ = {v ∈
Rd+1| 〈v,x〉κ = 0}. In particular, for the positive curva-
ture, Md,κ is the hypersphere model Sd,κ and 〈·, ·〉κ is the
the standard inner product on Rd+1. For the negative cur-
vature, Md,κ is the hyperboloid model Hd,κ and 〈·, ·〉κ is
the Minkowski inner product. The operators with the uni-
fied formalism on Md,κ is summarized in Table 1, where
v =

√
|κ|‖v‖κ, β = κ〈x,y〉κ and ‖v‖2κ = 〈v,v〉κ for

v ∈ TxMd,κ. We utilize the curvature-aware trigonometric
function the same as Skopek, Ganea, and Bécigneul (2020).

Adaptive Riemannian GCN
Recall that the curvature of task graph remains unknown
until its arrival. We propose an adaptive Riemannian GCN
(AdaRGCN), a unified GCN of arbitrary curvature cou-
pled with a CurvNet, a neural module for curvature adapta-
tion. AdaRGCN shifts among hyperbolic and hyperspherical
spaces accordingly to match the geometric pattern of each
graph, essentially distinguishing itself from prior works.

Unified GCN of Arbitrary Curvature. Recent studies in
Riemannian graph learning mainly focus on the design of

GCNs in manifold Md,κ with negative curvatures (hyper-
boloid model), but the unified GCN of arbitrary curvature
has rarely been touched yet. To bridge this gap, we propose
a unified GCN of arbitrary curvature, generalizing from the
zero-curvature GAT (Veličković et al. 2018). Specifically,
we introduce the operators with unified formalism onMd,κ.

Feature transformation is a basic operation in neural net-
work. For h ∈Md,κ, we perform the transformation via the
κ-left-multiplication �κ defined by expκO(·) and logκO(·),

W �κ h = expκO
([

0 ‖W logκO(h)[1:d]

])
, (2)

where W ∈ Rd′×d is weight matrix, and [·‖·] denotes con-
catenation. Note that, [logκO(h)]0 = 0 holds, ∀h ∈Md,κ.

The advantage of Eq. (2) is that logarithmically mapped
vector lies in the tangent space TOMd,κ for any W so that
we can utilize expκO(·) safely, which is not guaranteed in
direct combination formalism of expκO(WlogκO(h)). Simi-
larly, we give the formulation of applying function f(·),

fκ(h) = expκO
([

0 ‖ f(logκO(h))[1:d]

])
. (3)

Neighborhood aggregation is a weighted arithmetic mean
and also the geometric centroid of the neighborhood fea-
tures essentially (Wu et al. 2019). Fréchet mean follows this
meaning in Riemannian space, but unfortunately does not
have a closed form solution (Law et al. 2019). Alternatively,
we define neighborhood aggregation as the geometric cen-
troid of squared distance, in spirit of Fréchet mean, to enjoy
both mathematical meaning and efficiency. Given a set of
neighborhood features hj ∈ Md,κ centered around vi, the
closed form aggregation is derived as follows:

AGGκ({hj , νij}i) = 1√
|κ|

∑
j∈N̄i

νijhj∣∣∣||∑j∈N̄i
νijhj ||κ

∣∣∣ , (4)

where N̄i is the neighborhood of vi including itself, and νij
is the attention weight.
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Different from Law et al. (2019); Zhang et al. (2021), we
generalize the centroid from hyperbolic space to the Rie-
mannian space of arbitrary curvature Md,κ, and show its
connection to gyromidpoint of κ-sterographical model the-
oretically. Now, we prove that arithmetic mean in Eq. (4) is
the closed form expression of the geometric centroid.

Proposition 1. Given a set of points hj ∈ Md,κ each at-
tached with a weight νij , j ∈ Ω, the centroid of squared
distance c in the manifold is given as minimization problem:

min
c∈Md,κ

∑
j∈Ω

νijd
2
M (hj , c) , (5)

Eq. (4) is the closed form solution, c = AGGκ({hj , νij}i).

Proof. We have c = arg minc∈Md,κ

∑
j∈Ω νijd

2
κ (hj , c),

and c is in the manifold c ∈ Md,κ, i.e., 〈c, c〉κ = 1
κ . Please

refer to ArXiv version for the details.

