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Abstract

We study the computational complexity of two related problems: recovering a planted g-coloring
in G(n,1/2), and finding efficiently verifiable witnesses of non-g-colorability (a.k.a. refutations)
in G(n, 1/2). Our main results show hardness for both these problems in a restricted-but-powerful
class of algorithms based on computing low-degree polynomials in the inputs.

The problem of recovering a planted g-coloring is equivalent to recovering ¢ disjoint planted
cliques that cover all the vertices — a potentially easier variant of the well-studied planted clique
problem. Our first result shows that this variant is as hard as the original planted clique problem
in the low-degree polynomial model of computation: each clique needs to have size k > /n for
efficient recovery to be possible. For the related variant where the cliques cover a (1 — €)-fraction
of the vertices, we also show hardness by reduction from planted clique.

Our second result shows that refuting g-colorability of G(n,1/2) is hard in the low-degree
polynomial model when ¢ >> n2/ but easy when ¢ < n'/2, and we leave closing this gap for future
work. Our proof is more subtle than similar results for planted clique and involves constructing a
non-standard distribution over g-colorable graphs. We note that while related to several prior works,
this is the first work that explicitly formulates refutation problems in the low-degree polynomial
model.

The proofs of our main results involve showing low-degree hardness of hypothesis testing be-
tween an appropriately constructed pair of distributions. For refutation, we show completeness of
this approach: in the low-degree model, the refutation task is precisely as hard as the hardest asso-
ciated testing problem, i.e., proving hardness of refutation amounts to finding a “hard” distribution.
Keywords: Random graphs, coloring, low-degree polynomials, computational complexity

1. Introduction

The planted clique problem, introduced by Jerrum (1992) and Kucera (1995), asks for a polynomial-
time algorithm to find a clique of size k added to an Erd6s—Rényi random graph G(n, 1/2). The
associated task of refuting the existence of k-cliques in G ~ G(n, 1/2) asks for a polynomial-time
algorithm to compute a certificate that can be efficiently verified to infer the absence of a k-clique in
G. Despite a long line of work, state-of-the-art polynomial-time algorithms for both problems (Alon
et al., 1998) only succeed when k = (y/n). In contrast, the clique number of G(n, 1/2) is at most
[21log, n] + 1 with high probability and thus, an added clique of any size k& > [2logon| + 1
is uniquely identifiable. A long line of work proving lower bounds in various restricted models
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such as Markov chains (Jerrum, 1992), the Statistical Query model (Feldman et al., 2017), convex
relaxations (Feige and Krauthgamer, 2003) and in particular the sum-of-squares hierarchy and the
related low-degree polynomial model of computation (Barak et al., 2016; Hopkins, 2018), suggest
that the algorithmic threshold for both variants — the smallest k for which efficient algorithms can
find the added k-clique or refute the existence of a k-clique in G(n, 1/2) — is Q(y/n). In the past
two decades, the hypothesis that no polynomial-time procedure can beat the above guarantees of
the known algorithms has become a focal point in average-case complexity theory and the root of
myriad reductions to average-case problems arising in various domains (e.g., Berthet and Rigollet
(2013); Hajek et al. (2015); Brennan et al. (2018); Kothari and Mehta (2018)).

Two motivating problems: recovery and refutation of g-colorings. In this paper, we study
the following innocuous-looking (and ostensibly easier than planted clique) question where, in the
recovery problem, we study the complexity of exactly recovering ~ n/k disjoint planted k-cliques
in G ~ G(n, 1/2), with high success probability. If the disjoint planted cliques cover all the vertices
of the graph, then the complement of the graph has a planted (n/k)-coloring. Thus, this version
of our problem is tantamount to studying whether recovering a planted q-coloring in G(n,1/2)
is easier than recovering a single planted clique. In the associated refutation problem, the goal is
to find an algorithm that takes as input a graph G and outputs NO or MAYBE with the guarantee
that (1) whenever it outputs NO, the graph must not admit a valid g-coloring of its vertices, and (2)
when G ~ G(n, 1/2), the algorithm should output NO with probability 1 —o(1) over the draw of G.
For reference, the chromatic number of G(n, 1/2) is ©(n/log n) with high probability (see Heckel
(2018)), so the information-theoretic threshold for refutation is ¢ = ©(n/logn). Intuitively, the
recovery and refutation problems for coloring appear easier than their clique counterparts because
the planted structure is more prominent and therefore seemingly easier to find (or refute).

The relation between the recovery and refutation tasks is somewhat subtle: while these two
problems appear related, we are not aware of a formal reduction between them in either direction.
In this paper, we study the recovery and refutation problems separately, and draw attention to the
fact that rather different methods will be needed to prove lower bounds in the two settings. We
note that for colorability of sparse random regular graphs, there appears to be a constant-factor gap
between the recovery and refutation thresholds (Bandeira et al., 2021).

We note that for simplicity we consider the exact recovery problem. One can also consider
various notions of approximate recovery. This tends not to make a difference in our setting because
once a small fraction of the vertices in a clique are known, it is easy to find the rest by examining
common neighbors.

Proof strategy: hypothesis testing. One common strategy to understand the complexity of recov-
ery or refutation is to introduce an auxiliary hypothesis testing task: given a graph G that is sampled
either from some “null” distribution Q (e.g., G(n, 1/2)) or some “planted” distribution I (e.g., some
distribution supported on g-colorable graphs), design an efficiently computable statistical test that
decides which of the two distributions generated a given sample G, with high success probability
over the draw of G. Note that if there is an efficient refutation algorithm for some distribution @,
then we immediately obtain an efficient distinguisher between QQ and any distribution P supported
on g-colorable graphs. Similarly, if there is an efficient recovery algorithm for some distribution PP,
then we immediately obtain a distinguishing algorithm between P and any distribution QQ supported
on non-g-colorable graphs. As a result of this connection, we can conclude:
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(I) To show computational hardness of exactly recovering a planted g-coloring in a particular
planted distribution P, it suffices to construct a null distribution Q such that (i) with high
probability, G ~ Q is not g-colorable and (ii) it is computationally hard to distinguish P from

Q.

(I) To show computational hardness of refuting g-colorability for a particular null distribution
Q, it suffices to construct a planted distribution P such that (i) IP is supported on g-colorable
graphs and (ii) it is computationally hard to distinguish P from Q.

Note that we have flexibility to choose either Q (if studying recovery) or PP (if studying refutation).
We will see later that it can be a non-trivial task to construct the right distribution. It need not be the
case that the same testing problem arises when studying recovery as when studying refutation.

Strategy (II) has been referred to as constructing a computationally quiet planted distribu-
tion (Bandeira et al., 2020), where “quiet” pertains to the fact that the planted structure’s presence
cannot be detected by an efficient algorithm. Similarly, strategy (I) corresponds to constructing a
computationally quiet null distribution.

Since proving lower bounds for average-case hypothesis testing problems based on standard
hardness assumptions is an elusively difficult goal at present (notwithstanding the recent successes
of Brennan et al. (2018); Brennan and Bresler (2020) that use the hardness of planted clique and
its variants as a starting point in certain limited settings), we will obtain evidence of hardness for
testing problems by focusing on a restricted but powerful and well-studied family of tests that we
next describe.

Low-degree testing. The low-degree polynomial model of hypothesis testing restricts the class
of tests to be polynomial functions in a natural representation of the input, with the complexity
of a test captured by the degree of the polynomial. Specifically, viewing graphs as elements of
{-1, 1}(3) with a {41}-indicator of presence or absence of every possible edge, the low-degree
polynomial tests informally correspond to computing thresholds of arbitrary degree-D polynomi-
als of the edge-indicator variables. Since degree-D polynomials can be computed (when described
in the monomial coefficient representation) in time n°(P), constant-degree tests yield polynomial-
time distinguishing algorithms. Despite being restricted, these low-degree tests already capture
tests based on basic statistics of graphs such as edge counts, triangle counts, and more generally
small subgraph counts (the number of edges in the subgraph corresponds to the degree of the poly-
nomial). Various spectral methods (e.g., the leading eigenvalue of the adjacency matrix, or some
other symmetric matrix whose entries are low-degree polynomials of the input variables) can also
be approximated by polynomial tests of logarithmic degree in the number of variables; see Kunisky
et al. (2022), Section 4.2.3. As a result, low-degree tests (with degree O(logn)) already capture the
best known polynomial-time algorithms for a wide variety of high-dimensional statistical testing
tasks (although we won’t attempt to precisely characterize which tasks here; see e.g. Hopkins et al.
(2017); Hopkins (2018); Kunisky et al. (2022); Holmgren and Wein (2021); Zadik et al. (2022) for
discussion). As a result, if we manage to establish that all degree-D tests provably fail to solve a
particular testing problem for some D = w(logn), we say the problem is “low-degree hard.” This
can be viewed as evidence suggesting computational hardness of the hypothesis testing problem.
This is a widely-applicable and by now, commonly-used framework that originated in a line of
work on proving lower bounds against the sum-of-squares hierarchy (Barak et al., 2016; Hopkins
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and Steurer, 2017; Hopkins et al., 2017); see also Hopkins (2018); Kunisky et al. (2022) for further
exposition.

