
Rearchitecting the TCP Stack for I/O-Offloaded Content Delivery

Taehyun Kim
KAIST

Deondre Martin Ng
KAIST

Junzhi Gong
Harvard University

Youngjin Kwon
KAIST

Minlan Yu
Harvard University

KyoungSoo Park
KAIST

Abstract

The recent advancement of high-bandwidth I/O devices en-
ables scalable delivery of online content. Unfortunately, the
traditional programming model for content servers has a
tight dependency on the CPU, which severely limits the over-
all performance. Our experiments reveal that over 70% of
CPU cycles are spent on simple tasks such as disk and net-
work I/O operations in online content delivery.

In this work, we present IO-TCP, a split TCP stack design
that drastically reduces the burden on CPU for online content
delivery. IO-TCP offloads disk I/O and TCP packet transfer
to SmartNIC while the rest of the operations are executed on
the CPU side. This division of labor realizes the separation
of control and data planes of a TCP stack where the CPU
side assumes the full control of the stack operation while
only the data plane operations are offloaded to SmartNIC for
high performance. Our evaluation shows that IO-TCP-ported
lighttpd with a single CPU core outperforms the Atlas server
and lighttpd on Linux TCP for TLS file transfer by 1.8x and
2.1x, respectively, even if they use all 10 CPU cores.

1 Introduction

The demand for online content delivery is booming in re-
cent years [1, 5]. Especially, the popularity of high-quality
video streaming is growing rapidly [9, 56].For cost-effective
streaming service, it is highly important for online video ser-
vice providers [3, 4, 11, 19, 26, 44] to optimize their content
delivery systems.
However, improving the content delivery performance

is increasingly challenging as the growth of CPU capacity
stagnates [50]. While modern innovation in I/O devices such
as high-bandwidth NICs and NVMe disks has alleviated the
I/O bottleneck, the lack of CPU cycles often fail to translate
the high I/O performance into content delivery throughput.
The root cause lies in the inefficiency of the modern OS ab-
straction which requires all disk data to be brought to main
memory before being delivered to remote clients. For this
reason, CPU (or more precisely, the memory subsystem) eas-

ily becomes the performance bottleneck for I/O-intensive
applications like video content delivery as over 70% of its
entire cycles are spent on simple I/O operations. To effec-
tively harness the recent advancement in the I/O devices, the
OS abstraction must reduce the dependency on CPU and its
memory system for I/O operations.
Our approach to breaking the CPU dependency is to em-

ploy peripheral processors to handle the I/O operations. We
observe that the recent programmable I/O devices such as
SmartNICs [7, 24, 27, 33] or Computational SSDs [28, 40]
may make up for the insufficient compute cycles in CPU.
As the PCIe standard allows peer-to-peer DMA (P2PDMA)
without the intervention of CPU [35], one can conceive a
server system whose NIC offloads disk I/O operations com-
pletely from the CPU. In fact, recent works like DCS [46] and
DCS-Ctrl [63] have demonstrated that an FPGA-based coor-
dinator can perform all disk I/O operations via P2PDMA for a
content delivery server. The main drawback of these systems
is that they do not support TCP-based delivery commonly
adopted by today’s video streaming [3, 11, 26].
However, supporting TCP for an I/O-offloaded server

raises an interesting question of function placement – if
disk I/Os are offloaded to SmartNIC, where do we run the
TCP stack? Running the TCP stack on CPU is impossible as
the data for packet payload is unavailable. So, the obvious al-
ternative is to run it on the NIC side. While it is non-trivial to
implement a full TCP stack on an FPGA 1, it is possible to run
it on SmartNIC. Actually, recent SmartNIC platforms support
Arm-based embedded processors that run Linux with a full
TCP stack [7, 33]. However, running the full TCP stack on
NIC typically requires its application to co-execute on the
same platform, with limited resources. In fact, we observe
that the throughput of nginx on SmartNIC with 8 Arm cores
is smaller than that with even a single CPU core.

We tackle this question with I/O Offloading TCP (IO-TCP),
a split TCP stack design for I/O-intensive applications. The

1There are a few TCP/IP stacks on the FPGA [87, 88], but they simplify
the key features with assumptions on the data center environment.

key idea of IO-TCP is to run only the "control plane" opera-
tions on CPU while delegating all "data plane" operations to
SmartNIC that can access disks via P2PDMA. Figure 1 shows
the overview of our design. The control plane includes all
core functionalities of the TCP protocol – connection man-
agement, reliable data transfer, and congestion/flow control.
On the other hand, the data plane operations refer to all
aspects of data packet creation and transmission including
content fetching from disks. This design ensures that the
CPU side assumes full responsibility of controlling all op-
erations while actual disk and network I/O operations are
offloaded to SmartNIC under the hood. This design enables
dedicating CPU cycles to complex control operations while
exempting them from simple but repetitive I/O operations.
The rationale for the design is that the split stack avoids CPU
cache pollution from intensive disk IO [96] that slows down
the control path operations, stretches the RTT, and lowers the
throughput. In addition, the control path would benefit from
advanced hardware features of modern CPU as it is compute-
intensive with frequent random accesses and branches. In
contrast, the data path depends more on memory bandwidth
than computation, and it is easily parallelizable and can be
even built into hardware.

While IO-TCP presents a great potential for saving CPU cy-
cles, it brings a fewnew challenges. First, IO-TCPmust handle
TCP packet retransmission on SmartNICwithout the timeout
or packet loss information, which may issue redundant disk
I/Os. To avoid the inefficiency, IO-TCP employs an internal
ACK protocol to notify the SmartNIC of the data delivery
so that it can safely throw it out from memory. Second, the
RTT measurement in the host TCP stack could be inaccurate
due to disk-induced delay on SmartNIC before transmission.
In IO-TCP, actual data packet transfer is delayed until the
packet content is fetched from the disk. However, disk I/O
could add significant delay to packet transfer even without
any congestion in the network path. IO-TCP addresses this
challenge by carefully removing the disk-induced delay from
RTT measurement. It employs an echo packet that allows
the host stack to keep track of the packet departure time
accurately. Third, IO-TCP must provide a well-defined API
for an application to flexibly construct file or non-file con-
tent for data transfer. For this, IO-TCP extends the Berkeley
socket API with a few "offload" functions that open a file and
send the file content from the NIC. The "offload" functions
are implemented as a form of API remoting, and the results
are seamlessly delivered to the application on the CPU side.
We implement IO-TCP with the Mellanox BlueField-2

SmartNIC [31] that can directly access NVMe disks with
P2PDMA. For the host stack, we extend an existing user-level
TCP stack [58] to support I/O offloading while we implement
the NIC stack with the DPDK library [12]. It requires 1,793
lines of code modification for the host stack and 1,853 lines
of C code for the NIC stack. To evaluate the effectiveness
with real-world applications, we also port lighttpd [23] to

Host Application

IO-TCP Control Plane
(connection management, congestion/flow control,

reliable data transfer, error handling)

PC
Ie

 B
us

NIC

NVMe
Disks

P2PDMA

IO-TCP Data Plane
(disk I/O, delay correction,

data packet creation/transfer)

Packet I/O
Command

Echo Packet
Departure
Notification

Data Stream

Clients

Figure 1: Overview of IO-TCP stacks

using IO-TCP with only about 10 lines of code modification.
Our evaluation demonstrates that IO-TCP-ported lighttpd

achieves 77.4 Gbps of TLS video content delivery with a sin-
gle CPU core, nearly saturating the full bandwidth of four
NVMe disks. In contrast, the Atlas server [74] on FreeBSD
and lighttpd on Linux reach only 44.2 and 37.4 Gbps, respec-
tively, even with all 10 CPU cores. We observe that the cur-
rent bottleneck of IO-TCP lies in the low memory bandwidth
of the BlueField-2 NIC, but we believe the future version
will achieve better performance. The main contributions of
this work are summarized as follows. (1) We analyze the
impact of CPU usage and cache interference by disk I/O on
the performance of modern content delivery systems. (2) We
present the design and implementation of IO-TCP, a split
TCP stack design that fully leverages recent I/O advances in
SmartNICs by separating TCP control and data planes. (3)
We demonstrate how IO-TCP can surpass the limitations of
the CPU bottleneck to achieve I/O bandwidths far greater
than what the CPU could have normally performed.

2 Background & Motivation

We provide a brief background on content delivery systems
in terms of recent trends in computing hardware.

2.1 Inefficiencies in Content Delivery Sys-
tem Stacks

Modern content delivery systems [2, 14, 26] consist of a
large number of geographically distributed content delivery
Web or reverse proxy servers. These systems serve as the
basis for many applications such as video streaming andWeb
page accesses. Among them, the video traffic takes up about
60% of the entire Internet traffic and the overall volume has
increased due to the recent pandemic [39, 56]. Average Web
object sizes range from 0.01 to 1 MB while average video
chunk sizes are between 0.2 to 1.5 MB [89].

For high performance, the server design has traditionally
focused on optimizing disk access and CPU utilization be-
cause hard disk I/O is many orders of magnitude slower

Workload File Size

Th
ro

ug
hp

ut
 (G

bp
s)

0

5

10

15

20

25

10KB 300KB 500KB 1MB

1.3

10.010.5

14.6

1.7

lighttpd nginx 15.0

12.412.4

Figure 2: Throughputs of lighttpd and nginx on a single CPU core.
Function % CPU
Read data from disk to a kernel buffer 33.53%
Memory management 21.93%
Move data to TCP send buffer (no copy) 10.30%
Open files and get stat 6.00%
Control Plane 28.24%
Total 100%

Table 1: CPU usage per data plane function in nginx when serv-
ing disk-bound workload with sendfile(). The breakdown for
lighttpd is also similar.

than modern storage. For fetching small objects such as Web
page content, the server is optimized to minimize the disk
seeks while maintaining a small memory footprint for in-
dexing [47]. For large-object access like video download, the
server exploits sequential disk reads to maximize the disk
throughput. Also, it typically employs sendfile() to avoid
redundantmemory copy and context switching between user
and kernel spaces. To improve CPU utilization, the server
typically takes the event-driven architecture [48, 67, 77, 81].