Attention mechanism is equipped for neighborhood ag-
gregation as the importance of neighbor nodes are usually
different. We study the importance between a neighbor vj
and center node vi by an attention function in tangent space,

ATTκ(xi,xj , θ) = θ> [logκO(xi)||logκO(xj)] , (6)

parameterized by θ, and then attention weight is given by
νij = Softmaxj∈Ni(ATTκ(xi,xj ,θ)).

We formulate the convolutional layer onMd,κ with pro-
posed operators. The message passing in the lth layer is

h
(l)
i = δκ (AGGκ({xj , νij}i)) ,xi = W �κ h

(l−1)
i , (7)

where δκ(·) is the nonlinearity. Consequently, we build the
unified GCN by stacking multiple convolutional layers, and
its curvature is adaptively learnt for each task graph with a
novel neural module designed as follows.

Curvature Adaptation. We aim to learn the curvature of
any graph with a function f : G → κ, so that the Rieman-
nian space is able to successively match the geometric pat-
tern of the task graph. To this end, we design a simple yet
effective network, named CurvNet, based on the notion of
Forman-Ricci curvature in Riemannian geometry.

Theory on Graph Curvature: Forman-Ricci curvature de-
fines the curvature for an edge (vi, vj), and Weber, Saucan,
and Jost (2017) give the reformulation on the neighborhoods
of its two end nodes,

Fij = wi + wj −
∑
l∈Ni

√
γij
γil
wl −

∑
k∈Nj

√
γij
γik
wk, (8)

where wi and γij are the weights associated with nodes and
edges, respectively. wi is defined by the degree information
of the nodes connecting to vi, and γij = wi√

w2
i+w2

j

. Accord-

ing to (Cruceru, Bécigneul, and Ganea 2021), vi’s curva-
ture is then given by averaging Fij over its neighborhood. In
other words, the curvature of a node is induced by the node
weights over its 2-hop neighborhood.

The proposed CurvNet: We propose CurvNet, a 2-layer
graph convolutional net, to approximate the map from node

weights to node curvatures. CurvNet aggregates and trans-
forms the information over 2-hop neighborhood by stacking
convolutional layer,

Z(l) = GCN(Z(l−1),M(l)), (9)

twice, where M(l) is the lth layer parameters. CurvNet can
be built with any GCN, and we utilize Kipf and Welling
(2017) in practice. The input features are node weights de-
fined by degree information, Z(0) = A diag(d1, · · · , dN ).
A is the adjacency matrix, and di is the degree of vi. The
graph curvature κ is given as the mean of node curvatures
(Cruceru, Bécigneul, and Ganea 2021), and accordingly, we
readout the graph curvature by κ = MeanPooling(Z(2)).

Label-free Lorentz Distillation
To consolidate knowledge free of labels, we propose the
Label-free Lorentz Distillation approach for continual graph
learning, in which we create teacher-student AdaRGCN as
shown in Figure 1. In each learning session, the student
acquires knowledge for current task graph Gt by distilling
from itself, intra-distillation, and preserves past knowledge
by distilling from the teacher, inter-distillation. The stu-
dent finished intra- and inter-distillation becomes the teacher
when new task G(t+1) arrives, so that we successively con-
solidate knowledge in the graph sequence without catas-
trophic forgetting.

In our approach, we propose to distill knowledge via con-
trastive loss in Riemannian space. Though knowledge distil-
lation has been applied to video and text (Guo et al. 2023)
and similar idea on graphs has been proposed in Euclidean
space (Yu et al. 2022; Tian, Krishnan, and Isola 2020), they
CANNOT be applied to Riemannian space owing to essen-
tial distinction in geometry. Specifically, it lacks a method
to contrast between Riemannian spaces with either differ-
ent dimension or different curvature for the distillation. To
bridge this gap, we propose a novel formulation, General-
ized Lorentz Projection.

Generalized Lorentz Projection (GLP) & Lorentz Layer.
We aim to contrast between x ∈ Md1,κ1 and y ∈ Md2,κ2 .
The obstacle is that both dimension and curvature are incom-
parable (d1 6= d2, κ1 6= κ2). A naive way is to use logarith-
mic and exponential maps with a tangent space. However,
these maps are range to infinity, and trend to suffer from sta-
bility issue (Chen et al. 2022). Such shortcomings weaken
its ability for the distillation, as shown in the experiment.