Summary of results. Our main results use strategies (I) and (II) described above to shed light
on the computational complexity of recovery and refutation of g-coloring. The formal models and
statements are presented in the next section, but here we give a brief overview. Throughout, we will
implicitly assume an asymptotic regime n — oo where other parameters (e.g., ¢, k) may scale with
n. We say an event occurs “with high probability (w.h.p.)” if it has probability 1 — o(1) as n — oc.
Since our focus is on identifying computational thresholds up to the correct power of n, we use the
symbol < in our informal discussions to hide factors of n,

Our main result for the recovery problem shows that adding ~ n/k disjoint cliques of size k
(instead of a single one) does not make the problem of recovering the added planted cliques easier.
That is, our lower bounds suggest that each added clique needs to be of size = /n for efficient
recovery to be possible.

In contrast and perhaps surprisingly, it turns out that adding more cliques makes the problem
of distinguishing the planted graph from G(n, 1/2) easier, simply by counting the total number of
edges. This reveals a detection-recovery gap, in contrast to the single planted clique problem (see
Section 2.1.2).

More precisely, our results for recovery are as follows:

* In the planted partial-coloring model where some fraction of the vertices are colored (equiva-
lently, many disjoint planted cliques in G(n, 1/2) that cover at most a (1 — ¢)-fraction of the
graph), we show that:

(i) If each clique has size k > /n, a simple algorithm can be used to recover them.

(ii) If each clique has size k < +/n, it is computationally hard to recover them assuming
the Planted Clique Hypothesis. That is, recovering many planted k-cliques is as hard as
recovering a single planted k-clique.

¢ In the full planted coloring model (g planted cliques of size k = n/q partitioning the entire
graph), we are unable to show hardness via reduction, but instead give an indirect argument
that supports the same conclusion as above:

(i) If each clique has size k > /n, there is again a simple algorithm to recover them.

(ii) If each clique has size k¥ < \/n, we argue that recovery is computationally hard via
strategy (I), taking the null distribution Q to be a planted (¢ + 1)-coloring. In other
words, we prove that low-degree tests cannot even distinguish a planted g-colorable
graph from a planted (¢ + 1)-colorable graph. This suggests hardness of recovery via a
two-stage argument described in Section 2.1.3.

For the problem of refuting g-colorability in G(n,1/2), it is known that a poly-time algorithm
exists when k& := n/q > \/n (Coja-Oghlan, 2005). To explore the complexity of this problem, we
explicitly formulate the refutation problem in the low-degree polynomial model (for the first time),
and show the following:

o Ifk = \/n (ie., ¢ < \/n), then there is a low-degree polynomial that refutes g-colorability in
G(n,1/2).
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« If k < n'/3 (ie., ¢ > n?/3), then no low-degree polynomial refutes g-colorability in
G(n,1/2). The proof follows strategy (II) and involves constructing a non-trivial planted
distribution PP.

» We conjecture k ~ +/n is the true low-degree refutation threshold, and we leave this to
future work. One way to improve the lower bound would be to construct a “quieter” planted
distribution, i.e., a distribution supported on g-colorable graphs that is low-degree hard to
distinguish from G(n, 1/2) whenever k < y/n. Our final result is a duality argument showing
that in fact, the conjecture is equivalent to the existence of such a planted distribution.

2. Results

A central concept in this work will be that of hypothesis testing between two high-dimensional
distributions. We consider two (sequences of) distributions P = P,, and Q = Q,,. For us, these
distributions will always be over n-vertex graphs. We use the following asymptotic notion of suc-
cessful testing.

Definition 1 (Strong distinguishing) For two distributions P,, and Q,, we say an algorithm A,
strongly distinguishes P and Q if it takes as input a sample drawn from one of the two distributions
and correctly determines which distribution it came from with probability 1 — o(1) as n — oc. In
other words, both type I and type II error probabilities must be o(1).

We will also be interested in the following class of “low-degree” tests. A degree-D test is simply
a (multivariate) polynomial in the input variables (or rather a sequence of such polynomials, one for
each problem size n). In our case, there will be (g) input variables — one for every possible edge
in an n-vertex graph — taking values in {£1}, where +1 indicates the presence of an edge and —1
indicates the absence. We use the following standard notion of “success” for a polynomial test.

Definition 2 (Strong/weak separation of distributions) Suppose P, and Q,, are distributions on
RN for some N = N,. A polynomial f,, : RN — R is said to strongly separate P and Q if. as

n — oo,
¢mw{%yULﬁﬂﬂ}=o<

and weakly separate P and Q if

meﬁgmﬁym}=0(

Note that strong separation implies that P and Q@ can be strongly distinguished by threshold-
ing the value of the polynomial f. Weak separation implies that the output of f can be used to
distinguish better than random guessing; see Bandeira et al. (2022b), Proposition 6.1.

In our case, the input variables will take values in {£1} and so the polynomial f can be multi-
linear without loss of generality.

If all degree-D polynomials fail to strongly separate P and Q for some D = w(logn), we say
the testing problem is “low-degree hard.” As explained in the introduction, this can be viewed as
evidence for inherent computational hardness of strong distinguishing.

Bl - E11)).

Bl - 511)).
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Proofs that rule out strong or weak separation typically proceed by bounding the advantage,

defined below: E
Adv<p(P,Q) = sup ﬁ

, (1)
ferY]<p v Eqlf?]

where R[Y]<p denotes the set of polynomials RN — Rof degree (at most) D. It is well known that
Adv<p also admits a characterization as the norm of the low-degree likelihood ratio; see Hopkins
(2018); Kunisky et al. (2022). If Adv<p = O(1) then strong separation is impossible, and if
Adv<p = 1+ o(1) then weak separation is impossible (see Lemma 22).

2.1. Recovery
2.1.1. MODELS

The primary objective of this section will be to understand the recovery problem in two related
models for planted coloring and planted partial-coloring. As explained in the introduction, the
complement of a g-colorable graph is partitioned into g cliques. To fix notation and compare with
the standard planted clique model, we will take the clique perspective here. Thus we study the
problem of multiple cliques planted in G(n, 1/2).

The first model MC(n, ¢) (“multiple cliques”) corresponds to a true planted coloring, i.e., the
cliques partition the entire graph.

Definition 3 In the model MC(n, q), we observe an n-vertex graph where each vertex is indepen-
dently assigned a uniformly random label from [q] = {1,2,...,q}. Vertices with the same label
are always connected, and vertices with different label are connected with probability 1/2. Given
the graph, the goal is to exactly recover the clique partition with probability 1 — o(1) as n — oo,
where q = q,, may scale with n.

The next model is a variation for partial coloring, i.e., the cliques do not partition the entire
graph. In the coloring viewpoint, some fraction of the vertices do not belong to any color class (and
have no constraints on the colors of their neighbors). One motivation for defining this model is that
it is a variant of the original model where we will be able to prove a strong form of hardness via
reduction. For technical convenience, the cliques in this model have exactly the same size, unlike
MC(n, q).

Definition 4 In the model MC(n, q,0), we observe an n-vertex graph where (1 — 0)n vertices are
partitioned into q cliques, each of size exactly k = (1—9)n/q (which we assume is an integer). Two
vertices in the same clique are always connected, and all remaining edges occur independently with
probability 1/2. Given the graph, the goal is to exactly recover the clique partition (and identify the
non-clique vertices) with probability 1 — o(1) as n — oo, where the parameters q = q,, and 6 = &y,
may scale with n.

2.1.2. HARDNESS OF PLANTED PARTIAL-COLORING VIA REDUCTION

We now consider the recovery problem in MC(n, ¢, ). First, we observe that a simple algorithm
based on examining degrees and common neighbors can exactly recover the cliques when k > /n.
This matches (up to log factors) the best known algorithms for recovering a single planted k-clique
in G(n,1/2).
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Theorem 5 (Upper bound) If q,¢ scale with n such that k == (1 — §)n/q = w(v/nlogn) then

there is a polynomial-time algorithm achieving exact recovery w.h.p. in MC(n, ¢, 0).

