Distributed Threshold-based Offloading for
Heterogeneous Mobile Edge Computing

Xudong Qin*

Qiaomin Xiel

Bin Li*

*School of EECS, Pennsylvania State University, State College, Pennsylvania, USA
TDepartment of ISyE, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract—In this paper, we consider a large-scale hetero-
geneous mobile edge computing system, where each device’s
mean computing task arrival rate, mean service rate, mean
energy consumption, and mean offloading latency are drawn
from different bounded continuous probability distributions to
reflect the diverse compute-intensive applications, mobile devices
with different computing capabilities and battery efficiencies,
and different types of wireless access networks (e.g., 4G/5G
cellular networks, WiFi). We consider a class of distributed
threshold-based randomized offloading policies and develop a
threshold update algorithm based on its computational load,
average offloading latency, average energy consumption, and
edge server processing time, depending on the server utilization.
We show that there always exists a unique Mean-Field Nash
Equilibrium (MFNE) in the large-system limit when the task
processing times of mobile devices follow an exponential distri-
bution. This is achieved by carefully partitioning the space of
mean arrival rates to account for the discrete structure of each
device’s optimal threshold. Moreover, we show that our proposed
threshold update algorithm converges to the MFNE. Finally, we
perform simulations to corroborate our theoretical results and
demonstrate that our proposed algorithm still performs well in
more general setups based on the collected real-world data and
outperforms the well-known probabilistic offloading policy.

I. INTRODUCTION

With the trend of pushing artificial intelligence to mobile
devices with constrained CPU/GPU capabilities, many appli-
cations leverage mobile edge computing schemes to enable
real-time compute-intensive machine learning tasks such as
Internet of Things (IoT) health monitoring systems (e.g.,
[1], [2]) and animals monitoring and tracking on farms with
IoT devices and edge computing systems (e.g., [3]). This is
achieved by offloading compute-intensive tasks to powerful
edge servers to reduce the task processing time and energy
consumption of mobile devices. However, users experience
offloading latency and processing latency at edge servers as
well as offloading energy consumption if they offload their
computing tasks to the edge servers. The processing delay at
edge servers depends on the edge server utilization. The larger
the server utilization, the larger the processing delay at edge
servers. As such, when more users offload their computing
tasks to the edge, they experience large processing delays at
edge servers. Therefore, a central question in mobile edge
computing systems is how each device offloads its computing
tasks to the edge to optimize the task processing delay and
energy consumption.
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While edge computing has received significant research
interest in recent years (see [4], [S] for a comprehensive
survey), much of the prior work on mobile edge computing
systems (e.g., [6], [7], [8], [9], [10]) focused on the static
model, where the profiles of all computing tasks (such as the
number of tasks, each task’s processing time) are available
before the algorithm operation. For example, [6] and [7]
developed offloading algorithms that minimize the average
energy consumption in mobile devices. [8] proposed offloading
strategies that minimize the average task processing latency.
[9] and [10] jointly optimized energy efficiency and task
processing latency in mobile devices. However, this line of
work fails to capture the dynamics of computing tasks, which
is ubiquitous in practical systems.

There have been some works on edge computing systems
(e.g., [11], [12], [13], [14]) considering the dynamic model,
where computing tasks dynamically arrive at the IoT devices
and are processed either by local devices or edge/cloud servers.
However, they focused on centralized solutions based on
a stochastic network optimization framework (see [15] for
an overview) and thus did not apply to large-scale edge
computing systems. Another line of research work (e.g., [16],
[17]) considered a distributed probabilistic offloading design
for the dynamic model, where each mobile device determines
its offloading probability that its computing tasks are uploaded
to edge servers to minimize the average cost. For example, the
authors in [17] formulated a game theory model to determine
the offloading probability.

On the other hand, the cost optimization for the dynamic
model can be formulated as a Markov decision process (MDP)
problem whose optimal solutions typically have threshold-
based structure (e.g., [18], [19]): an incoming task is processed
locally if the number of tasks in the local device is less
than some threshold, and offloaded to edge servers otherwise.
Indeed, the threshold-based policy typically outperforms the
well-studied probabilistic offloading policy (see Section IV-C).
Moreover, threshold-based policies have a distributed nature
and are easy to be deployed in large-scale mobile edge
computing systems.

As such, we are interested in the class of distributed
threshold-based offloading policies, where each user makes
its offloading decision based on its own threshold. In a recent
work [20], the authors considered a distributed threshold-based
algorithm design for large-scale homogeneous mobile edge
computing, where all mobile devices have the same task arrival



rate and service rate. However, mobile edge computing sys-
tems are heterogeneous, consisting of diverse IoT devices with
different CPU/GPU capabilities and battery efficiencies, dif-
ferent types of wireless access networks (e.g., 4G/5G cellular
networks, WiFi), and diverse compute-intensive applications.
The algorithm and analysis developed in [20] do not apply to
such a heterogeneous edge computing system.

In this paper, we consider a heterogeneous mobile edge
computing system, where each mobile device’s mean com-
puting task arrival rate, mean service rate, the average energy
consumption of processing and offloading a task, and mean
offloading latency are drawn from different bounded continu-
ous probability distributions to model the system heterogeneity
such as diverse compute-intensive applications, mobile devices
with different computing capabilities and energy consumption,
and various wireless access networks. We focus on the class of
distributed threshold-based algorithms. Given the distributed
nature of the threshold-based offloading policy, we are inter-
ested in investigating whether there exists a unique Mean-Field
Nash Equilibrium (MFNE) under which each device has no
incentive to deviate from its optimal threshold. If such a unique
MEFNE exists, can we design a distributed threshold update
algorithm under which the system converges to equilibrium?
The main challenges to answering these questions are the fol-
lowing: (i) In contrast to the distributed probabilistic offloading
algorithms that optimize the offloading probability, the opti-
mal thresholds for the distributed threshold-based offloading
policies exhibit a discrete nature, which, together with the
heterogeneity of the system, makes it difficult to characterize
the MENE; (ii) It is challenging to develop a distributed thresh-
old update algorithm that converges to the MFNE, since each
device only has its local task processing information, energy
consumption, edge server utilization, and offloading latency,
without the knowledge of any other devices’ information.

The main results and contributions of this paper are sum-
marized as follows:

e We propose a Distributed Threshold Update (DTU) Al-
gorithm that iteratively updates each device’s threshold based
on its average queue length, task offloading latency, energy
consumption, and edge server utilization (see Algorithm 1 in
Section III-A).

e We show that there always exists a unique Mean-Field
Nash Equilibrium (MFNE) in the large-system limit when the
task processing time in local devices follows an exponential
distribution (see Theorem 1 in Section III-B). The proof is
quite involved since the optimal threshold exhibits a discrete
nature for each individual device. It is non-trivial to establish
the continuity of the best response function with respect to
server utilization. We tackle this challenge by partitioning the
space of mean arrival rates in a novel way.

e We further show that our proposed DTU Algorithm
converges to the unique MFNE. This is achieved by exploring
the bisection property of the “estimated” server utilization,
i.e., it always increases or decreases towards the MFNE (see
Theorem 2 in Section III-B).

e In Section IV, we first perform simulations to validate

our theoretical findings. We then demonstrate that our pro-
posed DTU Algorithm still performs well in practical setups,
including real-world data for local processing time, offload-
ing latency, and asynchronous threshold updates. Finally, we
demonstrate the superior performance of our proposed algo-
rithm over the well-studied distributed probabilistic offloading
policy.