Fortunately, Lorentz transformation in the Einstein’s spe-
cial theory of relativity performs directly mapping between
Riemannian spaces, which can be decomposed into a com-
bination of Lorentz boost B and rotation R (Dragon 2012).
Formally, for x ∈ Md,κ, Bx ∈ Md,κ and Rx ∈ Md,κ

given blocked B,R ∈ R(d+1)×(d+1) with positive semi-
definiteness and special orthogonality, respectively. Though
the clean formalism is appealing, it fails to tackle our chal-
lenge: i) The constraints on definiteness or orthogonality
render the optimization problematic. ii) Both dimension and
curvature are fixed, i.e., they cannot be changed over time.
Recently, Chen et al. (2022) make effort to support different
dimensions, but still restricted in the same curvature. Indeed,
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it is difficult to assure closeness of the operation especially
when curvatures (i.e., shape of the manifold) are different.

In this work, we propose a novel Generalized Lorentz
Projection (GLP) in spirit of Lorentz transformation so as
to map between Riemannian spaces with different dimen-
sions or curvatures. To avoid the constrained optimization,
we reformalize GLP to learn a transformation matrix W ∈
Rd2×d1 . The relational behind is that W linearly transforms
both dimension and curvature with a carefully designed for-
mulation based on a Lorentz-type multiplication. Formally,
given x ∈ Md1,κ1 and the target manifoldMd2,κ2 to map
onto, GLP d1,κ1→d2,κ2

x (·) at x is defined as follows,

GLP d1,κ1→d2,κ2
x

([
w 0>

0 W

])
=

[
w0 0>

0 W

]
, (10)

so that we have

GLP d1,κ1→d2,κ2
x

([
w 0>

0 W

])[
x0

xs

]
=

[
w0x0

Wxs

]
,

(11)

where w ∈ R, w0 =
√
|κ1|
|κ2| ·

1−κ2`(W,xs)
1−κ1〈xs,xs〉 , and `(W,xs) =

‖Wxs‖2.
Next, we study theoretical aspects of the proposed GLP.

First and foremost, we prove that GLP is closed in Rieman-
nian spaces with different dimensions or curvatures, so that
the mapping is done correctly.

Proposition 2. GLP d1,κ1→d2,κ2
x

(
W̄
)
x ∈ Md2,κ2 holds,

∀x ∈Md1,κ1 , where W̄ = diag([w,W]).

Proof. L = GLP d1,κ1→d2,κ2
x (W̄), and 〈Lx,Lx〉κ2

= 1
κ2

holds. Please refer to ArXiv version for the details.

Second, we prove that GLP matrices cover all valid Lorentz
rotation. That is, the proposed GLP can be considered as a
generalization of Lorentz rotation.

Proposition 3. The set of GLP matrices projecting within
Md1,κ1 isWx = {GLPd1,κ1→d1,κ1

x (W)}. Lorentz rotation
set is Q = {R}. Q ⊆ Wx holds, ∀x ∈Md1,κ1 .

Proof. ∀R,GLP d1,κ1→d1,κ1
x (R) = R holds, analog to Par-

seval’s theorem. Please refer to ArXiv version for the details
and further theoretical analysis.

Now, we are ready to score the similarity between x ∈
Md1,κ1 and y ∈ Md2,κ2 . Specifically, we add the bias for
GLP, and formulate a Lorentz Layer (LL) as follows:

LLd1,κ1→d2,κ2
x

(
W,b,

[
x0

xs

])
=

[
w0x0

Wxs + b

]
, (12)

where W ∈ Rd2×d1 and b ∈ Rd2 denote the weight and
bias, respectively. `(W,xs) = ‖Wxs + b‖2 for w0. It is
easy to verify LLd1,κ1→d2,κ2

x (W,b,x) ∈ Md2,κ2 . In this
way, x ∈ Md1,κ1 is comparable with y ∈ Md2,κ2 after
flowing over a Lorentz layer. Accordingly, we define the
generalized Lorentz similarity function as follows,

SimL(x,y) = dM(LLd1,κ1→d2,κ2
x (W,b,x),y). (13)

Algorithm 1: RieGrace. Self-Supervised Continual
Graph Learning in Adaptive Riemannian Spaces

Input: Current tack Gt, Parameters learnt from
previous tasks G1, · · · , Gt−1

Output: Parameters of AdaRGCN
1 while not converging do

// Teacher-Student AdaRGCN
2 Froze the parameters of the teacher network;
3 Xt,H ← AdaRGCNteacher;
4 {Xs,H ,Xs,L} ← AdaRGCNstudent;

// Label-Free Distillation(GLP)
5 for each node vi in Gt do
6 Intra-distillation: Learn for current task by

contrasting with Eq. (14);
7 Inter-distillation: Learn from the teacher by

contrasting with Eq. (15);
8 end

// Update Student Parameters
9 Compute gradients of the overall objective:

∇Θstudent,{W,b} Jintra + λJinter.

