
Sampling with Riemannian Hamiltonian Monte Carlo

in a Constrained Space

Yunbum Kook
Georgia Tech

yb.kook@gatech.edu

Yin Tat Lee
Microsoft Research,

University of Washington
yintat@uw.edu

Ruoqi Shen
University of Washington

shenr3@cs.washington.edu

Santosh S. Vempala
Georgia Tech

vempala@gatech.edu

Abstract

We demonstrate for the first time that ill-conditioned, non-smooth, constrained dis-
tributions in very high dimension, upwards of 100,000, can be sampled efficiently
in practice. Our algorithm incorporates constraints into the Riemannian version
of Hamiltonian Monte Carlo and maintains sparsity. This allows us to achieve a
mixing rate independent of condition numbers.

On benchmark data sets from systems biology and linear programming, our al-
gorithm outperforms existing packages by orders of magnitude. In particular, we
achieve a 1,000-fold speed-up for sampling from the largest published human
metabolic network (RECON3D). Our package has been incorporated into the
COBRA toolbox.

1 Introduction

Sampling is Fundamental. Sampling algorithms arise naturally in models of statistical physics,
e.g., Ising, Potts models for magnetism, Gibbs model for gases, etc. These models directly suggest
Markov chain algorithms for sampling the corresponding configurations. In the Ising model where
the vertices of a graph are assigned a spin, i.e., ±1, in each step, we pick a vertex at random and flip
its spin with some probability. The probability is chosen so that the distribution of the vector of all
spins approaches a target distribution where the probability exponentially decays with the number
of agreements in spin for pairs corresponding to edges of the graph. In the Gibbs model, particles
move randomly with collisions and their motion is often modeled as reflecting Brownian motion.
Sampling with Markov chains is today the primary algorithmic approach for high-dimensional
sampling. For some fundamental problems, sampling with Markov chains is the only known efficient
approach or the only approach to have guarantees of efficiency. Two notable examples are sampling
perfect matchings of a bipartite graph and sampling points from a convex body. These are the core
subroutines for estimating the permanent of a nonnegative matrix and estimating the volume of
a convex body, respectively. The solution space for these problems scales exponentially with the
dimension. In spite of this, polynomial-time algorithms have been discovered for both problems. The
current best permanent algorithm scales as n7 (time) [2, 23], while the current best volume algorithm
scales as n3 (number of membership tests) [24]. For the latter, the first polynomial-time algorithm
had a complexity of n27 [16], and the current best complexity is the result of many breakthrough
discoveries, including general-purpose algorithms and analysis tools.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Sampling is Ubiquitous. The need for efficient high-dimensional sampling arises in many fields.
A notable setting is metabolic networks in systems biology. A constraint-based model of a metabolic
network consists of m metabolites and n reactions, and a set of equalities and inequalities that define
a set of feasible steady state reaction rates (fluxes):

Ω =
{

v ∈ R
n |Sv = 0, l ≤ v ≤ u, cT v = α

}

,

where S is a stoichiometric matrix with coefficients for each metabolite and reaction. The linear
equalities ensure that the fluxes into and out of every node are balanced. The inequalities arise from
thermodynamical and environmental constraints. Sampling constraint-based models is a powerful tool
for evaluating the metabolic capabilities of biochemical networks [33, 46]. While the most common
distribution used is uniform over the feasible region, researchers have also argued for sampling from
the Gaussian density restricted to the feasible region; the latter has the advantage that the feasible set
does not have to be bounded. A previous approach to sampling, using hit-and-run with rounding [20],
has been incorporated into the COBRA package [21] for metabolic systems analysis (Bioinformatics).

A second example of mathematical interest is the problem of computing the volume of the Birkhoff
polytope. For a given dimension n, the Birkhoff polytope is the set of all doubly stochastic n× n
matrices (or the convex hull of all permutation matrices). This object plays a prominent role in alge-
braic geometry, probability, and other fields. Computing its volume has been pursued using algebraic
representations; however exact computations become intractable even for n = 11, requiring years
of computation time. Hit-and-run has been used to show that sampling-based volume computation
can go to higher dimension [11], with small error of estimation. However, with existing sampling
implementations, going beyond n = 20 seems prohibitively expensive.

A third example is from machine learning, a field that is increasingly turning to sampling models
of data according to their performance in some objective. One such commonly used criterion is
the logistic regression function. The popularity of logistic regression has led to sampling being
incorporated into widely used packages such as STAN [44], PyMC3 [41], and Pyro [3]. However,
those packages in general do not run on the constraint-based models we are interested in.

Problem Description. In this paper, we consider the problem of sampling from distributions whose
densities are of the form

e−f(x) subject to Ax = b, x ∈ K (1.1)

where f is a convex function and K is a convex body. We assume that a self-concordant barrier φ
for K is given. Note that any convex body has a self-concordant barrier [32] and there are explicit
barriers for convex bodies that come up in practical applications [37], so this is a mild assumption.
We introduce an efficient algorithm for the problem when K is a product of convex bodies Ki, each
with small dimension. Many practical instances can be written in this form. As a special case, the
algorithm can handle K in the form of {x ∈ R

n : li ≤ xi ≤ ui for all i ∈ [n]} with li ∈ R ∪ {−∞}
and ui ∈ R ∪ {+∞}, which is the common model structure in systems biology. Moreover, any
generalized linear model exp(−∑

fi(a
⊤
i x − bi)), e.g., the logistic model, can be rewritten in the

form
exp(−

∑

ti) subject to Ax = b+ s, (s, t) ∈ K (1.2)

where K = ΠKi and each Ki = {(si, ti) : fi(si) ≤ ti} is a two-dimensional convex body.