Proof We will use the following standard version of Bernstein’s inequality: for independent random
variables X1, ..., X, satisfying E[X;] = 0 and | X;| < M almost surely, we have for any ¢t > 0 that

n 1,2
1y
Pr §Xi>t <e — 2 .
( = >— Xp( Z?_lVar(Xi)—i—éMt)

=1

Fix an arbitrary sequence o, = w(1). The degree d; of a non-clique vertex 7 has a binomial
distribution d; ~ Bin(n—1, 1/2), which by Bernstein’s inequality satisfies d; < %+a\/m with
probability 1—n (1), On the other hand, a clique vertex i has degree d; ~ (k—1)+Bin(n—Fk, 1/2),
which by Bernstein’s inequality satisfies d; > ”%rk — ay/nlog n with probability 1 — n=<(1), By
thresholding degrees, this lets us perfectly classify the non-clique vertices with probability 1 —o(1),
provided k£ = w(y/nlogn).

It remains to partition the clique vertices. If vertices 7, j are in different cliques, their number
of common neighbors is d;; ~ Bin(2(k — 1),1/2) 4+ Bin(n — 2k,1/4), which satisfies d;; <
1+ % + a/nlog n with probability 1 — =W If vertices i, j instead belong to the same clique,
their number of common neighbors is d;; ~ (k — 2) + Bin(n — k,1/4), which satisfies d;; >
2+ 3% — ay/nlogn with probability 1 — n~«(1). By thresholding common neighbors, this allows
us to exactly recover the clique partition with probability 1 —o(1), again provided k = w(y/nlogn).
|

We next show a matching lower bound: computational hardness of recovering the cliques when
k < +/n. This result will be conditional on the Planted Clique Hypothesis, a conjecture that is
commonly used as the basis for deducing average-case hardness results. In the planted clique model
PC(N, K), an N-vertex graph has a clique on K vertices, and all other edges occur independently
with probability 1/2. The following version of the conjecture appears, for instance, as Conjec-
ture 2.1 in Brennan et al. (2018).

Conjecture 6 (Planted Clique Hypothesis) If K = Ky scales as K < NY272() then no se-
quence of randomized polynomial-time algorithms By can strongly distinguish (Definition 1) be-
tween PC(N, K) and G(N,1/2).

Assuming this conjecture, we have the following hardness result for MC(n, ¢, d).

Theorem 7 (Lower bound) Assume the Planted Clique Hypothesis (Conjecture 6). If q,0 scale
with n such that k = (1 — 6)n/q satisfies (2 + (1)) logyn < k < (0n)/>=2) then no sequence
of randomized polynomial-time algorithms A,, achieves exact recovery w.h.p. in MC(n, q, ).

The condition (2 + §2(1)) logy n < k is natural because 2 log, n is the size of the maximum clique
in G(n,1/2). To satisfy the condition k& < (6n)/2=() it suffices to have k = nz~2W and
§ =n—°W),

The reduction which proves Theorem 7 is very simple but (to our knowledge) has not appeared
before in the literature. Intuitively, the idea is the following: in the multiple cliques model, even if
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an oracle were to reveal the positions of all cliques but one, the remaining problem is still a hard
instance of planted clique.

Proof Let ¢, 0 scale as prescribed. Assume for the sake of contradiction that an algorithm A,
achieves exact recovery in MC(n, ¢,0). Let K = k = (1 — d)n/qand N = K + én. Note that as
n — oo we have N — oo because

N>K=Fk2>(2+Q(1))loggn — oo,
and also K < N1/2=9(1) pecause
K =k < (0n)2~20 < Nz—20),

We will give an algorithm By achieving strong detection between G(N,1/2) and PC(N, K), con-
tradicting the planted clique conjecture.

The algorithm By works as follows. Given an N-vertex graph, add (¢ — 1)k additional vertices
(bringing the total to n), partitioned into ¢ — 1 cliques each of size k. Add all other edges (both
among the new vertices and between the old and new vertices) independently with probability 1/2.
Now run A,, on the resulting graph. If it finds ¢ disjoint cliques of size k& and one of these cliques
lies within the original N vertices, output “PC(NV, K)”; otherwise, output “G(N,1/2).”

To argue correctness of By, first suppose the input came from PC(V, K'). Then the n-vertex
graph produced is exactly a sample from MC(n, g, d), and so A,, must correctly identify all the
cliques with probability 1 —o(1), leading B to correctly answer “PC(V, k).” Now suppose instead
that the input to By came from G(N,1/2). Due to the assumption £ > (2 + Q(1))logyn >
(2+9(1)) logy N, with probability 1 — o(1) there is no k-clique within the original NV vertices, in
which case By must correctly answer “G(N,1/2).” [ |

Remark 8 We note that the Planted Clique Hypothesis also implies hardness of detecting a constant
number of planted k-cliques in G(n,1/2) when k < +/n. The idea is to first show by reduction
from planted clique that distinguishing between q planted cliques and (q + 1) planted cliques is
hard; the reduction is simply to add q new cliques (on new vertices). Then the classical “hybrid
argument” implies that distinguishing between 0 and q cliques is hard for any constant q. (We thank
Guy Bresler for pointing out this argument.)

Detection-recovery gap. In the standard planted clique model (with a single clique), k ~ +/n is
the best known threshold for both efficiently recovering the clique and efficiently “detecting” it, i.e.,
distinguishing the planted clique model from G(n,1/2). While we have shown that adding more
cliques does not make recovery any easier, it certainly does make detection easier. For instance,
in the extreme case where the cliques cover the whole graph, the total edge count strongly distin-
guishes MC(n, q) from G(n,1/2) provided ¢ = o(n). Thus, the multiple cliques problem exhibits
a “detection-recovery gap” that is not present in the single clique case.

We remark that our reduction is a rare (perhaps unique?) example where a detection-recovery
gap has been established based on the Planted Clique Hypothesis. For instance, the prior work Bren-
nan et al. (2018) on various planted matrix and graph problems was only able to establish hardness
of recovery in a regime where detection is easy if reducing from some starting problem (not planted
clique) that is already conjectured to have a detection-recovery gap. While Cai et al. (2017) claims
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to overcome this by reducing from planted clique to planted submatrix recovery, the argument is
incorrect.!

Finally we note that the notion of a “detection-recovery gap” is arguably somewhat artificial
in that it assumes we have chosen one “canonical” testing problem to associate with the recovery
problem (a perspective we are avoiding in this paper). One might expect that the gap can be closed
by choosing a different null distribution whose total edge count matches that of the planted distri-
bution. It turns out that closing the gap is not quite this simple, and the challenge of constructing a
better null distribution plays a key role in the next section.

2.1.3. TESTING ¢-COLORABILITY VERSUS (¢ + ¢)-COLORABILITY

The results of the previous section do not quite cover the case of a true coloring, i.e., where the
cliques partition the entire graph. In this case, exact recovery remains easy when k := n/q > /n,
and we expect it to be hard when k& < /n; however, we do not know how to establish this via
reduction from planted clique. We will instead follow strategy (I) from the introduction: we fix
P = MC(n,q) and our goal is to design a null distribution Q such that w.h.p. G ~ Q is not g-
colorable (or rather, its complement is not), and distinguishing IP versus Q is low-degree hard. Once
we have achieved this goal, this gives an indirect two-stage argument for hardness of recovery: the
low-degree hardness leads us to conjecture that no poly-time algorithm can distinguish P from Q,
and this conjecture (if true) formally implies that no poly-time algorithm can recover the cliques in
P.

Perhaps the first natural attempt is to choose Q = G(n, 1/2). However, this will not suffice, as
G(n,1/2) is too easy to distinguish from MC(n, ¢) due to the detection-recovery gap discussed in
the previous section. Instead, we will choose Q@ = MC(n, ¢ + 1), which w.h.p. is not g-colorable
for ¢ < Q(n/logn); see Appendix D. We will show that testing P = MC(n,q) versus Q =
MC(n, g+1) is low-degree hard when k := n/q < /n. As discussed above, this suggests hardness
of exact recovery in MC(n, ¢) when k < \/n.

We will in fact consider a slightly more general testing problem: P = MC(n, q) versus Q =
MC(n, q + ¢) for some ¢ > 1 (which may scale with n). This generality will not cost us much, and
we feel it is a question of possible independent interest. The following results establish that (in the
low-degree framework) this problem is easy when ¢? < #n and hard when ¢> >> /n.

