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Abstract

We study the computational complexity of two related problems: recovering a planted q-coloring

in G(n, 1/2), and finding efficiently verifiable witnesses of non-q-colorability (a.k.a. refutations)

in G(n, 1/2). Our main results show hardness for both these problems in a restricted-but-powerful

class of algorithms based on computing low-degree polynomials in the inputs.

The problem of recovering a planted q-coloring is equivalent to recovering q disjoint planted

cliques that cover all the vertices Ð a potentially easier variant of the well-studied planted clique

problem. Our first result shows that this variant is as hard as the original planted clique problem

in the low-degree polynomial model of computation: each clique needs to have size k ≫ √
n for

efficient recovery to be possible. For the related variant where the cliques cover a (1 − ϵ)-fraction

of the vertices, we also show hardness by reduction from planted clique.

Our second result shows that refuting q-colorability of G(n, 1/2) is hard in the low-degree

polynomial model when q ≫ n2/3 but easy when q ≲ n1/2, and we leave closing this gap for future

work. Our proof is more subtle than similar results for planted clique and involves constructing a

non-standard distribution over q-colorable graphs. We note that while related to several prior works,

this is the first work that explicitly formulates refutation problems in the low-degree polynomial

model.

The proofs of our main results involve showing low-degree hardness of hypothesis testing be-

tween an appropriately constructed pair of distributions. For refutation, we show completeness of

this approach: in the low-degree model, the refutation task is precisely as hard as the hardest asso-

ciated testing problem, i.e., proving hardness of refutation amounts to finding a ªhardº distribution.

Keywords: Random graphs, coloring, low-degree polynomials, computational complexity

1. Introduction

The planted clique problem, introduced by Jerrum (1992) and Kučera (1995), asks for a polynomial-

time algorithm to find a clique of size k added to an Erdős±RÂenyi random graph G(n, 1/2). The

associated task of refuting the existence of k-cliques in G ∼ G(n, 1/2) asks for a polynomial-time

algorithm to compute a certificate that can be efficiently verified to infer the absence of a k-clique in

G. Despite a long line of work, state-of-the-art polynomial-time algorithms for both problems (Alon

et al., 1998) only succeed when k = Ω(
√
n). In contrast, the clique number of G(n, 1/2) is at most

⌈2 log2 n⌉ + 1 with high probability and thus, an added clique of any size k > ⌈2 log2 n⌉ + 1
is uniquely identifiable. A long line of work proving lower bounds in various restricted models
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such as Markov chains (Jerrum, 1992), the Statistical Query model (Feldman et al., 2017), convex

relaxations (Feige and Krauthgamer, 2003) and in particular the sum-of-squares hierarchy and the

related low-degree polynomial model of computation (Barak et al., 2016; Hopkins, 2018), suggest

that the algorithmic threshold for both variants Ð the smallest k for which efficient algorithms can

find the added k-clique or refute the existence of a k-clique in G(n, 1/2) Ð is Ω(
√
n). In the past

two decades, the hypothesis that no polynomial-time procedure can beat the above guarantees of

the known algorithms has become a focal point in average-case complexity theory and the root of

myriad reductions to average-case problems arising in various domains (e.g., Berthet and Rigollet

(2013); Hajek et al. (2015); Brennan et al. (2018); Kothari and Mehta (2018)).

Two motivating problems: recovery and refutation of q-colorings. In this paper, we study

the following innocuous-looking (and ostensibly easier than planted clique) question where, in the

recovery problem, we study the complexity of exactly recovering ≈ n/k disjoint planted k-cliques

in G ∼ G(n, 1/2), with high success probability. If the disjoint planted cliques cover all the vertices

of the graph, then the complement of the graph has a planted (n/k)-coloring. Thus, this version

of our problem is tantamount to studying whether recovering a planted q-coloring in G(n, 1/2)
is easier than recovering a single planted clique. In the associated refutation problem, the goal is

to find an algorithm that takes as input a graph G and outputs NO or MAYBE with the guarantee

that (1) whenever it outputs NO, the graph must not admit a valid q-coloring of its vertices, and (2)

when G ∼ G(n, 1/2), the algorithm should output NO with probability 1−o(1) over the draw of G.

For reference, the chromatic number of G(n, 1/2) is Θ(n/ log n) with high probability (see Heckel

(2018)), so the information-theoretic threshold for refutation is q = Θ(n/ log n). Intuitively, the

recovery and refutation problems for coloring appear easier than their clique counterparts because

the planted structure is more prominent and therefore seemingly easier to find (or refute).

The relation between the recovery and refutation tasks is somewhat subtle: while these two

problems appear related, we are not aware of a formal reduction between them in either direction.

In this paper, we study the recovery and refutation problems separately, and draw attention to the

fact that rather different methods will be needed to prove lower bounds in the two settings. We

note that for colorability of sparse random regular graphs, there appears to be a constant-factor gap

between the recovery and refutation thresholds (Bandeira et al., 2021).

We note that for simplicity we consider the exact recovery problem. One can also consider

various notions of approximate recovery. This tends not to make a difference in our setting because

once a small fraction of the vertices in a clique are known, it is easy to find the rest by examining

common neighbors.

Proof strategy: hypothesis testing. One common strategy to understand the complexity of recov-

ery or refutation is to introduce an auxiliary hypothesis testing task: given a graph G that is sampled

either from some ªnullº distribution Q (e.g., G(n, 1/2)) or some ªplantedº distribution P (e.g., some

distribution supported on q-colorable graphs), design an efficiently computable statistical test that

decides which of the two distributions generated a given sample G, with high success probability

over the draw of G. Note that if there is an efficient refutation algorithm for some distribution Q,

then we immediately obtain an efficient distinguisher between Q and any distribution P supported

on q-colorable graphs. Similarly, if there is an efficient recovery algorithm for some distribution P,

then we immediately obtain a distinguishing algorithm between P and any distribution Q supported

on non-q-colorable graphs. As a result of this connection, we can conclude:
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(I) To show computational hardness of exactly recovering a planted q-coloring in a particular

planted distribution P, it suffices to construct a null distribution Q such that (i) with high

probability, G ∼ Q is not q-colorable and (ii) it is computationally hard to distinguish P from

Q.

(II) To show computational hardness of refuting q-colorability for a particular null distribution

Q, it suffices to construct a planted distribution P such that (i) P is supported on q-colorable

graphs and (ii) it is computationally hard to distinguish P from Q.

Note that we have flexibility to choose either Q (if studying recovery) or P (if studying refutation).

We will see later that it can be a non-trivial task to construct the right distribution. It need not be the

case that the same testing problem arises when studying recovery as when studying refutation.

Strategy (II) has been referred to as constructing a computationally quiet planted distribu-

tion (Bandeira et al., 2020), where ªquietº pertains to the fact that the planted structure’s presence

cannot be detected by an efficient algorithm. Similarly, strategy (I) corresponds to constructing a

computationally quiet null distribution.

Since proving lower bounds for average-case hypothesis testing problems based on standard

hardness assumptions is an elusively difficult goal at present (notwithstanding the recent successes

of Brennan et al. (2018); Brennan and Bresler (2020) that use the hardness of planted clique and

its variants as a starting point in certain limited settings), we will obtain evidence of hardness for

testing problems by focusing on a restricted but powerful and well-studied family of tests that we

next describe.

Low-degree testing. The low-degree polynomial model of hypothesis testing restricts the class

of tests to be polynomial functions in a natural representation of the input, with the complexity

of a test captured by the degree of the polynomial. Specifically, viewing graphs as elements of

{−1, 1}(n2) with a {±1}-indicator of presence or absence of every possible edge, the low-degree

polynomial tests informally correspond to computing thresholds of arbitrary degree-D polynomi-

als of the edge-indicator variables. Since degree-D polynomials can be computed (when described

in the monomial coefficient representation) in time nO(D), constant-degree tests yield polynomial-

time distinguishing algorithms. Despite being restricted, these low-degree tests already capture

tests based on basic statistics of graphs such as edge counts, triangle counts, and more generally

small subgraph counts (the number of edges in the subgraph corresponds to the degree of the poly-

nomial). Various spectral methods (e.g., the leading eigenvalue of the adjacency matrix, or some

other symmetric matrix whose entries are low-degree polynomials of the input variables) can also

be approximated by polynomial tests of logarithmic degree in the number of variables; see Kunisky

et al. (2022), Section 4.2.3. As a result, low-degree tests (with degree O(log n)) already capture the

best known polynomial-time algorithms for a wide variety of high-dimensional statistical testing

tasks (although we won’t attempt to precisely characterize which tasks here; see e.g. Hopkins et al.

(2017); Hopkins (2018); Kunisky et al. (2022); Holmgren and Wein (2021); Zadik et al. (2022) for

discussion). As a result, if we manage to establish that all degree-D tests provably fail to solve a

particular testing problem for some D = ω(log n), we say the problem is ªlow-degree hard.º This

can be viewed as evidence suggesting computational hardness of the hypothesis testing problem.

This is a widely-applicable and by now, commonly-used framework that originated in a line of

work on proving lower bounds against the sum-of-squares hierarchy (Barak et al., 2016; Hopkins
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and Steurer, 2017; Hopkins et al., 2017); see also Hopkins (2018); Kunisky et al. (2022) for further

exposition.

Summary of results. Our main results use strategies (I) and (II) described above to shed light

on the computational complexity of recovery and refutation of q-coloring. The formal models and

statements are presented in the next section, but here we give a brief overview. Throughout, we will

implicitly assume an asymptotic regime n → ∞ where other parameters (e.g., q, k) may scale with

n. We say an event occurs ªwith high probability (w.h.p.)º if it has probability 1− o(1) as n → ∞.

