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Abstract: Let E be a flat Lorentzian space of signature (2, 1). A Margulis space-time is a noncompact com-
plete Lorentz flat 3-manifold E/Γ with a free holonomy group Γ of rank g, g ≥ 2. We consider the case when
Γ contains a parabolic element. We obtain a characterization of proper Γ-actions in terms of Margulis and
Charette–Drumm invariants. We show that E/Γ is homeomorphic to the interior of a compact handlebody
of genus g generalizing our earlier result. Also, we obtain a bordification of the Margulis space-time with
parabolics by adding a real projective surface at infinity giving us a compactification as amanifold relative to
parabolic end neighborhoods. Our method is to estimate the translational parts of the affine transformation
group and use some 3-manifold topology.
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1 Introduction

Let Isom+(E) denote the group of orientation-preserving Lorentzian isometries on the oriented flat Lorentzian
space E of the signature (2, 1). Here, we have an exact sequence

1 󳨀→ ℝ2,1 󳨀→ Isom+(E) L
󳨀→ SO(2, 1) 󳨀→ 1,

whereL is the homomorphism taking the linear parts of the isometries. A parabolic of Isom+(E) is an element
whose linear part is a parabolic element of SO(2, 1).

A discrete affine group Γ acting properly on E is either solvable or is free of rank ≥ 2. (See Goldman and
Labourie [27].) While we will assume that Γ is a free group of rank ≥ 2, we say that Γ is a proper affine free
group of rank ≥ 2.

Wewill often requireL(Γ) ⊂ SO(2, 1)o for the subgroup SO(2, 1)o of SO(2, 1) acting on the positive cone.
Here, L(Γ) acts properly discontinuously and freely on a hyperbolic planeℍ2 formed by positive rays in the
cone. We say that Γ is a proper affine hyperbolic group of rank g with linear parts in SO(2, 1)o

∙ if it acts properly discontinuously faithfully and freely on E, and
∙ L(Γ) is a free group of rank g, g ≥ 2 in SO(2, 1)o, acting freely and discretely onℍ2.
It will be sufficient to prove tameness in this case.
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A real projective structureonamanifold is givenbyamaximal atlas of charts toℝPn , n ≥ 1,with transition
maps in PGL(n + 1,ℝ). A real projective manifold is a manifold with a real projective structure.

Theorem 1.1. Suppose that Γ is a proper affine free group of rank g, g ≥ 2, with parabolics and linear parts
in SO(2, 1)o. Then:
∙ E/Γ is diffeomorphic to the interior of a compact handlebody of genus g.
∙ Moreover, it is the interior of a real projective 3-manifold M with boundary equal to a totally geodesic real

projective surface, and M deformation retracts to a compact handlebody obtained by removing a union of
finitely many end-neighborhoods homeomorphic to solid tori.

These real projective surfaces are from the paper of Goldman [26]. The second item is the so-called relative
compactification.

For all cases of Margulis space-times, we have:

Corollary 1.2. Let Γ be a proper affine free group of rank ≥ 2with parabolics and linear parts in SO(2, 1). Then
E/Γ is diffeomorphic to the interior of a compact handlebody of genus g. Moreover, it is the interior of a real
projective 3-manifold M with boundary equal to a totally geodesic real projective surface, and M deformation-
retracts to a compact handlebody obtained by removing a union of finitely many end neighborhoods homeomor-
phic to solid tori.

We denote by 𝕊 the sphere of directions in E, by 𝕊+ the space of directions of positive time-like directions
and by 𝕊− the space of directions of negative time-like directions. We will consider 𝕊+ as the projectivization
of 𝕊+ ∪ 𝕊−. Then the quotient space of 𝕊+ under Γ is a complete hyperbolic surface S. Let Pπ1(S) denote the set
of parabolic elements and the identity element of π1(S). We denote by l𝕊+ (g) the length of the shortest closed
geodesic in 𝕊+/Γ corresponding to the element g ∈ Γ. By [6, Theorem 4.1] generalizing the Margulis opposite
sign lemma [40], we will need the following criterion in this paper for our group Γ.

Criterion 1.1. Let Γ be an isometry group acting on E, and let α(g) ∈ ℝ for g ∈ Γ denote theMargulis invariant
of g. The isometry group Γ satisfies the following conditions:
∙ α(γ) > 0 for every γ ∈ π1(S) \ Pπ1(S),
∙ every γ, γ ∈ Pπ1(S) \ {I}, has the positive Charette–Drumm invariant, and
∙ α(g) ≥ cS\E l𝕊+ (g) for every g realized as a closed geodesic in S \ E for the union E of mutually disjoint

cusp neighborhoods for a positive constant cS\E depending on S \ E.

Of course, we can assume the negativity also since the change of the orientation of E changes the signs of
Margulis invariants and Charette–Drumm invariants by [22] and [6].

Proposition 1.3. Suppose that Γ acts properly on E. Then Criterion 1.1 holds up to changing the orientation of E.