II. SYSTEM MODEL

We consider a mobile edge computing system with N IoT
devices (referred to as users), where users offload computing
tasks to edge servers via wireless networks, as shown in Fig.
1. Tasks arrive at each user n (n = 1,2,--- , N) according
to the Poisson process with the rate a,,. Each user n decides
whether the newly arriving task is offloaded to the edge or
processed in its local device. We assume that each user n is
able to process a newly arriving task in the local device with
mean service time 1/s,,, and each user n maintains a queue in
its local device that holds incoming tasks and processes tasks
in the First-Come-First-Serve (FCFS) manner. We let ¢, (t) be
the queue length of user n at time ¢, denoting the number of
awaiting tasks. If a task is offloaded to edge servers, it can
be processed with the total service rate of N¢, where c is the
service capacity such that all the computing tasks of each user
can be processed at edge servers.

To model the heterogeneity of computing applications and
mobile devices, we assume that both mean arrival rate a,, and
mean service rate s,, are sampled from probability distribu-
tions of independent bounded non-negative continuous random
variables A and S, respectively. In particular, we assume that
0 < A< A and Sy < S < Spax for some positive
constants A ax, Smin, and Smax. As such, users have different
mean task arrival rates and service rates, capturing the fact
that they might use different compute-intensive applications
and their devices have different processing capabilities. Here,
we assume that A, < ¢ (and hence a, < ¢,Vn) to ensure
that all incoming tasks can be processed by edge servers.
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Fig. 1: A system with N = 5 users

On the one hand, computing tasks that are processed locally
will suffer from both queueing delays and large processing
delays in local devices due to constrained local processing
capabilities. On the other hand, offloading computing tasks to
high-performance edge servers can be processed much faster
while experiencing task offloading latency (including both
communication delay and processing time in edge servers).



In order to model the heterogeneity of each user’s network
conditions, we assume that offloading latency of each com-
puting task of user n follows a probability distribution with
mean T,,, where 7,, is sampled from a probability distribution
of a bounded non-negative continuous random variable 7', and
0 < T < Tax for some positive constant T},,x. We let
v € [0,1] denote the edge server utilization and let function
g() denote the delay experienced at edge servers when the
current server utilization is 7, where g : [0,1] — [0, Giax]
is an increasing and continuous function for some positive
constant Gp.x. This is motivated by the fact that a larger
server utility typically results in a larger delay.

For each incoming task, each user n processes tasks locally
and offloads tasks to edge servers with the average energy
consumption of p, ; and p, g per task!, respectively. To
capture the heterogeneity of users’ energy consumption, we
further assume that both p,, ;, and p,, g are sampled from the
probability distribution of two different bounded non-negative
continuous random variables Py, and Pg, respectively, where
0 < Pr, £ Pr,max and 0 < Pg < Pg nmax for some positive
constants Pr, max and Pg mayx, respectively.

To minimize both the computing delay of tasks and the
energy consumption of mobile devices, each user needs to
carefully decide whether a newly incoming computing task
will be processed locally or offloaded to edge servers. Note
that the offloading problem of each user shares a similar
structure with the optimal admission control of a single queue
whose solution has a threshold-based structure (see [21]).
In addition, threshold-based policies are easy to implement
in a distributed manner, especially when there are a lot of
IoT devices. Moreover, we demonstrate via simulations (see
Section IV-C) that the threshold-based policy outperforms
widely-studied probabilistic offloading policy (e.g., [22], [23],
[24] and [25]) under which each user offloads incoming
computing tasks with a certain probability.

To that end, we focus on the following threshold-based
offloading policy for each user. Let |y] denote the largest
integer that is not greater than y, and we recall that g, (t) is
the number of computing tasks in the user’s local device n
at time t. Then, we consider the following Threshold-based
Randomized Offloading (TRO) policy:

Threshold-based Randomized Offloading (TRO) Policy:
Each user n with a real-value threshold x,, > 0 makes the
following offloading decision when a new computing task
arrives:

(i) If ¢, (t) < |z ], then the new task joins the local device;

(ii) If ¢,,(t) = |z, ], then the new task joins the local device
with probability x,, — |z, ] and is uploaded to edge servers
with probability 1 — (z, — |2, ]);

(iii) If g, (t) > |xn|+1, then the new task will be uploaded
to edge servers.

Under the TRO policy with a threshold z,, when z,, =
0, user n will upload all its incoming tasks to edge servers;

'Our model can be easily adapted to the case with the average energy
consumption per time unit.

when x, = 2.5, user n will admit an incoming task locally
if its queue-length is less than 2, and upload the incoming
task with probability 0.5 if its queue-length is equal to 2, and
upload the incoming task if its queue-length is greater than or
equal to 3. Note that our TRO policy is a generalization of the
threshold-based offloading policy studied in [20], where the
threshold parameters are integers. We let Q,,(z,) denote the
average queue-length of user n, and let o, (x,,) be the average
task offloading probability of user n (i.e., the fraction of time
offloading tasks). While both the average queue length and the
average task offloading probability depend on the arrival rate,
service time distribution, and threshold decision, we explicitly
use Qn(zy) and o, (z,) to emphasize the dependence on the
threshold z,,, which will be optimized to minimize the average
computing delay and average energy consumption.

For each incoming task at user n with threshold parameter
xy, if it is processed locally, then it experiences the average
delay % by Little’s Law, and its average energy
consumption is py, , where a,(1 — ay,(z,)) denotes the
average arrival rate of computing tasks processed in the local
device. If it is offloaded to the edge servers with the utilization
v, then it incurs the offloading latency of mean 7,, and the
processing delay g(-y) at the edge servers as well as the average
energy consumption p,, g for wireless transmissions. Noting
that the task is offloaded to the edge servers with probability
ay(zy,), the average cost (including both average computing
delay and energy consumption) of user n with threshold x,,
is defined as follows:

wn(l - an(xn))pn,L + %

+ (wnme + 9(7) + Tn)an(mn)a (1

where 0 < w,, < Wnpax, V1 are system weight parameters that
characterize the trade-off between task processing latency cost
and energy consumption, and wy,,x 1S some positive constant.
The larger the parameter w,,, the more emphasis on the energy
consumption in the overall cost of user n (cf. (1)).

In this paper, we are interested in the large-scale mobile
edge computing system (i.e., IV is sufficiently large). We aim
to develop a distributed offloading algorithm under which each
user updates its own threshold to minimize its cost function
without knowing all other users’ thresholds. This raises two
fundamental questions: 1) does such an algorithm converge?
2) If so, what does it converge to? We address these questions
from a mean field game perspective. In particular, we assume
our considered system operates in a Quasi-Stationary manner
as the number of users N — o0, i.e., each user optimizes their
cost (1) in a slower time scale while the server utilization is
updated in a faster time scale. Therefore, the server utilization
is a constant from the users’ point of view whenever users
update their thresholds (see [26] and [27] for more detailed
explanations about the two different time scales).