Since our focus is on identifying computational thresholds up to the correct power of n, we use the

symbol ≪ in our informal discussions to hide factors of no(1).

Our main result for the recovery problem shows that adding ≈ n/k disjoint cliques of size k
(instead of a single one) does not make the problem of recovering the added planted cliques easier.

That is, our lower bounds suggest that each added clique needs to be of size ≳
√
n for efficient

recovery to be possible.

In contrast and perhaps surprisingly, it turns out that adding more cliques makes the problem

of distinguishing the planted graph from G(n, 1/2) easier, simply by counting the total number of

edges. This reveals a detection-recovery gap, in contrast to the single planted clique problem (see

Section 2.1.2).

More precisely, our results for recovery are as follows:

• In the planted partial-coloring model where some fraction of the vertices are colored (equiva-

lently, many disjoint planted cliques in G(n, 1/2) that cover at most a (1− ϵ)-fraction of the

graph), we show that:

(i) If each clique has size k ≫ √
n, a simple algorithm can be used to recover them.

(ii) If each clique has size k ≪ √
n, it is computationally hard to recover them assuming

the Planted Clique Hypothesis. That is, recovering many planted k-cliques is as hard as

recovering a single planted k-clique.

• In the full planted coloring model (q planted cliques of size k = n/q partitioning the entire

graph), we are unable to show hardness via reduction, but instead give an indirect argument

that supports the same conclusion as above:

(i) If each clique has size k ≫ √
n, there is again a simple algorithm to recover them.

(ii) If each clique has size k ≪ √
n, we argue that recovery is computationally hard via

strategy (I), taking the null distribution Q to be a planted (q + 1)-coloring. In other

words, we prove that low-degree tests cannot even distinguish a planted q-colorable

graph from a planted (q + 1)-colorable graph. This suggests hardness of recovery via a

two-stage argument described in Section 2.1.3.

For the problem of refuting q-colorability in G(n, 1/2), it is known that a poly-time algorithm

exists when k := n/q ≫ √
n (Coja-Oghlan, 2005). To explore the complexity of this problem, we

explicitly formulate the refutation problem in the low-degree polynomial model (for the first time),

and show the following:

• If k ≳
√
n (i.e., q ≲

√
n), then there is a low-degree polynomial that refutes q-colorability in

G(n, 1/2).

4



IS COLORING EASIER THAN CLIQUE?

• If k ≪ n1/3 (i.e., q ≫ n2/3), then no low-degree polynomial refutes q-colorability in

G(n, 1/2). The proof follows strategy (II) and involves constructing a non-trivial planted

distribution P.

• We conjecture k ∼ √
n is the true low-degree refutation threshold, and we leave this to

future work. One way to improve the lower bound would be to construct a ªquieterº planted

distribution, i.e., a distribution supported on q-colorable graphs that is low-degree hard to

distinguish from G(n, 1/2) whenever k ≪ √
n. Our final result is a duality argument showing

that in fact, the conjecture is equivalent to the existence of such a planted distribution.

2. Results

A central concept in this work will be that of hypothesis testing between two high-dimensional

distributions. We consider two (sequences of) distributions P = Pn and Q = Qn. For us, these

distributions will always be over n-vertex graphs. We use the following asymptotic notion of suc-

cessful testing.

Definition 1 (Strong distinguishing) For two distributions Pn and Qn, we say an algorithm An

strongly distinguishes P and Q if it takes as input a sample drawn from one of the two distributions

and correctly determines which distribution it came from with probability 1 − o(1) as n → ∞. In

other words, both type I and type II error probabilities must be o(1).

We will also be interested in the following class of ªlow-degreeº tests. A degree-D test is simply

a (multivariate) polynomial in the input variables (or rather a sequence of such polynomials, one for

each problem size n). In our case, there will be
(

n
2

)

input variables Ð one for every possible edge

in an n-vertex graph Ð taking values in {±1}, where +1 indicates the presence of an edge and −1
indicates the absence. We use the following standard notion of ªsuccessº for a polynomial test.

Definition 2 (Strong/weak separation of distributions) Suppose Pn and Qn are distributions on

RN for some N = Nn. A polynomial fn : RN → R is said to strongly separate P and Q if, as

n → ∞,
√

max

{

Var
Q
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[f ]

}

= o
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and weakly separate P and Q if

√

max

{
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Q

[f ],Var
P

[f ]

}

= O
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∣

∣

∣

E
P
[f ]− E

Q
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∣

∣

∣

∣

)

.

Note that strong separation implies that P and Q can be strongly distinguished by threshold-

ing the value of the polynomial f . Weak separation implies that the output of f can be used to

distinguish better than random guessing; see Bandeira et al. (2022b), Proposition 6.1.

In our case, the input variables will take values in {±1} and so the polynomial f can be multi-

linear without loss of generality.

If all degree-D polynomials fail to strongly separate P and Q for some D = ω(log n), we say

the testing problem is ªlow-degree hard.º As explained in the introduction, this can be viewed as

evidence for inherent computational hardness of strong distinguishing.
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Proofs that rule out strong or weak separation typically proceed by bounding the advantage,

defined below:

Adv≤D(P,Q) := sup
f∈R[Y ]≤D

EP[f ]
√

EQ[f2]
, (1)

where R[Y ]≤D denotes the set of polynomials RN → R of degree (at most) D. It is well known that

Adv≤D also admits a characterization as the norm of the low-degree likelihood ratio; see Hopkins

(2018); Kunisky et al. (2022). If Adv≤D = O(1) then strong separation is impossible, and if

Adv≤D = 1 + o(1) then weak separation is impossible (see Lemma 22).

2.1. Recovery

2.1.1. MODELS

The primary objective of this section will be to understand the recovery problem in two related

models for planted coloring and planted partial-coloring. As explained in the introduction, the

complement of a q-colorable graph is partitioned into q cliques. To fix notation and compare with

the standard planted clique model, we will take the clique perspective here. Thus we study the

problem of multiple cliques planted in G(n, 1/2).
The first model MC(n, q) (ªmultiple cliquesº) corresponds to a true planted coloring, i.e., the

cliques partition the entire graph.

Definition 3 In the model MC(n, q), we observe an n-vertex graph where each vertex is indepen-

dently assigned a uniformly random label from [q] := {1, 2, . . . , q}. Vertices with the same label

are always connected, and vertices with different label are connected with probability 1/2. Given

the graph, the goal is to exactly recover the clique partition with probability 1 − o(1) as n → ∞,

where q = qn may scale with n.

The next model is a variation for partial coloring, i.e., the cliques do not partition the entire

graph. In the coloring viewpoint, some fraction of the vertices do not belong to any color class (and

have no constraints on the colors of their neighbors). One motivation for defining this model is that

it is a variant of the original model where we will be able to prove a strong form of hardness via

reduction. For technical convenience, the cliques in this model have exactly the same size, unlike

MC(n, q).

Definition 4 In the model MC(n, q, δ), we observe an n-vertex graph where (1 − δ)n vertices are

partitioned into q cliques, each of size exactly k := (1−δ)n/q (which we assume is an integer). Two

vertices in the same clique are always connected, and all remaining edges occur independently with

probability 1/2. Given the graph, the goal is to exactly recover the clique partition (and identify the

non-clique vertices) with probability 1− o(1) as n → ∞, where the parameters q = qn and δ = δn
may scale with n.

2.1.2. HARDNESS OF PLANTED PARTIAL-COLORING VIA REDUCTION

We now consider the recovery problem in MC(n, q, δ). First, we observe that a simple algorithm

based on examining degrees and common neighbors can exactly recover the cliques when k ≫ √
n.

This matches (up to log factors) the best known algorithms for recovering a single planted k-clique

in G(n, 1/2).
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Theorem 5 (Upper bound) If q, δ scale with n such that k := (1 − δ)n/q = ω(
√
n log n) then

there is a polynomial-time algorithm achieving exact recovery w.h.p. in MC(n, q, δ).

Proof We will use the following standard version of Bernstein’s inequality: for independent random

variables X1, . . . , Xn satisfying E[Xi] = 0 and |Xi| ≤ M almost surely, we have for any t ≥ 0 that

Pr

(

n
∑

i=1

Xi ≥ t

)

≤ exp

(

−
1
2 t

2

∑n
i=1Var(Xi) +

1
3Mt

)

.

Fix an arbitrary sequence αn = ω(1). The degree di of a non-clique vertex i has a binomial

distribution di ∼ Bin(n−1, 1/2), which by Bernstein’s inequality satisfies di ≤ n
2+α

√
n log n with

probability 1−n−ω(1). On the other hand, a clique vertex i has degree di ∼ (k−1)+Bin(n−k, 1/2),
which by Bernstein’s inequality satisfies di ≥ n+k

2 − α
√
n log n with probability 1 − n−ω(1). By

thresholding degrees, this lets us perfectly classify the non-clique vertices with probability 1−o(1),
provided k = ω(

√
n log n).

It remains to partition the clique vertices. If vertices i, j are in different cliques, their number

of common neighbors is dij ∼ Bin(2(k − 1), 1/2) + Bin(n − 2k, 1/4), which satisfies dij ≤
n
4 + k

2 + α
√
n log n with probability 1− n−ω(1). If vertices i, j instead belong to the same clique,

their number of common neighbors is dij ∼ (k − 2) + Bin(n − k, 1/4), which satisfies dij ≥
n
4 + 3k

4 − α
√
n log n with probability 1− n−ω(1). By thresholding common neighbors, this allows

us to exactly recover the clique partition with probability 1−o(1), again provided k = ω(
√
n log n).