10 end

Consolidate Knowledge with Intra- & Inter-distillation.
In Label-free Lorentz Distillation, we jointly perform intra-
distillation and inter-distillation with GLP to learn and mem-
orize knowledge for continual graph learning, respectively.

In intra-distillation, the student distills knowledge from
the intermedian layer of itself, so that the contrastive learn-
ing is enabled without augmentation. Specifically, we first
create high-level view and low-level view for each node by
output layer encoding and shallow layer encoding, and then
formulate the InfoNCE loss (Oord, Li, and Vinyals 2018) to
evaluate the agreement between different views,

J (xs,Li ,xs,Hi ) = − log
expSimL(xs,Li ,xs,Hi )∑|V|

j=1 I{i6=j} expSimL(xs,Li ,xs,Hi )
,

(14)
where xs,Li and xs,Hi denote the low-level view and high-
level view of the student network, respectively. I{·} ∈ {0, 1}
is an indicator who will return 1 iff the condition (·) is true.

In inter-distillation, the student distills knowledge from
the teacher by contrasting their high-level views. We formu-
late teacher-student distillation objective via InfoNCE loss,

J (xt,Hi ,xs,Hi ) = − log
expSimL(xt,Hi ,xs,Hi )∑|V|

j=1 I{i6=j} expSimL(xt,Hi ,xs,Hi )
,

(15)
where xt,Hi and xs,Hi denote the high-level view of the
teacher and the student, respectively.

Finally, with SimL(x,y) defined in Eq. (13), we formu-
late the learning objective of RieGrace as follows,

Joverall = Jintra + λJinter, (16)

where λ is for balance. We have contrastive loss Jintra =∑|V|
i=1 J (xs,Li ,xs,Hi ) and Jinter =

∑|V|
i=1 J (xt,Hi ,xs,Hi ).
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Model Cora Citeseer Actor ogbn-arXiv Reddit
PM FM PM FM PM FM PM FM PM FM

JOINT 93.9(0.9) − 79.3(0.8) − 57.1(0.9) − 82.2(0.3) − 96.3(0.7) −
ERGNN 71.1(2.5) −34.3(1.0) 65.5(0.3) −20.4(3.9) 51.4(2.2) − 7.2(3.2) 63.5(2.4) −19.5(1.9) 95.3(1.0) −23.1(1.7)

TWP 81.3(3.2) −14.4(1.5) 69.8(1.5) − 8.9(2.6) 54.0(1.8) − 2.1(1.9) 75.8(0.5) − 5.9(0.3) 95.4(1.4) − 1.4 (1.5)
HPN 93.6(1.5) − 1.7 (0.7) 79.0(0.9) − 1.5 (0.3) 56.8(1.4) − 1.5(0.9) 81.2(0.7) + 0.7 (0.1) 95.3(0.6) − 3.6(1.0)
FGN 85.5(1.4) − 2.3(1.0) 73.3(0.9) − 2.2(1.7) 53.6(0.7) − 3.8(1.6) 49.4(0.3) −14.8(2.2) 79.0(1.8) −12.2(0.4)

MSCGL 79.8(2.7) − 4.9(1.6) 68.7(2.4) − 1.8(0.1) 55.9(3.3) + 1.3 (1.7) 64.8(1.2) − 1.9(1.0) 96.1(2.5) − 1.9(0.3)
DyGRAIN 82.5(1.0) − 3.7(0.2) 69.2(0.6) − 5.5(0.3) 56.1(1.2) − 2.9(0.3) 71.9(0.2) − 4.6(0.1) 93.3(0.4) − 3.1(0.2)

HGCN 90.6(1.8) −33.1(2.3) 80.8(0.9) −21.6(0.3) 56.1(1.7) − 6.3(1.6) 82.0(1.5) −12.7(1.6) 96.7(1.2) −33.7(0.9)
HGCNwF 88.7(2.5) −34.6(4.1) 76.1(3.3) −19.9(1.5) 52.8(2.9) − 8.2(2.5) 78.9(2.4) −13.6(0.3) 90.5(3.3) −25.0(1.7)