The Challenges of Practical Sampling. High dimensional sampling has been widely studied in
both the theoretical computer science and the statistics communities. Many popular samplers are
first-order methods, such as MALA [40], basic HMC [36, 14] and NUTS [22], which update the
Markov chain based on the gradient information of f . The runtime of such methods can depend
on the condition number of the function f [15, 30, 7, 8, 42]. However, the condition number of
real-world applications can be very large. For example, RECON1 [27], a reconstruction of the human
metabolic network, can have condition number as large as 106 due to the dramatically different orders
of different chemicals’ concentrations. Motivated by sampling from ill-conditioned distributions,
another class of samplers use higher-order information such as Hessian of f to take into account
the local structure of the problems [43, 9]. However, such samplers cannot handle non-smooth
distributions, such as hinge-loss, lasso, or uniform densities over polytopes.

For non-smooth distributions, the best polytime methods are based on discretizations of Brownian
motion, e.g., the Ball walk [25] (and its affine-invariant cousin, the Dikin walk [26]), which takes a

2



random step in a ball of a fixed size around the current point. Hit-and-Run [34] builds on these by
avoiding an explicit step size and going to a random point along a random line through the current
point. Both approaches hit the same bottleneck — in a polytope that contains a unit ball, the step size
should be O(1/

√
n) to avoid stepping out of the body with large probability. This leads to quadratic

bounds (in dimension) on the number of steps to “mix”.

Due to the reduction mentioned in (1.2), non-smooth distributions can be translated to the form in (1.1)
with constraint K. Both the first and higher-order sampler and the polytime non-smooth samplers
have their limitations in handling distributions with non-smooth objective function or constraint K.
Given the limitations of all previous samplers, a natural question we want to ask is the following.

Question. Can we develop a practically efficient sampler that can handle the constrained problem
in (1.1) and preserve sparsity1 with mixing time independent of the condition number?

In some applications, smoothness and condition number can be controlled with tailor-made models.
Our goal here is to propose a general solver that can sample from any non-smooth distributions as
given. For traditional samplers such as the Ball walk and Hit-and-Run, as mentioned earlier, the
step size needs to be small so that the process does not step out. An approach that gets around this
bottleneck is Hamiltonian Monte Carlo (HMC), where the next step is given by a point along a
Hamiltonian-preserving curve according to a suitably chosen Hamiltonian. It has two advantages.
First, the steps are no longer straight lines in Euclidean space, and we no longer have the concern of
“stepping out”. Second, the process is symplectic (so measure-preserving), and hence the filtering step
is easy to compute. It was shown in [31] that significantly longer steps can be taken and the process
with a convergence analysis in the setting of Hessian manifolds, leading to subquadratic convergence
for uniformly sampling polytopes.

To make this practical, however, is a formidable challenge. There are two high-level difficulties. One
is that many real-world instances are highly skewed (far from isotropic) and hence it is important
to use the local geometry of the density function. This means efficiently computing or maintaining
second-order information such as a Hessian of the logarithm of the density. This can be done in
the Riemannian HMC (RHMC) framework [17, 31], but the computation of the next step requires
solving the Hamiltonian ODE to high accuracy, which in turn needs the computation of leverage
scores, a procedure that takes at least matrix-multiplication time in the worst case. Another important
difficulty is maintaining hard linear constraints. Existing high-dimensional packages do not allow
for constraints (they must be somehow incorporated into the target density), and RHMC is usually
considered with a full-dimensional feasible region such as a full-dimensional polytope. This can also
be done in the presence of linear equalities by working in the affine subspace defined by the equalities,
but this has the effect of losing any sparsity inherent in the problem and turning all coefficient matrices
and objective coefficients into dense objects, thereby potentially incurring a quadratic blow-up.

Our Solution: Constrained Riemannian Hamiltonian Monte Carlo (CRHMC). We develop a
constrained version of RHMC, maintaining both sparsity and constraints. Our refinement of RHMC
ensures that the process satisfies the given constraints throughout, without incurring a significant
overhead in time or sparsity. It works even if the resulting feasible region is poorly conditioned. Since
many instances in practice are ill-conditioned and have degeneracies, we believe this is a crucial
aspect. Our algorithm outperforms existing packages by orders of magnitude.

In Section 2, we give the main ingredients of the algorithm and discuss how we overcome the
challenges that prevent us from sampling efficiently in practice. Following that, in Section 3, we
present empirical results on several benchmark datasets, showing that CRHMC successfully samples
much larger models than previously known to be possible, and is significantly faster in terms of rate
of convergence (“number of steps”) and total sampling time. Our complete package is available on
GitHub. We refer the reader to Appendix for theory, notations, and definitions.

1When A is sparse, preserving the sparsity of A can greatly enhance both the runtime and the space efficiency.

3



2 Algorithm: Constrained RHMC

In this section, we propose a constrained Riemannian Hamiltonian Monte Carlo (CRHMC2) algorithm
to sample from a distributions of the form

e−f(x) subject to c(x) = 0 and x ∈ K for some convex body K,

where the constraint function c : Rn → R
m satisfies the property that the Jacobian Dc(x) has full

rank for all x such that c(x) = 0. It is useful to keep in mind the case when c(x) = 0 is an affine
subspace Ax = b, in which case Dc(x) = A, and the full-rank condition simply says that the rows of
A are independent.