We next show a matching lower bound: computational hardness of recovering the cliques when

k ≪ √
n. This result will be conditional on the Planted Clique Hypothesis, a conjecture that is

commonly used as the basis for deducing average-case hardness results. In the planted clique model

PC(N,K), an N -vertex graph has a clique on K vertices, and all other edges occur independently

with probability 1/2. The following version of the conjecture appears, for instance, as Conjec-

ture 2.1 in Brennan et al. (2018).

Conjecture 6 (Planted Clique Hypothesis) If K = KN scales as K ≤ N1/2−Ω(1) then no se-

quence of randomized polynomial-time algorithms BN can strongly distinguish (Definition 1) be-

tween PC(N,K) and G(N, 1/2).

Assuming this conjecture, we have the following hardness result for MC(n, q, δ).

Theorem 7 (Lower bound) Assume the Planted Clique Hypothesis (Conjecture 6). If q, δ scale

with n such that k := (1− δ)n/q satisfies (2 +Ω(1)) log2 n ≤ k ≤ (δn)1/2−Ω(1) then no sequence

of randomized polynomial-time algorithms An achieves exact recovery w.h.p. in MC(n, q, δ).

The condition (2 + Ω(1)) log2 n ≤ k is natural because 2 log2 n is the size of the maximum clique

in G(n, 1/2). To satisfy the condition k ≤ (δn)1/2−Ω(1), it suffices to have k = n
1

2
−Ω(1) and

δ = n−o(1).

The reduction which proves Theorem 7 is very simple but (to our knowledge) has not appeared

before in the literature. Intuitively, the idea is the following: in the multiple cliques model, even if
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an oracle were to reveal the positions of all cliques but one, the remaining problem is still a hard

instance of planted clique.

Proof Let q, δ scale as prescribed. Assume for the sake of contradiction that an algorithm An

achieves exact recovery in MC(n, q, δ). Let K = k = (1 − δ)n/q and N = K + δn. Note that as

n → ∞ we have N → ∞ because

N ≥ K = k ≥ (2 + Ω(1)) log2 n → ∞,

and also K ≤ N1/2−Ω(1) because

K = k ≤ (δn)
1

2
−Ω(1) ≤ N

1

2
−Ω(1).

We will give an algorithm BN achieving strong detection between G(N, 1/2) and PC(N,K), con-

tradicting the planted clique conjecture.

The algorithm BN works as follows. Given an N -vertex graph, add (q− 1)k additional vertices

(bringing the total to n), partitioned into q − 1 cliques each of size k. Add all other edges (both

among the new vertices and between the old and new vertices) independently with probability 1/2.

Now run An on the resulting graph. If it finds q disjoint cliques of size k and one of these cliques

lies within the original N vertices, output ªPC(N,K)º; otherwise, output ªG(N, 1/2).º

To argue correctness of BN , first suppose the input came from PC(N,K). Then the n-vertex

graph produced is exactly a sample from MC(n, q, δ), and so An must correctly identify all the

cliques with probability 1−o(1), leading BN to correctly answer ªPC(N, k).º Now suppose instead

that the input to BN came from G(N, 1/2). Due to the assumption k ≥ (2 + Ω(1)) log2 n ≥
(2 + Ω(1)) log2N , with probability 1− o(1) there is no k-clique within the original N vertices, in

which case BN must correctly answer ªG(N, 1/2).º

Remark 8 We note that the Planted Clique Hypothesis also implies hardness of detecting a constant

number of planted k-cliques in G(n, 1/2) when k ≪ √
n. The idea is to first show by reduction

from planted clique that distinguishing between q planted cliques and (q + 1) planted cliques is

hard; the reduction is simply to add q new cliques (on new vertices). Then the classical ªhybrid

argumentº implies that distinguishing between 0 and q cliques is hard for any constant q. (We thank

Guy Bresler for pointing out this argument.)

Detection-recovery gap. In the standard planted clique model (with a single clique), k ∼ √
n is

the best known threshold for both efficiently recovering the clique and efficiently ªdetectingº it, i.e.,

distinguishing the planted clique model from G(n, 1/2). While we have shown that adding more

cliques does not make recovery any easier, it certainly does make detection easier. For instance,

in the extreme case where the cliques cover the whole graph, the total edge count strongly distin-

guishes MC(n, q) from G(n, 1/2) provided q = o(n). Thus, the multiple cliques problem exhibits

a ªdetection-recovery gapº that is not present in the single clique case.

We remark that our reduction is a rare (perhaps unique?) example where a detection-recovery

gap has been established based on the Planted Clique Hypothesis. For instance, the prior work Bren-

nan et al. (2018) on various planted matrix and graph problems was only able to establish hardness

of recovery in a regime where detection is easy if reducing from some starting problem (not planted

clique) that is already conjectured to have a detection-recovery gap. While Cai et al. (2017) claims
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to overcome this by reducing from planted clique to planted submatrix recovery, the argument is

incorrect.1

Finally we note that the notion of a ªdetection-recovery gapº is arguably somewhat artificial

in that it assumes we have chosen one ªcanonicalº testing problem to associate with the recovery

problem (a perspective we are avoiding in this paper). One might expect that the gap can be closed

by choosing a different null distribution whose total edge count matches that of the planted distri-

bution. It turns out that closing the gap is not quite this simple, and the challenge of constructing a

better null distribution plays a key role in the next section.

2.1.3. TESTING q-COLORABILITY VERSUS (q + ℓ)-COLORABILITY

The results of the previous section do not quite cover the case of a true coloring, i.e., where the

cliques partition the entire graph. In this case, exact recovery remains easy when k := n/q ≫ √
n,

and we expect it to be hard when k ≪ √
n; however, we do not know how to establish this via

reduction from planted clique. We will instead follow strategy (I) from the introduction: we fix

P = MC(n, q) and our goal is to design a null distribution Q such that w.h.p. G ∼ Q is not q-

colorable (or rather, its complement is not), and distinguishing P versus Q is low-degree hard. Once

we have achieved this goal, this gives an indirect two-stage argument for hardness of recovery: the

low-degree hardness leads us to conjecture that no poly-time algorithm can distinguish P from Q,

and this conjecture (if true) formally implies that no poly-time algorithm can recover the cliques in

P.

Perhaps the first natural attempt is to choose Q = G(n, 1/2). However, this will not suffice, as

G(n, 1/2) is too easy to distinguish from MC(n, q) due to the detection-recovery gap discussed in

the previous section. Instead, we will choose Q = MC(n, q + 1), which w.h.p. is not q-colorable

for q ≤ Ω(n/ log n); see Appendix D. We will show that testing P = MC(n, q) versus Q =
MC(n, q+1) is low-degree hard when k := n/q ≪ √

n. As discussed above, this suggests hardness

of exact recovery in MC(n, q) when k ≪ √
n.

We will in fact consider a slightly more general testing problem: P = MC(n, q) versus Q =
MC(n, q + ℓ) for some ℓ ≥ 1 (which may scale with n). This generality will not cost us much, and

we feel it is a question of possible independent interest. The following results establish that (in the

low-degree framework) this problem is easy when q2 ≪ ℓn and hard when q2 ≫ ℓn.

Theorem 9 (Upper bound) If q, ℓ scale with n such that 1 ≤ q < q + ℓ ≤ n and q2 = o(ℓn)
then there is a degree-1 polynomial achieving strong separation between P = MC(n, q) and Q =
MC(n, q + ℓ).

Theorem 10 (Lower bound) Fix an arbitrary constant ϵ > 0, not depending on n. If q, ℓ scale

with n such that 1 ≤ q < q + ℓ ≤ n and q2 ≥ ℓn1+ϵ then there is no degree-o(log n/ log log n)2

polynomial achieving weak separation between P = MC(n, q) and Q = MC(n, q + ℓ).

Testing planted versus planted. On a technical level, this result differs from nearly all existing

low-degree lower bounds because here we are testing between two different ªplantedº distribu-

tions. In contrast, most prior work has considered testing between some planted distribution and

1. On pg 21-22 of Cai et al. (2017) (arXiv v2), the bootstrapping construction in Eq. (42) does not actually produce

an instance of the submatrix model because the entries of the noise matrix are not mutually independent. An issue

occurs near the top of pg 22, where pairwise independence does not imply mutual independence. The reduction does

show hardness of some non-standard submatrix model where the noise entries are not mutually independent.

9
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an i.i.d. null distribution, which is much easier to analyze. The first ªplanted-versus-plantedº low-

degree lower bounds were given recently by Rush et al. (2022), based on a technique developed

by Schramm and Wein (2022). Our proof is based on similar ideas, but differs from Rush et al.

(2022) on a technical level; the bounds for dense subgraph problems in Rush et al. (2022) do not

work when the subgraph is extremely dense (e.g., a clique), and so we use a somewhat different

variation of the argument.

The standard approach to proving low-degree lower bounds is based on relatively straightfor-

ward moment calculations, but relies heavily on knowing an orthogonal basis of polynomials with

respect to Q; see Section 2.3 of Hopkins (2018). The key technical challenge in planted-versus-

planted testing is that, since Q is not a product measure, we do not know such an orthogonal basis

of polynomials that is convenient to work with. Our Proposition 23 overcomes this, showing that

it suffices to control certain recursively-defined quantities wα. This generalizes the standard ap-

proach, as discussed in Remark 24. Similarly to Rush et al. (2022), the quantities wα turn out to

have a convenient multiplicative property (Lemma 25) which helps in the analysis. The proof of

Proposition 23 takes an approach first used by Schramm and Wein (2022), where we apply Jensen’s

inequality to the ªsignalº but not the ªnoise,º and then leverage an orthogonal basis of polynomials

for the i.i.d. ªnoise.º

We note that an alternative form of evidence for hardness of our original recovery problem

would be to directly formulate a low-degree recovery question in the style of Schramm and Wein

(2022), but we have chosen to instead investigate the quiet planting approach.