LGCN 91.7(0.9) −11.9(1.9) 81.5(1.2) − 9.3(2.5) 60.2 (3.3) −11.2(0.2) 82.5 (0.2) −20.8(1.1) 96.1(2.4) − 9.6(2.1)
LGCNwF 92.3(2.0) − 5.5(1.2) 80.3(0.7) −10.2(0.7) 57.5(1.5) −10.9(2.4) 81.3(1.8) −18.2(1.9) 95.5(0.6) − 4.9(1.5)
κ-GCN 93.9 (0.3) −22.0(0.4) 79.8(2.9) −15.7(1.6) 56.3(3.6) − 3.1(0.9) 81.6(0.3) − 9.8(1.2) 96.7 (2.7) −18.6(3.3)
κ-GCNwF 92.0(1.9) −11.3(2.4) 81.0 (0.5) − 6.1(1.2) 59.7(2.0) + 0.6(0.3) 79.9(1.9) − 5.1(2.0) 94.1(1.0) −11.5(2.4)
RieGrace 95.2(0.8) − 1.2(0.7) 83.6(2.4) − 1.3(0.6) 61.9(1.2) + 1.9(1.1) 83.9(0.3) + 1.2(0.5) 97.9(1.8) − 1.1(1.5)

Table 2: Node classification on Citerseer, Cora, Actor, ogbn-arXiv and Riddit. We report both PM(%) and FM(%). Confidence
interval is given in brackets. The best scores are in bold, and the second underlined.

We summarize the overall training process of RieGrace in
Algorithm 1, whose computational complexity is O(|V|2)
in the same order as typical contrastive models in Euclidean
space, e.g., (Hassani and Ahmadi 2020). However, RieGrace
is able to consolidate knowledge of the task graph sequence
in the adaptive Riemannian spaces free of labels.

Experiment
We conduct extensive experiments on a variety of datasets
with the aim to answer following research questions (RQs):

• RQ1: How does the proposed RieGrace perform?
• RQ2: How does the proposed component, either CurvNet

or GLP, contributes to the success of RieGrace?
• RQ3: How does the curvature change over the graph se-

quence in continual learning?

Experimental Setups
Datasets. We choose five benchmark datasets, i.e., Cora
and Citeseer (Sen et al. 2008), Actor (Tang et al. 2009),
ogbn-arXiv (Mikolov et al. 2013) and Reddit (Hamilton,
Ying, and Leskovec 2017). The setting of graph sequence
(task continuum) on Cora, Citerseer, Actor and ogbn-arXiv
follows Zhang, Song, and Tao (2022), and the setting on
Reddit follows Zhou and Cao (2021). The statistics of the
datasets is given in Table 1.

Euclidean Baseline. We choose several strong baselines,
i.e., ERGNN (Zhou and Cao 2021), TWP (Liu, Yang,
and Wang 2021), HPN (Zhang, Song, and Tao 2022),
FGN (Wang et al. 2022), MSCGL (Cai et al. 2022)
and DyGRAIN (Kim, Yun, and Kang 2022). ERGNN,
TWP and DyGRAIN are implemented with GAT backbone
(Veličković et al. 2018). We also include the joint training
with GAT (JOINT) that trains all the tasks jointly. Since
no catastrophic forgetting exists, it approximates the upper
bound in Euclidean space w.r.t. GAT. We use the unimodal
version of MSCGL to fit the benchmarks. Existing meth-
ods are supervised, and we propose the first self-supervised
model for continual graph learning to our knowledge.

Datasets Cora Citeseer Actor ogbn-arXiv Reddit
# Nodes 2, 708 3, 327 7, 600 169, 343 232, 965
# Features 1, 433 3, 703 931 128 602
# Classes 7 6 4 40 41
# Tasks 3 3 2 20 8

Table 3: The statistics of the datasets

Riemannian Baseline. In the literature, there is no con-
tinual graph learner in Riemannian space. Alternatively, we
fine-tune the offline Riemannian GNNs in each learning ses-
sion, in order to show the forgetting of continual learning in
Riemannian space. Specifically, we choose HGCN (Chami
et al. 2019), LGCN (Zhang et al. 2021), and κ-GCN (Bach-
mann, Bécigneul, and Ganea 2020). In addition, we imple-
ment the supervised LwF (Li and Hoiem 2018) for CNNs
on these Riemannian GNNs (denoted by -wF suffix), in or-
der to show adapting existing methods to Riemannian GNNs
trends to result in inferior performance.