We refer readers to [1, 4, 39] for preliminary versions of CRHMC called the constrained Hamiltonian
Monte Carlo (CHMC). In particular, a framework in [4] can be extended to CRHMC when K = R

n,
and in fact they mention CRHMC as a possible variant. However, their algorithm for CRHMC
requires eigenvalue decomposition and is not efficient for large problems, which takes n3 time and
n2 space per MCMC step in practice. In this section, we propose an algorithm that overcomes those
limitations and satisfies the additional constraint K by using a local metric induced by the Hessian of
self-concordant barriers, leading to n1.5 time and n space in practice.

2.1 Basics of CRHMC

To introduce our algorithm, we first recall the RHMC algorithm (Algorithm 1). In RHMC, we extend
the space x to the pair (x, v), where v denotes the velocity. Instead of sampling from e−f(x), RHMC
samples from the distribution e−H(x,v), where H(x, v) is the Hamiltonian, and then outputs x. To
make sure the distribution is correct, we choose the Hamiltonian such that the marginal of e−H(x,v)

along v is proportional to e−f(x). One common choice of H(x, v) is

H(x, v) = f(x) +
1

2
v⊤M(x)−1v +

1

2
log detM(x), (2.1)

where M(x) is a position-dependent positive definite matrix defined on R
n.

Algorithm 1: Riemannian Hamiltonian Monte Carlo (RHMC)

Input: Initial point x(0), step size h
for k = 1, 2, · · · do

// Step 1: resample v

Sample v(k−
1

2
) ∼ N (0,M(x(k−1))) and set x(k−

1

2
) ← x(k−1).

// Step 2: Hamiltonian dynamics
Solve the ODE

dx

dt
=
∂H(x, v)

∂v
,
dv

dt
= −∂H(x, v)

∂x
(2.2)

with H defined in (2.1) and the initial point given by (x(k−
1

2
), v(k−

1

2
)).

Set x(k) ← x(h) and v(k) ← v(h).
end

Output: x(k)

To extend RHMC to the constrained case, we need to make sure both Step 1 and Step 2 satisfy the
constraints, so the Hamiltonian dynamics has to maintain c(x) = 0 throughout Step 2. Note that

d

dt
c(xt) = Dc(xt) ·

dxt
dt

= Dc(xt) ·
∂H(xt, vt)

∂vt
, (2.3)

where Dc(x) is the Jacobian of c at x. With H defined in (2.1), Condition (2.3) be-
comes Dc(x)M(x)−1v = 0. However, for full rank Dc(x), if M(x) is invertible,
then Range(v) = Range(N (0,M(x))) = R

n immediately violates this condition due to

2pronounced “crumch”.

4



dim(Null(Dc(x)M−1(x))) = n − m. To get around this issue, we use a non-invertible matrix
M(x) with its pseudo-inverse M(x)† to satisfy Dc(x)M(x)†v = 0 for any v ∈ Range(M(x)).
Since we want the step to be able to move in all directions satisfying c(x) = 0, we impose the
following condition with Range(M(x)) = Range(M(x)†) in mind:

Range(M(x)) = Null(Dc(x)) for all x ∈ R
n, (2.4)

which can be achieved by M(x) proposed soon.

Under the condition (2.4), we sample v from N (0,M(x)) in Step 1, which is equivalent to sampling
from e−H(x,v) subject to v ∈ Range(M(x)) = Null(Dc(x)). Also, the stationary distribution of
CRHMC should be proportional to

e−H(x,v) subject to c(x) = 0 and v ∈ Null(Dc(x)).

Here, to maintain v ∈ Null(Dc(x)) during Step 2 we add a Lagrangian term to H . Without the
Lagrangian term, vt would escape from Null(Dc(xt)) = Range(M(xt)) in Step 2 as seen in the
proof of Lemma 1, which contradicts Range(vt) = Range(N (0,M(xt))) = Range(M(xt)). The
constrained Hamiltonian we propose is (See its rigorous derivation in Lemma 1)

H(x, v) = H(x, v) + λ(x, v)⊤c(x) with H(x, v) = f(x) +
1

2
v⊤M(x)†v + log pdet(M(x))

(2.5)

where λ(x, v) = (Dc(x)Dc(x)⊤)−1
(

D2c(x)[v, dxdt ]−Dc(x)
∂H(x,v)

∂x

)

. Here, pdet denotes

pseudo-determinant and λ(x, v) is picked so that v ∈ Null(Dc(x)). An algorithmic description of
CRHMC is the same as Algorithm 1 with the constrained H in place of the unconstrained H . We
show the convergence of CRHMC to the correct distribution exp(−f(x)) in Appendix B.3.

Choice of M via Self-concordant Barriers. The construction of the Hamiltonian (2.5) relies
on having a family of positive semi-definite matrix M(x) satisfying the condition (2.4) (i.e.,
Range(M(x)) = Null(Dc(x))). One natural choice is the orthogonal projection to Null(Dc(x)):

Q(x) = I −Dc(x)⊤(Dc(x)Dc(x)⊤)−1Dc(x), (2.6)

which is similar to the choice in [4].

For the problem we care about, there are additional constraints on x other than {c(x) = 0}. In
the standard HMC algorithm, we have dx

dt ∼ N (0,M(x)−1). For example, for a simple constraint
K = [0, 1], to ensure every direction is moving towards/away from x = 0 multiplicatively, a natural
choice of M is M(x) = diag(x−2). For general convex body K, we can use a self-concordant
barrier, a function defined on K such that φ(x) is self-concordant and φ(x) → +∞ as x → ∂K.
Using the barrier φ, we can define the local metric based on g(x) = ∇2φ(x). Intuitively, as the
sampler approaches ∂K, the local metric stretches accordingly so that the Hamiltonian dynamics
never passes the barrier, respecting x ∈ K throughout.