2.2. Refutation

A common framework for studying the average-case complexity of refutation problems is to prove

lower bounds against the sum-of-squares (SoS) hierarchy, a powerful class of methods based on

semi-definite programming. For the problem of refuting q-colorability, a particular SoS formulation

is known to fail when q ≫ √
n (Kothari and Manohar, 2021); however, it remains open to charac-

terize the more canonical (and potentially stronger) SoS SDP which has equality constraints instead

of inequalities (see Section 1.5 of Kothari and Manohar (2021)).

In this paper, we formulate an alternative type of refutation lower bound based directly on

low-degree polynomials, which complements the SoS approach. Some advantages of the new for-

mulation are its simplicity, and the fact that (unlike SoS) there is no ambiguity in the choice of

SDP relaxation; we only need to specify how our input is encoded as real-valued variables. To our

knowledge, there are no formal implications in either direction between SoS lower bounds and our

new framework. Like SoS, our framework captures spectral methods (as illustrated by the proof of

Theorem 16 below), a powerful class of refutation algorithms which give the best known poly-time

algorithms for a wide variety of average-case refutation tasks.

We note that some prior work has used low-degree lower bounds to give evidence for hardness

of refutation, via a two-stage argument that first gives a polynomial-time reduction from a testing

problem to refutation (Bandeira et al., 2020, 2022a). Our new framework is similar in spirit but

more direct, as we define for the first time a notion of what it means for a polynomial to solve a

refutation problem (Definition 11).

10
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2.2.1. FRAMEWORK FOR LOW-DEGREE REFUTATION

We will now define a notion (Definition 11) of what it means for a polynomial to refute a property

R ⊆ RN (e.g., the set of q-colorable graphs X ∈ {±1}(n2)) over a distribution Q (e.g., G(n, 1/2)).
We will later argue that this definition is reasonable in that it indeed implies a solution to the refu-

tation problem (Proposition 13). We also illustrate that our definition captures spectral methods, a

powerful class of refutation algorithms (see the proof of Theorem 16).

Definition 11 (Strong/weak separation of a distribution and property) Suppose Qn is a distri-

bution on RN for some N = Nn, and suppose R = Rn ⊆ RN . A polynomial fn : RN → R is said

to strongly separate Q and R if

f(X) ≥ 1 ∀X ∈ R and E
Q
[f2] = o(1),

and weakly separate Q and R if

f(X) ≥ 1 ∀X ∈ R and E
Q
[f ] = 0, E

Q
[f2] = O(1).

Remark 12 The requirement EQ[f ] = 0 can optionally be added to the definition of strong sepa-

ration: if f = fn satisfies the original definition it can be shifted and scaled to satisfy the modified

one.

More generally, one could define separation to mean there exists B = Bn > EQ[f ] such that

f(X) ≥ B for all X ∈ R, and
√

VarQ[f ] is either o(B − EQ[f ]) (for strong separation) or

O(B − EQ[f ]) (for weak separation). This is equivalent in the sense that if f = fn satisfies the

original definition it also satisfies the new one with B = 1, and if f satisfies the new definition it

can be shifted and scaled to satisfy the original one.

As we see next, strong and weak separation are natural sufficient conditions for refuting R with

high probability or constant probability (respectively) by evaluating f .

Proposition 13 Suppose f strongly (or weakly, respectively) separates Q and R. Define a refu-

tation algorithm that, on input X ∈ RN , outputs NO if f(X) < 1 and outputs MAYBE otherwise.

Then this algorithm has the guarantee that (1) whenever it outputs NO, X /∈ R, and (2) when

X ∼ Q, the output is NO with probability 1− o(1) (or Ω(1), respectively).

Proof Guarantee (1) is immediate from the property f(X) ≥ 1 for all X ∈ R. For strong separation,

(2) follows because by Markov’s inequality, E[f2] = o(1) implies that |f(X)| < 1 with probability

1 − o(1). It remains to verify (2) for weak separation: letting EQ[f
2] ≤ C and p := PrQ{f(X) <

1},

0 = E[f ] ≥ 1 ·Pr{f ≥ 1}+E[f ·1f<1] ≥ (1−p)−
√

E[f2] ·√p ≥ 1−p−C
√
p ≥ 1−(C+1)

√
p,

implying p ≥ 1/(C + 1)2.

In line with strategy (II) from the introduction, one way to rule out strong (or weak) separation

is to construct a planted distribution and bound the quantity Adv≤D defined in (1).

11
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Proposition 14 Suppose that on an infinite subsequence of n values we have a distribution P = Pn

supported on R. If Adv≤D(P,Q) = O(1) (respectively, 1 + o(1)) for some D = Dn, then no

degree-D polynomial strongly (resp., weakly) separates Q and R.

Proof Since P is supported on R, the separation condition implies EP[f ] ≥ 1. The proof is now

nearly identical to that of Lemma 22.

Remark 15 We note that for the well-studied problem of refuting a single k-clique in G(n, 1/2),
existing work implies sharp upper and lower bounds in our new framework. For the lower bound, let

P be the standard planted k-clique model and combine Proposition 14 with the low-degree analysis

of planted clique (Hopkins, 2018, Section 2.4) to conclude: if k ≤ n1/2−ϵ for a constant ϵ > 0
then no degree-o(log n/ log log n)2 polynomial weakly separates G(n, 1/2) from the property of

containing a k-clique. The upper bound follows from the proof of Theorem 16 below: if k ≥ 2.1
√
n

then there is an O(log n)-degree polynomial that strongly separates G(n, 1/2) from the property of

containing a k-clique.

2.2.2. LOW-DEGREE REFUTATION OF q-COLORABILITY

We now apply the framework from the previous section to the problem of refuting q-colorability in

G(n, 1/2). Throughout, we represent graphs as elements of {±1}(n2) as usual, take Q = G(n, 1/2),

and use Rq ⊆ {±1}(n2) to denote the property of q-colorability (i.e., the set of graphs that are q-

colorable).

First, we give an upper bound: low-degree polynomials can refute q-colorability for q ≲
√
n.

The proof proceeds by taking a standard spectral refutation algorithm (based on the maximum eigen-

value of the adjacency matrix) and approximating it by a polynomial.

Theorem 16 (Upper bound) Suppose q ≤ b
√
n for a constant b < 1/2 (not depending on n).

Then there exists a constant C = C(b) > 0 and a polynomial f = fn of degree at most C log n that

strongly separates G(n, 1/2) and Rq.

We also give a lower bound: no low-degree polynomial can refute q-colorability for q ≫ n2/3. Note

there is a gap between our upper and lower bounds, and we leave closing this gap as an interesting

direction for future work.

Theorem 17 (Lower bound) If q ≥ n2/3+ϵ for a constant ϵ > 0, then no degree-o(log n/ log log n)2

polynomial weakly separates G(n, 1/2) and Rq.

The proof of the lower bound will use Proposition 14, which is a rigorous incarnation of strategy

(II) from the introduction. In other words, our goal is to construct a planted distribution P supported

on q-colorable graphs that is hard to distinguish from Q = G(n, 1/2) in the sense Adv≤D(P,Q) =
1 + o(1).

Constructing this planted distribution is non-trivial. The naive choice would be the ªcanonicalº

planted model MC(n, q) (or rather, its complement), but this is not a good choice because it can be

easily distinguished from G(n, 1/2) by counting the total number of edges whenever q ≪ n. A

next attempt is to modify MC(n, q) to have a slightly lower probability for non-clique edges so as

to correct the total edge count. This gives a quieter planting that is hard to distinguish from Q when

12
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q ≫ n3/4, but easy when q ≪ n3/4 by counting signed triangles (each of the
(

n
3

)

triangles in the

complete graph counts for +1 if an even number of its edges are present or −1 if an odd number

are present). Our final construction, defined below, that reaches the threshold q ∼ n2/3, is more

complicated and involves planting both cliques and independent sets.

Definition 18 (Quiet planting for q ≫ n2/3) Suppose n, q are positive integers. To each of the

n vertices, independently assign a label (a, b) ∈ [q] × [q] uniformly at random. Conditioned on

the labels, do the following independently for each pair of distinct vertices {u, v}: denote the two

vertex labels by (a1, b1) and (a2, b2); if a1 = a2 then do not include the edge (u, v); if a1 ̸= a2 and

b1 = b2 then include the edge (u, v); otherwise include the edge (u, v) with probability 1/2.

Note that all the vertices with a given a value form an independent set, and thus the distribution is

supported on q-colorable graphs. Also, the vertices with a given b value nearly form a clique, aside

from the non-edges required for the independent sets. In the proof of Theorem 17, we show that this

distribution is low-degree indistinguishable from G(n, 1/2) when q ≫ n2/3. Our analysis of this

distribution is tight, as the count of signed 4-cycles distinguishes it from G(n, 1/2) when q ≪ n2/3.

Although we have not proven it, we expect the true threshold for low-degree refutation of col-

orability to be q ∼ √
n.

Conjecture 19 Fix an arbitrary ϵ > 0, not depending on n. If q ≥ n1/2+ϵ then no degree-D
polynomial weakly separates Q = G(n, 1/2) and Rq, for some D = ω(log n).