Theorem 9 (Upper bound) If g, scale with n such that 1 < q < q+ £ < n and ¢* = o({n)

then there is a degree-1 polynomial achieving strong separation between P = MC(n, q) and Q =
MC(n,q + ¢).

Theorem 10 (Lower bound) Fix an arbitrary constant € > 0, not depending on n. If q,¢ scale
withn such that 1 < q < q+{ < n and ¢*> > {n'*< then there is no degree-o(logn/loglogn)?
polynomial achieving weak separation between P = MC(n, q) and Q = MC(n, g + £).

Testing planted versus planted. On a technical level, this result differs from nearly all existing
low-degree lower bounds because here we are testing between two different “planted” distribu-
tions. In contrast, most prior work has considered testing between some planted distribution and

1. On pg 21-22 of Cai et al. (2017) (arXiv v2), the bootstrapping construction in Eq. (42) does not actually produce
an instance of the submatrix model because the entries of the noise matrix are not mutually independent. An issue
occurs near the top of pg 22, where pairwise independence does not imply mutual independence. The reduction does
show hardness of some non-standard submatrix model where the noise entries are not mutually independent.
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an i.i.d. null distribution, which is much easier to analyze. The first “planted-versus-planted” low-
degree lower bounds were given recently by Rush et al. (2022), based on a technique developed
by Schramm and Wein (2022). Our proof is based on similar ideas, but differs from Rush et al.
(2022) on a technical level; the bounds for dense subgraph problems in Rush et al. (2022) do not
work when the subgraph is extremely dense (e.g., a clique), and so we use a somewhat different
variation of the argument.

The standard approach to proving low-degree lower bounds is based on relatively straightfor-
ward moment calculations, but relies heavily on knowing an orthogonal basis of polynomials with
respect to Q; see Section 2.3 of Hopkins (2018). The key technical challenge in planted-versus-
planted testing is that, since Q is not a product measure, we do not know such an orthogonal basis
of polynomials that is convenient to work with. Our Proposition 23 overcomes this, showing that
it suffices to control certain recursively-defined quantities w,. This generalizes the standard ap-
proach, as discussed in Remark 24. Similarly to Rush et al. (2022), the quantities w,, turn out to
have a convenient multiplicative property (Lemma 25) which helps in the analysis. The proof of
Proposition 23 takes an approach first used by Schramm and Wein (2022), where we apply Jensen’s
inequality to the “signal” but not the “noise,” and then leverage an orthogonal basis of polynomials
for the i.i.d. “noise.”

We note that an alternative form of evidence for hardness of our original recovery problem
would be to directly formulate a low-degree recovery question in the style of Schramm and Wein
(2022), but we have chosen to instead investigate the quiet planting approach.

2.2. Refutation

A common framework for studying the average-case complexity of refutation problems is to prove
lower bounds against the sum-of-squares (SoS) hierarchy, a powerful class of methods based on
semi-definite programming. For the problem of refuting g-colorability, a particular SoS formulation
is known to fail when ¢ > /n (Kothari and Manohar, 2021); however, it remains open to charac-
terize the more canonical (and potentially stronger) SoS SDP which has equality constraints instead
of inequalities (see Section 1.5 of Kothari and Manohar (2021)).

In this paper, we formulate an alternative type of refutation lower bound based directly on
low-degree polynomials, which complements the SoS approach. Some advantages of the new for-
mulation are its simplicity, and the fact that (unlike SoS) there is no ambiguity in the choice of
SDP relaxation; we only need to specify how our input is encoded as real-valued variables. To our
knowledge, there are no formal implications in either direction between SoS lower bounds and our
new framework. Like SoS, our framework captures spectral methods (as illustrated by the proof of
Theorem 16 below), a powerful class of refutation algorithms which give the best known poly-time
algorithms for a wide variety of average-case refutation tasks.

We note that some prior work has used low-degree lower bounds to give evidence for hardness
of refutation, via a two-stage argument that first gives a polynomial-time reduction from a testing
problem to refutation (Bandeira et al., 2020, 2022a). Our new framework is similar in spirit but
more direct, as we define for the first time a notion of what it means for a polynomial to solve a
refutation problem (Definition 11).

10
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2.2.1. FRAMEWORK FOR LOW-DEGREE REFUTATION

We will now define a notion (Definition 11) of what it means for a polynomial to refute a property
R C RY (e.g., the set of g-colorable graphs X € {il}(g>) over a distribution Q (e.g., G(n, 1/2)).
We will later argue that this definition is reasonable in that it indeed implies a solution to the refu-
tation problem (Proposition 13). We also illustrate that our definition captures spectral methods, a
powerful class of refutation algorithms (see the proof of Theorem 16).

Definition 11 (Strong/weak separation of a distribution and property) Suppose Q,, is a distri-
bution on RY for some N = N,,, and suppose R = R,, € RN. A polynomial f, : RN — R is said
to strongly separate Q and R if

f(X)>1 YXeR  and %W] = o(1),

and weakly separate Q and R if

f(X)>1 VXeR  and g[f] =0, %[fz] = 0(1).

Remark 12 The requirement Eq[f] = 0 can optionally be added to the definition of strong sepa-
ration: if f = f, satisfies the original definition it can be shifted and scaled to satisfy the modified
one.

More generally, one could define separation to mean there exists B = B,, > Eq|[f] such that
f(X) > B forall X € R, and \/Varg|f] is either o(B — Eq|f]) (for strong separation) or
O(B — Eqlf]) (for weak separation). This is equivalent in the sense that if f = f, satisfies the
original definition it also satisfies the new one with B = 1, and if f satisfies the new definition it
can be shifted and scaled to satisfy the original one.

As we see next, strong and weak separation are natural sufficient conditions for refuting ‘R with
high probability or constant probability (respectively) by evaluating f.

Proposition 13  Suppose f strongly (or weakly, respectively) separates Q and R. Define a refu-
tation algorithm that, on input X € RY, outputs NO if f(X) < 1 and outputs MAYBE otherwise.
Then this algorithm has the guarantee that (1) whenever it outputs NO, X ¢ R, and (2) when
X ~ Q, the output is NO with probability 1 — o(1) (or (1), respectively).

Proof Guarantee (1) is immediate from the property f(X) > 1forall X € R. For strong separation,
(2) follows because by Markov’s inequality, E[f?] = o(1) implies that | f(X)| < 1 with probability

1 — o(1). It remains to verify (2) for weak separation: letting Eg[f?] < C and p == Pro{f(X) <
1},

0=E[f] 2 1-Pr{f > 1}+E[f-15c1] > 1-p) = VE[f?]-v/p = 1-p-Cyp > 1= (C+1)/p,
implying p > 1/(C + 1)2. |

In line with strategy (II) from the introduction, one way to rule out strong (or weak) separation
is to construct a planted distribution and bound the quantity Adv<p defined in (1).

11
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Proposition 14 Suppose that on an infinite subsequence of n values we have a distribution P = P,
supported on R. If Adv<p(P,Q) = O(1) (respectively, 1 + o(1)) for some D = D, then no
degree-D polynomial strongly (resp., weakly) separates Q and R.

Proof Since P is supported on R, the separation condition implies Ep[f] > 1. The proof is now
nearly identical to that of Lemma 22. |

Remark 15 We note that for the well-studied problem of refuting a single k-clique in G(n,1/2),
existing work implies sharp upper and lower bounds in our new framework. For the lower bound, let
P be the standard planted k-clique model and combine Proposition 14 with the low-degree analysis
of planted clique (Hopkins, 2018, Section 2.4) to conclude: if k < n'/>=¢ for a constant ¢ > 0
then no degree-o(logn/loglogn)? polynomial weakly separates G(n,1/2) from the property of
containing a k-clique. The upper bound follows from the proof of Theorem 16 below: if k > 2.1\/n
then there is an O(log n)-degree polynomial that strongly separates G(n, 1/2) from the property of
containing a k-clique.

2.2.2. LOW-DEGREE REFUTATION OF q-COLORABILITY

We now apply the framework from the previous section to the problem of refuting g-colorability in
G(n,1/2). Throughout, we represent graphs as elements of {il}(g) as usual, take Q = G(n, 1/2),
and use Ry C {il}(g) to denote the property of g-colorability (i.e., the set of graphs that are ¢-
colorable).

First, we give an upper bound: low-degree polynomials can refute g-colorability for ¢ < /n.
The proof proceeds by taking a standard spectral refutation algorithm (based on the maximum eigen-
value of the adjacency matrix) and approximating it by a polynomial.