In summary, we need M(x) to have its range match the null space of Dc(x) and agree with g(x) in
its range. We can verify that M(x) = Q(x)⊤g(x)Q(x), where Q(x) is the symmetric matrix defined
in (2.6), satisfies these two constraints.

2.2 Efficient Computation of ∂H/∂x and ∂H/∂v

With M(x) = Q(x)⊤g(x)Q(x), we have all the pieces of the algorithm. However, using this naive
algorithm to compute ∂H/∂x and ∂H/∂v, we face several challenges.

1. The algorithm involves computing the pseudo-inverse and its derivatives, which takes O(n3)
except for very special matrices.

2. The Lagrangian term in the constrained Hamiltonian dynamics requires additional computation
such as the second-order derivative of c(x).

3. A naive approach to computing leverage scores in ∂H/∂x results in a very dense matrix.

Those challenges make the algorithm hard to implement and inefficient, especially when the dimension
is high. In the following paragraphs, we give an overview of how we overcome each of the challenges
above. We defer a more detailed discussion of our approaches and the proofs to Appendix B.2.

5



Avoiding Pseudo-inverse and Pseudo-determinant. We are able to show equivalent formulas for
M(x)† and log pdetM(x) that can take advantage of sparse linear system solvers. In particular, we
show that M(x)† = g(x)−

1

2 · (I − P (x)) · g(x)− 1

2 , where

P (x) = g(x)−
1

2 ·Dc(x)⊤(Dc(x) · g(x)−1 ·Dc(x)⊤)−1Dc(x) · g(x)− 1

2 . (2.7)

As mentioned earlier, a majority of convex bodies appearing in practice are of the form K =
∏

iKi,
where Ki are constant dimensional convex bodies. In this case, we will choose g(x) to be a block
diagonal matrix with each block of size O(1). Hence, the bottleneck of applying P (x) to a vector is
simply solving a linear system of the form (Dc · g−1 ·Dc⊤)u = b for some b. The existing sparse
linear system solvers can solve large classes of sparse linear system much faster than O(n3) time
[13]. For log pdetM(x), we show

log pdet(M(x)) = log det g(x)+log det
(

Dc(x) · g(x)−1 ·Dc(x)⊤
)

−log det
(

Dc(x) ·Dc(x)⊤
)

.
(2.8)

This simplification allows us to take advantage of sparse Cholesky decomposition. We prove (2.7)
and (2.8) in Lemma 2 and Lemma 3 in Appendix B.2.1. The formulas (2.7) and (2.8) avoid the
expensive pseudo-inverse and pseudo-determinant computations, and significantly improve the
practical performance of our algorithm.

Simplification for Subspace Constraints. For the case c(x) = Ax− b, the Hamiltonian is now

H(x, v) = f(x)+
1

2
v⊤g−

1

2 (I − P ) g− 1

2 v+
1

2

(

log det g + log detAg−1A⊤ − log detAA⊤
)

+λ⊤c,

where P = g−
1

2A⊤(Ag−1A⊤)−1Ag−
1

2 . The key observation is that the algorithm only needs to
know x(h) in the HMC dynamics, and not v(h). Thus, we can replace H by any other that produces
the same x(h). We show in Lemma 4 (Appendix B.2.2) that the dynamics corresponding to H above
is equivalent to the dynamics that corresponds to a much simpler Hamiltonian:

H(x, v) = f(x) +
1

2
v⊤g−

1

2 (I − P ) g− 1

2 v +
1

2

(

log det g + log detAg−1A⊤
)

.

Furthermore, we have

dx

dt
= g−

1

2 (I − P ) g− 1

2 v,
dv

dt
= −∇f(x) + 1

2
Dg

[

dx

dt
,
dx

dt

]

− 1

2
Tr(g−

1

2 (I − P ) g− 1

2Dg).

Efficient Computation of Leverage Score. Even after simplifying the Hamiltonian as above, we
still have a term for the leverage scores, Tr(g−

1

2 (I − P ) g− 1

2Dg) in dv
dt so that we need to compute

the diagonal entries of P = g−
1

2A⊤(Ag−1A⊤)−1Ag−
1

2 to compute dv
dt . Since (Ag−1A⊤)−1 can

be extremely dense even when A is very sparse, a naive approach such as direct computation of the
inverse can lead to a dense-matrix multiplication. To avoid dense-matrix multiplication, our approach
is based on the fact that certain entries of (Ag−1A⊤)−1 can be computed as fast as computing
sparse Cholesky decomposition of Ag−1A⊤ [45, 5], which can be O(n) time faster than computing
(Ag−1A⊤)−1 in many settings. We first compute the Cholesky decomposition to obtain a sparse
triangular matrix L such that LL⊤ = Ag−1A⊤. Then, we show that only entries of Ag−1A⊤ in
sp(L) ∪ sp(L⊤) matter in computing diag(A⊤(Ag−1A⊤)−1A), where sp(L) is the sparsity pattern
of L. We give the details of our approach in Appendix B.2.3.

2.3 Discretization

Explicit integrators such as leapfrog integrator, which are commonly used for Hamiltonian Monte
Carlo, are no longer symplectic on general Riemannian manifolds (see Appendix C.1). Even though
there have been some attempts [38] to make explicit integrators work in the Riemannian setting, its
variants do not work for ill-conditioned problems.