2.2.3. COMPLETENESS OF THE QUIET PLANTING APPROACH

A natural approach to prove Conjecture 19 would be to construct a quieter planted distribution P

that is supported on q-colorable graphs but hard to distinguish from G(n, 1/2) when q ≫ √
n. One

might worry, however, that this may not even be possible: conceivably, such a planted distribution

might not exist, even if the true low-degree refutation threshold is at q ∼ √
n like we expect. If this

were the case, we would need to find an alternative approach to prove the conjecture without relying

on quiet planting.

We show in high generality that the hypothetical scenario above actually cannot occur: for every

low-degree hard refutation problem, there is a planted distribution that can be used to prove its hard-

ness. Put another way, Conjecture 19 is equivalent to the existence of a quiet planted distribution

for q ≫ √
n.

Theorem 20 Fix sequences N = Nn, D = Dn, Q = Qn a distribution on RN , and R = Rn ⊆
RN . Assume that for each n, Q is supported on a finite set and R is a finite set (but the cardinality

of these sets may depend on n). The following are equivalent:

(1) No degree-D polynomial strongly separates Q and R.

(2) For an infinite subsequence of n values, there exists a distribution P = Pn supported on R
such that Adv≤D(P,Q) = O(1).

Similarly, the following are equivalent:

(1) No degree-D polynomial weakly separates Q and R.

13
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(2) For an infinite subsequence of n values, there exists a distribution P = Pn supported on R
such that Adv≤D(P,Q) = 1 + o(1).

Note that we have already shown that (2) implies (1); see Proposition 14. The proof that (1) implies

(2) uses von Neumann’s min-max principle.

Remark 21 We have assumed supp(Q) and R are finite (the relevant setting for q-coloring) to

simplify the analytic conditions needed for the min-max principle, but these assumptions can be

relaxed; see Remark 33.

Adapted to the context of q-coloring, while formally we do not know whether there exists a low-

degree polynomial to refute q-coloring when q ≫ √
n, it would be surprising in light of the sum-of-

squares lower bound of Kothari and Manohar (2021) for refuting Õ(
√
n)-colorability of G(n, 1/2).

Hence, we interpret this argument as suggesting the existence of a computationally quiet planted

q-coloring for G(n, 1/2) when q ≈ √
n even though we do not know an explicit construction of

such a distribution. If this construction were known, it may allow for SoS lower bounds in stronger

SDP formulations to be proved via the pseudo-calibration approach (Barak et al., 2016).
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Appendix A. Testing the Number of Cliques

A.1. Upper Bound

We restate the theorem for the reader’s convenience.

Theorem 9 (Upper bound) If q, ℓ scale with n such that 1 ≤ q < q + ℓ ≤ n and q2 = o(ℓn)
then there is a degree-1 polynomial achieving strong separation between P = MC(n, q) and Q =
MC(n, q + ℓ).

Proof Let f be the degree-1 polynomial that counts the total number of signed edges in the graph:

f(Y ) =
∑

1≤i<j≤n Yij , where recall Yij ∈ {±1}. Using linearity of expectation,

E
Y∼MC(n,q)

f(Y ) =

(

n

2

)

1

q

and so
∣

∣

∣

∣

E
Y∼P

f(Y )− E
Y∼Q

f(Y )

∣

∣

∣

∣

=

(

n

2

)(

1

q
− 1

q + ℓ

)

=

(

n

2

)

ℓ

q(q + ℓ)
. (2)

For the second moment,

E
Y∼MC(n,q)

f(Y )2 =
∑

i<j

∑

i′<j′

E[YijYi′j′ ].

There are a few different terms to consider depending on how the edges (i, j) and (i′, j′) interact.

• If (i, j) = (i′, j′) then E[YijYi′j′ ] = E[Y 2
ij ] = 1.

• If (i, j) and (i′, j′) have no vertices in common then Yij and Yi′j′ are independent, and so

E[YijYi′j′ ] = E[Yij ]E[Yi′j′ ] =
1
q2

.

• If (i, j) and (i′, j′) have one vertex in common then we again have that Yij and Yi′j′ are

independent: if say i = i′ then the event that i, j have the same label is independent from

the event that i, j′ have the same label, due to symmetry among the possible labels for i.
Therefore E[YijYi′j′ ] =

1
q2

.

Putting it together,

E
Y∼MC(n,q)

f(Y )2 =

(

n

2

)

· 1 +
(

n

2

)[(

n

2

)

− 1

]

· 1

q2

and so

Var
Y∼MC(n,q)

f(Y ) =

(

n

2

)

· 1 +
(

n

2

)[(

n

2

)

− 1

]

· 1

q2
−
[(

n

2

)

1

q

]2

=

(

n

2

)(

1− 1

q2

)

≤
(

n

2

)

. (3)
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Combining (2) and (3), f achieves strong separation provided

√

(

n

2

)

= o

((

n

2

)

ℓ

q(q + ℓ)

)

, i.e., q
(q

ℓ
+ 1
)

= o(n).

It therefore suffices to have q = o(n) and q2 = o(ℓn). Note that q = o(n) is implied by q2 = o(ℓn)
together with ℓ ≤ n.

A.2. Lower Bound

We restate the theorem for the reader’s convenience.

Theorem 10 (Lower bound) Fix an arbitrary constant ϵ > 0, not depending on n. If q, ℓ scale

with n such that 1 ≤ q < q + ℓ ≤ n and q2 ≥ ℓn1+ϵ then there is no degree-o(log n/ log log n)2

polynomial achieving weak separation between P = MC(n, q) and Q = MC(n, q + ℓ).

A.2.1. PROOF OVERVIEW

We first perform a standard manipulation, showing that it suffices to bound the quantity Adv≤D.

Lemma 22 Let P = Pn and Q = Qn be distributions on RN for some N = Nn. For some

D = Dn, let R[Y ]≤D denote the set of polynomials RN → R of degree (at most) D. If

Adv≤D(P,Q) := sup
f∈R[Y ]≤D

EP[f ]
√

EQ[f2]
= 1 + o(1),

then no degree-D polynomial f : RN → R weakly separates P and Q. Similarly, if Adv≤D(P,Q) =
O(1) then no degree-D polynomial strongly separates P and Q.

It is always the case that Adv≤D ≥ 1, by taking f = 1.

Proof Assume for the sake of contradiction that some degree-D polynomial g : RN → R weakly

separates P and Q. By shifting and scaling, we can assume without loss of generality that EQ[g] = 0
and EP[g] = 1. For sufficiently large n, weak separation guarantees VarQ[g] = EQ[g

2] ≤ C for

some constant C > 0. Define f = g + C and compute

EP[f ]
√

EQ[f2]
=

1 + C
√

EQ[g2] + C2
≥ 1 + C√

C + C2
=

√

1 + C

C
,

which is a constant strictly greater than 1, contradicting Adv≤D = 1 + o(1). The proof for strong

separation is similar, now with C = o(1).

A key ingredient in the proof will be an upper bound on Adv≤D in the following generic set-

ting (of which our problem is a special case). Suppose Q takes the form Y = X ∨ Z where

X,Z ∈ {±1}N with ªnoiseº Z i.i.d. Rademacher and ªsignalº X having an arbitrary distribution

(independent from Z), and ∨ denotes entrywise maximum. (In our case N =
(

n
2

)

and X is the

±1-valued indicator for clique edges.)

18



IS COLORING EASIER THAN CLIQUE?

Proposition 23 Suppose Q takes the form Y = X∨Z as described above and P is any distribution

on {±1}N . For α, β ⊆ [N ], define

cα = E
Y∼P

[Y α] := E
Y∼P

∏

i∈α
Yi

and

Mβα = Pr
X
(α \X = β).

Here and throughout, we abuse notation and use X to refer to the set {i ∈ [N ] : Xi = 1}.

Suppose Mαα > 0 for all |α| ≤ D. Then

Adv
2
≤D ≤

∑

α⊆[N ], |α|≤D

w2
α (4)

where wα is defined recursively by

wα =
1

Mαα



cα −
∑

β⊊α

wβMβα



 .

No explicit base case is needed for the recursion above, but one can think of w∅ = 1 as the base

case.

We pause to give some remarks on the origin of the above formula. The proof (given in Sec-

tion A.2.4) follows a strategy based on Schramm and Wein (2022): apply Jensen’s inequality to

X (but not Z) and then the result can be explicitly calculated by solving an upper-triangular linear

system. The original work Schramm and Wein (2022) gave a similar formula in the setting of es-

timation, and more recently Rush et al. (2022) was first to demonstrate that related techniques can

also be used for testing between two ªplantedº distributions (which is also the setting of the current

work). In contrast, previous low-degree lower bounds for testing problems had always required the

ªnullº distribution Q to have independent coordinates; see the remark below for comparison.

Remark 24 We note that Proposition 23 generalizes a well known formula for low-degree testing

between ªsignalº and ªpure noise.º Specifically, consider the case where X = −1 so that Q is i.i.d.

Rademacher, and P is any distribution on {±1}N . In this case Mβα = 1β=α and so Proposition 23

reduces to the bound

Adv
2
≤D ≤

∑

|α|≤D

(

E
Y∼P

[Y α]

)2

, Y α :=
∏

i∈α
Yi,

which is standard (and in fact holds with equality); see Section 2.3 of Hopkins (2018).