Traditional disk-based optimizations have become largely
obsolete due to the advent of inexpensive large RAM and
flash-based disks (e.g., NVMe SSDs) that removed the seek-
induced limitations. Since the major disk bottleneck is lifted,
the memory subsystem becomes the next bottleneck in to-
day’s server [74]. The problem is exacerbated by multiple
memory copies due to disk and network I/O as well as con-
tent scanning for encryption and decryption. While a recent
work [74] optimizes the disk access layer and exploits Intel
Data Direct I/O (DDIO) [21] to arrange all such operations to
perform with the data in CPU cache, it does not dissipate the
workload from CPU. Also, it may be hard to expect a similar
benefit if the workload exceeds the CPU cache size.

To better understand the performance of Web-based con-
tent delivery, we run experiments with two popular Web
servers, lighttpd (v1.4.32) [23] and nginx (v1.16.1) [29] for
disk-bound workload, which simulates a typical setting for
HTTP-adaptive video streaming. The server setup is the
same as in §5.1, and we use various file sizes that represent
Web objects and video chunks of different quality. We con-
figure the servers to use sendfile() for good performance.

Figure 2 shows the results with a single CPU core (refer to
Figure 7 for performance trend overmultiple CPU cores). The
performances of both servers are similar, and they generally
improve with larger file sizes. As our NVMe disk achieves

0

20

40

60

80

100

1 2 3 4 5 6

CP
U

 U
til

iz
at

io
n

(%
)

Number of NVMe Devices

4K BS
8K BS
16K BS
32K BS
64K BS

Figure 3: CPU utilization of fiowith for varying number of NVMe
disks. BS refers to block size.

around 2.5 GB/s (or 20 Gbps) per disk for random file reading,
the single CPU core utilizes around half the bandwidth (10
Gbps) of a single NVMe disk for 300KB files. Considering
that a server-class machine can carry 8 to 10 NVMe disks
per CPU, CPU is a major source of resource bottleneck.

We analyze the CPU overhead in popular Web servers for
content delivery. Table 1 shows the CPU cycle breakdown of
nginx reported by perf[36]. sendfile() and open() take
up the majority of the CPU cycles, which amounts to 71.76%
of the consumed cycles. sendfile() reads the data on disk
to kernel buffers, and serve it to clients withoutmemory copy
(33.35%). This clearly shows where the most of CPU cycles
are spent in a content delivery server – disk and network
I/O. Offloading these operations from the CPU would have a
great potential for improving the performance.

2.2 Mismatch between I/O Device Advances
and CPU Capacity

The capacity growth with recent I/O devices is impressive.
Two decades ago, the fastest hard disk could achieve only
about 200 random I/O operations per second (IOPS), but the
recent NVMe disk can perform over 1 million IOPS [41, 97],
a speedup of almost four orders of magnitude. For the same
period, the bandwidth of an Ethernet NIC has improved by
400 times (from 1 Gbps in 1997 to 400 Gbps in 2021) while 800
Gbps / 1.6 Tbps Ethernet is expected to be standardized in a
few years [55]. In contrast, CPU capacity improvement has
been largely hampered by the end of Moore’s law and break-
down of Dennard scaling 2 [54]. The first general-purpose
multicore CPU appeared in 2005 [6], but the number of cores
of Intel CPU has increased by only 28 times for 16 years [22].

Figure 3 shows the utilization of a single CPU core when
saturating the NVMe disks with fio [15]. We use Intel Xeon
Silver 4210 (2.20GHz) for CPU and Intel Optane 900P for
NVMe devices. The figure indicates that it is relatively easy
to handle large block sizes but a single core cannot saturate
even 2 NVMe disks with a block size of 4KB. For 16KB blocks,
it can handle up to 3 NVMe disks in parallel. Even when
serving large files, disk I/O could still spend a significant
portion of the CPU cycles as metadata access in filesystem
would require frequent random accesses for small blocks.

2Dennard scaling dictates that the power density stays constant as the
transistors become smaller. It is said to stop in 2006 and CPU capacity could
only scale out since then.

NICHost

Ethernet Ports

P
C

Ie
 S

w
itc

h

DDR4
RAM

Arm Subsystem
L3

Cache

Packet Processing Layer

eSwitch
ConnectX-6 Dx

D
riv

er

Figure 4: Architecture of the BlueField SmartNIC

In addition to NVMe, the use of persistent memory (PM)
sees similar CPU bottlenecks. A recent PM performance
study [94] on Intel Optane DC memory shows that 16
cores are required to fully utilize PM read bandwidth even
with large I/O sizes like 64KB or 256KB. Due to the CPU
bottleneck, many PM-based storage systems fall back to a
lightweight storage stack design that misses features [51, 52,
53, 59, 64, 93, 98].

The performance disparity between CPU and I/O devices
calls for revisiting the current OS abstraction for I/O oper-
ations, especially for serving large files with the growing
trend of high-throughput content delivery. Existing OS re-
quires CPU intervention for performing I/O operations such
as reading disk content and transferring it via NIC. This
is because the programming model on the current OS re-
quires the content of the I/O device to be brought to main
memory before performing any operation on the content.
This memory-centric execution model wastes CPU cycles for
frequent memory access stalls due to memory operations.
2.3 Opportunities with SmartNIC
The key idea of our work is to offload data I/O from CPU
to a programmable I/O device while supporting TCP-based
content delivery. Any programmable device that can perform
direct disk I/O and network packet I/O can meet our goal,
but we use SmartNIC as it serves as a convenient place to
interact with remote clients. For example, recent SoC-based
SmartNICs [7, 33] offer an Arm-based embedded system on
top of a NIC data processing unit. These systems support
direct access to NVMe disks on the same domain without
intervention of CPU or main memory. More specifically, the
Mellanox BlueField NIC supports P2PDMA via NVMe over
Fabrics (NVMe-oF) target offload [18] through which the
Arm processors can read directly from local NVMe disks.
These disks are directly mounted on the Linux environment
running on the Arm processors, and they run on the same
file system as seen by the host OS.

Figure 4 shows the architecture of the Mellanox BlueField-
2 NIC (BF-2) [31] that we use for our platform. It is equipped
with 8 Armv8 cores and 16 GB of DDR4 memory that runs
on Linux 3. The Arm subsystem allows running DPDK ap-
plications to perform fast packet I/O either with remote ma-
chines or with the local host. In addition, applications can

3We run CentOS 7.6, but one can run embedded Linux like Poky [37].

lighttpd setup Throughput (Gbps)
Linux TCP on BF-2 only 11.98
Linux TCP on BF-2 and 1 CPU core 22.02
IO-TCP-on BF-2 and 1 CPU core 44.13

Table 2: Performance of lighttpd with Linux TCP vs. IO-TCP for
serving 300KB files over 1600 connections on BlueField-2 (BF-2) and
a single CPU core. We use four Intel Optane 900P in all experiments.

offload TCP/IP checksum calculation as well as TCP segmen-
tation (i.e., TSO) to its ConnectX-6 Dx NIC hardware. The
BlueField-2 also supports hardware acceleration for crypto-
graphic operations that we use for supporting TLS.

With the Linux-operated SmartNIC, one might be tempted
to use it as an extra server system [90]. However, running
a server directly on SmartNIC does not efficiently use the
resources. Table 2 compares the performances of lighttpd on
only BF-2 (w/ all 8 cores), lighttpd on BF-2 and the host’s
single CPU core combined (by evenly dividing the request
load), and IO-TCP-ported lighttpd on the same setup. Naïve
scaling of processing power with SmartNIC ends up with
only half the throughput of our solution (§4).

The experiments clearly show the current limitation with
the SmartNIC – the processors and their memory are not
so powerful as the host system. In fact, the Arm processors
on BF-2 have 2.2x and 4.2x smaller L3 cache and memory
bandwidth than those of our host CPU, which limits the over-
all performance. While this is not an inherent limitation as
the next version [32] is reported to have 3.5x larger memory
bandwidth, one should carefully design the offload function-
ality to effectively exploit the architectural difference.

3 Design
In this section, we present the design of IO-TCP that enables
content delivery systems to leverage recent SmartNIC I/O
advances. The key design choice of IO-TCP is to separate the
control and data planes of the TCP stack such that the CPU
stack takes the full control of every operation (control path)
while individual I/O operations (data path) are offloaded to
the SmartNIC stack. The core rationale for this is to save the
majority of CPU cycles for performing I/O operations while
keeping the SmartNIC stack simple to implement. Simplicity
is the key to achieve the performance scalability.

There are three design goals for IO-TCP: (1) IO-TCP must
conform to the TCP protocol and should be able to support
various congestion control implementations. For example,
handling disk I/O in the NIC stack should not compromise
the congestion control logic in the host stack due to imprecise
RTT measurements induced by disk access latency (§3.5). (2)
The modification of existing applications should be minimal
for migrating to IO-TCP – it should use the same socket API
except for offloading file I/O (§3.2). (3) The IO-TCP host stack
needs to communicate with the NIC stack for I/O offloading,
and its overhead should be made small. In addition, the host
stack should be notified of any failures in the NIC stack to

int offload_open(const char *filename, int mode) – opens a file in the NIC and returns a unique file ID (fid).
int offload_close(int fid) – closes the file for fid in the NIC.
int offload_fstat(int fid, struct stat* buf) – retrieve the metadata for an opened file, fid.
size_t offload_write(int socket, int fid, off_t offset, size_t length) – sends the data of the given length
starting at the offset value read from the file, fid, and returns the number of bytes virtually copied to the send buffer.

Table 3: IO-TCP offload API functions

handle them in time (§3.3 and §3.6).