Theorem 16 (Upper bound) Suppose q < b\/n for a constant b < 1/2 (not depending on n).
Then there exists a constant C' = C(b) > 0 and a polynomial f = f,, of degree at most C'logn that
strongly separates G(n,1/2) and R,,.

We also give a lower bound: no low-degree polynomial can refute g-colorability for ¢ > n2/3. Note
there is a gap between our upper and lower bounds, and we leave closing this gap as an interesting
direction for future work.

Theorem 17 (Lower bound) Ifq > n%/3t¢ for a constant € > 0, then no degree-o(logn/loglogn)?
polynomial weakly separates G(n,1/2) and R,,.

The proof of the lower bound will use Proposition 14, which is a rigorous incarnation of strategy
(II) from the introduction. In other words, our goal is to construct a planted distribution IP supported
on g-colorable graphs that is hard to distinguish from Q = G(n, 1/2) in the sense Adv<p(P,Q) =
1+o0(1).

Constructing this planted distribution is non-trivial. The naive choice would be the “canonical”
planted model MC(n, ¢) (or rather, its complement), but this is not a good choice because it can be
easily distinguished from G(n,1/2) by counting the total number of edges whenever ¢ < n. A
next attempt is to modify MC(n, ¢) to have a slightly lower probability for non-clique edges so as
to correct the total edge count. This gives a quieter planting that is hard to distinguish from @ when

12
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g > n®/4, but easy when ¢ < n/* by counting signed triangles (each of the (7;) triangles in the
complete graph counts for +1 if an even number of its edges are present or —1 if an odd number
are present). Our final construction, defined below, that reaches the threshold ¢ ~ n%/3, is more
complicated and involves planting both cliques and independent sets.

Definition 18 (Quiet planting for ¢ > n2/3) Suppose n,q are positive integers. To each of the
n vertices, independently assign a label (a,b) € [q] X [q] uniformly at random. Conditioned on
the labels, do the following independently for each pair of distinct vertices {u,v}: denote the two
vertex labels by (a1,by1) and (a2, b2); if a1 = ag then do not include the edge (u,v); if a; # ay and
b1 = b then include the edge (u,v); otherwise include the edge (u,v) with probability 1/2.

Note that all the vertices with a given a value form an independent set, and thus the distribution is
supported on g-colorable graphs. Also, the vertices with a given b value nearly form a clique, aside
from the non-edges required for the independent sets. In the proof of Theorem 17, we show that this
distribution is low-degree indistinguishable from G(n,1/2) when ¢ > n?/3. Our analysis of this
distribution is tight, as the count of signed 4-cycles distinguishes it from G(n, 1/2) when ¢ < n?/3.

Although we have not proven it, we expect the true threshold for low-degree refutation of col-
orability to be ¢ ~ /n.

1/2+e€

Conjecture 19 Fix an arbitrary ¢ > 0, not depending on n. If ¢ > n then no degree-D

polynomial weakly separates Q = G(n,1/2) and R, for some D = w(logn).

2.2.3. COMPLETENESS OF THE QUIET PLANTING APPROACH

A natural approach to prove Conjecture 19 would be to construct a quieter planted distribution P°
that is supported on g-colorable graphs but hard to distinguish from G(n, 1/2) when ¢ > y/n. One
might worry, however, that this may not even be possible: conceivably, such a planted distribution
might not exist, even if the true low-degree refutation threshold is at ¢ ~ /n like we expect. If this
were the case, we would need to find an alternative approach to prove the conjecture without relying
on quiet planting.

We show in high generality that the hypothetical scenario above actually cannot occur: for every
low-degree hard refutation problem, there is a planted distribution that can be used to prove its hard-
ness. Put another way, Conjecture 19 is equivalent to the existence of a quiet planted distribution

for ¢ > /n.

Theorem 20 Fix sequences N = N,, D = D,,, Q = Q,, a distribution on RN, and R =R,, C
RN . Assume that for each n, Q is supported on a finite set and R is a finite set (but the cardinality
of these sets may depend on n). The following are equivalent:

(1) No degree-D polynomial strongly separates Q and R.

(2) For an infinite subsequence of n values, there exists a distribution P = P, supported on 'R
such that Adv<p(P,Q) = O(1).

Similarly, the following are equivalent:

(1) No degree-D polynomial weakly separates Q and 'R.

13
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(2) For an infinite subsequence of n values, there exists a distribution P = P, supported on R
such that Adv<p(P,Q) =1+ o(1).

Note that we have already shown that (2) implies (1); see Proposition 14. The proof that (1) implies
(2) uses von Neumann’s min-max principle.

Remark 21 We have assumed supp(Q) and R are finite (the relevant setting for q-coloring) to
simplify the analytic conditions needed for the min-max principle, but these assumptions can be
relaxed; see Remark 33.

Adapted to the context of g-coloring, while formally we do not know whether there exists a low-
degree polynomial to refute g-coloring when ¢ > /n, it would be surprising in light of the sum-of-
squares lower bound of Kothari and Manohar (2021) for refuting O(,/n)-colorability of G (n, 1/2).
Hence, we interpret this argument as suggesting the existence of a computationally quiet planted
g-coloring for G(n,1/2) when ¢ =~ /n even though we do not know an explicit construction of
such a distribution. If this construction were known, it may allow for SoS lower bounds in stronger
SDP formulations to be proved via the pseudo-calibration approach (Barak et al., 2016).
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Appendix A. Testing the Number of Cliques
A.1. Upper Bound
We restate the theorem for the reader’s convenience.

Theorem 9 (Upper bound) If ¢, ¢ scale with n such that 1 < q < ¢+ ¢ < n and ¢°

o(t
then there is a degree-1 polynomial achieving strong separation between P = MC(n, q) dQ
MC(n,q + ¢).

n)

Proof Let f be the degree-1 polynomial that counts the total number of signed edges in the graph:
f(Y) =2 1<icj<n Yij, where recall Y; € {£1}. Using linearity of expectation,

n\ 1
E Y)= -
Y ~MC(n,q) ) <2> q

and so '
n 1 1 n
v ) YNQf( )‘ <2> (q q+€> <2> q(q+10) ®)
For the second moment,
E[ Y Y
YwMC(nq Z;zg

There are a few different terms to consider depending on how the edges (4, j) and (¢, j') interact.
« If (i,5) = (¢, 5') then E[Y;;Yyy] = E[Y3] =

i) and (¢’, 5') have no vertices in common then Y;; and Y, are independent, and so
) J J

7)
E[Y;;Yy ] = E[Yy] E[Yiy] = 5.

* If (4,7) and (¢, j') have one vertex in common then we again have that Y;; and Yj/; are
independent: if say i = i’ then the event that 7, j have the same label is 1ndependent from
the event that 7, j have the same label, due to symmetry among the possible labels for .
Therefore E[Y;; Yy ;] = q%.

Putting it together,

and so

3)
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Combining (2) and (3), f achieves strong separation provided

(=(@asa): e

It therefore suffices to have ¢ = o(n) and ¢> = o(¢n). Note that ¢ = o(n) is implied by ¢*> = o(¢n)
together with £ < n. [ |

A.2. Lower Bound

We restate the theorem for the reader’s convenience.

Theorem 10 (Lower bound) Fix an arbitrary constant € > 0, not depending on n. If q, ¢ scale
with n such that 1 < q¢ < q+{ < nand ¢*> > n'*¢ then there is no degree-o(logn/loglogn)?
polynomial achieving weak separation between P = MC(n, q) and Q = MC(n, q + ¢).

A.2.1. PROOF OVERVIEW

We first perform a standard manipulation, showing that it suffices to bound the quantity Adv<p.

Lemma22 Let P = P, and Q = Q,, be distributions on RY for some N = N,. For some
D = D, let R[Y|<p denote the set of polynomials RN — R of degree (at most) D. If

Adv<p(P,Q) = sup _Eelf] =1+o0(1),

feryl<p v Eolf?]

then no degree-D polynomial f : RN — R weakly separates P and Q. Similarly, ifAdv<p(P,Q) =
O(1) then no degree-D polynomial strongly separates P and Q.