Evaluation Metric. Following Cai et al. (2022); Zhou and
Cao (2021); Lopez-Paz and Ranzato (2017), we utilize Per-
formance Mean (PM) and Forgetting Mean (FM) to measure
the learning and memorizing abilities, respectively. Negative
FM means the existence of forgetting, and positive FM indi-
cates positive knowledge transfer between tasks.

Euclidean Input. The input feature x are Euclidean by de-
fault. To bridge this gap, we formulate an input transforma-
tion for Riemannian models, Γκ : Rd →Md,κ. Specifically,
we have Γκ(x) = expκO([0||x]), and κ is either given by
CurNet in RieGrace, or set as a parameter in other models.
Further details are given in the Technical Appendix.

Model Configuration. In our model, we stack the convo-
lutional layer twice with a 2-layer CurvNet. Balance weight
λ = 1. As a self-supervised model, RieGrace first learns en-
codings without labels, and then the encodings are directly
utilized for training and testing, similar to Veličković et al.
(2019). The grid search is performed for hyperparameters,
e.g., learning rate: [0.001, 0.005, 0.008, 0.01].
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Variant Citeseer Actor
PM FM PM FM

Sw/oL 66.7(0.3) − 6.7(0.9) 51.6(0.8) −7.1(0.7)
S 70.2(1.5) − 5.3(1.0) 53.4(3.1) −0.9(0.2)

E 69.8(0.9) −11.9(0.3) 52.9(2.7) −4.3(1.6)

Hw/oL 77.1(3.5) − 8.2(0.8) 53.3(1.5) −8.9(0.7)
H 80.9(0.2) − 5.7(2.1) 56.6(2.4) −4.8(0.1)

Mw/oL 81.2 (1.8) − 3.9 (2.2) 58.5 (0.6) +0.5 (1.3)
Full 83.6(2.4) − 1.3(0.6) 61.9(1.2) +1.9(1.1)

Table 4: Ablation study on Citersser and Actor. Confidence
interval is given in bracket. The best scores are in bold.

RQ1: Main Results
Node classification is utilized as the learning task for
the evaluation. Traditional classifiers work with Euclidean
space, and cannot be applied to Riemannian spaces due to
the essential distinction in geometry. For Riemannian meth-
ods, we extend the classification method proposed in Liu,
Nickel, and Kiela (2019) to Riemannian space of arbitrary
curvature with distance metric dM given in Table 1. For
fair comparisons, we perform 10 independent runs for each
model, and report the mean value with 95% confidence in-
terval in Table 2. Dimension is set to 16 for Riemannian
models, and follows original settings for Euclidean models.
As shown in Table 2, traditional continual learning methods
suffers from forgetting in general, though MSCGL, HPN, κ-
GCNwF and our RieGrace have positive knowledge trans-
fer in a few cases. Our self-supervised RieGrace achieves
the best results in both PM and FM, even outperforming the
supervised models. The reason is two-fold: i) RieGrace suc-
cessively matches each task graph with adaptive Riemannian
spaces, improving the learning ability. ii) RieGrace learns
from the teacher to preserve past knowledge in the label-free
Lorentz distillation, improving the memorizing ability.

RQ2: Ablation Study
We conduct ablation study to show how each proposed com-
ponent contributes to the success of RieGrace. To this end,
we design two kinds of variants described as follows:
i) To verify the importance of GLP directly mapping be-
tween Riemannian spaces, we design the variants that in-
volve a tangent space for the mapping, denoted by -w/oL
suffix. Specifically, we replace the Lorentz layer by loga-
rithmic and exponential maps in corresponding models.
ii) To verify the importance of CurvNet supporting curvature
adaptation to any positively or negatively curved spaces, we
design the variants restricted in hyperbolic, Euclidean and
hyperspherical space, denoted by S, E and H. Specifically,
we replace CurvNet by the parameter κ of the given sign,
and we use corresponding Euclidean operators for E variant.