3.1 Separating TCP control and data planes
To save host CPU cycles, we need to determine which op-
erations would benefit the most from offloading based on
the capabilities of SmartNICs and CPU. The embedded pro-
cessors on either SoC or ASIC-based SmartNIC are better
fit for simpler data plane operations while x86 CPUs with
advanced features 4 can handle complex control plane opera-
tions faster. To better reflect the architectural difference into
the design, we divide the TCP stack into control and data
plane operations.
The control plane functions refer to the key TCP proto-

col features such as connection management, reliable data
transfer, congestion/flow control, and error control. These
typically require complex state management as the behavior
depends on the response from the other end. For example,
reliable data delivery on the receiver side requires tracking
all received data ranges that are disjoint for proper in-order
delivery and ACK generation. It is also tightly coupled with
congestion control as loss detection and packet retransmis-
sion for reliable delivery in turn re-adjust the send window
size. Similarly, flow control needs to run with congestion
control as they collectively determine the window size. Er-
ror control cannot run alone, either, as it requires tracking
detailed flow states to infer any erroneous behavior. Theo-
retically, each individual operation can be offloaded, but it
would be more efficient to offload them together. However,
offloading them all could overload the SmartNIC as seen in
experiments in §2.3.
The data plane operations refer to all operations that in-

volve data packet preparation and transfer, which supports
the implementation of control plane functions. These include
managing data buffers, segmenting data into packets, cal-
culating TCP/IP checksums, etc. IO-TCP offloads only the
operations in the send path because they are simple, state-
less, and easily parallelizable. In addition, IO-TCP offloads the
file/disk I/O and combines it into TCP data plane operations.
The rationale for offloading is that these operations would
interfere with control plane operations on CPU as recent
innovation like Intel DDIO would pollute the CPU cache by
huge disk data [96]. Offloading them to SmartNIC would al-
low the control path to execute on CPUmuch faster, which in
turn improves the data path performance. Also, SmartNICs
tend to have hardware-based crypto accelerators [24, 27, 31],
which enables TLS data encryption at line rate. Section 5.5

4Such as larger CPU cache and vectorized instructions like AVX/AVX2.

OK

ECHO

IO-TCP
Host StackApplication

Server
Client

IO-TCP
NIC Stack

offload_open()

offload_close()

write()
OPEN

HTTP Response
Header

HTTP
Response
Header

HTTP
Response

Body
(File Content)

offload_write()
SEND

ACKD

CLOS

...
(Continues Sending)

1

2

4

3

5

6

ACK

ACK

Figure 5: Content delivery from a Web server on IO-TCP

analyzes the source of performance improvement in depth.

3.2 IO-TCP Offload API Functions

Ideally, porting an application to IO-TCP should require little
modification of its core logic, yet it should flexibly express
the application needs. For example, an IO-TCP application
should be able to compose any data to transfer regardless
of whether it is file content or not. Towards this goal, we
extend the existing socket API by adding only four functions
(see Table 3) for offloaded file and network I/O.
offload_open() asks the NIC stack to open a file and to

report the result (either success or any error). It returns a file
ID (instead of a file descriptor) that identifies the opened file
in the NIC stack for later operations. offload_open() is an
asynchronous function whose result should be checked with
epoll() or subsequent function calls as file opening can
fail for various reasons. After all file operations, the applica-
tion can call offload_close() to close the file on the NIC
stack. In addition, IO-TCP supports offload_fstat() that
retrieves the metadata for a file (e.g., file size and permission).
With the opened file ID, the application can call
offload_write() to send the file content on a TCP con-
nection. Essentially, offload_write() carries out the same
operation as sendfile() in Linux with the file opened at
the NIC embedded system. The application can still call an
existing socket API like write() to send out any custom
data (e.g., HTTP response headers), or it can send the content
from multiple files opened by the NIC stack. Figure 5 illus-
trates a subset of these operations with the API functions in
the context of an HTTP server.

Web Server

offload_write()

SEQ: 701437608
Payload:
SEND 16778653 838392 72000

SEND Command Packet

E
C

H
O

SEQ: 701437608
Payload:
(File Data)

48 × 1500-bytes TCP Packets

Client’s ACK Packet
ACK: 701509608

IO-TCP Host Stack

Client

1

2

3

5

4

IO-TCP NIC StackNVMe
Disk

Read file ID 16778653
of length 72000 from

offset 838392.

Figure 6: Generation of data packets with offload_write()

3.3 IO-TCP Host Stack
The role of IO-TCP host stack is to provide the full TCP
functionality to applications while it interacts with the NIC
stack to offload the data plane operations. The key challenge
in the host stack design is how to create data packets with
"missing" file data. Similarly, it should handle TCP packet
retransmission without actual file data in the host side.
IO-TCP addresses the challenge by virtually performing

data plane operations on the host stack. The host stack
keeps track of which data in the sequence number space
is "virtual" and performs only the bookkeeping operations
while it delegates the real I/O operations to the NIC stack.
For example, an application can call a mix of write() and
offload_write(), and the host stack writes the immediate
content directly into the send buffer while it virtually fills out
the buffer range for offload_write() by metadata update.
offload_write() returns immediately with the number of
"virtual" bytes that can be written to the send buffer.
Then, the host stack determines the send window size

with its congestion and flow control parameters, and posts a
"SEND" command to the NIC stack to transfer the virtual data
(Refer to 3⃝ and 4⃝ in Figure 5). Note that any data packets
with real content (written by write()) in the host stack are
sent out directly bypassing the NIC stack. 5 The "SEND"
command is carried on a TCP packet destined to the NIC
stack (with an internal MAC address of the NIC). The TCP/IP
headers of the command packet contain the full connection
information (i.e., four connection tuples, sequence and ACK
numbers for the next data packet, etc.) while its payload
contains the "SEND" command that is eventually replaced
by the real content before it is sent out to the client. The
"SEND" command specifies a file ID, the start offset to read,
and the length of the data. With this information, the NIC
stack reads the file content and creates and sends real data
packets with the header information. Depending on the file
content size, one "SEND" command can be translated into

5If real data has to be sent after virtual data, the host stack delays trans-
mission until the arrival of an echo packet (§3.5) to keep the order.

multiple MTU-sized data packets. Figure 6 illustrates how a
"SEND" command packet is processed.

The host stack handles packet retransmission in the same
manner – sending a "SEND" command with the file content
information for retransmission. The rationale for this design
is to make the NIC stack as simple as possible. An obvious
alternative is to have the NIC stack handle retransmission so
that it ensures reliable delivery of whatever data is transmit-
ted due to the "SEND" command. Then, the NIC stack must
keep track of all ACKs from the client and run the congestion
control logic to determine when to retransmit packets. This
would make the NIC stack stateful and more complex, which
would be challenging to implement efficiently on some other
SmartNIC platforms (e.g., FPGA-based ones).

For all other operations, IO-TCP behaves similarly to the
normal TCP stack. All complex operations such as per-
connection state and buffer management on the receive path,
timer management, reliable data transfer, congestion/flow
control, and error control are executed on the host stack. In
addition, for the control packets or packets whose data is
available on the host stack, the host stack creates and sends
them directly to the client bypassing the NIC stack. All in-
coming packets from the client get delivered directly to the
host stack as well. (See 2⃝ and client-sent ACKs in Figure 5)
This is not only because going through the embedded sys-
tem on the NIC incurs extra latency, but it also places an
unnecessary burden on the NIC stack. This packet steering
can be easily enforced in the separated mode of the Mel-
lanox BlueField-2 NIC where an embedded system on NIC
has different IP and MAC addresses.

3.4 IO-TCP NIC Stack
The IO-TCP NIC stack is responsible for performing all real
data plane operations for the host stack – it handles offloaded
file I/O and network I/O for data packet transfer. It operates
by handling custom commands from the host stack where
each command is carried on a special packet destined to the
NIC stack. Currently, four commands are defined: "OPEN",
"CLOS", "SEND", and "ACKD". "OPEN" and "CLOS" are for fille
opening or closing. "SEND" is the main command for sending
the file content to the client. "ACKD" is used to efficiently
handle retransmission without redundant disk access.

The "SEND" command is the key driver for I/O operations.
Conceptually, it extends TCP segmentation offload (TSO)
with the metadata that describes how to fill in the packet
payload. Given the "SEND" command, the NIC stack checks if
the target file is opened, and reads the file content into a fixed-
sized memory buffer. The file read offset and its length are
aligned to the NVMe disk page boundary (e.g., 4KB), and the
actual file I/O is executed asynchronously to prevent blocking
of the main thread. When the file content becomes available
on the memory buffer, the NIC stack creates a TSO packet
with the TCP/IP headers in the "SEND" command packet,
and sends it out to the NIC hardware data plane. The NIC

hardware data plane takes care of TCP packet segmentation
and TCP/IP checksum calculation.

3.5 Challenges with Integrated I/O
Combining file I/O into the network I/O in the NIC stack
brings a few unique challenges in the correctness of the TCP
stack operation.
Retransmission timer and RTT measurement. TCP re-
lies on delay measurement for setting up retransmission
timers. However, the delays induced by disk I/O could con-
fuse the RTT measurement. Even with fast NVMe disks, the
disk access delay for reading a few KBs of data is in the order
of microseconds, and it can be up to milliseconds if the I/O
requests for the same disk are backlogged. We observe that
our early implementation of IO-TCP often retransmits the
packets even if the original packets have not been sent out
to the client.

To address this problem, we have the NIC stack send back
an echo packet to the host stack just before transferring data
packets for the corresponding “SEND” command. The host
stack starts the retransmission timer only when it receives
an echo packet for the SEND command. For accuracy, the
host stack adds a one-way delay of the echo packet (∼3 mi-
croseconds on our platform) from the NIC stack to itself to
the timeout value. The CPU overhead for the echo packet is
small as it is sent per "SEND" command and a typical "SEND"
command is translated to tens to even hundreds of MTU-
sized packets for large-file delivery.