Our algorithm uses the implicit midpoint method (Algorithm 3) to discretize the Hamiltonian process
into steps of step size h and run the process for T iterations. This integrator is reversible and
symplectic (so measure-preserving) [19], which allows us to use a Metropolis filter to ensure the

6



distribution is correct so that we no longer need to solve ODE to accuracy to maintain the correct
stationary distribution. We write H(x, v) = H1(x, v) +H2(x, v), where

H1(x, v) = f(x) +
1

2

(

log det g(x) + log detAg(x)−1A⊤
)

,

H2(x, v) =
1

2
v⊤g(x)−

1

2 (I − P (x)) g(x)− 1

2 v.

Starting from (x0, v0), in the first step of the integrator, we run the process on the Hamiltonian H1

with step size h
2 to get (x1/3, v1/3). In the second step of the integrator, we run the process on H2

with step size h by solving

x 2

3

= x 1

3

+ h
∂H2

∂v

(

x 1

3

+ x 2

3

2
,
v 1

3

+ v 2

3

2

)

, v 2

3

= v 1

3

− h∂H2

∂x

(

x 1

3

+ x 2

3

2
,
v 1

3

+ v 2

3

2

)

,

iteratively using the Newton’s method. This step involves computing the Cholesky decomposition of
(Ag−1A⊤)−1 using the Cholesky decomposition of Ag−1A⊤. In the third step, we run the process
on the Hamiltonian H1 with step size h

2 again to get (x1, v1).

We state the complete algorithm (Algorithm 2 and Algorithm 3) with details on the step size in
Appendix C.1 and give the theoretical guarantees in Appendix C.2 (convergence of implicit midpoint
method) and Appendix D (independence of condition number).

3 Experiments

In this section, we demonstrate the efficiency of our sampler using experiments on real-world datasets
and compare our sampler with existing samplers. We demonstrate that CRHMC is able to sample
larger models than previously known to be possible, and is significantly faster in terms of rate of
convergence and sampling time in Section 3.2, along with convergence test in Section 3.4. We
examine its behavior on benchmark instances such as simplices and Birkhoff polytopes in Section 3.3.

3.1 Experimental Setting

Settings. We performed experiments on the Standard DS12 v2 model from MS Azure cloud, which
has a 2.1GHz Intel Xeon Platinum 8171M CPU and 28GB memory. In the experiments, we used our
MATLAB and C++ implementation of CRHMC3, which is available here and has been integrated
into the COBRA toolbox.

We used twelve constraint-based metabolic models from molecular systems biology in the COBRA
Toolbox v3.0 [21] and ten real-world LP examples randomly chosen from NETLIB LP test sets. A
polytope from each model is defined by {x ∈ R

n : Ax = b, l ≤ x ≤ u} for A ∈ R
m×n, b ∈ R

m,
and l, u ∈ R

n, which is input to CRHMC for uniform sampling. We describe in Appendix A how we
preprocessed these dataset, along with full information about the datasets in Table 2.

Comparison. We used as a baseline the Coordinate Hit-and-Run (CHAR) implemented in two
different languages. The former is Coordinate Hit-and-Run with Rounding (CHRR) written in
MATLAB [11, 20] and the latter is the same algorithm (CDHR) with an R interface and a C++ library,
VolEsti [6]. We refer readers to Appendix A for the details of these algorithms and our comparison
setup. We note that popular sampling packages such as STAN and Pyro were not included in the
experiments as they do not support constrained-based models. Even after transforming our dataset to
their formats, the transformed dataset were too ill-conditioned for those algorithms to run. CHMC in
[4] works only for manifolds implicitly defined by {c(x) = 0} for continuously differentiable c(x)
with Dc(x) full-rank everywhere, so we could not use it for comparison.

Measurements. To evaluate the quality of sampling methods, we measured two quantities, the
number of steps per effective sample (i.e., mixing rate) and the sampling time per effective sample,
Ts. The effective sample size (ESS)4 can be thought of as the number of actual independent samples,

3Our package can be run to sample from general logconcave densities and has a feature for parallelization.
4We use the minimum of the ESS of each coordinate.

7



10
2

10
3

10
4

10
5

Dimension

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

S
te

p
/S

a
m

p
le

Mixing Rate
CRHMC: dim0.52 

CHRR: dim2.71 

CDHR: dim2.14

10
2

10
3

10
4

10
5

10
6

NNZ

10
2

10
3

S
te

p
/S

a
m

p
le

Mixing Rate
CRHMC: nnz0.53

Figure 3.1: Mixing rate of CRHMC and the com-
petitors. Mixing rate of CRHMC was sub-linear in
dimension and the nnz of a preprocessed matrix A
in a model, whereas the others needed quadratically
many steps to converge to uniform distribution. In
particular for our dataset, CRHMC mixed up to 6
orders of magnitude earlier than the others. Note that
mixing rate of CHAR was very close to quadratic
growth when using the full-dimensional scale (the
first column in Table 2).

10
2

10
3

10
4

10
5

Dimension

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
/S

a
m

p
le

 (
s
)

Sampling Time

CRHMC: dim1.50 

CHRR: dim3.14 

CDHR: dim3.16

10
2

10
3

10
4

10
5

10
6

NNZ

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
/S

a
m

p
le

 (
s
)

Sampling Time

CRHMC: nnz1.50

Figure 3.2: Sampling time of CRHMC and the competi-
tors. The sampling time per effective sample of CRHMC
was sub-quadratic in dimension and the nnz of a prepro-
cessed matrix A in a model, while the others indicates at
least a cubic dependency on dimension. In particular for
our dataset, CRHMC was able to obtain a statistically inde-
pendent sample up to 4 orders of magnitude faster than the
others. This benefit of speed-up was actually straightfor-
ward from the figure, since CHRR could not obtain enough
samples from instances with more than 5000 variables until
it ran out of time.

taking into account correlation of samples from a target distribution. Thus the number of steps per
effective sample is estimated by the total number of steps divided by the ESS, and the sampling time
Ts is estimated as the total sampling time until termination divided by the ESS.