We have six variants in total. We report their PM and FM
in Table 4, and find that: i) The proposed RieGrace with
GLP beats the tangent space-based variants. It suggests that
introducing an additional tangent space weakens the perfor-
mance for contrastive distillation. ii) The proposed RieGrace

DG,M Task Graph 1 Task Graph 2 Task Graph 3
CurvNet 0.435(0.027) 0.490(0.010) 0.367(0.082)
ComC 0.507(0.012) 0.653(0.007) 0.524(0.033)
ZeroC 5.118(0.129) 3.967(0.022) 4.025(0.105)

Table 5: Embedding distortion DG,M with different curva-
tures on ogbn-arXiv. Confidence interval is given in bracket.

(a) G1, κ = 0.227 (b) G2, κ = −0.536 (c) G3, κ = −1.073

Figure 2: Illustration of the Riemannian spaces in the task
graphs Gt on ogbn-arXiv. κ is the learnt curvature.

with CurvNet outperforms constrained-space variants (S, E
or H). We will give further discussion in the case study.

RQ3: Case Study and Discussion
We conduct a case study on ogbn-arXiv to investigate on
the curvature over the graph sequence in continual learning.

We begin with evaluating the effectiveness of CurvNet.
To this end, we leverage the metric of embedding distortion,
which is minimized with proper curvature (Sala et al. 2018).
Specifically, given an embedding Ψ : vi ∈ V → xi ∈ Md,κ

on a graph G, the embedding distortion is defined as

DG,M =
1

|V|2
∑

i,j∈V

∣∣∣∣1− dM(xi,xj)

dG(vi, vj)

∣∣∣∣ , (17)

where dM(xi,xj) and dG(vi, vj) denote embedding dis-
tance and graph distance, respectively. Graph distance
dG(vi, vj) is defined on the shortest path between vi and
vj regarding dM, e.g., if the shortest path between vA and
vB is vA → vC → vB , then we have dG(vA, vB) =
dM(xA,xC)+dM(xC ,xB). We compare CurvNet with the
combinational method proposed in (Bachmann, Bécigneul,
and Ganea 2020), termed as ComC. We report the distortion
DG,M in 16-dimensional Riemannian spaces with the cur-
vature estimated by CurvNet and ComC in Table 5, where
DG,M of 128-dimensional Eulidean space is also listed (Ze-
roC). As shown in Table 5, our CurvNet gives a better cur-
vature estimation than ComC, and ZeroC results in larger
distortion even with high dimension.

Next, we estimate the curvature over the graph sequence
via CurvNet, which is jointly learned with RieGrace. We il-
lustrate the shape of Riemannian space with corresponding
curvatures with a 2-dimensional visualization on ogbn-arXiv
in Figure 2. As shown in Figure 2, rather than remains in a
certain type of space, the underlying geometry varies from
positively curved hyperspherical spaces to negatively curved
hyperbolic spaces in the graph sequence. It suggests the ne-
cessity of curvature adaptation supporting the shift among
any positive and negative values. The observation in both

4639



Table 5 and Figure 2 motivates our study indeed, and es-
sentially explains the inferior of existing Euclidean methods
and the superior of our RieGrace.

Related Work
We briefly summarize the related work on Continual Graph
Learning and Riemannian Representation Learning.

Continual Graph Learning
Existing studies can be roughly divided into three categories,
i.e., replay (or rehearsal), regularization and architectural
methods (Febrinanto et al. 2022). Replay methods retrain
representative samples in the memory or pseudo-samples to
survive from catastrophic forgetting, e.g., ERGNN (Zhou
and Cao 2021) introduces a well-designed strategy to se-
lect the samples. HPN (Zhang, Song, and Tao 2022) extends
knowledge with the prototypes learnt from old tasks. Regu-
larization methods append a regular term to the loss to pre-
serve the utmost past knowledge, e.g., TWP (Liu, Yang, and
Wang 2021) preserves important parameters for both task-
related and topology-related goals. MSCGL (Cai et al. 2022)
is designed for multimodal graphs with neural architectural
search. DyGRAIN (Kim, Yun, and Kang 2022) explores the
adaptation of receptive fields while distilling knowledge. Ar-
chitectural methods modify the neural architecture of graph
model itself, such as FGN (Wang et al. 2022). Meanwhile,
continual graph learning has been applied to recommenda-
tion system (Xu et al. 2020), trafficflow prediction (Chen,
Wang, and Xie 2021), etc. In addition, Wang et al. (2020)
mainly focus on a related but different problem with the
time-incremental setting. Recently, Tan et al. (2022); Lu
et al. (2022) study the few-shot class-incremental learning
on graphs which owns essentially different setting to ours.
Since no existing work is suitable for the self-supervised
continual graph learning, we are devoted to bridging this gap
in this work.