Also, for precise RTT measurement, the NIC stack reflects
the real "packet processing" delay into the TCP timestamp
option value, i.e., the delay between the arrival of a “SEND”
command to the NIC stack and the departure of the cor-
responding data packets from the NIC stack. That is, the
"SEND" command packet carries the TCP timestamp option
filled by the host stack, and the NIC stack updates the value
before sending out the packets. As the timestamp option
value is in the millisecond granularity [38] and the time feed
in the host stack is on the order of microseconds, the host
stack sends the extra time information in the microsecond
granularity to the NIC stack. Then, the NIC stack can round
up the timestamp value if necessary.
Handling retransmission. Since retransmission of I/O-
offloaded packets is also implemented with the “SEND” com-
mand, a naïve implementation that re-reads the file con-
tent would waste the disk and memory bandwidth. To avoid
the inefficiency, the NIC stack keeps the original data con-
tent in memory until the host stack confirms the delivery
to the client. When the host stack sees the ACKs for the
I/O-offloaded sequence space range, it periodically informs
the NIC stack of the delivered portion with the “ACKD” com-
mand packet. Then, the NIC stack can recycle the memory
buffers holding the delivered data. To minimize the over-
head, the host stack informs the NIC stack whenever it sees

a threshold amount of data (e.g., we use 32KB for now) ac-
knowledged by the client from the last time. Note that this
buffer memory essentially serves as the socket send buffer
in the normal TCP stack, and the required memory in prac-
tice roughly corresponds to the bandwidth-delay product. A
100 Gbps NIC with 30ms of average RTT for the connections
would require 375MB of the buffer memory in aggregate.
3.6 Handling Errors
In IO-TCP, the host stack is responsible for handling all TCP-
level errors such as handling packet losses, malformed pack-
ets, or abrupt connection failures. Since the NIC stack only
sends packets on behalf of the host stack and all incoming
packets bypass the NIC stack, the host stack can reason about
any TCP-level errors as other TCP stacks do.
In contrast, the NIC stack must report errors in file I/O

to the host stack. For an "OPEN" command, the NIC stack
responds to the host stack whether opening a file was suc-
cessful or not. Then, the host stack raises an event to the
corresponding file ID so that the application learns the result.
Since the host stack caches the metadata for an offloaded
file (see §4), it can return an error if offload_write() is
passed wrong parameter values. In case a file read operation
itself fails, it is reported to the host stack with an "Error"
command packet with the file ID and the error code. Then,
offload_write() would return −1 with the error code at
errno next time the application calls it.
3.7 Support for TLS and QUIC
TLS is widely used in the modern Internet as QUIC [65] and
HTTP/2 [20] adopt it by default. IO-TCP can support TLS
similarly to kTLS [92] except that it offloads the encryption to
the SmartNIC. This is feasible as many SmartNICs (including
Bluefield-2) [24, 27, 31] already support AES and SHA in
hardware. So, the CPU side runs the TLS handshake and sets
up the encryption and hashing keys with the SmartNIC. All
data in the receive path should be decrypted by the CPU
stack similarly to other receive-path processing in IO-TCP.
One complication lies in how to encrypt the non-offloaded
data, but one can forward such packets to SmartNIC for
encryption or encrypt them with CPU’s AES-NI instructions.
Support for TLS is still in progress as we have implemented
content encryption with AES-GCM in NIC hardware and
plan to support TLS handshake and TLS record structures.
The key idea of IO-TCP can be easily applied to other

transport layer protocols like QUIC – Appendix A briefly
explains the architecture of IO-QUIC. We plan to elaborate
on the detailed design in the follow-up work.

4 Implementation
IO-TCP host stack.We implement the IO-TCP host stack
bymodifying mTCP [58], a high-performance user-level TCP
stack. We choose mTCP as its socket API is similar to the
Berkeley socket API and it supports event-driven program-
ming with epoll. The host stack extends the mTCP API

functions with four offload functions (as shown in Table 3).
Each offload function is implemented by exchanging special
command packets with the NIC stack. The NIC stack detects
a command packet by checking the special value in the ToS
field in the IP packet. The "SEND" command packet has valid
TCP/IP headers with the full connection information so that
only the payload (as well as checksums) needs to be replaced
with the real file content before being sent to the client.

For offload_open(), the host stack generates a unique
file ID for the file path and returns it to the user. Under
the hood, it attaches the file ID to the "OPEN" command
to refer to the opened file on the NIC stack. As part of re-
sponse, the NIC stack provides the metadata of the opened
file (e.g., output of fstat()) so that the host stack can handle
offload_stat() locally on its own. This should cut back
the round trip to the NIC stack. For file operations, both the
host and NIC stacks share the same file system – the host OS
mounts the file systems on the NVMe disks as read/writable
while the NIC stack mounts them as read-only. One prob-
lem is that any update on the host-side file system does not
automatically propagate to the NIC stack as they run on a
separate operating system. While we currently assume that
the files do not change during the content delivery service,
one should add support for dynamic synchronization of the
two file systems in the future.
IO-TCP NIC stack. The NIC stack is implemented as a
DPDK application. It operates by handling command packets
from the host stack. Each Arm core runs one main thread
and a few disk reading threads that are pinned to the core.
The command packets are distributed to the main threads
by receive-side scaling (RSS) on the NIC hardware, which
ensures in-order packet delivery in the same connection.
For efficient memory buffer management, the NIC stack

pre-allocates all buffers for file content at startup. Each main
thread owns 1/𝑛 of them to avoid any lock contention, and a
simple user-level memory manager allocates and frees the
buffers at low cost. We implement zero-copy DMA of file
data and packet header with DPDK (i.e., scatter-gather DMA),
which improves the large-file delivery throughput (in the
experiments for Figure 8) by 63%.

File reading, even with faster NVMe disks, is slower than
memory operations, so each main thread employs a few disk
reading threads to prevent blocking of the main thread. Disk
reading threads use direct I/O to bypass the inefficiency in
the file system cache [74], and communicate with the main
thread through shared memory. An alternative is to use a
user-level disk I/O library like Intel SPDK [42]. In fact, we
observe that SPDK reaches the peak disk read performance
with half the Arm processor cycles used by direct I/O, but
we stick to a regular file system here (i.e., ext4 on Linux) as
SPDK’s support for file system is not mature yet.
IO-TCP TLS implementation. We modify the DPDK NIC
driver to offload TLS symmetric key encryption with the

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(G

b
p

s)

Number of CPU Cores

Plaintext
TLS

78.1 77.4

20.3

6.4

12.5
12.0

56.8

44.2

37.4

Atlas

LinuxTCP

IO-TCP

Figure 7: Comparison of throughputs of lighttpd on Linux TCP
and IO-TCP, and those of the Atlas server [74] over varying number
of CPU cores serving 500KB files. Dotted lines are for TLS traffic.

BlueField-2 NIC. Our TLS module initializes the NIC with
TLS offloading feature enabled, and it registers a chosen
ciphersuite with the NIC and returns an ID for it. When
the TLS module marks the packets with the ID, the packets
are encrypted with the corresponding ciphersuite. We im-
plement AES-GCM with 256bit keys with ConnectX-6 Dx,
which supports the encryption almost at line rate.
Porting lighttpd to IO-TCP. To evaluate the effectiveness
of IO-TCP in the real-world applications, we port lighttpd
v1.4.32 to IO-TCP. We obtain the mTCP-ported lighttpd code
in Github [16], and have modified it to support offloaded I/O
operations. Porting it to IO-TCP was straightforward as we
needed to modify only about 10 out of 41,871 lines of the
lighttpd code.

5 Evaluation

We evaluate IO-TCP with the following questions in mind:
(1) how much performance improvement does IO-TCP bring
over Linux or custom TCP stacks for content delivery sys-
tems? (2) does it result in significant CPU cycle saving? and
(3) do our design choices (Retransmission timer and RTT
measurement correction) serve their purposes well? Before
running the experiments, we first verified the correctness
(integrity of transferred files) of the IO-TCP stackwith the IO-
TCP-ported lighttpd server even in the case of many packet
losses and multiple concurrent connections.

5.1 Experiment Setup
Our experiment setup consists of one server and two client
nodes. The server machine has two Intel Xeon Silver 4210
CPU @ 2.20 GHz (20 cores) 6, with two 100G Mellanox
BlueField-2 SmartNICs and four Intel Optane 900P NVMe
SSDs. We attach one SmartNIC with two NVMe disks using
NVMe-oF target offload so that the NIC can access the two
NVMe disks directly. The host CPU runs on Linux 4.14 while
the SmartNIC runs on Linux 4.20. The client machines are
each equipped with an Intel E5-2683v4 CPU @ 2.10GHz (16

6We use only one CPU (i.e., 10 cores) for experiments.

cores) and a 100G Mellanox ConnectX-5 NIC. All clients run
on Linux 4.20, and we confirm that the clients are not the
bottleneck for the experiments. All NICs are connected to a
100 Gbps Dell EMC Networking Z9100-ON switch.

We populate the NVMe disks with 100KB, 300KB, 500KB
and 1MB files, which represent the video chunks of different
quality [74, 89]. We make sure that the workload is disk-
bound so that the working set size exceeds the main mem-
ory size. Each disk has an advertised read throughput of
2500 MB/sec, which would imply that we have a theoretical
limit of 80 Gbps when reading from our four disks.

5.2 IO-TCP Throughput
We evaluate the effectiveness of IO-TCP in the large-file con-
tent delivery. We compare the throughput of IO-TCP-ported
lighttpd and that of the stock version with sendfile() over
varying numbers of CPU cores. We also compare against the
Atlas server of Disk|Crypt|Net [74] that runs on FreeBSD
1.10. The Atlas server integrates raw disk reading into large-
file transfer over a user-level TCP stack. For Atlas, we use a
dual-port Chelsio 100Gbps NIC (T-62100) as FreeBSD 1.10
does not support the netmap [86] driver for BF-2. We have
added support for TSO to the NIC driver. We note that it
is not an apples-to-apples comparison as the current imple-
mentation of the Atlas server deviates from the correct oper-
ation of a typical Web server – the current version does not
support regular file systems, so it simply returns a random
content whose HTTP response headers are also hard-coded
into NVMe disks. While implementing a proper custom file
system should fix the problem, the current version bene-
fits from avoiding the overhead. Nevertheless, comparing
with Atlas would give us the rough idea of how well an IO-
TCP-ported server fares over the state-of-the-art CPU-based
server. Clients run wrk [43] to concurrently request on 1600
persistent connections. For testing Atlas, we reduce the num-
ber of concurrent connections to 800 for plaintext transfer as
its custom TCP stack becomes unstable at high concurrency.
Comparison with Linux TCP and Disk|Crypt|Net. Fig-
ure 7 shows the results for serving 500KB files. lighttpd on
IO-TCP achieves 78.1 Gbpswith a single CPU core on the host
side for plaintext transfer, which demonstrates that a single
CPU core is sufficient to handle the control plane operations
for all 1600 clients. IO-TCP saturates the full bandwidth of the
four NVMe disks, and each NIC reaches 39 Gbps, indicating
that the performance scales to the number of NICs. In con-
trast, Linux TCP does not go beyond 57 Gbps even with 10
CPU cores. Even when we use both CPUs (i.e., 20 cores), we
do not see performance improvement (56.2 Gbps). This shows
that the memory bandwidth is inefficiently utilized [74] de-
spite the usage of a zero-copy API like sendfile(). When
lighttpd on each CPU runs with a distinct port and serves
a disjoint set of files, the performance goes up slightly (59
Gbps) as it benefits from local memory bandwidth. However,
the improvement is limited because the content often has to