Here, we consider two mappings that characterize server
utilization and users’ thresholds updating, respectively. We first
define J; : (:En)nj\[:1 — 7, i.e., given all users’ thresholds
(r,)N_;, we have a server utilization v € [0, 1], which



is updated in a faster time scale. Then, for the fixed edge
server utilization v € [0,1], each user n minimizes its own
cost function (1) and obtains a new threshold x, based
on server utilization . We define this process as mapping
Jo iy — (z,)_,, which occurs in a slower time scale.

Having characterized the two different mappings, we define
v* to be the Mean Field Nash Equilibrium (MFNE) of the
system if and only if

7= N(=2(0) 2

In the mapping Jo, each user plays their best response,
minimizing the cost function (1), given the current server
utilization . The resulting average edge server utilization is
25:1 0 (25 (Vs @, Ony Ty Py P, ))/ (N €), which con-
verges to E4 o1 p, Py [Aa(z*(v; A,0,T, P, Pg))/c] al-
most surely as N — oo according to the Strong Law of Large
Numbers, where © £ A /S. Therefore, the MFNE ~* (cf. Eq.
(2)) can be rewritten as

AOZ(JU*(’Y*;A7@,T, PLypE))
C

v =Eaer1P, Pg 3)

Here, we study the problem in a large-system limit (i.e.,
N — oo) where each user’s decision on the threshold has a
minimal impact on the server utilization v and thus, each user
treats the server utilization as a fixed constant when optimizing
its own cost function. If the system reaches the MFNE (when
it exists), each user adopts the optimal threshold; thus, no user
has the incentive to change the current threshold unilaterally,
and the server utilization will remain the same.

We remark that our game formulation in the large-system
regime corresponds to the so-called mean field game (MFQG)
[28], [29]). However, to the best of our knowledge, our
problem is not a special case of any existing work, and
their analysis of MFNE is not applicable to our setting. In
particular, the existing literature on MFG (e.g., [30], [31], [32],
[33]) primarily focused on either finite-time horizon or infinite
horizon with discounted cost. In contrast, our problem involves
infinite-horizon average cost—including average queue length,
average offloading cost, and average energy consumption.
Some recent work on MFG with infinite-horizon average cost
focuses on settings with homogeneous players/users (e.g.,
[34]), while we consider heterogeneous users (i.e., each user
has its own arrival rate, service rate, average offloading latency,
and average energy consumption). Furthermore, some work
(e.g., [32]) assumed the cost function to be continuously
differentiable, while the cost function in our problem is not
differentiable everywhere (i.e., it is not differentiable at all
integer points, as shown in Fig. 8 in Appendix A).

Next, we develop a distributed threshold update algorithm
and show that it converges to the unique MFNE, assuming
that the user’s local processing time follows an exponential
distribution.

III. ALGORITHM DESIGN AND MAIN RESULTS

In this section, we present a distributed threshold update
algorithm under which each user iteratively updates its thresh-

old based on server utilization information of the edge servers
without knowing any other users’ threshold information. Then,
under the assumption of exponential processing time in the
local devices, we show that a unique MFNE always exists,
and our proposed algorithm converges to this MFNE.

A. Algorithm Description

In this subsection, we present a Distributed Threshold
Update (DTU) Algorithm under which each user iteratively
updates its threshold based on edge server utilization. Let
€ € (0,1) be a given parameter that controls the convergence
accuracy of the DTU Algorithm. We use v, € (0,1) and
7 € [0,1] to denote the true server utilization and the
“estimated” server utilization in the ** iteration, respectively.
We use 7; to denote the non-increasing step size in the t"
iteration. We introduce a counter L to control the step size 7.
Let aﬁf ) be the optimal threshold of user n at the t'" iteration
given the estimated server utilization ;.

Algorithm 1 Distributed Threshold Update (DTU) Algorithm

I: Given any 0 < 19 < 1,7 =0,7_1 = 1,0 < e < 1, and
L =1,t =1, performs the following:

2: while [y,_1 —7;_a| > ¢, the edge servers do

3:

~ . . — V-1
Ve mln{17’7t1 + N1 m}’ )
t— V-1

and broadcasts 7, to all users.
for eachusern =1,2,--- ;N do

Qn(2n)

Qn

fg“) € argmin {wnpn,L(l —an(z,)) +
zn >0

+ (Wnpne + 9(3) + ) Oén(ffn)} ®)

7:  end for
The edge servers perform:
: if ¢ > 2 and :Y\t = at—? then
10: L+ L+1,

11: ne < 12,
12:  else
13: Nt < Nt—1-
14:  end if
15:
1 N anay (fgz“_l))
— — _ 6
Yer1 & ; - (6)

16:  t<t+1.
17: end while

While the server utilization information -, is available at
the beginning of each iteration ¢, we introduce the “estimated”
server utilization 7, to facilitate each user to control its own
threshold decision. The motivation comes from the observation
that the server utilization ;_; in the previous iteration for



the threshold decision-making in (5) in the ¢ iteration is
out of the system’s control since v;_1 depends on all users’
thresholds, and users do not share their threshold updates
information with edge servers. Moreover, directly using actual
server utilization in (5) does not have a theoretical guarantee
that the algorithm will converge. Therefore, we choose to use
“estimated” server utilization 7, rather than the actual server
utilization ;.

According to (4), if the server utilization is underestimated
(i.e., Y4—1 < ), then the “estimated” server utilization will
increase (i.e., 7y > 7;_1). Otherwise, it will decrease. In
addition, if the “estimated” server utilization oscillates (i.e.,
Y = 7i_2), then it implies that the convergence point is
between 7; and 7;_o and thus we need to reduce the step
size to make sure that the “estimated” server utilization is
closer to the convergence point. As such, the “estimated”
server utilization gets closer and closer to the desired value
and eventually converges.

Next, we are interested in understanding whether our pro-
posed DTU Algorithm can converge, and if it does, will it con-
verge to the MENE of the system? To answer these questions,
we assume that the processing time of each task for each user
follows an exponential distribution. Under this assumption,
the number of tasks of each user forms a Continuous-Time
Markov Chain (CTMC) under the TRO policy with threshold
z, and thus we can explicitly calculate the average queue-
length Q(z) and offloading probability a(z) given its arrival
rate a¢ and service rate s, i.e.,

_glal
o 2 + (2] + D)o - Lot

Q) = _Lwa*‘;“), itg£1, D
x|+1)(2x—|x .
UslehCrolol) g 1,

(179)0|.TJ (1= (1=0)(z—|z]))
a(z) = { 1700 (e—[z])(1-0)0t=]+17

1 : _
T+ 1f9—1,

if 0 41, ®)

where we recall that § = a/s denotes the arrival intensity, and
1-46
1—0l=l+l 4 (z— |z])(1 — 9)fLzl+1

represents the probability of no tasks in the local device.

It is easy to verify via basic calculus that for any fixed
arrival intensity 0, both Q(z) and «(z) are continuous with
respect to the threshold z. Fig. 2a and Fig. 2b show Q(x) and
a(x) with respect to = with arrival intensity § = 4, illustrating
that both of them are indeed continuous with respect to x.