Proof. This is proved by [6, Theorem 4.1] and Lemma 1.4.

Let US denote the inverse image of the projection UΣ → Σ for the subset S ⊂ Σ and the unit tangent bundle UΣ
of a hyperbolic surface Σ. Let UE denote the bundle of unit space-like vectors over E.

Lemma 1.4. Suppose that Γ acts properly on E. Let E󸀠 be the union of cusp neighborhoods in an ϵ-thin part of S.
Then there exists a constant c(1.4)S\E󸀠 in (0, 1) depending on E

󸀠 such that for any closed curve g realized as a closed
geodesic in S \ E󸀠

c(1.4)S\E󸀠 l𝕊+ (g) ≤ α(g) ≤
1

c(1.4)S\E󸀠
l𝕊+ (g).

Proof. Consider the geodesic currents supported in a compact set US \ UE󸀠. Then the argument of Goldman
and Labourie [27] applies to this collection. We have a conjugacy homeomorphism from the set of geodesic
currents on US \ UE󸀠 with a compact set of neutral geodesic currents on UE/Γ. The length of each of these
currents gives us the Margulis invariant.

We prove the following characterization of a proper action of Γ in terms of Margulis and Charette–Drumm
invariants.
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Theorem 1.5. An affine finitely generated free group Γ of rank ≥ 2 in Isom+(E) acts properly discontinuously
on E if and only if Criterion 1.1 holds up to a change of the orientation of E.

The forward part is Proposition 1.3. The converse follows from the main result Theorem 4.8 of Section 4. The
proof is given at the end of Section 4.6

We mention that the tameness of geometrically finite hyperbolic manifolds was first shown by Marden
[36] and later by Thurston [47]. (See Epstein andMarden [23].) Letℍ3 denote the hyperbolic 3-space.We take
the convex hull CH(Λ) inℍ3 of the limit set Λ of the Kleinian group Γ, and there is a deformation retraction
of ℍ3/Γ to the compact or finite volume CH(Λ)/Γ having a thick and thin decomposition. The paper here
follows some of Marden’s ideas. (See also Beardon and Maskit [3].)

Also, the approaches here are using thick and thin decomposition ideas of hyperbolic manifolds as sug-
gested by Canary. However, we cannot find a canonical type of decomposition yet and artificially construct
the parabolic regions. Only canonically defined regions in analogy to Margulis thin parts in the hyperbolic
manifold theory are the regions bounded by parabolic cylinders. (See Section 3.1.2.)

Note that the tameness ofMargulis space-timeswithout parabolics was shown by Choi and Goldman [16]
and Danciger, Guéritaud, and Kassel [18]. Danciger, Guéritaud, and Kassel have also announced a proof [20]
for the tameness ofMargulis space-timeswith parabolics, extending [19]. In addition, they give a proof [20] of
the crooked plane conjecture in this setting, extending their proof in the settingwithout parabolics from [19].
Their methods, based on the deformation theory of hyperbolic surfaces, seem very different than those of the
present paper.

Differently from them, we directly obtain 3-dimensional compactification relative to parabolic regions.
We estimate by integrals the asymptotics of translation vectors of the affine holonomies. This is done by using
the differential form version of the cocycles and estimatingwith geodesic flows on the vector bundles over the
unit tangent bundle of the hyperbolic surface, the uniformAnosov nature of the flow (4.3), and the estimation
of the cusp contributions in Appendix B. (See also Goldman and Labourie [27].) In the cusp neighborhoods,
we replace the 1-form with the standard cusp 1-form and use this to estimate the growth of the cocycles. We
use the exponential decreasing of a component of the differential form along the geodesic flows. Thenwe use
estimates of the integration of the standard cusp 1-forms in Section 4.5.

Using this and the 3-manifold theory, we show that properly embedded disks and parabolic regions in E
meet the inverse images of compact submanifolds in the Margulis space-time in compact subsets and find
fundamental domains.

Since there are many proper affine actions of discrete groups not based on Lie algebraic situations as
in [17–20], we hope that our method can generalize to these spaces with parabolics providing many points
of view. (See Smilga [44–46] for example.)

Organization of the paper. The paper has three parts: the first two sections, Sections 2 and 3, are preliminary.
Appendices A and B are only dependent on these two sections. Then the main argument parts follow: Sec-
tion 4 discusses the geometry of the proper affine action, and Section 5 discusses the topology of the quotient
space.

In Section 2, we review some projective geometry of Margulis space-times, the hyperbolic geometry of
surfaces, Hausdorff convergences, and the Poincaré polyhedron theorem.

In Section3,wefirst review the proper action of parabolic elements on the Lorentz spaceℝ2,1.We analyze
the correspondingLie algebra andvector fields.We introduce a canonical parabolic coordinate systemofℝ2,1.
In Section 3.2, we generalize the theory of Margulis invariants by Goldman, Labourie, and Margulis [28] and
Ghosh and Treib [30] to groups with parabolics. That is, we introduce Charette–Drumm invariants which
generalize the Margulis invariants for parabolic elements. In Section 3.3, we will study the parabolic regions
and their ruled boundary components.