46.4 51.1
56.8 54.7

64.1
76.6 78.1 75.3 78.2 79.2 78.8 79.5

0

20

40

60

80

100KB 300KB 500KB 1MB

Th
ro

u
gh

p
u

t(
G

b
p

s)

File Size

LinuxTCP IO-TCP Atlas

(a) Plaintext

28.4 33.1
37.4 36.8

64.1
76.2 77.4 74.8

43.4 43.8 44.2 44.1

0

20

40

60

80

100KB 300KB 500KB 1MB

Th
ro

u
gh

p
u

t
(G

b
p

s)

File Size

(b) TLS

Figure 8: Comparison of maximum performance of lighttpd on
LinuxTCP, and IO-TCP and Atlas for varying file sizes.

cross the NUMA domain to a NIC and the placement of ker-
nel objects are not NUMA-aware. On the other hand, Atlas
performs much better, reaching the same performance of IO-
TCP at four CPU cores. When we add more NVMe disks (up
to 8) and use two CPUs with both NIC ports, the performance
of Atlas peaks at 107 Gbps where the memory bandwidth
becomes a bottleneck. The performance of IO-TCP goes up
to 95.2 Gbps if IO-TCP serves a random content with raw
disk access like in Atlas, but the bottleneck lies in the mem-
ory bandwidth of the BF-2 NIC. This shows that efficient use
of the host memory bandwidth is highly effective in achiev-
ing a very good throughput with only CPU. However, the
performance advantage disappears when serving TLS traffic
where the memory bandwidth becomes a bottleneck much
earlier (discussed in the next paragraph). Figure 8a compares
the performances with different file sizes. All performances
of Atlas are similar as it avoids calling filesystem APIs. The
performance of IO-TCP is comparable to those of Atlas from
300 KB files. IO-TCP outperforms Linux TCP by 38% to 51%
and it uses 2x to 10x smaller number of CPU cores to reach
the peak performance.
TLS performance. IO-TCP excels at serving TLS traffic. We
enable packet encryption with AES-GCM with 256bit keys
on the NIC crypto hardware for IO-TCP. For stock lighttpd,
we use OpenSSL 1.0.2k [34] with TLSv1.2, and use the same
algorithm for symmetric key encryption. Both Atlas and
the IO-TCP-ported lighttpd do not implement the TLS hand-
shake, but the overhead for the handshakewith stock lighttpd
is negligible as we use persistent connections. Figure 7 and
Figure 8b show that IO-TCP experiences little performance
degradation with TLS due to the dedicated crypto hardware
on NIC. In contrast, Atlas achieves only 44.2 Gbps even with

Number of Concurrent Connections

Th
ro

ug
hp

ut
 (G

bp
s)

0

20

40

60

1000 2000 3000 4000

80
80.6

Cores 1 2

Figure 9: Comparison of TLS performance of IO-TCP over different
number of connections using 1 and 2 CPU cores.

10 CPU cores as the main memory bandwidth becomes the
bottleneck. The performance goes up to 54.6 Gbps with two
CPUs, but overall, the TLS performance is 51% to 56% of the
plaintext throughput. The similar trend is seen with Linux
TCP - the TLS performance drops by 48% to 63%. We confirm
that both Atlas and Linux TCP benefit from the AES-NI in-
structions of the CPU, but their TLS performances are poor
due to content scanning for encryption. We note that the
working set size of Atlas exceeds the CPU cache, so their
TLS performance is bottlenecked by the memory bandwidth
much faster. So, the claim that Disk|Crypt|Net manages the
workload within the CPU cache depends on the hardware.
Connection scaling. Figure 9 shows the performance of IO-
TCP serving 1000 to 4000 concurrent TLS connections. We
observe that the performance is more or less stable over dif-
ferent number of connections. For 4000 connections, IO-TCP
loses about 5% of performance with a single CPU core, but it
reaches 80 Gbps again with two CPU cores. We check that the
plaintext performance exhibits comparable trends. At 4000
connections, each connection would get around 20 Mbps, a
comfortable bandwidth to stream 4K videos.
Comparison with user-level TCP stacks. One might be
tempted to compare the performance with recent user-level
TCP stacks likemTCP [58], IX [49],TAS [62], and F-Stack [13]
as they use the CPU cycles efficiently. However, we find that
these stacks are not optimized for large-file content delivery
as most of them do not implement sendfile() nor bene-
fit from TSO. In fact, we measure the performance of TAS,
mTCP, and F-Stack on the same platformwith all 10 cores, but
they showe 8, 21.4, and 36 Gbps, respectively, for 500KB file
delivery. Even if they implement a zero-copy API, we doubt
that it would substantially outperform Linux TCP because
the primary goal of the kernel-bypass networking stacks is to
avoid the overhead of frequent system calls and kernel data
structures for small-message transactions. However, trans-
ferring large messages would rarely impose the system call
overhead nor suffer from the overhead of kernel structures.
Instead, insufficient memory bandwidth (or CPU cycles) is
the main cause for poor performance in large-file content
delivery, which kernel-bypass TCP stacks do not help.
TCP fairness. We also evaluate if IO-TCP provides band-
width fairness among the competing connections. Jain’s Fair-
ness Index of IO-TCP ranges from 0.91 to 0.97 for different

Th
ro

ug
hp

ut
 (G

bp
s)

w/o timer
correction

w/ timer
correction

63.12

0

20

40

60

80 78.06

(a) Correcting retransmission
timers.

A
ve

. M
ea

su
re

d
R

TT
 (m

s)

Time (s)

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15

w/o
Correction

w/

(b) Correcting timestamps for more
accurate RTT estimates.

Figure 10: Time measurement correction in IO-TCP

numbers of concurrent connections. We see a similar range
(0.90 to 0.97) with Linux TCP for the same experiments.

5.3 Evaluation of IO-TCP Design Choices
Retransmission timer correction. We evaluate the im-
pact of echo packets that adjust the retransmission timer –
when the real data packets are sent out. Figure 10a compares
the throughput of lighttpd on IO-TCPwith andwithout timer
correction. Without timer correction, the IO-TCP host stack
stays at 63.12 Gbps. With timer correction, IO-TCP improves
the throughput by 22.6%. This is because IO-TCP without
timer correction experiences highly variable RTTs and pro-
duces 600x more timeouts than that with timer correction.
Such performance drop due to premature timeouts can be
more severe in the wide-area-networks (WANs) where the
end-to-end RTTs are larger.
RTT measurement correction. We compare the impact
of fixing the TCP timestamps on the NIC stack. We measure
the average RTT values recorded by the TCP stack every sec-
ond with 200 concurrent connections. Figure 10b shows that
the average RTT is 1 ms with timestamp correction. When
we disable the TCP timestamp correction, the average RTT
reaches 5 ms, a blowup by a factor of 5. This is because the
RTT includes disk access delay that adds a few milliseconds.
More accurate latency measurement is critical to trigger the
timeout in time when there is a packet loss.

5.4 Overhead Evaluation
The split architecture of IO-TCP may suffer from the com-
munication overhead between host and NIC stacks as well
as lower computing capacity of the Arm-based subsystem in
the NIC. For this reason, the CPU-only approach on Linux
TCP would perform better than IO-TCP for a small number
of concurrent connections as CPU can comfortably handle
the connections without the overhead. However, this trend
will change as the number of connections increases.

Figure 11a shows the throughputs over different numbers
of concurrent connections requesting 300KB files. With a
single persistent connection, Linux TCP outperforms IO-TCP
by over 1.5 times. However, it reaches the peak performance
with as few as four connections and the performance stays
the same beyond that. In contrast, the throughput of IO-TCP

4.32

17.63

36.78

6.37 9.78 9.99

0

10

20

30

40

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Connections

IO-TCP
Linux TCP

(a) Throughputs over varying # of
connections w/ 300KB files

0.45

1.81
2.76

0.79 1.33
1.32

0

1

2

3

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Connections

IO-TCP
Linux TCP

(b) Throughputs over varying # of
connections w/ 10KB files

Figure 11: Overhead Evaluation.

slowly increases due to the overhead, but it outperforms the
Linux TCP at four connections.

The performance trend continues to hold with smaller file
sizes. Figure 11b shows the throughput for serving 10KB files
over different numbers of connections. Like in the previous
case, Linux TCP and IO-TCP reach the peak performance at
4 and 64 connections, respectively, but their performance is
much lower than in Figure 11a due to the increased overhead
of file operations. Nevertheless, IO-TCP outperforms Linux
TCP at four or more concurrent connections.

To evaluate the latency overhead, we compare the latency
of single-file downloading with IO-TCP vs. Linux TCP. IO-
TCP shows 50 to 80us of an extra delay for 10KB files, but the
extra overhead goes up to 150 to 200us for 300KB files. This
latency overhead at low congestion is inevitable as the host
CPU is much faster than the Arm processor in the NIC, but
it is negligible for content delivery in wide-area networks.
Memory bandwidth limitation. The performance bottle-
neck of our current prototype lies in the low memory band-
width of the BlueField-2 NIC when it accesses more than two
NVMe disks. We confirm this by running the same test as
in Figure 8a without disk I/O – we observe that the perfor-
mance reaches 80 Gbps per NIC. Note that disk I/O is the
only memory copy for packet payload in our NIC stack as we
employ scatter-gather DMA. Nevertheless, we still think our
design is promising in the future. First,Arm-based SoC can be
designed with much higher memory bandwidth and future
SmartNICs would benefit from it. For example, Bluefield-
3 [32] is reported to have 3.5x better memory bandwidth
(∼90 GB/s) than Bluefield-2, and we expect over 100 Gbps
per NIC 7 for the same workload as in Figure 8a. Cavium
ThunderX2 [8], an Armv8-based SoC server, has 166 GB/s of
peak memory bandwidth, even larger than that of our CPU.
Second, improving the memory bandwidth of the SmartNIC
is more cost-effective as Arm SoCs are less expensive than
server-class x86 CPUs [70] and one can easily scale the over-
all performance by employing multiple NICs. We note that
the current SmartNIC price is very high, but it will go down
with wider adoption as evidenced in the GPU prices.