Returning to the proof, a more convenient parametrization for wα will be ŵα = Mααwα. In this

case, since M∅α = EQ[Y
α], the recurrence can be written as

ŵ∅ = 1,
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ŵα = cα −
∑

β⊊α

ŵβ
Mβα

Mββ
= E

P
[Y α]− E

Q
[Y α]−

∑

∅⊊β⊊α

ŵβ
Mβα

Mββ
for |α| ≥ 1. (5)

The ratio of M ’s can be thought of as a conditional probability:

Rβα :=
Mβα

Mββ
=

PrX(α \X = β)

PrX(β ∩X = ∅) = Pr
X
(α \X = β | β ∩X = ∅). (6)

From this point onward, we specialize to our testing problem of interest: P = MC(n, q) versus

Q = MC(n, q + ℓ). As discussed above, our goal is to show Adv≤D = 1 + o(1) by bounding the

formula in (4). The ª1º comes from the α = ∅ term, and we need to show that the rest of the sum is

o(1).
The following property of ŵ will be key to the analysis; it is used crucially in the proof of

Lemma 28. Note that we can think of α as a subset of edges of the complete graph on n vertices,

and in this sense we can talk about α being connected or having connected components.

Lemma 25 If α has connected components α1, . . . , αt then ŵα =
∏t

i=1 ŵαi
.

Proof It suffices to prove the claim in the case where α is comprised of two non-empty disjoint edge

sets α1, α2 with no vertices in common (i.e., each αi is a union of connected components). Once

we establish ŵα = ŵα1
ŵα2

in this case, the general statement follows by induction.

Note that due to independence across connected components, cα = cα1
cα2

. Any β ⊆ α can

be uniquely decomposed as β = β1 ∪ β2 with β1 ⊆ α1 and β2 ⊆ α2. Again by independence,

Rβα = Rβ1α1
Rβ2α2

. We will also need the fact Rαα = 1. We proceed by induction on |α|. If either

α1 or α2 is empty, the result follows immediately because ŵ∅ = 1. Otherwise, assume by induction

that ŵβ = ŵβ1
ŵβ2

for any β ⊊ α. We have

ŵα = cα −
∑

β⊊α

ŵβRβα

= cα1
cα2

−
∑

β1⊊α1

β2⊊α2

ŵβ1
ŵβ2

Rβ1α1
Rβ2α2

−
∑

β1⊊α1

(β2=α2)

ŵβ1
ŵα2

Rβ1α1
Rα2α2

−
∑

β2⊊α2

(β1=α1)

ŵα1
ŵβ2

Rα1α1
Rβ2α2

= cα1
cα2

−





∑

β1⊊α1

ŵβ1
Rβ1α1









∑

β2⊊α2

ŵβ2
Rβ2α2



− ŵα2

∑

β1⊊α1

ŵβ1
Rβ1α1

− ŵα1

∑

β2⊊α2

ŵβ2
Rβ2α2

.

Using the recurrence (5), this becomes

ŵα = cα1
cα2

− (cα1
− ŵα1

)(cα2
− ŵα2

)− ŵα2
(cα1

− ŵα1
)− ŵα1

(cα2
− ŵα2

),

which simplifies to ŵα1
ŵα2

as desired.

A.2.2. BOUNDING ŵα

In the remainder of the proof we need to bound the values wα and plug this into (4). Recall that

when α is thought of as a graph, |α| is the number of edges. We also define V (α) to be the set of

vertices of α, i.e., the vertices i ∈ [n] incident to at least one edge of α.
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Lemma 26 For any α we have Mαα ≥ 1− |α|
q+ℓ .

Proof Recall that Mαα is the probability (under Q) that α contains no clique edges. The probability

that any specific edge is a clique edge is 1/(q + ℓ), so the result follows by a union bound.

Lemma 27 If |α| ≥ 1 and α is connected then

0 ≤ E
P
[Y α]− E

Q
[Y α] ≤ ℓ

q|V (α)| (|V (α)| − 1).

Proof Since α is connected, EP[Y
α] is the probability that all vertices of α are assigned the same

label in [q] (and similarly for EQ[Y
α]), i.e.,

E
P
[Y α]− E

Q
[Y α] =

(

1

q

)|V (α)|−1

−
(

1

q + ℓ

)|V (α)|−1

=

(

1

q

)|V (α)|−1
[

1−
(

q

q + ℓ

)|V (α)|−1
]

=

(

1

q

)|V (α)|−1
[

1−
(

1− ℓ

q + ℓ

)|V (α)|−1
]

≤
(

1

q

)|V (α)|−1 [

1−
(

1− ℓ

q + ℓ
(|V (α)| − 1)

)]

=

(

1

q

)|V (α)|−1 ℓ

q + ℓ
(|V (α)| − 1)

≤ ℓ

q|V (α)| (|V (α)| − 1).

Lemma 28 If |α| ≥ 1 then

|ŵα| ≤
(√

ℓ

q

)|V (α)|

(|α|+ 1)|α|.

Proof Proceed by induction on |α|. First consider the case where α is not connected. Write α as the

union of two non-empty disjoint edge sets α1, α2 with no vertices in common. By Lemma 25 and

the induction hypothesis,

|ŵα| = |ŵα1
| · |ŵα2

| ≤
(√

ℓ

q

)|V (α1)|

(|α1|+ 1)|α1| ·
(√

ℓ

q

)|V (α2)|

(|α2|+ 1)|α2|

≤
(√

ℓ

q

)|V (α1)|+|V (α2)|

(|α1|+ |α2|+ 1)|α1|+|α2|

=

(√
ℓ

q

)|V (α)|

(|α|+ 1)|α|
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as desired.

Now consider the case where α is connected. Using (5) and Lemma 27,

|ŵα| ≤
∣

∣

∣

∣

E
P
[Y α]− E

Q
[Y α]

∣

∣

∣

∣

+
∑

∅⊊β⊊α

|ŵβ | · |Rβα| ≤
ℓ

q|V (α)| (|V (α)| − 1) +
∑

∅⊊β⊊α

|ŵβ | · |Rβα|.

Using the definition (6) and the connectivity of α, we can deduce (for any ∅ ⊊ β ⊊ α)

0 ≤ Rβα ≤
(

1

q + ℓ

)|V (α)|−|V (β)|
≤
(

1

q

)|V (α)|−|V (β)|
,

because once we condition on the labels in V (β), each vertex in V (α) \ V (β) has at most one

possible label that would allow the event α \ X = β to occur. (More formally, any vertex i ∈
V (α) \ V (β) is connected to some vertex j ∈ V (β) by a path using edges from α \ β. Since every

edge on this path must be a clique edge in order for α \X = β to occur, i must have the same label

as j.) Now using the above bounds and the induction hypothesis,

|ŵα| ≤
ℓ

q|V (α)| (|V (α)| − 1) +
∑

∅⊊β⊊α

(√
ℓ

q

)|V (β)|

(|β|+ 1)|β| ·
(

1

q

)|V (α)|−|V (β)|

≤
(√

ℓ

q

)|V (α)| 

|V (α)| − 1 +
∑

∅⊊β⊊α

(|β|+ 1)|β|



 since |V (α)| ≥ 2 and |V (β)| ≤ |V (α)|

=

(√
ℓ

q

)|V (α)| 

|V (α)| − 1 +

|α|−1
∑

m=1

(|α|
m

)

(m+ 1)m





≤
(√

ℓ

q

)|V (α)| 

|V (α)| − 1 +

|α|−1
∑

m=1

(|α|
m

)

|α|m




=

(√
ℓ

q

)|V (α)|
[

|V (α)| − 1 + (|α|+ 1)|α| − 1− |α||α|
]

by the Binomial theorem

≤
(√

ℓ

q

)|V (α)|

(|α|+ 1)|α|,

where the last step used |V (α)| ≤ 2|α| ≤ |α||α| + 1.

A.2.3. PUTTING IT TOGETHER

The rest of the proof is similar to the low-degree analysis of planted clique; see Section 2.4 of Hop-

kins (2018). We now complete the proof of Theorem 10.

Proof For any |α| ≤ D, we have from Lemma 26 that

Mαα ≥ 1− |α|
q + ℓ

≥ 1− D

q
= 1− o(1),
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due to our assumptions on q and D. Applying Proposition 23,

Adv
2
≤D ≤

∑

|α|≤D

w2
α = 1 +

∑

1≤|α|≤D

(

ŵα

Mαα

)2

≤ 1 + (1 + o(1))
∑

1≤|α|≤D

ŵ2
α.

Since our goal (by Lemma 22) is to show Adv≤D = 1 + o(1), it remains to show

∑

1≤|α|≤D

ŵ2
α = o(1).

This follows from Proposition 30 below, using the bound on |ŵα| from Lemma 28 together with the

assumption q2 ≥ ℓn1+ϵ.

Lemma 29 For integers t ≥ 2 and D ≥ 1, the number of graphs α ⊆
(

n
2

)

such that |α| ≤ D and

|V (α)| = t, is at most ntmin{2t2 , t2D}.

Proof The number of ways to choose t vertices is
(

n
t

)

≤ nt. Once the vertices are chosen, we

can upper-bound the total number of graphs with ≤ D edges in two different ways: 2(
t

2
) ≤ 2t

2

or
((

t
2

)

+ 1
)D ≤ (t2)D.

Proposition 30 Suppose there exist fixed constants δ > 0 and C > 0 such that for α ⊆
(

n
2

)

with

1 ≤ |α| ≤ D, we have a quantity ϕα bounded by |ϕα| ≤ n− 1

2
(1+δ)·|V (α)|(|α|+ 1)C·|α|. If D = Dn

satisfies D = o(log n/ log log n)2 then

∑

1≤|α|≤D

ϕ2
α = o(1)

as n → ∞.

Proof

Using Lemma 29 and the fact |α| ≤
(|V (α)|

2

)

≤ |V (α)|2,

∑

1≤|α|≤D

ϕ2
α ≤

∑

2≤t≤
√
D

nt2t
2 · n−(1+δ)t(t2 + 1)2Ct2 +

∑

√
D≤t≤2D

ntt2D · n−(1+δ)t(D + 1)2CD.