We remark that our distributed threshold update algorithm
is different from the algorithm developed in [20] for a homo-
geneous mobile cloud computing, where all mobile devices
have the same arrival rate and service rate. In particular, we
introduce the “estimated” server utilization to facilitate each
user to control its own threshold decision. Moreover, under
our proposed threshold updating algorithm, the best response
function with respect to (w.r.t.) the server utilization first maps
interval [0, 1] to a non-negative integer space and then maps
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Fig. 2: a(z) and Q(x) when 6 = 4.

it back to the interval [0,1]. Such a mapping introduces a
significant challenge in proving the continuity of the best
response function w.r.t. the server utilization, which is the key
to establishing the existence and uniqueness of the MFNE.

B. Main Results

In this subsection, we study the convergence property of
our proposed DTU Algorithm in the large-system limit (i.e.,
N — o0) under the assumption that the processing time of
computing tasks in local devices follows an exponential distri-
bution. In particular, we first prove that the considered large-
scale heterogeneous mobile edge computing system always
has a unique MFNE and then show that our proposed DTU
Algorithm converges to this unique MFNE.

Theorem 1: There always exists a unique MFNE ~* € (0,1)
under the assumption that the local processing time of each
task for each user follows an exponential distribution.

Proof: Here, we provide a proof sketch. We first charac-
terize the optimal solution ©*(y; a, 8, 7, pr,, pr) that minimizes
the individual user’s average cost, given her arrival rate a,
arrival intensity 6 (i.e., the service rate is equal to af),
mean offloading latency 7, average local processing energy
consumption py, and offloading energy consumption pg as
well as the edge server utilization . Based on the structure
of the optimal solution, we are able to capture the server
utilization after users’ threshold decision update given the
current server utilization vy (called the best response), i.e.,

AOZ({E*(’}/, AJ ®7T7 PL7 PE))
(&

V(v) £ Eaer1.p,.Ps ©)
Then, we show that V(y) is continuous and non-increasing.
Finally, noting that V(0) < 1 under the assumption that
Amax < ¢ (guaranteeing all tasks can be processed by the
edge) and the fact that the offloading probability «(-) is always
not greater than 1, we conclude that there always exists the
unique solution v* to the equation V(y) =~ and v* € (0, 1).
The detailed proof is available in Appendix A. [ ]

Remarks 1: The proof is highly non-trivial since the optimal
threshold z*(v; a,0, 7, pr, pE) is a non-negative integer, thus
the best response function V'(-) (cf. Eq. (9)) is a composition
of the mapping from v € [0,1] to non-negative integers
x*(v;a,0,7,pr,pe) and the mapping from non-negative in-
tegers to a multi-dimensional integral. As such, it is not
obvious that V() is continuous with respect to 7, which is
crucial to establish the uniqueness and existence of MFNE.
As illustrated in Fig. 3, the offloading probability of each



user is discontinuous with respect to the server utilization
~. Nevertheless, we can establish the continuity of V() by
carefully partitioning the space of mean arrival rates with the
following two nice properties: (i) the total number of partitions
is almost continuous with respect to the server utilization ~y; (ii)
all users have the same optimal threshold within each partition
and hence V (vy) is continuous within each partition.
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Fig. 3: User’s offloading prob. w.r.t. server utilization ~.

Theorem 1 indicates that there always exists a unique MFNE
such that all users in the system have no incentive to deviate
from their current optimal thresholds. The next theorem shows
that our proposed DTU Algorithm converges to the unique NE
~v* € (0,1).

Theorem 2: The proposed DTU Algorithm eventually con-
verges to the unique MFNE ~*.

Proof: The proof is based on the bisection property of
“estimated” server utilization 7; under the DTU Algorithm,
i.e., 7; always increases or decreases towards the MFNE ~*.
In particular, we show that there exist the following two cases:
(i) If 9; < ~*, then 7; will increase until J;4¢, > +* for some
t; > 0, as demonstrated in Fig. 4a; (i) If 7 > ~*, then 7;
will decrease until J;4,, < ~v* for some t5 > 0, as shown in
Fig. 4b. In both cases, 7; gets closer and closer to v* under
our step size update rule. The detailed proof is provided in

Appendix D. [ ]
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Fig. 4: Dynamics of 7,

While the existence and uniqueness of the MFNE and the
convergence of our proposed DTU Algorithm are established
under the assumption that the task processing time of each
user follows an exponential distribution. Our simulations (cf.
Section IV-B) demonstrate that the results still hold under
general scenarios, such as real-world tasks’ local processing
time and offloading latency distributions and asynchronous
threshold updates.

(a) Case 4 < v~

IV. SIMULATIONS

In this section, we first perform simulations to validate our
theoretical results (cf. Theorem 1 and 2) and then demonstrate
that our proposed algorithm works well in practical setups, in-
cluding real-world local processing time and offloading latency

distributions, and asynchronous threshold updates. Finally,
we demonstrate the superior performance of the proposed
DTU Algorithm over the well-studied probabilistic offloading
algorithm counterpart.

A. Validation of Theoretical Results

In this subsection, we first perform simulations to validate
the existence and uniqueness of the MFNE (cf. Theorem 1),
where the processing times of computing tasks in local devices
follow an exponential distribution. Then, we run simulations to
validate the convergence of the DTU Algorithm (cf. Theorem
2). We consider N = 10* users and the cost of using edge
servers given by g(y) = 1/(1.1 — «). Mean arrival rate A,
mean service rate .S, and offloading latency 7" follow different
uniform distributions. In particular, we consider S ~ U(1,5),
T ~U(0,1), P, ~U(0,3), Pg ~ U(0,1) and w,, = 1,Vn
for all simulation setups, while we consider three different
uniform distributions for A: (i) A ~ U(0,4) under which
E[A] < E[S]; (ii) A ~ U(0,6) under which E[A] = E[S];
(iii) A ~ U(0,8) under which E[A] > E[S].

We first run numerical simulations using the Monte Carlo
method to obtain the unique MFNE under our theoretical
settings with different distributions for the mean arrival rate.
Table I summarizes the unique MFNE under three different
setups in our numerical simulation. From Table I, we can
see that the unique MENE is 0.13,0.21 and 0.28 when
E[A] < E[S],E[A] = E[S] and E[4] > E[S], respectively.

System Setup NE

E[A] < E[S] | v* =0.13
E[A] = E[S] | v* =0.21
E[A4] > E[S] | v* =0.28

TABLE I: MFNE under theoretical settings.

Fig. 5 demonstrates the convergence of the DTU Algorithm.
We can see from Fig. 5a that both server utilization 7, and
“estimated” server utilization 7; converge to the unique MFNE
~* = 0.13 (in the case with E[A] < E[S]) within 20 iterations.
Moreover, “estimated” server utilization also exhibits a bisec-
tion property, i.e., always increasing or decreasing towards the
MEFENE. Similarly, we can observe from Fig. 5b and Fig. 5c that
our proposed algorithm converges to the corresponding MFNE
~* = 0.21 (in the case with E[A] = E[S]) and * = 0.28 (in
the case with E[A] > E[S]), respectively, around 20 iterations.