It is always the case that Adv<p > 1, by taking f = 1.
Proof Assume for the sake of contradiction that some degree-D polynomial g : RV — R weakly
separates P and Q. By shifting and scaling, we can assume without loss of generality that Eg[g] = 0
and Ep[g] = 1. For sufficiently large n, weak separation guarantees Varg[g] = Eg[¢?] < C for
some constant C' > 0. Define f = g + C and compute

Eelf] __ 1+C _ 1+C _ [1+C

VEQ[f]  VEqlg?] +C? VO +C? ¢
which is a constant strictly greater than 1, contradicting Adv<p = 1 + o(1). The proof for strong
separation is similar, now with C' = o(1). [ |

A key ingredient in the proof will be an upper bound on Adv<p in the following generic set-
ting (of which our problem is a special case). Suppose Q takes the form ¥ = X V Z where
X, Z € {£1}" with “noise” Z i.i.d. Rademacher and “signal” X having an arbitrary distribution
(independent from Z), and V denotes entrywise maximum. (In our case N = (g) and X is the
+1-valued indicator for clique edges.)
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Proposition 23 Suppose Q takes the formY = XV Z as described above and P is any distribution
on {£1}N. For o, B C [N], define

and

Here and throughout, we abuse notation and use X to refer to the set {i € [N] : X; = 1}.
Suppose Mo > 0 for all |o| < D. Then

Adv%D < Z wz 4
aC[N],|a|<D

where w,, is defined recursively by

1
Wa = 37— | fa = D wsMpa
ax

pCa

No explicit base case is needed for the recursion above, but one can think of wy = 1 as the base
case.

We pause to give some remarks on the origin of the above formula. The proof (given in Sec-
tion A.2.4) follows a strategy based on Schramm and Wein (2022): apply Jensen’s inequality to
X (but not Z) and then the result can be explicitly calculated by solving an upper-triangular linear
system. The original work Schramm and Wein (2022) gave a similar formula in the setting of es-
timation, and more recently Rush et al. (2022) was first to demonstrate that related techniques can
also be used for testing between two “planted” distributions (which is also the setting of the current
work). In contrast, previous low-degree lower bounds for testing problems had always required the
“null” distribution Q to have independent coordinates; see the remark below for comparison.

Remark 24 We note that Proposition 23 generalizes a well known formula for low-degree testing
between “signal” and “pure noise.” Specifically, consider the case where X = —1 so that Q is i.i.d.
Rademacher; and P is any distribution on {1}". In this case M, 8a = lg—q and so Proposition 23
reduces to the bound

2
AdvZ p < Z <YIE[P’[YO[]> . Ye ;:HY;,

|e|<D i€
which is standard (and in fact holds with equality); see Section 2.3 of Hopkins (2018).

Returning to the proof, a more convenient parametrization for w, will be w, = Myqw,. In this
case, since My, = Eg[Y*], the recurrence can be written as

wy =1,
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M M,
Z " Mﬁa = E[Y*] - E[Y®] - Z u}ﬁM—Ba for |a] > 1. (3)
g P Q 0CAca hB

The ratio of M’s can be thought of as a conditional probability:

Mgo _ Prx(a\ X =)
© Mgy Prx(BnX =10)

=P\ X =5]pNnX=0). (6)

From this point onward, we specialize to our testing problem of interest: P = MC(n, q) versus
Q = MC(n, g+ ). As discussed above, our goal is to show Adv<p = 1 + o(1) by bounding the
formula in (4). The “1” comes from the o = () term, and we need to show that the rest of the sum is
o(1).

The following property of w will be key to the analysis; it is used crucially in the proof of
Lemma 28. Note that we can think of « as a subset of edges of the complete graph on n vertices,
and in this sense we can talk about o being connected or having connected components.

Lemma 25 If o has connected components o, . . . , oy then W, = Hle Wy,

Proof It suffices to prove the claim in the case where « is comprised of two non-empty disjoint edge
sets a1, g with no vertices in common (i.e., each ¢; is a union of connected components). Once
we establish W, = W, Wa, in this case, the general statement follows by induction.

Note that due to independence across connected components, ¢, = Cq,Cq,- Any S C « can
be uniquely decomposed as 8 = (1 U B2 with 81 C a3 and B2 C ao. Again by independence,
Rgo = Rg,0, Rpya,- We will also need the fact R, = 1. We proceed by induction on |c|. If either
o1 or ap is empty, the result follows immediately because 1wy = 1. Otherwise, assume by induction
that Wy = wg,Wg, for any B C . We have

— > sRpa

BCa
= Ca1€az — Z g, We, Rg 0y Rgyan — Z W, Way R 0y Ravzary — Z Way Wy Ry oy Bgya
Bi1Gon B1Ca1 B2Caz
B2Gaz (B2=az) (Br=a1)

= CayCar — | Y s, Rpyon Y g Raan | — ey Y s Roiay — ey Y W, Rsas-

Br1&en B2Ga2 B1Gan B2Gaz
Using the recurrence (5), this becomes
Wa = CayCay — (Cay = Way ) (Cay = Way) = Way (Ca; — Way) = Way (Cay — Way),

which simplifies to We, Wy, as desired. |

A.2.2. BOUNDING W,

In the remainder of the proof we need to bound the values w,, and plug this into (4). Recall that
is the number of edges. We also define V' («) to be the set of
vertices of a, i.e., the vertices ¢ € [n] incident to at least one edge of .
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Lemma 26 For any o we have My, > 1 — %.

Proof Recall that M, is the probability (under Q) that o contains no clique edges. The probability
that any specific edge is a clique edge is 1/(q + £), so the result follows by a union bound. [ |

Lemma 27 If |o| > 1 and « is connected then
¢

0 <E[Y) - B[] <

o (V@) - 1).

Proof Since « is connected, Ep[Y“] is the probability that all vertices of « are assigned the same
label in [¢] (and similarly for Eq[Y?]), i.e.,
1\ V(-1
<q + €>
- ol

—_

E[Y®] —
P

)

LS

V=
A
O )
" e staovoro)
=(;>Vm q+€uvmn—1>

\
3
&
]

<

A
\_J
\_/

Lemma 28 If |«| > 1 then

V()]
|l < (f) (la] + 1)k,

Proof Proceed by induction on |a. First consider the case where « is not connected. Write « as the
union of two non-empty disjoint edge sets a1, ag with no vertices in common. By Lemma 25 and
the induction hypothesis,

V(a)| IV (as)|
) . ) Vi ol V2 o
(o | = |Wa, | - |[Way| < <q (| + 1)lenl " (|az| + 1)lo2!

[V (a1)[+[V(az)|
(“ﬂ (Joa| + Jag] + 1)+

IA

q

V()
=<“ﬂ (jal + 1)

q
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as desired.
Now consider the case where « is connected. Using (5) and Lemma 27,

. ¢ .
3l Rpal < ey (V@I =1+ 3 fil - Ryl

0CBCa 0ChCa

~, < ol «
o] < |EIY®] - BV

Using the definition (6) and the connectivity of «, we can deduce (for any ) C 8 C «)

1\ V@I=IV(B) 1\ V@I=IV (5
0282 (757) <(3) |
q q

because once we condition on the labels in V(3), each vertex in V(a) \ V() has at most one
possible label that would allow the event « \ X = [ to occur. (More formally, any vertex i €
V(a) \ V(B) is connected to some vertex j € V() by a path using edges from « \ 5. Since every
edge on this path must be a clique edge in order for o\ X = f to occur, 7 must have the same label
as 7.) Now using the above bounds and the induction hypothesis,

) 0 NARE N\ IV@I-vs)]
g | < V@I (IV(a)|—1) + Z (q) (18] + DAL <q>

PCpCa

V() =1+ > 18]+ 1) since |V ()] > 2 and [V(8)| < [V (a)]
0ChCa

V()| T o] —1

LCOIEED S (W [CRRIE

)
)
f) i . lmz_ ("o
)
)

=1

_\V(a)| — 1+ (Ja| + D)l —1 - |oz||aq by the Binomial theorem

where the last step used |V ()| < 2|a| < |al*l + 1. m

A.2.3. PUTTING IT TOGETHER

The rest of the proof is similar to the low-degree analysis of planted clique; see Section 2.4 of Hop-
kins (2018). We now complete the proof of Theorem 10.
Proof For any || < D, we have from Lemma 26 that

|

D
My >1———>1-Z=1-0(1
o q+€— q 0()7
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due to our assumptions on ¢ and D. Applying Proposition 23,

~ 2
Advip< S wi=1+ Y <A14“°‘> <1+(1+o(1) Y a?

la|<D 1<|al<D 1<|al<D

Since our goal (by Lemma 22) is to show Adv<p = 1 + o(1), it remains to show

> Wk =o(1).

1<|a|<D

This follows from Proposition 30 below, using the bound on |, | from Lemma 28 together with the
assumption ¢> > fn'te, [ |

Lemma 29 For integerst > 2 and D > 1, the number of graphs oo C (g‘) such that |o| < D and
\V(a)| = t, is at most n' min{2"", 12P}.

n
t

can upper-bound the total number of graphs with < D edges in two different ways: 2(2) < 2 or
() +1)7 < ()P, .