Consider the first sum on the right-hand side above. The initial term t = 2 is O(n2 · n−2(1+δ)) =
o(1), and the ratio between terms t+ 1 and t is

n−δ · 22t+1 · ((t+ 1)2 + 1)2C(2t+1)

(

(t+ 1)2 + 1

t2 + 1

)2Ct2

≤ tO(t)n−δ ≤
√
D

O(
√
D)

n−δ ≤ 1

2

for sufficiently large n, using the assumption D = o
(

logn
log logn

)2
. Now consider the second sum.

The initial term t =
⌈√

D
⌉

is at most

n−δ
√
D(

√
D + 1)2D(D + 1)2CD ≤ n−δ

√
D(D + 1)2(C+1)D = o(1),
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and the ratio between terms t+ 1 and t is

n−δ ·
(

t+ 1

t

)2D

≤ n−δ

(

1 +
1√
D

)2D

≤ n−δ · eO(
√
D) ≤ 1

2

for sufficiently large n.

A.2.4. PROOF OF PROPOSITION 23

The proof is similar to the lower bound for planted clique in Schramm and Wein (2022), Section 3.5.

We give the details here for convenience.

Any degree-D polynomial f : {±1}N → R has a unique expansion f(Y ) =
∑

α⊆[N ], |α|≤D f̂αY
α.

Write

E
P
[f(Y )] =

∑

|α|≤D

f̂α E
P
[Y α] = ⟨c, f̂⟩

where, recall, the vector c = (cα) is defined by

cα = E
P
[Y α].

By Jensen’s inequality,

E
Q
[f(Y )2] ≥ E

Z

(

E
X
f(X ∨ Z)

)2

=: E
Z
g(Z)2 = ∥ĝ∥2

where

g(Z) = E
X
f(X ∨ Z)

=
∑

|α|≤D

f̂α E
X
(X ∨ Z)α

=
∑

|α|≤D

f̂α
∑

0⊆β⊆α

Zβ Pr
X
{α \X = β}

=
∑

β

Zβ
∑

α⊇β

f̂α Pr
X
{α \X = β}.

In other words, ĝ = Mf̂ where, recall, the matrix M = (Mβα) is defined by

Mβα = 1β⊆α Pr
X
{α \X = β}.

Note that M is upper triangular and (by assumption) has positive entries on the diagonal, so M is

invertible. We have now shown EQ[f ]
2 ≥ ∥ĝ∥2 = ∥Mf̂∥2 and so

Adv≤D = sup
f∈R[Y ]≤D

EP[f ]
√

EQ[f2]
≤ sup

f̂

⟨c, f̂⟩
∥Mf̂∥

= sup
ĝ

c⊤M−1ĝ

∥ĝ∥ ,

which has optimizer ĝ = (c⊤M−1)⊤, yielding

Adv≤D ≤ ∥c⊤M−1∥ =: ∥w∥
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where w is the solution to w⊤M = c⊤. Solving for w using the upper-triangular structure of M
gives the recurrence

wα =
1

Mαα



cα −
∑

β⊊α

wβMβα



 , (7)

completing the proof.

Appendix B. Refuting Colorability

B.1. Upper Bound

We restate the theorem for the reader’s convenience.

Theorem 16 (Upper bound) Suppose q ≤ b
√
n for a constant b < 1/2 (not depending on n).

Then there exists a constant C = C(b) > 0 and a polynomial f = fn of degree at most C log n that

strongly separates G(n, 1/2) and Rq.

Proof Let A denote the {±1}-valued adjacency matrix of the complement graph, with 0’s on the

diagonal; if the graph is q-colorable then A has value 1 within each color class. For an integer

m ≥ 1 to be chosen later, consider the polynomial f(X) = (n/q − 1)−2mTr(A2m), which has

degree 2m in the input variables X ∈ {±1}(n2).
First we let X ∈ Rq and aim to show f(X) ≥ 1. Let S ⊆ [n] be the largest color class, so

|S| ≥ n/q. Let 1S ∈ {0, 1}n denote the indicator vector for S. Letting λmax = λ1 ≥ λ2 ≥ · · · ≥
λn denote the eigenvalues of A,

λmax ≥ 1
⊤
SA1S
∥1S∥2

=
|S|(|S| − 1)

|S| = |S| − 1 ≥ n

q
− 1

and

λ2m
max ≤

n
∑

i=1

λ2m
i = Tr(A2m).

Combining these yields Tr(A2m) ≥ (n/q − 1)2m and so f(X) ≥ 1.

It remains to show E[f2] = o(1) when X ∼ G(n, 1/2). Let Y be an n × n symmetric matrix

where {Yij : i ≤ j} are i.i.d. N (0, 1). By direct expansion and comparison of Rademacher

moments to Gaussian ones, E[Tr(A2m)2] ≤ E[Tr(Y 2m)2]. Using ∥Y ∥ to denote the spectral norm

of Y , the bound in Lemma 2.2 of Bandeira and van Handel (2016) gives

E[Tr(Y 2m)2] ≤ E[n2∥Y ∥4m] ≤ n2(2
√
n+ 2

√
4m)4m.

Putting it together,

E[f2] ≤
(

n

q
− 1

)−4m

n2(2
√
n+ 2

√
4m)4m = n2

(

2q(
√
n+

√
4m)

n− q

)4m

,

which is o(1) under the conditions of the theorem.
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B.2. Lower Bound

We restate the theorem for the reader’s convenience.

Theorem 17 (Lower bound) If q ≥ n2/3+ϵ for a constant ϵ > 0, then no degree-o(log n/ log log n)2

polynomial weakly separates G(n, 1/2) and Rq.

In light of Proposition 14, our goal is to show Adv≤D(P,Q) = 1 + o(1) where Q = G(n, 1/2)

(and Y ∼ Q is encoded by an element of {±1}(n2)) and P is the planted distribution defined in

Definition 18. Our starting point is the well-known formula from Remark 24:

Adv
2
≤D =

∑

|α|≤D

(

E
Y∼P

[Y α]

)2

,

where α ⊆
(

n
2

)

. We identify α with the graph whose edge set is α, and write V (α) ⊆ [n] for

the vertex set, i.e., the vertices incident to at least one edge in α. Our first step is to bound the

coefficients λα := EY∼P[Y
α].

B.2.1. BOUNDING THE COEFFICIENTS

Lemma 31 (Bounding λα) For any graph α ⊆
(

n
2

)

we have

|λα| :=
∣

∣

∣

∣

E
Y∼P

[Y α]

∣

∣

∣

∣

≤ O(q−3/4)|V (α)|

where O(·) hides an absolute constant factor.

Proof If α = ∪iαi is the decomposition of α into connected components, we have λα =
∏

i λαi

due to independence across components. It therefore suffices to prove the result in the case where

α is connected.

Let c : V (α) → [q] × [q] denote the latent assignment of labels (a, b) to vertices from the

definition of P (Definition 18). We have

λα = E
c

E
Y∼P|c

[Y α] =
∑

c

Pr[c] · E[Y α|c].

Note that E[Y α|c] = 0 unless every edge in α is either an independent set edge or clique edge in c,
and in this case,

E[Y α|c] = (−1)# ind-set edges.

As a result, one possible upper bound on |λα| is the probability over c that every edge in α
is either an ind-set edge or clique edge. We can bound this probability as follows. Recall we are

assuming α is connected, and explore the vertices of α according to a breadth-first search. The first

vertex’s label is unconstrained. Each edge that leads to a new vertex must be an ind-set edge or

clique edge, giving at most 2q possibilities for the new vertex’s label. Since there are q2 possible

labels in total, we conclude

|λα| ≤
(

2q

q2

)|V (α)|−1

=

(

2

q

)|V (α)|−1

(8)
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for any connected α.

The bound (8) implies the desired result |λα| ≤ O(q−3/4)|V (α)| provided |V (α)| ≥ 4, as in this

case we have |V (α)|−1 ≥ |V (α)|− 1
4 |V (α)| = 3

4 |V (α)|. For |V (α)| ≤ 3 we will manually verify

the result by checking all the possible graphs:

• If α has no edges then λα = 1.

• If α is a single edge, the cases to consider for c are {(a, b), (a, b)}, {(a, b), (a, b′)}, and

{(a, b), (a′, b)} (where a ̸= a′, b ̸= b′). This gives

λα = − 1

q2
− 1

q

(

1− 1

q

)

+
1

q

(

1− 1

q

)

= −q−2.

• If α is a length-2 path then conditioned on any label for the middle vertex, the two edges are

independent. Reusing the calculation for the single edge, we have λα = (−q−2)2 = q−4.

• If α is a triangle, we first claim that the only labelings c that contribute to λα are those in

which a label (a, b) is repeated. This follows from the symmetry between c and the reversed

labeling c where each pair is reversed: (a, b) 7→ (b, a). If c has no repeated labels, c and c
contribute the same term but with opposite signs, as every ind-set edge becomes a clique edge

and vice versa. In light of this, the remaining cases to consider for c are {(a, b), (a, b), (a, b)},

{(a, b), (a, b), (a, b′)}, and {(a, b), (a, b), (a′, b)}. This gives

λα = − 1

q4
− 3 · 1

q3

(

1− 1

q

)

− 3 · 1

q3

(

1− 1

q

)

= O(q−3).

We have now verified |λα| ≤ O(q−3/4)|V (α)| for every connected α. As discussed previously, this

implies the result for all α.