Each algorithm attempted to draw 1000 uniform samples, with limits on running time set to 1 day
(3 days for the largest instance ken_18) and memory usage to 6GB. If an algorithm passes either
the time or the memory limit, we stop the algorithm and measure the quantities of interest based on
samples drawn until that moment. After getting uniform samples, we thinned the samples twice to
ensure independence of samples; first we computed the ESS of the samples, only kept ESS many
samples, and repeated this again. We estimated the above quantities only if the ESS is more than 10
and an algorithm does not run into any error while running5.

3.2 Mixing Rate and Sampling Time

Sub-linear Mixing Rate. We examined how the number of steps per effective sample grows
with the number of nonzeros (nnz) of matrix A (after preprocessing) and the number of variables
(dimension in the plots). To this end, we counted the total number of steps taken until termination of
algorithms and divided it by the effective sample size of drawn samples. Note that we thinned twice
to ensure independence of samples used.

The mixing rate of CRHMC was sub-linear in both dimension and nnz, whereas previous implemen-
tations based on CHAR required at least n2 steps per sample as seen in Figure 3.1. On the dataset,

5When running CDHR from the VolEsti package on some instances, we got an error message “R session
aborted and R encountered a fatal error”.

8



Bio Model Vars (n) nnz CRHMC CHRR CDHR

ecoli 95 291 0.0098 0.0365 0.0022
cardiac_mit 220 228 0.0100 0.0059 0.0005
Aci_D21 851 1758 0.4257 0.6884 0.2974

Aci_MR95 994 2859 0.9624 2.0668 0.5237
Abi_49176 1069 2951 0.9608 1.9395 0.9622
Aci_20731 1090 2946 0.1540 2.3014 1.1086
Aci_PHEA 1561 4640 0.3701 12.06 -
iAF1260 2382 6368 4.4355 3687.2 -
iJO1366 2583 7284 4.1608 70.5 35.556
Recon1 3742 8717 0.7184 208.5 -
Recon2 7440 19791 2.6116 10445* -
Recon3 13543 48187 31.114 29211* -

LP Model Vars (n) nnz CRHMC CHRR CDHR

israel 316 2519 0.1186 1.2224 0.4426
gfrd_pnc 1160 2393 0.2199 40.988 18.468
25fv47 1876 10566 0.8159 199.9 -
pilot_ja 2267 11886 1.3490 5059* -
sctap2 2500 7334 0.6752 520.2 -
ship08l 4363 9434 0.6258 6512 -
cre_a 7248 17368 2.2205 30455* -

woodw 8418 23158 2.0689 30307* -
80bau3b 12061 22341 11.881 47432* -
ken_18 154699 295946 1616.3 - -

Table 1: Sampling time per effective sample of CHRR and CRHMC. We note that CRHMC is 1000 times faster
than CHRR on the latest metabolic network (Recon3). Sampling time with asterisk (*) indicates that the effective
sample size is less than 10.

mixing rate attained was up to 6 orders of magnitude faster for CRHMC compared to CHAR, imply-
ing that CRHMC converged to uniform distribution substantially faster than the other competitors.
This gap in mixing rate increased super-linearly in dimension, enabling CRHMC to run on large
instances of dimension up to 100000.

Sub-quadratic Sampling Time. We next examined the sampling time Ts in terms of both the
nnz of A and the dimension of the instance. We computed the runtime of algorithms until their
termination divided by the effective sample size of drawn samples, where we ignored the time it takes
for preprocessing. Note that the sampling time Ts is essentially multiplication of the mixing rate and
the per-step complexity (i.e., how much time each step takes).

As shown in Figure 3.2 and Table 1, we found that the per-step complexity of CRHMC was small
enough to make the sampling time sub-quadratic in both dimension and nnz, whereas CHAR had at
least a cubic dependency on dimension, despite of a low per-step complexity. On our dataset, the
sampling time of CRHMC was up to 4 orders of magnitude less than that of CHRR and CDHR.
While CHRR can be used on dimension only up to a few thousands, increasing benefits of sampling
time in higher dimension allows CRHMC to run on dimension up to 0.1 million.

3.3 CRHMC on Structured Instances

To see the behavior of CRHMC on very large instances, we ran the algorithm on three families of
structured polytopes – hypercube, simplex, and Birkhoff polytope – up to dimension half-million. We
attempted to draw 500 uniform samples with a 1 day time limit (except for 2 days for half-million-
dimensional Birkhoff polytope). The definitions of these polytopes are shown in Appendix A.1.

10
1

10
2

10
3

10
4

10
5

10
6

Dimension

10
1

10
2

10
3

10
4

S
te

p
/S

a
m

p
le

Mixing Rate

Cube: dim
0.34 

Simplex: dim
0.33 

Birkhoff: dim 0.43

10
1

10
2

10
3

10
4

10
5

10
6

Dimension

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
/S

a
m

p
le

 (
s
)

Sampling Time

Cube: dim
0.76 

Simplex: dim
0.83 

Birkhoff: dim 1.08

Figure 3.3: Mixing rate and sampling time on structured polytopes including hybercubes, simplices, and
Birkhoff polytopes. CRHMC is scalable up to 0.5 million dimension on hypercubes and simplices and up to 0.1
million dimension on Birkhoff polytopes. We note that on the 0.5 million dimensional Birkhoff polytope the
ESS is only 16, which is not reliable compared to the ESS on the other instances.