B. Convergence under Practical Scenarios

In this subsection, we consider a variety of practical simula-
tion setups: each user’s local processing time is measured from
image recognition applications; offloading latency of each user
is measured using a mobile device in a wireless network
environment; each user updates its threshold asynchronously.
The probability distributions for the mean arrival rate A,
the average energy consumption of the local device, and the
average offloading energy consumption remain the same as in
Section IV-A.

In particular, we first implement YOLOvV3 (see [35] and
[36] for more details about the YOLOv3 framework), which
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Fig. 5: Convergence of DTU Algorithm under theoretical settings.

is a real-time object detection framework on a Raspberry Pi
4 microcontroller board to emulate task processing process
on mobile devices. We then perform object detection tasks
using 1000 different images (see VOC2012 [37] for the details
of the image dataset) on the Raspberry Pi 4 microcontroller
board with the YOLOv3 framework implemented, and we
measure the object detection time for each image, respectively.
Furthermore, we use the Raspberry Pi 4 to upload the same
1000 images to Google Drive via WiFi network and collect the
offloading latency for each image, respectively. Fig. 6 shows
the normalized histogram of the real-world data we collected.
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Fig. 6: Statistics of the data we have collected.

Moreover, in each iteration of the DTU Algorithm, each
user updates its threshold with probability 0.8 to model
asynchronous updates. Recall from Section IV-A, we set the
cost of using edge servers g(v) = 1/(1.1 — v) and let
P, ~ U(0,3), Pg ~ U(0,1) and w,, = 1,Vn. We consider
N = 103 users in different simulation setups. We also consider
three different uniform distributions for the arrival rate A:
(i) E[A] = 8 < E[S] = 8.9437 for A ~ U(4,12); (ii)
E[A] = E[S] = 8.9437 for A ~ U(7.3474,10.54); (iii)
E[A] = 10 > E[S] = 8.9437 for A ~ U(8,12).

System Setup NE

E[A] < E[S] | v =0.43
E[A] =E[S] | v* =0.44
E[A4] > E[S] | v* =0.46

TABLE II: MFNE under practical settings.

Similar to Section IV-A, we summarize the unique NE
under three different setups in Table II. We can observe from
Table II that there exists the unique MFNE +* = 0.43 (in
the case with E[A] < E[S]), v* = 0.44 (in the case with
E[A] = E[S]) and v* = 0.46 (in the case with E[A] > E[S]),
respectively. Moreover, Fig.7 demonstrates that our proposed
DTU Algorithm converges to the corresponding unique NE
within 20 iterations.

C. Comparison with Probabilistic Counterpart

In this subsection, we demonstrate the superior perfor-
mance of the DTU Algorithm compared to the well-studied
Distributed Probabilistic Offloading (DPO) policy (e.g., [22],
[23] and [25]) under which each user selects the offloading
probability to minimize its own cost. We consider N = 103
users, T ~ U(0,5), P, ~ U(0,3) and P ~ U(0,1)
for theoretical settings. As for practical settings, we use the
same settings as in Section IV-B and the real-world data we
have collected. For the DPO policy, we perform repeated
simulations under the same setting 5 x 10> times and calculate
98% confidence interval for the mean cost.

In particular, we perform simulations in two different
scenarios: (i) theoretical settings: S ~ U(1,5) and A ~
U(0, Apax) for Apax = 4,6 and 8, respectively; (ii) Practical
settings: we let IE[A] = 8,8.9437 and 10, respectively. Both
mean local processing time S and offloading latency 1" are
sampled from the real-world data we have collected in Section
IV-B. We can see from Table III that the average cost under
our proposed DTU algorithm for both theoretical and practical
settings reduces cost up to 30.76% and 20.07% compared to
the DPO policy, respectively.

Policies and Costs Cost under Mean cost under DPO Policy Cost

i o DTU algorithm (98% Confidence Interval) reduction (%)
Theoretical E[4] < E[S] 2.33 3.04 £+ 0.0018 30.76
settings E[A] = E[S 2.58 3.18 £ 0.0015 23.26
E[A] > E[S] 2.84 3.27+ 0.0014 15.14
Practical E[4] < E[S 11.56 13.88 £ 0.0004 20.07
settings E[A4] = E[S] 11.46 13.59 £ 0.0005 18.50
E[A] > E[S] 11.42 13.42 £ 0.0005 17.51

TABLE III: DTU Algorithm vs. DPO Policy.

V. CONCLUSION

In this paper, we considered large-scale heterogeneous mo-
bile edge computing systems for IoT applications, where each
user’s mean arrival rate, mean service rate, mean offload-
ing latency, and mean energy consumption are drawn from
different bounded continuous probability distributions. We
focused on a class of distributed threshold-based randomized
offloading policies and developed a distributed threshold up-
date algorithm under which each user updates its threshold to
minimize its average cost, consisting of local processing delay,
offloading latency, edge server processing delay, and average
energy consumption, without any information from other users
thresholds. We showed that there always exists a unique Mean-
Field Nash Equilibrium (MFNE) in the large-system limit



X 0.5 X 0.5 —x
—e—Server utilization v —e—Server utilization —e—Server utilization v
0.48 —— Estimated server utilization %; 0.48 —— Estimated server utilization 4 0.48 —— Estimated server utilization 4
& 0.46 046 046 \ﬁ Ia%
S = = I V\/ 4* =0.46
3 s . 2
- 0.44 - 044 7 = 044
¢ ) < A =0.44 <
0.42 ] V vv V =043 0.42 0.42
0.4 0.4 0.4
0 10 20 30 0 10 20 30 0 10 20 30
Iterations Iterations Iterations
(a) B[A] < B[] (b) E[A] = E[S] (©) B[4] > B[S

Fig. 7: Convergence of DTU Algorithm under practical settings

such that all users’ thresholds and server utilization remain
unchanged if the system reaches NE under the assumption
that users’ task processing time in local devices follows an
exponential distribution. We further showed that our proposed
algorithm converges to the unique MFNE. Finally, we per-
formed simulations to corroborate our theoretical findings and
demonstrated that our proposed algorithm can still work well
in practical setups and significantly outperforms the well-
known distributed probabilistic offloading algorithm.

APPENDIX A
PROOF OF THEOREM 1

Our proof starts with characterizing the optimal solution
x*(v;a,0,7,pr,pp) that minimizes the user’s cost function
(cf. (1)) given his/her arrival rate a, arrival intensity 6, and
mean offloading latency 7 as well as the edge server utilization
v. To that end, we consider the following function:

0,

£

where INT denotes the set of natural numbers, ie., INt
{1,2,3,---}. Itis easy to see that f(m/|0) is strictly increasing
with respect to m given any 6 > 0.

Next, we have the following lemma that characterizes the
solution to the minimization of the user’s cost function.

Lemma 1: Given the user’s arrival rate a > 0, arrival
intensity # > 0, server utilization v € [0,1], mean of-
floading latency 7 > 0, wireless transmission energy con-
sumption pg and local processing energy consumption py,, if
_wmaxAmaxPL,max < a(g(fY) +7+ w(pE _pL)) < f(1|‘9)7
then z*(v;a,0,7,pr,pe) = 0; if f(m|0) < a(g(y) + 7 +
w(pe —pr)) < f(m+1]0) for some positive integer m, then
1'*(’77 a, 07 T7pL7pE) =m.