B.2.2. PUTTING IT TOGETHER

We now combine the results from above in order to bound Adv≤D and complete the proof of Theo-

rem 17.

Proof Due to our assumption q ≥ n2/3+ϵ, Lemma 31 gives

|λα| ≤ O(n− 3

4
( 2
3
+ϵ))|V (α)| = O(n− 1

2
− 3

4
ϵ)|V (α)| ≤ n− 1

2
(1+ϵ)·|V (α)|

for sufficiently large n. Using Proposition 30, we have for any D = o(log n/ log log n)2,

Adv
2
≤D − 1 =

∑

1≤|α|≤D

λ2
α = o(1).

As discussed at the beginning of Section B.2, this completes the proof.
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Appendix C. Completeness of Quiet Planting

In this section, we give a simple argument showing that the absence of a computationally quiet

planted distribution implies the existence of a low-degree refutation algorithm, in high generality.

Our proof is elementary and only needs a simple application of von Neumann’s min-max principle.

We restate the theorem for the reader’s convenience.

Theorem 20 Fix sequences N = Nn, D = Dn, Q = Qn a distribution on RN , and R = Rn ⊆
RN . Assume that for each n, Q is supported on a finite set and R is a finite set (but the cardinality

of these sets may depend on n). The following are equivalent:

(1) No degree-D polynomial strongly separates Q and R.

(2) For an infinite subsequence of n values, there exists a distribution P = Pn supported on R
such that Adv≤D(P,Q) = O(1).

Similarly, the following are equivalent:

(1) No degree-D polynomial weakly separates Q and R.

(2) For an infinite subsequence of n values, there exists a distribution P = Pn supported on R
such that Adv≤D(P,Q) = 1 + o(1).

Proof Let P denote the space of probability distributions on R. Let F denote the space of degree-D
polynomials f : RN → R such that EQ[f ] = 0 and EQ[f

2] ≤ 1. Consider

valn = inf
P∈P

sup
f∈F

E
P
[f ]. (9)

By von Neumann’s min-max principle (see below for discussion of the technical conditions re-

quired), the supremum and infimum can be exchanged:

valn = sup
f∈F

inf
P∈P

E
P
[f ] = sup

f∈F
inf
X∈R

f(X). (10)

A degree-D polynomial strongly (respectively, weakly) separates Q and R if and only if the value

of (10) is ω(1) (resp., Ω(1)). The negation of this statement is that valn = O(1) (resp., o(1))
for an infinite subsequence of n, which from (9) is equivalent to having Pn defined on an infinite

subsequence such that supf∈F EP[f ] = O(1) (resp., o(1)). Now the result follows due to the

identity (supf∈F EP[f ])
2 + 1 = Adv

2
≤D(P,Q); see Lemma 34 below.

It remains to verify the technical conditions for the min-max principle. Formally we use the

following variant, which is a special case of Sion’s min-max theorem (Sion, 1958; Komiya, 1988).

Theorem 32 Let P be a compact convex subset of a linear topological space and F a convex

subset of a linear topological space. If ϕ(x, y) is a continuous real-valued function on P × F with

ϕ(x, ·) concave for all x ∈ P , and ϕ(·, y) convex for all y ∈ F , then minx∈P supy∈F ϕ(x, y) =
supy∈F minx∈P ϕ(x, y).
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In our setting, the linear topological spaces will simply be Rd for some d. Recall that our choice of

P is the space of probability distributions on a finite set R = {r1, r2, . . . , r|R|}. We can identify

P with a compact convex subset of R|R| by encoding a distribution P as the vector of probabilities

(P(r1), . . . ,P(r|R|)). Recall that our choice of F is the space of degree-D polynomials f : RN →
R such that EQ[f ] = 0 and EQ[f

2] ≤ 1. Letting X = supp(Q) ∪ R = {x1, . . . , x|X |}, we can

identify F with a convex subset of R|X | (note that F is not required to be compact) by encoding a

function f : RN → R as the vector (f(x1), . . . , f(x|X |)). Finally, note that ϕ(P, f) := EP[f ] is

continuous, convex in P, and concave in f ; in fact, it is linear in both variables. This justifies our

earlier exchange of inf and sup, completing the proof.

Remark 33 Above we have assumed supp(Q) and R are finite to simplify the analytic conditions

needed for the min-max principle, but these assumptions can be relaxed. For instance, one can

alternatively assume that Qn is any distribution on RN with all moments finite and that Rn ⊆ RN

is compact. Since R is compact, the space P of probability distributions on R is compact in the

weak-* topology.

Lemma 34 supf∈F EP[f ]
2 + 1 = Adv

2
≤D(P,Q).

Proof If the likelihood ratio LR = dP/dQ exists, this fact follows from standard characteriza-

tions of these quantities as L2(Q)-norms of projections of likelihoods (see Section 2.3 of Hopkins

(2018)); namely, the left-hand side is ∥LR≤D − 1∥2Q + 1 and the right-hand side is ∥LR≤D∥2Q. We

also give a self-contained proof below.

Recalling the definition of Adv≤D, our goal is to show

sup
f∈F

E
P
[f ]2 + 1 = sup

g∈R[Y ]≤D

EP[g]
2

EQ[g2]
.

Note that the value 1 is achievable on both sides by taking f = 0 or g = 1. To show ª≤,º suppose

we have f ∈ F such that EP[f ] = a > 0, achieving value a2 + 1 on the left-hand side. Then

g = f + 1/a achieves the same value a2 + 1 on the right-hand side.

To show ª≥,º suppose g achieves value b2 > 1 on the right-hand side, and scale g so that

EQ[g
2] = 1 and EP[g] = b > 1. Define ∆ = EQ[g] and note that EQ(g − ∆)2 = 1 − ∆2 ≥ 0

and EP(g −∆) = b −∆ > 0. If ∆ = 1 then the left-hand side is unbounded by taking f to be an

arbitrary multiple of g −∆. Otherwise set f = (g −∆)/
√
1−∆2 ∈ F and compute the left-hand

side value

E
P
[f ]2 + 1 =

(b−∆)2

1−∆2
+ 1 = b2 +

(b∆− 1)2

1−∆2
≥ b2,

completing the proof.

Appendix D. Planted (q + 1)-coloring is not q-colorable

Here we work with the complement graph and consider a partition into cliques rather than a coloring.

Recall the multiple cliques model (Definition 3).
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Proposition 35 If 1 ≤ q ≤ Ω(n/ log n) then with probability 1 − o(1), MC(n, q + 1) does not

admit a partition of the vertices into q cliques.

Proof Fix an absolute constant ϵ > 0, to be chosen later. Assume q ≤ cn/ log n for a constant

c = c(ϵ) > 0 to be chosen later. The proof hinges on 3 basic facts, which hold w.h.p.:

(i) G(n, 1/2) does not contain the complete bipartite graph Km,m as a subgraph, for m ≥ (2 +
ϵ) log2 n.

(ii) Letting S1, . . . , Sq+1 denote the color classes of MC(n, q + 1), we have |Si| ∈ (1 ± ϵ) n
q+1

for all i ∈ [q + 1].

(iii) In MC(n, q + 1), any vertex v ∈ Si has at most (1/2 + 2ϵ) n
q+1 neighbors in Sj , for i ̸= j.

Standard arguments show that (i)±(iii) hold with probability 1− o(1), and we omit the details. The

proof of (i) is a first moment calculation (compute the expected number of copies of Km,m and

apply Markov’s inequality), and the proof of (ii) and (iii) uses Bernstein’s inequality along with a

union bound.

Suppose G ∼ MC(n, q + 1). To complete the proof, it suffices to show that properties (i)±

(iii) deterministically imply that G has no partition into q cliques (where property (i) applies to

the underlying random graph G′ ∼ G(n, 1/2) used to generate G, before the q + 1 cliques were

added). Assume (i)±(iii) hold, and suppose for contradiction that G admits a partition V (G) =
T1 ⊔ T2 ⊔ · · · ⊔ Tq into cliques.

We first claim that for every i ∈ [q], we either have (Case I) |Ti| ≤ 3
4 · n

q+1 or (Case II) for some

j ∈ [q + 1], Ti ⊆ Sj and |Ti| > 1
2 |Sj |. To see this, note that if Case I fails then |Ti| > 3

4 · n
q+1 , and

so to avoid violating property (i) there must exist j such that |Ti ∩ Sj | ≥ 3
4 · n

q+1 − (2 + ϵ) log2 n >

(1/2 + 2ϵ) n
q+1 . Now property (iii) implies Ti ⊆ Sj . Also, property (ii) implies |Ti| > 1

2 |Sj |. This

proves the claim.

Using the above claim, we can now construct an injective map ϕ : [q] → [q + 1] such that

|Ti| ≤ |Sϕ(i)|. First, for i in Case II, set ϕ(i) to be the corresponding j; then for i in Case I,

set ϕ(i) to be any unused j value. Since some j ∈ [q + 1] is not in the image of ϕ, we have
∑

i∈[q] |Ti| <
∑

j∈[q+1] |Sj | = n, a contradiction.

30


	Introduction
	Results
	Recovery
	Models
	Hardness of planted partial-coloring via reduction
	Testing q-colorability versus (q+)-colorability

	Refutation
	Framework for low-degree refutation
	Low-degree refutation of q-colorability
	Completeness of the quiet planting approach


	Testing the Number of Cliques
	Upper Bound
	Lower Bound
	Proof overview
	Bounding 
	Putting it together
	Proof of Proposition 23


	Refuting Colorability
	Upper Bound
	Lower Bound
	Bounding the coefficients
	Putting it together


	Completeness of Quiet Planting
	Planted (q+1)-coloring is not q-colorable