740 Gbps (perNIC) × 90 GB/s (BF-3 BW) / 25.6 GB/s (BF-2 BW) = 141 Gbps

Functions Instr. per cycle
Before After

APP: Parsing HTTP request 0.82 1.57
APP: Writing response header 0.92 1.89
TCP: Check RTO expire 2.65 3.26
TCP: Process ACK 0.13 1.24
Overall IPC 0.93 1.47

Table 4: Comparison of the IPC of lighttpd and control plane func-
tions before and after data plane offloading with IO-TCP.

100.0

70.2

1.4

33.6

0

20

40

60

80

100

0

20

40

60

80

100

Ca
ch

e
M

is
s

Ra
te

 (%
)

Re
l.

Th
ro

ug
hp

ut
 (%

)

w/o Disk IO w/ Disk IO

(a) Relative throughputs and cache
miss rates with and without disk IO.

99.1

62.9

37.1
28.1 21.6 18.2

0

20

40

60

80

100

10 20 40 60 80 100Re
l.

Th
ro

ug
hp

ut
 (%

)

Additional Delay (μs)

(b) Relative throughputs over extra
delays by the control plane.

Figure 12: Analysis on the source of performance improvement.

5.5 Source of Performance Improvement

We analyze the source of performance improvement with
IO-TCP. First, we observe that the control plane functions
in the IO-TCP stack run faster after the separation of the
data plane. Table 4 indicates that the instructions per cycle
(IPC) of the control path in the IO-TCP stack improves by
58% with the division of labor. Especially, ACK processing
benefits the most from the split – note that it is the key
function that initiates complex operations frequently such
as looking up the TCB in the connection table, determin-
ing packet loss/duplicate ACKs, computing the new send
window size, etc. After the split, the IPC of this function im-
proves by 9.53x. The performance gain mainly comes from
reduced cache/memory contention as we find that the cache
miss rate of last-level cache (LLC) improves by 27% with the
separation. Then, how come the cache miss rate is reduced?
This is because DDIO of NVMe disk IO evicts the data in the
CPU cache if both planes run together [96]. To confirm this,
we measure the TCB lookup performance with and without
NVMe disk reading (fio). Figure 12a shows that the cache
miss rate of the TCB lookup goes up by a factor of 24 if we
co-run disk IO, which in turn reduces the lookup perfor-
mance by 30%. Finally, we observe that the faster execution
of the control plane actually improves the content delivery
throughput. To show this, we add redundant code into the
ACK processing function so that we can delay its execution
by as much as we want. Figure 12b shows that the through-
put degrades significantly as the extra delay increases. This
implies that the faster control plane reduces the end-to-end
RTT and increases the send window size quickly, which ends
up improving the overall performance.

6 Related Work
PCIe P2P communications. Enabling PCIe P2P communi-
cation between external devices could reduce CPU overhead
significantly when transmitting data among them. NVIDIA
GPUDirect RDMA [17], GPUDirect Async [45], and AMD
DirectGMA [10] techniques, provide a way for other devices
to directly access data from GPU by exposing GPU mem-
ory directly to PCIe memory space. EXTOLL [79] proposes
enabling direct communication between Intel Xeon Phi co-
processors (accelerators) and the NICs, so accelerators can
communicate with each other over the network without CPU
involvement. Morpheus [91] enables communications be-
tween NVMe devices and other PCIe devices. DCS [46] and
DCS-ctrl [63] propose a hardware-based framework to enable
P2P communication among various types of external PCIe
devices. However, all these P2P solutions only consider data
communication on hardware, without considering the kernel
stacks. As a result, those solutions still suffer from kernel
stack overhead when running content delivery applications.
Accelerated networking stacks. There are several exist-
ing works that attempt to improve the performance of net-
working stacks. Some works try to improve the performance
of existing kernel stacks. Fastsocket [71] improves the TCP
stack performance by achieving table-level connection parti-
tion, increasing the connection locality, and eliminating the
lock contention. StackMap [95] dedicates network interfaces
to applications and offer a zero-copy, low-overhead network
interface for applications. Megapipe [57] leverages parti-
tioned, lightweighted sockets, and batches system calls to
improve the performance. Another approach is bypassing the
heavyweight kernel stack and running the whole stack in the
user level. mTCP [58], IX [49], Sandstorm [73], F-Stack [13],
and PonyExpress/Snap [75] leverage user-level packet I/O
libraries, and leverage multiple CPU cores to process incom-
ing flows simultaneously, in order to increase the processing
throughput and reduce latency from kernel calls. ZygOS [85],
Shinjuku [60], and Shenango [80] further improve the tail
latency of packet processing by improving the load balancing
of the tasks among CPU cores. Arrakis [82] and IO-TCP share
the same vision of separation of data and control planes, but
Arrakis is focused on bypassing the kernel involvement on
the data path while IO-TCP harnesses extra processors for
work division of the TCP stack operations. TAS [62] builds
a TCP fast path as a separated OS service, which targets to
improve the performance of RPC calls in the data center.
Disk|Crypt|Net [74] builds a scalable video streaming stack,
containing a novel kernel-bypass storage stack and an ex-
isting kernel-bypass network stack, which achieves lower
latency and higher throughput for video streaming applica-
tions. However, all these solutions still require huge CPU
involvements in packet processing,which still consumes a lot
of CPU power on transmitting data among external devices.
A recent work called AccelTCP [78] offloads TCP connection
management as well as connection relaying into SmartNIC,

which relieves a part of packet processing computation from
host CPU cores. However, it focuses only on improving the
throughput for short-lived connections and L7 proxies.
NIC offload. Traditionally, there have been a spectrum of
NIC offload schemes. Stateless schemes like TCP/IP check-
sum offload, TCP segmentation offload (TSO) and large re-
ceive offload (LRO) have become ubiquitous in modern NICs
while stateful schemes like TCP Engine Offload (TOE) andMi-
crosoft Chimney Offload [25] have largely been deprecated
due to security and maintenance concerns coming from its
complexity. IO-TCP is essentially TSO with file reading, and
we believe it can be easily implemented into commodity NIC
hardware due to its simplicity.
More recently, several works have focused on offloading

various tasks to SmartNICs to improve the performance for
specific applications. KV-Direct [68] leverages FPGA-based
SmartNIC to improve the performance of in-memory key-
value stores. Floem [83], ClickNP [69], and UNO [66] lever-
age SmartNICs to accelerate general packet processing for
network applications. Metron [61] offloads packet tagging
into the NICs to reduce the latency of packet processing for
network functions. iPipe [72] builds a general framework for
offloading distributed applications into SmartNICs. Lynx [90]
uses the SmartNIC as part of an accelerator-centric archi-
tecture where the SmartNIC allows direct networking with
the accelerators. Gimbal [76] uses SmartNIC as the traffic
orchestrator for disk IO, and realizes efficient multi-tenancy
using congestion control algorithms and fair scheduling. Lea-
pIO [70] offloads disk IOs to SmartNIC and provides the
seamless address space for cloud tenants while [84] han-
dles NVMe-oF on NIC for remote storage access. However,
neither supports TCP operations to clients from NIC. To
the best of our knowledge, our IO-TCP is the first work that
leverages SmartNICs to accelerate disk and packet I/O for
content delivery systems.

7 Conclusion

In this paper, we have presented IO-TCP, a split TCP stack
design that offloads I/O operations from CPU for scalable
content delivery. IO-TCP provides a new abstraction that
leverages SmartNIC processors to perform I/O operations,
which significantly relieves the pressure on CPU and its main
memory system. Also, our proposal maintains the simplicity
in the NIC stack design so that it can be easily implemented
with low-powered processors on I/O devices.

Our evaluation shows IO-TCP significantly saves CPU
cycles while it delivers the benefit even for small-file transfer
when it serves enough connections. Along with the benefit,
we also discuss the limitations of the current prototype, and
we hope that SmartNIC vendors will consider highermemory
bandwidth for the embedded system when designing the
next version of their SmartNIC. The source code of IO-TCP
is available at https://iotcp.kaist.edu/

https://iotcp.kaist.edu/

Acknowledgements

We appreciate the insightful feedback and suggestions from
USENIX NSDI 2022 reviewers on revising our original sub-
mission. We thank Ilias Marinos for sharing the source of
Disk|Crypt|Net and for helping us with setting up the At-
las server. This work is in part supported by the ICT Re-
search and Development Program of MSIP/IITP, Korea, un-
der [2018-0-00693, Development of an ultra low-latency user-
level transfer protocol]. Junzhi Gong and Minlan Yu are sup-
ported in part by the NSF CNS-1955422 and CNS-1955487.

References

[1] Akamai braces for huge streaming audiences in 2021.
https://www.fiercevideo.com/tech/akamai-
braces-for-huge-streaming-audiences-2021.
Last Accessed: 2021-09-15.

[2] Akamai Technologies, Inc. https://www.akamai.
com/. Last Accessed: 2021-09-15.

[3] Amazon Prime Video. https://www.primevideo.
com/. Last Accessed: 2021-09-15.

[4] Apple TV+. https://tv.apple.com/. Last Accessed:
2022-08-23.

[5] As Covid pushes more people online, companies
that help the web stay speedy are having a mo-
ment. https://www.cnbc.com/2020/12/13/cdn-
providers-cloudflare-fastly-benefit-from-
covid-web-traffic-boost.html. Last Accessed:
2021-09-15.

[6] Athlon 64 X2. https://en.wikipedia.org/wiki/
Athlon_64_X2. Last Accessed: 2021-09-15.

[7] Broadcom Stringray SmartNIC. https:
//www.broadcom.com/products/ethernet-
connectivity/smartnic. Last Accessed: 2021-09-
15.

[8] Cavium ThunderX2 Arm-based Processors.
https://www.marvell.com/products/server-
processors/thunderx2-arm-processors.html.
Last Accessed: 2021-09-15.

[9] Cisco Visual Networking Index 2021. https://www.
cisco.com/c/dam/m/en_us/solutions/service-
provider/vni-forecast-highlights/pdf/
Global_2021_Forecast_Highlights.pdf. Last
Accessed: 2021-09-15.

[10] DirectGMA on AMD’s FirePro GPUs. https://www.
amd.com/Documents/SDI-techbrief.pdf.

[11] Disney+. https://www.disneyplus.com/. Last Ac-
cessed: 2021-09-15.

[12] DPDK. https://www.dpdk.org. Last Accessed: 2021-
09-15.