To the best of our knowledge, this is the first demonstration that it is possible to sample such a
large model. As seen in Figure 3.3, CRHMC can scale smoothly up to half-million dimension on
hypercubes and simplices and up to dimension 105 for Birkhoff polytopes (we could not obtain
a reliable estimate of mixing rate and sampling time on the half-million dimensional Birkhoff

9



polytope, as the ESS is only 16 after 2 days). However, we believe that one can find room for further
improvement of CRHMC by tuning parameters or leveraging engineering techniques. We also expect
that CRHMC enables us to estimate the volume of Bn for n ≥ 20, going well beyond the previously
best possible dimension.

3.4 Uniformity Test

We used the following uniformity test to check whether samples from CRHMC form the uniform
distribution over a polytope P : check that the fraction of the samples in the scaled set x · P is
proportional to xdim. As seen in Figure 3.4, the empirical CDFs of the radial distribution to the power
of (1/dim) are close to the CDFs of the uniform distribution over those polytopes.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

F
(x

)

Empirical CDF of the Radial Distribution

Empirical CDF

Uniform

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

F
(x

)

Empirical CDF of the Radial Distribution

Empirical CDF

Uniform

Figure 3.4: We plot the empirical cumulative distribution function of the radial distribution to the power of
(1/dim) with 1000 ESS obtained by running CRHMC on ATCC-49176 (952 × 1069, left) and Aci-PHEA
(1319× 1561, right), and in the plot x-axis is the scaling factor. We can observe the CDFs are very close to the
CDFs of the uniform distribution over the polytopes defined by two instances.

Acknowledgement. The authors are grateful to Ben Cousins for helpful discussions, and to Ronan
Fleming, Ines Thiele and their research groups for advice on metabolic models. This work was
supported in part by NSF awards DMS-1839116, DMS-1839323, CCF-1909756, CCF-2007443 and
CCF-2134105.

References

[1] Hans C Andersen. Rattle: A “velocity” version of the shake algorithm for molecular dynamics
calculations. Journal of computational Physics, 52(1):24–34, 1983.

[2] Ivona Bezáková, Daniel Štefankovič, Vijay V Vazirani, and Eric Vigoda. Accelerating simulated
annealing for the permanent and combinatorial counting problems. SIAM Journal on Computing
(SICOMP), 37(5):1429–1454, 2008.

[3] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
Universal Probabilistic Programming. Journal of Machine Learning Research (JMLR), 20:28:1–
28:6, 2019.

[4] Marcus Brubaker, Mathieu Salzmann, and Raquel Urtasun. A family of MCMC methods on
implicitly defined manifolds. In Artificial intelligence and statistics (AISTATS), pages 161–172,
2012.

[5] Yogin E Campbell and Timothy A Davis. Computing the sparse inverse subset: an inverse
multifrontal approach. University of Florida, Technical Report TR-95-021, 1995.

[6] Apostolos Chalkis and Vissarion Fisikopoulos. volEsti: Volume approximation and sampling
for convex polytopes in R. arXiv preprint arXiv:2007.01578, 2020.

[7] Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin Yu. Fast mixing of Metropolized
Hamiltonian Monte Carlo: Benefits of multi-step gradients. Journal of Machine Learning
Research (JMLR), 21:92–1, 2020.

10



[8] Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped
Langevin MCMC: a non-asymptotic analysis. In Conference on Learning Theory (COLT),
pages 300–323. PMLR, 2018.

[9] Sinho Chewi, Thibaut Le Gouic, Chen Lu, Tyler Maunu, Philippe Rigollet, and Austin Stromme.
Exponential ergodicity of mirror-Langevin diffusions. Advances in Neural Information Process-
ing Systems (NeurIPS), 33:19573–19585, 2020.

[10] Adam D Cobb, Atılım Güneş Baydin, Andrew Markham, and Stephen J Roberts. Introducing
an explicit symplectic integration scheme for Riemannian manifold Hamiltonian Monte Carlo.
arXiv preprint arXiv:1910.06243, 2019.

[11] Ben Cousins and Santosh Vempala. A practical volume algorithm. Mathematical Programming
Computation, 8(2):133–160, 2016.

[12] Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

[13] James W Demmel. Applied numerical linear algebra. SIAM, 1997.

[14] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte
Carlo. Physics letters B, 195(2):216–222, 1987.

[15] Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling:
Metropolis-Hastings algorithms are fast! In Conference on Learning Theory (COLT), pages
793–797. PMLR, 2018.

[16] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm for approxi-
mating the volume of convex bodies. Journal of the ACM (JACM), 38(1):1–17, 1991.

[17] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian Monte
Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(2):123–214, 2011.

[18] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM, 2008.

[19] Ernst Hairer, Marlis Hochbruck, Arieh Iserles, and Christian Lubich. Geometric numerical
integration. Oberwolfach Reports, 3(1):805–882, 2006.

[20] Hulda S Haraldsdóttir, Ben Cousins, Ines Thiele, Ronan MT Fleming, and Santosh Vempala.
Chrr: coordinate hit-and-run with rounding for uniform sampling of constraint-based models.
Bioinformatics, 33(11):1741–1743, 2017.