Riemannian Representation Learning.
Riemannian representation learning has achieved great suc-
cess in a variety of applications (Mathieu et al. 2019; Gul-
cehre et al. 2019; Nagano et al. 2019; Sun et al. 2020).
Here, we focus on Riemannian models on graphs. In hy-
perbolic space, Nickel and Kiela (2017); Suzuki, Takahama,
and Onoda (2019) introduce shallow models, while HGCN
(Chami et al. 2019), HGNN (Liu, Nickel, and Kiela 2019)
and LGNN (Zhang et al. 2021) generalize convolutional
network with different formalism under static setting. Re-
cently, HVGNN (Sun et al. 2021) and HTGN (Yang et al.
2021) extend hyperbolic graph neural network to tempo-
ral graphs. Beyond hyperbolic space, Sala et al. (2018)
study the matrix manifold of Riemannian spaces. κ-GCN
(Bachmann, Bécigneul, and Ganea 2020) extends GCN to
constant-curvature spaces with κ-sterographical model, but
its formalism cannot be applied to our problem. Yang et al.
(2022) model the graph in the dual space of Euclidean and
hyperbolic ones. Gu et al. (2019) and Wang et al. (2021)
explore the mixed-curvature spaces, and Sun et al. (2022b)
propose the first self-supervised GNN in mixed-curvature

spaces. Law (2021) and Xiong et al. (2022) study graph
learning on a kind of pseudo Riemannian manifold, ultrahy-
perbolic space. Recently, Sun et al. (2022a) propose a novel
GNN in general on Riemannian manifolds with the time-
varying curvature. All existing Riemannian graph models
adopt the offline training fashion, and we propose the first
continual graph learner in Riemannian space to the best of
our knowledge.

Conclusion
In this paper, we propose the first self-supervised contin-
ual graph learner in adaptive Riemannian spaces, RieGrace.
Specifically, we first formulate a unified GNN coupled with
the CurvNet, so that Riemannian space is shaped by the
learnt curvature adaptive to each task graph. Then, we pro-
pose Label-free Lorentz Distillation approach to consoli-
date knowledge without catastrophic forgetting, where we
perform contrastive distillation in Riemannian spaces with
the proposed GLP. Extensive experiments on the benchmark
datasets show the superiority of RieGrace.

Technical Appendix
Evaluation Metrics PM & FM
Specifically, we split each dataset into multiple tasks graph
(task continuum is specified in the subsection of datasets),
and train the model on them sequentially. Each new task
brings a subgraph with new categories of nodes and asso-
ciated edges, e.g., task graph G1 contains classes 1 and 2,
G2 contains new classes 3 and 4. After learning the graph
sequence, we evaluated on all tasks. PM and FM are com-
puted as the average accuracy and the average accuracy de-
crease on previous tasks. Negative FM means the existence
of forgetting, and positive FM indicates positive knowledge
transfer between tasks.

Input Transformation
Note that, Riemannian models (HGCN, LGCN, κ-GCN and
our RieGrace) accept Riemannian inputs only, but the input
features are Euclidean by default. To bridge this gap, we for-
mulate an input transformation for Euclidean inputs, which
maps a Euclidean point v to the corresponding point on Rie-
mannian manifold, Γκ : Rd →Md,κ.

We introduce the construction of the transformation Γκ.
First, we augment v to v′ = [0||v] that lives in the tangent
space of the origin. It is easy to check that

〈O,v〉κ = 0, ∀v ∈ Rd. (18)

Second, we map v′ to the manifold via the exponential map
at the origin expκO(·).

Γκ(v) =

(
v0,
|κ| 12
‖v‖κ

sin−1
κ

(
|κ|− 1

2 ‖v‖κ
)

v

)
, (19)

where
v0 = |κ| 12 cos−1

κ

(
|κ|− 1

2 ‖v‖κ
)
. (20)

Equivalently, we give Γκ(v) = expκO([0||v]) in the paper
for clarity, and κ is either given by CurNet in RieGrace, or
set as a parameter in other models.
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