[13] F-Stack | High Performance Network Framework
Based on DPDK. https://github.com/F-Stack/f-
stack. Last Accessed: 2021-09-15.

[14] Fastly, Inc. https://www.fastly.com/. Last Ac-
cessed: 2021-09-15.

[15] fio - Flexible I/O tester. https://fio.readthedocs.
io/en/latest/fio_doc.html. Last Accessed: 2021-
09-15.

[16] GitHub - mtcp-stack/mtcp. https://github.com/
mtcp-stack/mtcp. Last Accessed: 2021-09-15.

[17] GPUDirect. https://developer.nvidia.com/
gpudirect. Last Accessed: 2021-09-15.

[18] HowTo Configure NVMe over Fabrics (NVMe-oF)
Target Offload. https://community.mellanox.
com/s/article/howto-configure-nvme-over-
fabrics--nvme-of--target-offload. Last
Accessed: 2021-09-15.

[19] Hulu: Stream TV and Movies Live and Online. https:
//www.hulu.com/. Last Accessed: 2021-09-15.

[20] IETF RFC 7540. https://tools.ietf.org/html/
rfc7540. Last Accessed: 2021-09-15.

[21] Intel Direct Data I/O Technology. https:
//www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html. Last Accessed:
2021-09-15.

[22] Intel® Xeon® Platinum 9282 Processor.
https://ark.intel.com/content/www/us/en/
ark/products/194146/intel-xeon-platinum-
9282-processor-77m-cache-2-60-ghz.html.
Last Accessed: 2021-09-15.

[23] Lighttpd - fly light. https://www.lighttpd.net/.
Last Accessed: 2021-09-15.

[24] Marvell LiquidIOII Smart NICs. https://www.
marvell.com/products/ethernet-adapters-
and-controllers/liquidio-smart-nics.html.
Last Accessed: 2021-09-15.

[25] Microsoft Windows Scalable Networking Ini-
tiative. http://download.microsoft.com/
download/5/b/5/5b5bec17-ea71-4653-9539-
204a672f11cf/scale.doc. Last Accessed: 2021-09-
15.

https://www.fiercevideo.com/tech/akamai-braces-for-huge-streaming-audiences-2021
https://www.fiercevideo.com/tech/akamai-braces-for-huge-streaming-audiences-2021
https://www.akamai.com/
https://www.akamai.com/
https://www.primevideo.com/
https://www.primevideo.com/
https://tv.apple.com/
https://www.cnbc.com/2020/12/13/cdn-providers-cloudflare-fastly-benefit-from-covid-web-traffic-boost.html
https://www.cnbc.com/2020/12/13/cdn-providers-cloudflare-fastly-benefit-from-covid-web-traffic-boost.html
https://www.cnbc.com/2020/12/13/cdn-providers-cloudflare-fastly-benefit-from-covid-web-traffic-boost.html
https://en.wikipedia.org/wiki/Athlon_64_X2
https://en.wikipedia.org/wiki/Athlon_64_X2
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.marvell.com/products/server-processors/thunderx2-arm-processors.html
https://www.marvell.com/products/server-processors/thunderx2-arm-processors.html
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.amd.com/Documents/SDI-techbrief.pdf
https://www.amd.com/Documents/SDI-techbrief.pdf
https://www.disneyplus.com/
https://www.dpdk.org
https://github.com/F-Stack/f-stack
https://github.com/F-Stack/f-stack
https://www.fastly.com/
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/mtcp-stack/mtcp
https://github.com/mtcp-stack/mtcp
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://www.hulu.com/
https://www.hulu.com/
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://www.lighttpd.net/
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc

[26] Netflix - Unlimited movies, TV shows, and more.
https://www.netflix.com/. Last Accessed: 2021-
09-15.

[27] Netronome Agilio LX SmartNICs. https://www.
netronome.com/products/agilio-lx/. Last Ac-
cessed: 2021-09-15.

[28] NGD Newport NVMe Computational Storage Drive.
https://www.ngdsystems.com. LastAccessed: 2021-
09-15.

[29] nginx. http://nginx.org/. Last Accessed: 2021-09-
15.

[30] NGINX and Netflix Contribute New sendfile(2) to
FreeBSD. https://www.nginx.com/blog/nginx-
and-netflix-contribute-new-sendfile2-to-
freebsd/. Last Accessed: 2021-09-15.

[31] NVIDIA BlueField-2 Programmable SmartNIC.
https://www.mellanox.com/files/doc-
2020/pb-bluefield-2-smart-nic-eth.pdf.
Last Accessed: 2021-09-15.

[32] NVIDIA BlueField-3 DPU. https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-
bluefield-3-dpu.pdf. Last Accessed: 2021-09-15.

[33] NVIDIA BlueField SmartNIC. http://www.mellanox.
com/related-docs/prod_adapter_cards/PB_
BlueField_Smart_NIC.pdf. Last Accessed: 2021-09-
15.

[34] OpenSSL. https://www.openssl.org/. Last Ac-
cessed: 2021-09-15.

[35] PCI Express Base Specification. https://pcisig.
com/specifications. Last Accessed: 2021-09-15.

[36] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/
Main_Page. Last Accessed: 2021-09-15.

[37] Poky – Yocto Project. https://www.yoctoproject.
org/software-item/poky/. Last Accessed: 2021-09-
15.

[38] RFC 7323. https://tools.ietf.org/html/
rfc7323. Last Accessed: 2021-09-15.

[39] Sandvine Global Internet Phenomena Report
COVID-19 Spotlight. https://www.sandvine.com/
phenomena. Last Accessed: 2021-09-15.

[40] SmartSSD Computational Storage Drive.
https://samsungsemiconductor-us.com/
smartssd/index.html. Last Accessed: 2021-09-15.

[41] StoPool Distributed Storage. https://storpool.
com/blog/7-million-iops-and-0-15-ms-
latency-for-an-nvme-powered-vdi-cloud. Last
Accessed: 2021-09-15.

[42] Storage Performance Developement Kit. https://
spdk.io/. Last Accessed: 2021-09-15.

[43] wg/wrk - Modern HTTP benchmarking tool. https:
//github.com/wg/wrk. Last Accessed: 2021-09-15.

[44] YouTube TV - Watch and DVR Live Sports, Shows &
News. https://tv.youtube.com/. Last Accessed:
2021-09-15.

[45] Elena Agostini, Davide Rossetti, and Sreeram Potluri.
Offloading communication control logic in GPU accel-
erated applications. In Proceedings of the IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), 2017.

[46] J. Ahn, D. Kwon, Y. Kim, M. Ajdari, J. Lee, and J. Kim.
DCS: A Fast and Scalable Device-centric Server Archi-
tecture. In Proceedings of the Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2015.

[47] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and
Larry L. Peterson. HashCache: Cache Storage for the
Next Billion. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2009.

[48] G. Banga and J.C. Mogul. Scalable Kernel Performance
for Internet Servers under Realistic Loads. In Proceed-
ings of the USENIX Annual Technical Conference (ATC),
1998.

[49] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[50] Steve Blank. What the GlobalFoundries’ Retreat
Really Means. https://spectrum.ieee.org/
nanoclast/semiconductors/devices/what-
globalfoundries-retreat-really-means, 2018.
Last Accessed: 2021-09-15.

[51] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-
soo Han. Libnvmmio: Reconstructing Software IO Path
with Failure-Atomic Memory-Mapped Interface. In
Proceedings of the USENIX Annual Technical Conference
(ATC), 2020.

[52] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and Protection in the ZoFS

https://www.netflix.com/
https://www.netronome.com/products/agilio-lx/
https://www.netronome.com/products/agilio-lx/
https://www.ngdsystems.com
http://nginx.org/
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/
https://www.mellanox.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.openssl.org/
https://pcisig.com/specifications
https://pcisig.com/specifications
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.yoctoproject.org/software-item/poky/
https://www.yoctoproject.org/software-item/poky/
https://tools.ietf.org/html/rfc7323
https://tools.ietf.org/html/rfc7323
https://www.sandvine.com/phenomena
https://www.sandvine.com/phenomena
https://samsungsemiconductor-us.com/smartssd/index.html
https://samsungsemiconductor-us.com/smartssd/index.html
https://storpool.com/blog/7-million-iops-and-0-15-ms-latency-for-an-nvme-powered-vdi-cloud
https://storpool.com/blog/7-million-iops-and-0-15-ms-latency-for-an-nvme-powered-vdi-cloud
https://storpool.com/blog/7-million-iops-and-0-15-ms-latency-for-an-nvme-powered-vdi-cloud
https://spdk.io/
https://spdk.io/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://tv.youtube.com/
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means

User-Space NVM File System. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
2019.

[53] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the European Conference on Com-
puter Systems (EuroSys).

[54] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark
silicon and the end of multicore scaling. In Proceed-
ings of ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), 2011.

[55] Ethernet Alliance. The 2020 Ethernet Roadmap.
https://ethernetalliance.org/technology/
2020-roadmap/, 2020. Last Accessed: 2021-09-15.

[56] Anja Feldmann, Oliver Gasser, Franziska Lichtblau,
Enric Pujol, Ingmar Poese, Christoph Dietzel, Daniel
Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, Oliver Hohlfeld, and Georgios
Smaragdakis. A Year in Lockdown: How the Waves of
COVID-19 Impact Internet Traffic. Communications of
the ACM (CACM), 64(7):101–108, 2021.

[57] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: a new programming
interface for scalable network I/O. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[58] EunYoung Jeong, Shinae Woo, Muhammad Asim
Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han,
and KyoungSoo Park. mTCP: a Highly Scalable User-
level TCP Stack for Multicore Systems. In Proceedings
of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014.

[59] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), 2019.

[60] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for 𝜇second-scale tail
latency. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2019.

[61] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Re-
becca Steinert, and Gerald Q Maguire Jr. Metron: NFV
Service Chains at the True Speed of the Underlying

Hardware. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2018.

[62] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of the European Conference on
Computer Systems (EuroSys), 2019.

[63] D. Kwon, J. Ahn, D. Chae, M. Ajdari, J. Lee, S. Bae,
Y. Kim, and J. Kim. DCS-ctrl: A Fast and Flexible Device-
Control Mechanism for Device-Centric Server Archi-
tecture. In Proceedings of the ACM/IEEE Annual Inter-
national Symposium on Computer Architecture (ISCA),
2018.