The proof of Lemma 1 is available in Appendix B. Based
on Lemma 1, we are ready to investigate the properties of
V() £ Baerp, s [Aa(z*(1:4,0,T, Pr, Pg))/c].

Lemma 2: V() is continuous and non-increasing with
respect to vy € [0,1].

The proof of Lemma 2 is available in Appendix C. Lemma
2, together with V' (0) < 1 under the assumption that A,,.x < ¢
(ensuring that all computing tasks can be processed by edge
servers, which is typically true in practice.) and the fact that
the offloading probability «(-) is always not greater than 1,

if m =0,
(m—i+1)0", VmeINt,

A

f(m|0) (10)

m
=1

L

implies that there always exists the unique solution v* to the
equation V(y) =~ and v* € (0, 1). [ ]

APPENDIX B
PROOF OF LEMMA 1

To facilitate our proof, we use T'(x|y) to denote the indi-
vidual user’s cost function when the threshold is > 0 given
his/her arrival rate a > 0, offloading latency 7 > 0, arrival
intensity 6 > 0, and the edge server utilization y € [0, 1], i.e.,

Q)

T(xly) £ wpr(l — o)) + + (9(7) + 7 + wpg) (),

where we recall that Q(z) and a(x) are the average queue
length and the offloading probability, respectively, when the
threshold is x, and their expressions are given in (7) and
(8), respectively. We can easily verify via basic calculus that
given any system parameters a, 0, 7, pr, pg and v, T(x|y) is
continuous with respect to x > 0, and is differentiable at any
non-integer value x. Fig. 8a and Fig. 8b show the function
T(xz|]y = 4/3/10) when the arrival intensity § = 2 and 6 = 4,
respectively, where the function is continuous with respect to
z and differentiable at non-integer values in both cases.

4.9

Cost function

4.8

4.7

(a) Arrival intensity # = 2 (b) Arrival intensity 0 = 4
Fig. 8: Cost function T'(z|y = /3/10) when 7 = 1,p;, = 3,
pp=1and w=1.

Next, we would like to study the monotonicity of the cost
function T'(z|7y) with respect to z. We first take the derivative
of T'(x|y) with respect to x when [ — 1 < x < [ for some
1=1,2,---, ie.,

0" (f(UI6) — alg(y) + 7+ w(pe — L))
a<22;3€7+(x4147D9O

6l71
o) >0Vl = 1,2,3,-- -,
we only need to consider the sign of f(I|6) — a(g(v) + 7+
w(pg —pr)) in T’ (z|7y). Then, we consider the following two
different cases:

T'(x]y) =

Noting that



(1) If _wmaxAmaxPL,max < a(g(’Y) +7+ w(pE - pL)) <
F(116), then we have £{1[6) — a(g(7) + T + w(ps — pr)) >
0,Vl € IN* (recall that INT denotes the set of natural numbers),
since f(I|0) is non-decreasing with respect to [. Therefore, we
have T"(z|y) > 0,Vz € (I—1,1),Vl € IN*, which implies that
T(x|) is increasing when x > 0. Since T'(z|y) is increasing
and continuous, we have z*(v;a,0,7,pr,pEr) = 0.

Gi) 1 £(ml6) < a(g(7) + T+ w(pr —p1)) < f(m +1]0)
for some positive integer m, then by the monotone increasing
property of function f(I|6), we have f(I|0) — a(g(y) + 7+
w(pg —pr)) < 0,V0 <1 < m and f(I|6) — a(g(y) + 7+
w(pg —pr)) > 0,¥l > m. Therefore, we have T'(z|y) <
0,Vz < m and T'(z|y) > 0,Vz > m. Hence T'(z|y) is non-
increasing and non-decreasing when * < m and x > m,
respectively. Thus, we have «*(vy;a,0,7,pL,pr) = m is the
optimal threshold. [ |

Note that z*(v;a,0,7,pr,pr) is not necessarily unique.
For example, given a,0,k,v,7, pr,pp and w, if f(ml|d) =
a(g(vy)+7+w(peg—pr)) for some positive integer m, then the
optimal threshold could be any value between m and m + 1,
ie., 2*(v;a,0,7,pL,pE) € [m,m+ 1). As shown in Fig. 8a,
the optimal threshold can be any value between 1 and 2.

APPENDIX C
PROOF OF LEMMA 2

In this section, we will show that V(y) =
EA,@,T,PL,PE [AO((Q?*(’}/;A,@,T, PL,PE))/C} is non-
increasing and continuous with respect to v € [0, 1].

The non-increasing property of V(y) is proved
by showing that for each individual sample path,
ac(x*(v;a,0,7,pr,pE))/c is non-increasing with respect to
~ given any arrival rate a, arrival intensity 6, offloading latency
7, local processing energy consumption py and offloading
energy consumption pg. Indeed, by Lemma 1, we have
x* (’77 aaaaTavapE) = 0if _wmaxAmaxPL,max < a(g<7) +
7+ w(pe — pr)) < f(00), and 2*(v;a,0,7,pL,pE) = m
it f(ml0) < alg(y) + 7+ wips — pr)) < f(m + 1/6).
Hence, *(v;a,0,7,pr,pE) is non-decreasing with respect
to -y. This together with the fact that a(z) is non-increasing
with respect to x, implies that aa(x*(v;a,0,7,pL,pE))/cC
is non-increasing with respect to « and hence V(y) is
non-increasing.

Next, we show that V() is continuous with respect to +.
We will expand V() by leveraging Lemma 1. To facilitate
our proof, we let A = (0, Apax), Z 2 (0, Amax/Smin), T =
(Oaﬂnax], PL £ (07PL,max] and PE = (prE,max]-

Note that we can rewrite V() as follows:

V(v) =Eer P, Py [‘7(7|9,77PL,PE) ,
where

‘7(’Y|0aTapLapE) £ IEA[AO[(I‘*(’%A?@aT» PL7PE))/C
|@:97T:7'7PLZPL7PEZPE]-

_Note that V¢ € Z and V7
V(v|0,7,pL,pE) is bounded:

e T,

the function

‘7(7|9a7—apLapE)
SEA [A/C|9:67T:7aPL:PL,PEZPE] SAmax/C-

By the Bounded Convergence Theorem, it is sufficient to
prove the continuity of function V (7|0, 7, pL, pg) with respect
to v € [0,1] for any given § € Z, 7 € T, p, € Pr, and
pe € Pg. In the rest of the proof, we fix 6 € Z, 7 € T,
pr € Pr and pg € Pg. Noting that f(0]¢) = 0 and f(m|0)
is non-decreasing with respect to m, and f(m|6) > m#@ (from
(10)), there exists a non-negative integer M (-y) such that one
of the following inequalities holds:

U(Amax7'7a7_apLapE) S (_wmaxAmaXPL,maxa f(ow))v
U(Amax, 7, 7L, PE) € [f(M()]6), f(M(y) + 1]6)),

where U(y,7,7,pr.pe) = y(9(v) + 7 + w(pp — pr)) for
some y > 0.