Proof The number of ways to choose ¢ vertices is ( ) < n!. Once the vertices are chosen, we

Proposition 30 Suppose there exist fixed constants § > 0 and C > 0 such that for o C (;) with
1 < |a| < D, we have a quantity ¢, bounded by |p,| < n_%(1+5)'|v(a)l(|a| +1)¢el D =D,
satisfies D = o(logn/ loglogn)? then

> g2 =o(1)
1<|al<D

as n — oQ.

Proof
Using Lemma 29 and the fact |a| < (‘V(;‘)‘) < V()

Z qi)i < Z nt2t2 ‘n—(1+5)t(t2+1)20t2 + Z ntt2D'n—(1+§)t(D+1)ZCD‘
1<|e|<D 2<t<v/D VD<t<2D

Consider the first sum on the right-hand side above. The initial term ¢t = 2 is O(n? - n_2(1+‘5)) =
0(1), and the ratio between terms ¢ + 1 and ¢ is

N |

2 202
=0 . 92t+1 (t+1)2+ 1)20(2t+1) ((t —;213_ 1+ 1) < 100, ~0 < \/50(\/5)n_5 <

logn

2
W) . Now consider the second sum.

for sufficiently large n, using the assumption D = o (

The initial term ¢ = [\/T)-| s at most
n*(s\/ﬁ(\/ﬁ_i_ 1)2D(D + 1)QCD < nft;\/E(D + 1)2(C+1)D _ 0(1)7
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and the ratio between terms ¢ + 1 and ¢ is

2D 2D
- (Ht1> < nd (1 N 1) < . OWD) <

N | =

for sufficiently large n. |

A.2.4. PROOF OF PROPOSITION 23

The proof is similar to the lower bound for planted clique in Schramm and Wein (2022), Section 3.5.
We give the details here for convenience.
Any degree-D polynomial f : {1} — R has a unique expansion f(Y) = 2aCN], |aj<p fa Y
Write
E[f(Y)] = f E[Y?] = (c, f
BV = Y JuBY) = (e f)

la|]<D

where, recall, the vector ¢ = (c¢,,) is defined by

By Jensen’s inequality,

where
9(2) =Ef(X v 2)

=D faEX V2"

la|<D

=Y ja Y e\ X =5)

lal<D  0CBCa

=>_2") faPr{a\ X =5}.

B a2p
In other words, § = M f where, recall, the matrix M = (M 3a) is defined by

Mpgo = lgca l;’(r{oz\X = G}

Note that M is upper triangular and (by assumption) has positive entries on the diagonal, so M is
invertible. We have now shown Eg[f]? > ||§]|? = || M f]|? and so

Advep = sup —ER oo {c.f) :Sup(;M—lg
= serivn VEQIPT T ML s N4l

which has optimizer § = (¢ M~!) T, yielding

Advep < [le" MY = fu]
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where w is the solution to w' M = ¢'. Solving for w using the upper-triangular structure of M
gives the recurrence

1
We = M Ca — Z wﬁMﬂa ) (7
ax 4Ca

completing the proof.

Appendix B. Refuting Colorability
B.1. Upper Bound

We restate the theorem for the reader’s convenience.

Theorem 16 (Upper bound) Suppose q < b\/n for a constant b < 1/2 (not depending on n).
Then there exists a constant C' = C(b) > 0 and a polynomial f = f,, of degree at most C'logn that
strongly separates G(n,1/2) and R,.

Proof Let A denote the {+1}-valued adjacency matrix of the complement graph, with 0’s on the
diagonal; if the graph is g-colorable then A has value 1 within each color class. For an integer
m > 1 to be chosen later, consider the polynomial f(X) = (n/q — 1)72™ Tr(A?™), which has
degree 2m in the input variables X € {il}(g)

First we let X € R, and aim to show f(X) > 1. Let S C [n] be the largest color class, so
|S| > n/q. Let 1g € {0,1}" denote the indicator vector for S. Letting Apax = A1 > Ag > -+ >
An denote the eigenvalues of A,

oo 1At |sigs|-1)
SNE 5]

1S|—1>" -1
q

and

max

A < AT = T (A,
=1

Combining these yields Tr(A%™) > (n/q — 1)*™ and so f(X) > 1.

It remains to show E[f%] = o(1) when X ~ G(n,1/2). Let Y be an n x n symmetric matrix
where {Y;; : ¢ < j} are iid. N(0,1). By direct expansion and comparison of Rademacher
moments to Gaussian ones, E[Tr(A?™)?] < E[Tr(Y?™)2]. Using ||Y|| to denote the spectral norm
of Y, the bound in Lemma 2.2 of Bandeira and van Handel (2016) gives

E[Tr(Y?™)?] < ER?|Y*™] < n*(2v/n + 2V4m)*™.

Putting it together,

—am 4m
E[fQ] < (Z — 1) ) n2(2\/ﬁ+ 2\/4%)4771 — 2 <2q(\/ﬁ+ \/ﬁ)) 7

n—q

which is o(1) under the conditions of the theorem. [
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B.2. Lower Bound
We restate the theorem for the reader’s convenience.

Theorem 17 (Lower bound) Ifq > n2/3%¢ for a constant ¢ > 0, then no degree-o(logn/loglogn)?
polynomial weakly separates G(n,1/2) and R,,.

In light of Proposition 14, our goal is to show Adv<p(P,Q) = 1 + o(1) where Q = G(n,1/2)

(and Y ~ Q is encoded by an element of {:l:l}(g)) and P is the planted distribution defined in
Definition 18. Our starting point is the well-known formula from Remark 24:

Advip= )" (YIE]P[Y(X]>2,

la|<D
where o C (5). We identify o with the graph whose edge set is «, and write V() C [n] for
the vertex set, i.e., the vertices incident to at least one edge in . Our first step is to bound the
coefficients A\, := Ey.p[Y?].
B.2.1. BOUNDING THE COEFFICIENTS

Lemma 31 (Bounding )\,) For any graph o C (72‘) we have

— al| « =3/4\|V ()]
Pl = ||, 771] < 0/

where O(-) hides an absolute constant factor.

Proof If o = Uj;«y; is the decomposition of « into connected components, we have A, = [[; Aq,
due to independence across components. It therefore suffices to prove the result in the case where
o is connected.

Let ¢ : V(a) — [g] x [gq] denote the latent assignment of labels (a,b) to vertices from the
definition of P (Definition 18). We have

Ao = IglyiEMC[Y“] = Z Pr(c] - E[Y%|c].

Note that E[Y“|c] = 0 unless every edge in « is either an independent set edge or clique edge in c,

and in this case,
E[YO‘]C] _ (_1)# ind-set edges‘

As a result, one possible upper bound on |\,| is the probability over c that every edge in «
is either an ind-set edge or clique edge. We can bound this probability as follows. Recall we are
assuming « is connected, and explore the vertices of o according to a breadth-first search. The first
vertex’s label is unconstrained. Each edge that leads to a new vertex must be an ind-set edge or
clique edge, giving at most 2q possibilities for the new vertex’s label. Since there are ¢> possible

labels in total, we conclude
20\ V(@)1 o\ IV (@)[-1
iz (20
q q
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for any connected a.

The bound (8) implies the desired result |Ao| < O(q~3/4)!V(®) provided |V (a)| > 4, as in this
case we have |V ()| —1 > |V (a)| — 2|V (a)| = 2|V (a)|. For |V (a)| < 3 we will manually verify
the result by checking all the possible graphs:

* If o has no edges then A, = 1.

o If « is a single edge, the cases to consider for ¢ are {(a,b), (a,b)}, {(a,b), (a,¥')}, and
{(a,b),(a’,b)} (where a # a’, b # V). This gives

11 1\ 1 1
)\a:—2—<1—>+<1—):—q2.
q q q q q

* If v is a length-2 path then conditioned on any label for the middle vertex, the two edges are
independent. Reusing the calculation for the single edge, we have A\, = (—¢~2)? = ¢~ %

» If « is a triangle, we first claim that the only labelings c that contribute to A\, are those in
which a label (a, b) is repeated. This follows from the symmetry between ¢ and the reversed
labeling ¢ where each pair is reversed: (a,b) — (b,a). If ¢ has no repeated labels, ¢ and ¢
contribute the same term but with opposite signs, as every ind-set edge becomes a clique edge
and vice versa. In light of this, the remaining cases to consider for c are {(a, b), (a, b), (a,b)},
{(a,b), (a,b), (a,t')}, and {(a,b), (a,b), (a’, b)}. This gives

1 1 1 1 1
Aa=——-3-—(1-=)-3-=(1-=) =0(¢).
¢ q3< q> q3( q> (@)

We have now verified |A\o| < O(q=3/*)IV(®) for every connected . As discussed previously, this
implies the result for all . |

B.2.2. PUTTING IT TOGETHER

We now combine the results from above in order to bound Adv<p and complete the proof of Theo-
rem 17.