[21] Laurent Heirendt, Sylvain Arreckx, Thomas Pfau, Sebastián N Mendoza, Anne Richelle, Almut
Heinken, Hulda S Haraldsdóttir, Jacek Wachowiak, Sarah M Keating, Vanja Vlasov, et al.
Creation and analysis of biochemical constraint-based models using the COBRA Toolbox V.
3.0. Nature protocols, 14(3):639–702, 2019.

[22] Matthew D Hoffman, Andrew Gelman, et al. The No-U-Turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research (JMLR),
15(1):1593–1623, 2014.

[23] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for
the permanent of a matrix with nonnegative entries. Journal of the ACM (JACM), 51(4):671–697,
2004.

[24] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh Vempala. Reducing isotropy and volume to KLS:
an O∗(n3ψ2) volume algorithm. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 961–974, 2021.

[25] Ravi Kannan, László Lovász, and Miklós Simonovits. Random walks and an O∗(n5) volume
algorithm for convex bodies. Random Structures & Algorithms, 11(1):1–50, 1997.

[26] Ravindran Kannan and Hariharan Narayanan. Random walks on polytopes and an affine interior
point method for linear programming. Mathematics of Operations Research, 37(1):1–20, 2012.

11



[27] Zachary A King, Justin Lu, Andreas Dräger, Philip Miller, Stephen Federowicz, Joshua A
Lerman, Ali Ebrahim, Bernhard O Palsson, and Nathan E Lewis. BiGG Models: A platform
for integrating, standardizing and sharing genome-scale models. Nucleic acids research,
44(D1):D515–D522, 2016.

[28] Yunbum Kook, Yin Tat Lee, Ruoqi Shen, and Santosh S. Vempala. Condition-number-
independent Convergence Rate of Riemannian Hamiltonian Monte Carlo with Numerical
Integrators. arXiv preprint arXiv:2210.07219, 2022.

[29] Aditi Laddha and Santosh Vempala. Convergence of Gibbs sampling: Coordinate Hit-and-Run
mixes fast. The 37th International Symposium on Computational Geometry (SoCG), 2021.

[30] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Logsmooth gradient concentration and tighter
runtimes for metropolized Hamiltonian Monte Carlo. In Conference on Learning Theory
(COLT), pages 2565–2597. PMLR, 2020.

[31] Yin Tat Lee and Santosh S Vempala. Convergence rate of Riemannian Hamiltonian Monte Carlo
and faster polytope volume computation. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1115–1121, 2018.

[32] Yin Tat Lee and Man-Chung Yue. Universal barrier is n-self-concordant. Mathematics of
Operations Research, 2021.

[33] Nathan E Lewis, Harish Nagarajan, and Bernhard O Palsson. Constraining the metabolic
genotype–phenotype relationship using a phylogeny of in silico methods. Nature Reviews
Microbiology, 10(4):291–305, 2012.

[34] László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM Journal on Computing
(SICOMP), 35(4):985–1005, 2006.

[35] Hariharan Narayanan and Piyush Srivastava. On the mixing time of coordinate Hit-and-Run.
Combinatorics, Probability and Computing, pages 1–13, 2021.

[36] Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2(11):2, 2011.

[37] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming. SIAM, 1994.

[38] Pauli Pihajoki. Explicit methods in extended phase space for inseparable hamiltonian problems.
Celestial Mechanics and Dynamical Astronomy, 121(3):211–231, 2015.

[39] Sebastian Reich. Symplectic integration of constrained Hamiltonian systems by Runge-Kutta
methods. University of British Columbia, Department of Computer Science, 1993.

[40] Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions
and their discrete approximations. Bernoulli, pages 341–363, 1996.

[41] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. Probabilistic programming in
Python using PyMC3. PeerJ Computer Science, 2:e55, 2016.

[42] Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling.
Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

[43] Umut Simsekli, Roland Badeau, Taylan Cemgil, and Gaël Richard. Stochastic quasi-newton
Langevin Monte Carlo. In International Conference on Machine Learning (ICML), pages
642–651. PMLR, 2016.

[44] Stan Development Team. RStan: the R interface to Stan, 2020. R package version 2.21.2.

[45] Kazuhiro Takahashi. Formation of sparse bus impedance matrix and its application to short
circuit study. In Proceeding of PICA Conference, June, 1973, 1973.

[46] Ines Thiele, Neil Swainston, Ronan MT Fleming, Andreas Hoppe, Swagatika Sahoo, Maike K
Aurich, Hulda Haraldsdottir, Monica L Mo, Ottar Rolfsson, Miranda D Stobbe, et al.
A community-driven global reconstruction of human metabolism. Nature biotechnology,
31(5):419–425, 2013.

12



Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In Section 3.3, we mention that
we could not obtain a reliable estimates of measures in dimension higher than 105 and
we believe there is room for further improvement of our algorithm.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work
has no negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Appendix
(to which we defer our proofs), we clearly state any assumption if needed.

(b) Did you include complete proofs of all theoretical results? [Yes] We include all proofs
in Appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section 3
and Appendix A.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] Our algorithm does not require training.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We specified our experimental
setting in Section 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We made clear
reference to existing packages in Section 3.

(b) Did you mention the license of the assets? [Yes] See Section 3.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We provide an anonymized link to our algorithm package in Section 3.1.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] All existing packages we used in the experiment are publicly
available for academic purpose.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Our datasets consist of metabolic models
from molecular system biology and LP examples, which have no personally identifiable
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13


	Introduction
	Algorithm: Constrained RHMC
	Basics of CRHMC
	Efficient Computation of H/x and H/v
	Discretization

	Experiments
	Experimental Setting
	 Mixing Rate and Sampling Time
	CRHMC on Structured Instances
	Uniformity Test