As such, we can partition the space of arrival rate A by
defining the following events:

F_1(v)

200 € A —wWmaxAmax Pr.max < U(a, v, 7,p1,pE) < £(010)},
Fm ()

2lac A: f(m|0) <Ul(a,v,7,p1,pE) < f(m +1]0)},

where m =0,1,--- , M(y).
If the event JF_;(y) happens, then we have

‘7(’Y|97T7PL7PE) = ‘771(7|9»7—7PL7PE) according to
Lemma 1, where

Amax g1 (a)0)a(0)

‘771(7|07T7pLapE) é/ da.
0

Note that V_; (419, 7, pr, pE) is continuous since both a and
s are sampled from continuous random variables A and S,
respectively, and therefore h(a|@) is a continuous conditional
probability density function for A given © = 6 with § = a/s,
which indicates that the integral is also continuous.

If the event UMY

m=0

Fom () happens, then we have

‘7(7|077—7pLapE) =
M ()

Ea[ Y Aa(m)/c-1%,;)|© =0,T =, P, = pr, Pp = px]
m=0

M(y)
= Z ‘/t,,L(’Y‘e,T,pL,pE),

m=0

(1)

where the first step follows from Lemma 1 (i.e., if the event
Fm () happens (m =0, 1,--- , M(7)), then the event F_1 ()
can not happen, and z*(v;a,0,7,pr,pr) = m according to
Lemma 1.) and the second step is true for

T a0 ah(al8)a(m)
~ g+rtrwlrpep—rr) ahla a(m
Vm(’y|0a7_7pLapE) é/ A da7

f(m|0) C
g(M+T+wlpg—rr)



when m = 0,---,M(y) — 1, h(alf) is the conditional
probability density function for A given © = 6, and

~ Amax
Vi (W0, 7,0, pE) =

f(M(v)|6) C
g(M+tT7+w(pg—rr)

Note that if g(y) + 7 + wlps — pr) < f(1]9)
(@*(v;a,0,7,pr,pr) = 0 according to Lemma 1), then
V (4|0, 7,pL,pE) is continuous, which follows directly from
the same argument if event F_;() happens. Therefore, we
need to consider the case when g(v) + 7 + w(pe — pr) >
f(1]6). In order to prove the continuity of V(v|0,7,pr, pE)
when g(v) + 7 4+ w(pe — pr) > f(1]6), we need to show
that lima—0 V(v+AY0,7,p1, pE) = V(70, 7,01, PE)- By
the definition of M (~), M() is a non-negative integer M *

. . . . M*|0
satlsff(y]gl*ngtltllge) following equality W&;})@&[ *%0 )Amax <
WWJF\?‘]:) have two Casesj;((]g W
Amax < 55y Frrute p)s ) 5T et —pn) — Amax:

f(M*10) F(M*+1|6)

Case (i): g(v)+7+w(pe—pL) < Amax < )+T+w(pe—pL) "

We will ﬁrst show that there exists a small g > 0 such that

for any |A’y|<5 M(y + Ay) = M(y) = M*. Define ¢; =
1*16)

et st
Ao = go i Fatoe =y ad @2 £ Gt s — A,

Note that both €; and €9 are strictly positive. By the continuity
of function m with respect to «y, for a given

€1 > 0, there exists 01 > 0 such that for any |Avy| < &y,
f(M*16) f(M*|6)

we have ‘9(7+A7)+T+w(p5—m) T g +m+wlpe—pL) <e/2

Similarly, there exists d2 > 0, such that for any |A~y| < s,
S(M*+1]6) S(M™41]6)

we have ‘ — s trreten | < €2/2.

g(y+AY)+r+w(pe—pL)
Let § = min{dy, d2}. For each Ay € [0, ), by the increasing

property of g(-) with respect to v, we have

f(M*0)
gy +Av) + 7+ w(pe —pr)
JS(M*[6)
S9() 47+ wlpn —p) Amaz
fOM* +1]6)
gy +Av) + 7+ w(pe —pr)
Z f(M +1‘9) _62/2 >AmaX7

9(v) + 7+ wlpe —pr)
implying M (v + Ay) = M* = M(v). Similarly, for each
Avy € (—4,0], we have
f(M10)
9(y+ A7) +7+w(pe —pr)
f(M16)
9 +7+wlpe —pr)
f(M* +1]09)
9(vy+ A7) +7+wpe —pL)
f(M* +1]0)
9(v) + 7+ wlpe —pr)
implying M (y+ Avy) = M* = M (). Therefore, for |Avy| <
5, we have M (v + Avy) = M* = M(y). From Eq. (11), we

+ 61/2 < AmaX7

maxs

ah(al)a(M (),

have

‘7(7 + A’Y|9> T,pImpE) -
M(v)

=2

m=0

‘7(’Y|07 T,plmpE)

|:‘7'm('y + A7|07T7vapE) - ?M(’yw’TvpLapE):I .

For each m € {1,..., M(y) — 1}, we have

lim V(v + AY[0, 7, pr, pe)
Avy—0

T reGED ah(alf)a(m)

f(m]6) c
g(y+AV+T+w(pE—PrL)
f(m+1]6)
g(NF+7+wlpg—rL) ah(a|9) (m)
= 7da
f(m0) c
g(M+t+wlPpg—rr)

:Vm(’7|67TapL7pE')'

= lim da

Ay—0

Additionally, we have
Aljyrgo V) (v + A0, 7, pr, pE)

F(M(7)]0) C
g(v+AY)+T+w(pg —pL)

Amax
_ ah(al)a(m)

F(M(7)]0) C
g()+7+wlpg—rL)

—VM Y10, 7,01, PE).

da

= lim
Avy—0

Therefore, we have lima,—o V(fy + A0, 7, pL,pE) =
V (7|0, 7,pL,pE), which implies the continuity of function
function V(7).
S5y f(M™10) _
Case (ii): WMW_JFTT;&X. Note thajc (1;1;1;?; > 0,
* A
so M* > 0. Let e5 = g(’v)+7+w(pE pL) ~ g+ +wlpe—pL)

F(M*10) f(M”—1]6) ;
g(y)+7+w(pe—pL) 9(7)+T+w(pE —pL)" Again, by the

continuity of function —g(w) T TwrE=p) there exists d3 > 0,
f(M*+1]0) f(M™+1]6)

such that 9(v+AYV)+7+wlpe—pr) g(v)+T+W(pE—pL)J <e€3/2

holds for all |Avy| < ds. Similarly, there exists 64 > 0,
f(M*—1]6) f(M*—1]6)

such that ’9(7+A7)+T+W(PE_PL) T g Frulre-pr) | < €4/2

holds for all |Avy| < d4. Let 6 = min{ds,d4}.