Proof Due to our assumption ¢ > n%/3+¢, Lemma 31 gives
Mol < O(n—%(§+e))lv(a)\ _ O(n—%—%E)IV(a)I < pm2(Fe)V(a)]

for sufficiently large n. Using Proposition 30, we have for any D = o(log n/loglogn)2,

Advip—1= Y AZ=o(1)
1<|a|<D

As discussed at the beginning of Section B.2, this completes the proof. |
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Appendix C. Completeness of Quiet Planting

In this section, we give a simple argument showing that the absence of a computationally quiet
planted distribution implies the existence of a low-degree refutation algorithm, in high generality.
Our proof is elementary and only needs a simple application of von Neumann’s min-max principle.
We restate the theorem for the reader’s convenience.

Theorem 20 Fix sequences N = N,, D = D,, Q = Q,, a distribution on RN, and R = R,, C
RN . Assume that for each n, Q is supported on a finite set and R is a finite set (but the cardinality
of these sets may depend on n). The following are equivalent:

(1) No degree-D polynomial strongly separates Q and R.

(2) For an infinite subsequence of n values, there exists a distribution P = P, supported on R
such that Adv<p (P, Q) = O(1).

Similarly, the following are equivalent:
(1) No degree-D polynomial weakly separates Q and R.

(2) For an infinite subsequence of n values, there exists a distribution P = P, supported on R
such that Adv<p(P,Q) =1+ o(1).

Proof Let P denote the space of probability distributions on R. Let F denote the space of degree-D
polynomials f : RY — R such that Eg[f] = 0 and Eg[f?] < 1. Consider

l, = inf E[f].
v = S ) ®

By von Neumann’s min-max principle (see below for discussion of the technical conditions re-
quired), the supremum and infimum can be exchanged:

I, = sup inf E[f] = sup inf .
valy, itelgﬂ;gplg[f] ?IEIE}IEIRJC(X) (10)

A degree-D polynomial strongly (respectively, weakly) separates Q and R if and only if the value
of (10) is w(1) (resp., £2(1)). The negation of this statement is that val, = O(1) (resp., o(1))
for an infinite subsequence of n, which from (9) is equivalent to having IP,, defined on an infinite
subsequence such that sup sz Ep[f] = O(1) (resp., o(1)). Now the result follows due to the
identity (sup ;e 7 Ep[f])? +1 = Advng(IP’, Q); see Lemma 34 below.

It remains to verify the technical conditions for the min-max principle. Formally we use the
following variant, which is a special case of Sion’s min-max theorem (Sion, 1958; Komiya, 1988).

Theorem 32 Let P be a compact convex subset of a linear topological space and F a convex
subset of a linear topological space. If ¢(x,y) is a continuous real-valued function on P x F with
¢(z,-) concave for all x € P, and ¢(-,y) convex for all y € F, then mingep sup,cr ¢(z,y) =

Supyer mingep (b(ﬂ?, y)'
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In our setting, the linear topological spaces will simply be R¢ for some d. Recall that our choice of
P is the space of probability distributions on a finite set R = {r1,72,...,7g|}. We can identify
P with a compact convex subset of R/ by encoding a distribution PP as the vector of probabilities
(P(r1), ..., P(r%|)). Recall that our choice of F is the space of degree-D polynomials f : RN —
R such that Eg[f] = 0 and Eq[f?] < 1. Letting X = supp(Q) UR = {z1,..., ¥}, We can
identify F with a convex subset of RI*! (note that F is not required to be compact) by encoding a
function f : RN — R as the vector (f(z1),.. -5 f(x|x])). Finally, note that ¢(PP, f) = Ep[f] is
continuous, convex in [P, and concave in f; in fact, it is linear in both variables. This justifies our
earlier exchange of inf and sup, completing the proof. |

Remark 33 Above we have assumed supp(Q) and R are finite to simplify the analytic conditions
needed for the min-max principle, but these assumptions can be relaxed. For instance, one can
alternatively assume that Q,, is any distribution on RN with all moments finite and that R,, C RN
is compact. Since R is compact, the space P of probability distributions on 'R is compact in the
weak-* topology.

Lemma 34 sup;c»Ep[f]> + 1 = AdvZ 5(P, Q).

Proof If the likelihood ratio LR = dP/dQ exists, this fact follows from standard characteriza-
tions of these quantities as L?(Q)-norms of projections of likelihoods (see Section 2.3 of Hopkins
(2018)); namely, the left-hand side is [| LR=" — 1||, + 1 and the right-hand side is || LR=P|3. We
also give a self-contained proof below.

Recalling the definition of Adv<p, our goal is to show

Ep[g]®
supE[f]? +1= sup .
feF P geRY)<p Elg?]

Note that the value 1 is achievable on both sides by taking f = 0 or ¢ = 1. To show “<,” suppose
we have f € F such that Ep[f] = a > 0, achieving value a® + 1 on the left-hand side. Then
g = f + 1/a achieves the same value a? + 1 on the right-hand side.

To show “>.” suppose g achieves value b> > 1 on the right-hand side, and scale g so that
Egplg?] = 1 and Eplg] = b > 1. Define A = Eg[g] and note that Eg(g — A)? =1 — A2 > 0
and Ep(g — A) = b— A > 0. If A = 1 then the left-hand side is unbounded by taking f to be an
arbitrary multiple of g — A. Otherwise set f = (g — A)/v/1 — A% € F and compute the left-hand
side value b A oA 2

b— 9 (A —-1
T A? +1=0"+ 1T A?

completing the proof. |

E[f]’ +1= >,

Appendix D. Planted (¢ + 1)-coloring is not g-colorable

Here we work with the complement graph and consider a partition into cliques rather than a coloring.
Recall the multiple cliques model (Definition 3).
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Proposition 35 If 1 < g < Q(n/logn) then with probability 1 — o(1), MC(n,q + 1) does not
admit a partition of the vertices into q cliques.

Proof Fix an absolute constant ¢ > 0, to be chosen later. Assume ¢ < cn/logn for a constant
¢ = c(€) > 0 to be chosen later. The proof hinges on 3 basic facts, which hold w.h.p.:

(i) G(n,1/2) does not contain the complete bipartite graph K, ,,, as a subgraph, for m > (2 +
€) logy n.

(ii) Letting S, ..., S4+1 denote the color classes of MC(n, ¢ + 1), we have |S;| € (1 + e)quL1
forall i € [¢ + 1].
(iii) In MC(n, ¢ + 1), any vertex v € S; has at most (1/2 + 2¢) -3 neighbors in Sj, for i # j.

Standard arguments show that (i)—(iii) hold with probability 1 — o(1), and we omit the details. The
proof of (i) is a first moment calculation (compute the expected number of copies of K,, ,,, and
apply Markov’s inequality), and the proof of (ii) and (iii) uses Bernstein’s inequality along with a
union bound.

Suppose G ~ MC(n,q + 1). To complete the proof, it suffices to show that properties (i)—
(iii) deterministically imply that G has no partition into ¢ cliques (where property (i) applies to
the underlying random graph G’ ~ G(n,1/2) used to generate G, before the ¢ + 1 cliques were
added). Assume (i)—(iii) hold, and suppose for contradiction that G admits a partition V(G) =
Ty UT5 U --- U T, into cliques.

We first claim that for every i € [g], we either have (Case I) |T;| < 2 - 711 or (Case II) for some
j €lg+1],T; C S;and |T;| > 3|S;|. To see this, note that if Case I fails then |T;| > 3 - 2, and

q+1°
s0 to avoid violating property (i) there must exist j such that |T; N S;| > 3 - 71— (24 €)logyn >
(1/2 + 2¢) 77 Now property (iii) implies T; C Sj. Also, property (ii) implies |T;| > 1|5;|. This

proves the claim.

Using the above claim, we can now construct an injective map ¢ : [q] — [g¢ + 1] such that
T3] < |Sg4(iy|- First, for 4 in Case I, set ¢(i) to be the corresponding j; then for i in Case I,
set ¢(i) to be any unused j value. Since some j € [¢ + 1] is not in the image of ¢, we have
> iclq |Til < 2Zjejq41) 1951 = n. a contradiction. [ |
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