[64] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
2017.

[65] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, and J. Iyengar.
The QUIC Transport Protocol: Design and Internet-
Scale Deployment. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication
(SIGCOMM), 2017.

[66] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin
Wang, Aditya Akella, Michael M Swift, and TV Laksh-
man. UNO: Unifying Host and Smart NIC Offload for
Flexible Packet Processing. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2017.

[67] Jonathan Lemon. KQueue–A Generic and Scalable
Event Notification Facility. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2001.

[68] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP), 2017.

[69] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Renqian
Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng, and En-
hong Chen. ClickNP: Highly Flexible and High Perfor-
mance Network Processing with Reconfigurable Hard-
ware. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication (SIGCOMM),
2016.

[70] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan Ports, Irene Zhang,

https://ethernetalliance.org/technology/2020-roadmap/
https://ethernetalliance.org/technology/2020-roadmap/

Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. LeapIO: Efficient and Portable Virtual NVMe
Storage on ARM SoCs. In Proceedings of the ACM In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2020.

[71] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Ji-
aquan He, Wei Xu, and Yuanchun Shi. Scalable Kernel
TCP Design and Implementation for Short-Lived Con-
nections. ACM SIGARCH Computer Architecture News,
44(2):339–352, 2016.

[72] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading
Distributed Applications onto SmartNICs using iPipe.
In Proceedings of the ACM Special Interest Group on Data
Communication. 2019.

[73] Ilias Marinos, Robert NM Watson, and Mark Handley.
Network stack specialization for performance. ACM
SIGCOMMComputer Communication Review, 44(4):175–
186, 2014.

[74] Ilias Marinos, Robert NM Watson, Mark Handley, and
Randall R Stewart. Disk|Crypt|Net: rethinking the stack
for high-performance video streaming. In Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2017.

[75] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: a micro-
kernel approach to host networking. In Proceedings of
the 27th ACM Symposium on Operating Systems Princi-
ples (SOSP), 2019.

[76] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krishna-
murthy. Gimbal: enabling multi-tenant storage disag-
gregation on smartnic jbofs. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, pages 106–122, 2021.

[77] G. Banga J.C. Mogul and P. Druschel. A Scalable and
Explicit Event Delivery Mechanism for UNIX. In Pro-
ceedings of the USENIX Annual Technical Conference
(ATC), 1999.

[78] YoungGyoun Moon, SeungEon Lee, Muhammad Asim
Jamshed, and KyoungSoo Park. AccelTCP: Accelerating
Network Applications with Stateful TCP Offloading. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2020.

[79] Sarah Neuwirth, Dirk Frey, Mondrian Nuessle, and Ul-
rich Bruening. Scalable communication architecture
for network-attached accelerators. In Proceedings of
the IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2015.

[80] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango: Achiev-
ing High CPU Efficiency for Latency-sensitive Datacen-
ter Workloads. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2019.

[81] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel.
Flash: An Efficient and Portable Web Server. In Proceed-
ings of the USENIX Annual Technical Conference (ATC),
1999.

[82] Simon Peter, Thomas Anderson, and Timothy Roscoe.
Arrakis: The Operating System is the Control Plane.
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2013.

[83] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: a programming system for NIC-
accelerated network applications. In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2018.

[84] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous
NIC Offloads. In Proceedings of the ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[85] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), 2017.

[86] Luigi Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ATC), 2012.

[87] David Sidler, Gustavo Alonso, Michaela Blott, Kimon
Karras, Kees Vissers, and Raymond Carley. Scalable
10Gbps TCP/IP Stack Architecture for Reconfigurable
Hardware. In Proceedings of the IEEE International Sym-
posium on Field-Programmable Custom Computing Ma-
chines (FCCM), 2015.

[88] David Sidler, Zsolt Istvan, and Gustavo Alonso. Low-
Latency TCP/IP Stack for Data Center Applications.
In Proceedings of the International Conference on Field-
Programmable Logic and Applications (FPL), 2016.

[89] Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-
bekar, and Ramesh K. Sitaraman. Footprint Descriptors:
Theory and Practice of Cache Provisioning in a Global
CDN. In Proceedings of the International Conference
on Emerging Networking EXperiments and Technologies
(CoNEXT), 2017.

[90] Maroun Tork, LinaMaudlej, andMark Silberstein. Lynx:
A SmartNIC-Driven Accelerator-Centric Architecture
for Network Servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2020.

[91] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark
Gahagan, and Steven Swanson. Morpheus: Creating
Application Objects Efficiently for Heterogeneous Com-
puting. ACM SIGARCH Computer Architecture News,
44(3):53–65, 2016.

[92] Dave Watson. KTLS: Linux Kernel Transport Layer
Security. Proposal by Facebook Engineer, 2016.

[93] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System forHybrid Volatile/Non-volatile MainMem-
ories. In Proceedings of the 14th Usenix Conference on
File and Storage Technologies (FAST), 2016.

[94] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2020.

[95] Kenichi Yasukata, Michio Honda, Douglas Santry, and
Lars Eggert. StackMap: Low-Latency Networking with
the OS Stack and Dedicated NICs. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2016.

[96] Yifan Yuan,MohammadAlian,YipengWang,RenWang,
Ilia Kurakin, Charlie Tai, and Nam Sung Kim. Don’t
Forget the I/O When Allocating Your LLC. In Proceed-
ings of the 48th IEEE/ACM International Symposium on
Computer Architecture (ISCA), 2021.

[97] Jie Zhang,Miryeong Kwon,Michael Swift, andMyoung-
soo Jung. Scalable Parallel Flash Firmware for Many-
core Architectures. In Proceedings of the USENIX Con-
ference on File and Storage Technologies (FAST), 2020.

[98] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks. In Proceedings of
the USENIX Conference on File and Storage Technologies
(FAST), 2019.

QUIC Header (PN: 1)
STREAM Frame Header
STREAM Metadata

SEND Command Packet

E
C

H
O

QUIC Header (PN: 1-48)
STREAM Frame Header
(File Data)

48 × 1500-bytes UDP Packets

Client’s ACK Packet
ACK: PN 1-48

IO-QUIC Host Stack

Client

IO-QUIC NIC Stack

Read file ID 16778653
of length 71000 from

offset 838392.

NVMe
Disk

Figure 13: An adaptation of IO-TCP to QUIC.

Appendix

A Support for the QUIC protocol

Unlike TCP/IP headers, the QUIC header is variable-sized,
so the host stack should carefully estimate the header size
before offloading. Since the data length can exceed an MTU
size, the SmartNIC should perform QUIC packet segmen-
tation with generation of QUIC headers as well as UDP/IP
headers. In addition to file IO offloading, UDP packet seg-
mentation with large content on SmartNIC could improve
the performance further as QUIC on the Linux UDP stack suf-
fers from frequent context switchings for invoking a system
call for each UDP packet. For reliable transfer, the host stack
should keep track of STREAM frame packet numbers and
data offsets that are sent out. Retransmissions can be handled
similarly to IO-TCP as the IO-TCP NIC stack manages the
file content buffers independently of the particular transport
layer protocol. Likewise, the "ACKD" command can free the
file content buffers that are confirmed to be delivered to the
QUIC client.
We have finished implementing "IO-QUIC" in the plain-

text version, and we will add support for TLS in the future.
Unlike the IO-TCP implementation, the host stack of our
IO-QUIC implementation uses unmodified Linux kernel as it
communicates with the NIC stackwith a special UDP packet.

B Performance Comparison with Asyn-
chronous sendfile() on FreeBSD

Recent FreeBSD supports asynchronous sendfile() that
does not block on disk reading [30], so we compare the per-

34.2

60.8 67.2 70.9

41.0

66.3 69.3 72.3
64.0

76.6 78.1 75.3

0

20

40

60

80

100KB 300KB 500KB 1MB

Th
ro
ug
hp
ut
 (G
bp
s)

File Sizes

FreeBSD-nginx (S) FreeBSD-nginx (G) IO-TCP

(a) Plaintext

19.2
33.9 34.8 38.8

24.7
35.3

40.6 39.7

64.1
76.2 77.4 74.8

0

20

40

60

80

100KB 300KB 500KB 1MB

Th
ro
ug
hp
ut
 (G
bp
s)

File Sizes

(b) TLS

Figure 14: Comparison of maximum performance of nginx that
uses asynchronous sendfile() on FreeBSD vs. IO-TCP. IO-TCP
uses the same number as in Figure 8a and Figure 8b.

formance of nginx (v1.20.1) on FreeBSD (v13.0) that utilizes
this feature. Since FreeBSD does not allow disabling indi-
vidual CPU cores, we use all 20 CPU cores for FreeBSD ex-
periments (FreeBSD-nginx(S)). Also, to gauge the impact of
higher-capacity CPU, we employ a different server with two
Intel Xeon Gold 6142 CPUs @ 2.60 GHz, a 100G Mellanox
ConnectX-5 NIC and 32GB memory of DRAM (FreeBSD-
nginx(G)). Again, we use all 32 cores in the two CPUs for the
experiments.

Figure 14a shows the results over different file sizes. Over-
all, FreeBSD achieves better performance than Linux for
plaintext transfer, but it does not reach the performance re-
ported in [74] (∼70 Gbps with 8 cores). This is because the
stock FreeBSD version does not support other features in
[74] except asynchronous sendfile(). In contrast, IO-TCP
outperforms all other setups despite that FreeBSD uses 19
to 31 more CPU cores. In terms of the TLS performance,
Figure 14b shows that FreeBSD suffers from the same issue
as Linux.

	Introduction
	Background & Motivation
	Inefficiencies in Content Delivery System Stacks
	Mismatch between I/O Device Advances and CPU Capacity
	Opportunities with SmartNIC

	Design
	Separating TCP control and data planes
	IO-TCP Offload API Functions
	IO-TCP Host Stack
	IO-TCP NIC Stack
	Challenges with Integrated I/O
	Handling Errors
	Support for TLS and QUIC

	Implementation
	Evaluation
	Experiment Setup
	IO-TCP Throughput
	Evaluation of IO-TCP Design Choices
	Overhead Evaluation
	Source of Performance Improvement

	Related Work
	Conclusion
	Support for the QUIC protocol
	Performance Comparison with Asynchronous sendfile() on FreeBSD