For each Ay € [0,0), we have

A
and €4 =

f(M~16)
9(vy+ A7) + 7 +w(pe —pL)
fF(M10) _ 4
“g()+T+wlpp—pL) T
F(M* +1]9)
g(v+Av)+ 7+ wpe —pL)
s SO o g

“9(y) + 7+ wlpe — pr)
implying M (v + Avy) = M* = M(~). Following the same
line of argument for case (i), we have

AI%OV(’Y+A7|97T7PL7PE) = ‘7(7‘977—apL7pE)- (12)



For each Ay € (—0,0), we have

f(M*[0)
g(y+Ay) + IT +w(pe — pr)
JF(M*|0)
Tyt T+ wps —pn) Amaz
f(M* —1]0)
g(v +Ay) + 7 +w(pe — pL)
f(M* —1]0)

= + €4 2< Amaxa
g(y) + 7 +w(pe —pL) /

implying M (v + Avy) = M* —1 = M(vy) — 1. Note that

vﬂ[('y) (’7‘9a TapL7pE)

Amax
_ ah(alf)o(M()
F(M(1)[0) c ’
g(M+7+wlpg—rr)

F(M*10)

where we utilize our condition that ——————~2——~ = A ..,
g(M)+7+w(pe—pL)
and M* = M(v). From Eq. (11), we then have
‘7(7 + A’Y|97 T7pLapE) - ‘7(’”97 T7pLapE)
M(y)-1 _
= Z |:‘/"L(’Y+A’Y|977-7p[an) —Vm(’Y‘G,T,pL,pE)} .
m=0

Following the same line of argument for case (i), for each
m € {0,1,...,M(y) — 2}, we have

lim Vm(7 + A’Y‘aa TavapE') = Vm(’)/‘aa TapLapE)'
A~T0
Additionally, we have

lim Vi) A6
AIWI?OVM(W) 1(y+ A0, 7,p1,pE)

A
. max ah(ald)a(m
= lim 7( [0)ex( )da
AYT0 F(M(7)=1]6) c
g(y+AY)+T+wlpp—pL)
Amax

h(al|0
_ ah(alf)a(m)
f(M(v)—1]6) c
gV +1+wpE—rr)

:‘7M('y)71(7|97 T, pLapE)'

Together, we have

AIE?OW(V+A7|077-7PL7PE) = V(V‘aaTaplan)' (13)

Equations (12) - (13) imply that limay—o 17(7 +
A’Y|077_7pLapE) = V(’Y|977'»pL7PE)-
_We complete the proof for the continuity of function
V(v|0,7,pL,pE), which implies the continuity of function
function V(7). ]

APPENDIX D
PROOF OF THEOREM 2

Under our proposed DTU Algorithm, when the “estimated”
server utilization 7; reaches the MFNE ~*, then it will stay at
~* afterward. As such, we focus on the case when 7; # ~* in
the rest of the proof. Next, we exhibit the monotone properties
of 7, in two different cases, i.e., 7 < v* and 74; > ~*. Then,

by comparing |[§; — v*| with a convergent sequence {7;} in
our proposed DTU Algorithm, we obtain the desired results.

We recall that *(v*; a, 0, 7, pr, pE) is the optimal threshold
for the system with the arrival rate a, the arrival intensity 6,
local processing energy consumption pjy, offloading energy
consumption pg, the mean offloading latency 7, and the server
utilization v*. We consider two different cases, i.e., (i) 7 >
7 AD) e <

(i) If 7; > ~v*, then we have a(g(V) + 7+ w(pe —pL)) >
a(g(v*) + 7 + w(pe — pr)). By Lemma 1 and our DTU
Algorithm (cf. (5)), we have 21 > 2*(v*;a,0, 7, pL, PE).
Therefore, by the non-increasing property of offloading prob-
ability a(z), we have a(2**tY) < a(z*(v*;a,0,7,pr, PE)),
which implies that the next server utilization ;41 < +v* and
hence v;1+1 < ;. Thus, we have 4,11 = 5, — n; (cf. (4)). In
this case, 7y; will decrease in each iteration until it is less than
~*. Therefore, there exists a t; > 0 such that 7,44, < ~*.

(i) If 4, < ~*, then we have a(¢(3:) + 7 + w(pe —
pr)) < a(9(v*) + 7 + w(pe — pr)). Similar to the first
case, we have z(*+1) < 2*(y*;a,0, 7, pr, pp), which implies
that o(ZHD) > a(x*(v*;a,0,7,pr,pE)). Then, we have
Ye+1 > v* and hence ;41 > 7:. Then according to (4), we
have ;11 = min{4; + n:, 1}. In this case, 7; will increase
after this iteration until it is greater than v*. Therefore, there
exists a to > 0 such that y.ys, > 7"

Hence, under our proposed DTU Algorithm, we have

at-‘rl — at — M,
min{’/y\t + e, 1}7

if 4 > 9"

if 4 <™.

Moreover, we have [y, — 7| < [Fitt,—1 — Yewts| <
Mitt;, Vi = 1,2. Since sequence {n:} is non-increasing and
bounded, then by Monotone Convergence Theorem, {7;} is
convergent. Indeed, we will show below that 77, — 0 as t — oo
by contradiction.

Suppose that {7} converges to a constant d > 0. According
to the update rule of 7, there exists a constant ¢y such that
Vt > tg, m+ = d. Let us focus on ¢ > ¢y and consider the
following two cases: (i) 7, > ~*; (i) 7 < v*.

() If 44 > v*: Note that 7;1¢, < 7", so we have Y44, +1 =
min{7;1¢, +d, 1}. Suppose that Y4, +d > 1. Since Jy44, =
Vitt,—1—d, we have Yy, 1 = A4+, +d > 1, which contracts
with the fact that 4+, —1 < 1. Thus J44+, + d > 1 does not
hold. Therefore, 7;4+¢, +d < 1, and thus we have ;44,11 =
;Y\t—&-tl + d = ﬁt—‘,—tl—l —d —+ d = ;Y\t—&-tl—l- ACCOI'diIlg to the
update rule for the counter L (line 5 - 6 in DTU algorithm),
L is increased by 1 at t4-¢1 4+ 1. Thus 7¢+, +1 is updated with
a value smaller than d, which contracts with the assumption
that 1y = d for all t > .

(11) If :)/\t < ’7*: Recall that :)/\t_;'_tQ = min{ﬁt_,_tz_l + d, 1} >
~v*, we have Y41, +1 = Jitt, — d. Suppose that Jy4p,—1+d <
1, we have

Nettot1 = Vetts — A =Yeyto—1 +d—d=Tyi,1.

Following the same line of argument as the case of (i), we
can show that 1;1+,4+; is updated with a value smaller than d,



which again contracts with our assumption of n; = d for all
t > 1p.
Now let us consider the case J;y¢,—1 + d > 1. We then
have 4414, = 1 > v*. Thus
Vettorl = Vett, —d=1—d <7,

where the inequality follows from the fact that +* >
Yi+t,—1 > 1 — d. By the update rule, we have

= min{at+t2+1 + d, ].} = mln{l —d + d, ].}

=1 ="ttt

Vt+ta+2

Again we reach the contradiction.

Therefore, the assumption that 7, — d with d > 0 does
not hold. That is, n; — 0 as ¢ — oo. Then, for any € > 0
there exists £ > 0 such that Myye,+7 < € which implies that
Niye,47 — V¥ < € Therefore, our proposed DTU Algorithm
can eventually converge to the MFNE ~*. ]
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