In Section 4,wewill study the limit sets.We show that any sequence of the translation vectors of elements
of Γ, i.e., cocycle elements, will accumulate in terms of directions only to 𝕊0 := 𝕊 \ 𝕊+ \ 𝕊−. In key result Corol-
lary 4.9, we will prove that the limit points of a sequence of images of a compact set in ℝ2,1 under elements
of Γ are in 𝕊0. We will also prove the converse part of the equivalence of the properness of the action and
Criterion 1.1, i.e., Theorem 1.5.
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In Section 5, wewill find the fundamental domain forM bounded by a finite union of properly embedded
smooth surfaces showing thatM is tame. We prove our main results Theorem 1.1 and Corollary 1.2 here. We
make use of parabolic regions bounded by parabolic ruled surfaces.We avoid using almost crooked planes as
in [16]. Instead,we are usingdisks that are partially ruled in parabolic regions to understand the intersections
with parabolic regions. We will outline this major section in the beginning.

In Appendix A, we will prove facts about the parabolic regions.
In Appendix B, we will show how tomodify 1-forms representing homology classes. We give estimates of

some needed integrals here.

2 Preliminary

Wewill state some necessary facts here, mostly from the paper [16]. Let E denote the oriented flat Lorentzian
space-time given as an affine space with a bilinear inner-product given by

B(x, x) := x21 + x
2
2 − x

2
3, x = (x1, x2, x3).

A Lorentzian norm ‖x‖ is given as B(x, x) 12 , where (−1) 12 = i. We will fix a standard orientation on E and the
associated vector space in this paper. Hence, E denote an oriented Lorentz space-time.

AMargulis space-time is a manifold of the form E/Γ, where Γ is a proper affine free subgroup of Isom(E)
of rank g, g ≥ 2. Elements of PSO(2, 1) are hyperbolic, parabolic, or elliptic. An element of Isom(E) is said to
be hyperbolic, parabolic, or elliptic if its linear part is so.

The topological boundary bdXA of a subset A in another topological space X is given as Cl(A) with the
set of interior points of A removed. We denote by manifold boundary ∂A and the interior Ao of a mani-
fold A as usual. We define the manifold boundary ∂A := Cl(A) \ Ao for any i-dimensional manifold A with
i-dimensional manifold closure Cl(A), i = 1, 2, 3, in a topological space X.

2.1 The projective geometry of the Margulis space-time

Let V be a vector space. Define ℙ(V) as V \ {0}/∼, where x ∼ y if and only if x = sy for s ∈ ℝ \ {0}. Denote by
PGL(V) the group of automorphisms induced by GL(V) on ℙ(V).

Define the projective sphere 𝕊(V) := V \ {0}/∼+, where x ∼+ y if and only if x = sy for s ∈ ℝ+. There is
a double cover 𝕊(V)→ ℙ(V)with the deck transformation group generated by the antipodal mapA : 𝕊(V)→
𝕊(V). We will denote by ((v)) the equivalence class of v. Let a− = A(a) denote the antipodal point of a. Also,
given a set A ⊂ 𝕊(V), we define A− = A(A). Let SL±(V) denote the group of linearmaps of determinant ±1. The
group SL±(V) acts on 𝕊(V) effectively and transitively.

We embed E as an open hemisphere in 𝕊(ℝ4) by sending

(x1, x2, x3) 󳨃→ ((1, x1, x2, x3)) for x1, x2, x3 ∈ ℝ.

The boundary of E is a great sphere 𝕊 given by x0 = 0. The rays of the positive cone end in an open disk
𝕊+ ⊂ 𝕊, and the rays of the negative cone end in an open disk 𝕊− ⊂ 𝕊, where A(𝕊±) = 𝕊∓. The closure of E is
a 3-hemisphereH bounded by 𝕊.

The group Isom+(E) of orientation-preserving isometries acts on E as a group of affine transformations
and hence extends to a group SL±(ℝ4) of projective automorphisms of 𝕊(ℝ4). It restricts to the projective
automorphism groups ofH and of 𝕊 and 𝕊± respectively.

2.2 Thin parts of hyperbolic surfaces

As a subgroup of SL±(ℝ3) ⊂ SL±(ℝ4), the Lorentz group SO(2, 1) acts on 𝕊+ ∪ 𝕊−, where SO(2, 1)o is the sub-
group acting on 𝕊+ and is an index two subgroup. The space 𝕊+ ∪ 𝕊− carries a SO(2, 1)-invariant hyperbolic
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metric, and SO(2, 1)o acting on 𝕊+ forms a Beltrami-Klein model of the hyperbolic plane. We denote the
complete Beltrami-Klein metric by d𝕊+ .

Given a nonelementary discrete subgroup Γ of SO(2, 1)o acting freely on 𝕊+, we obtain a complete ori-
entable hyperbolic surface S := 𝕊+/Γ with the covering map pS : 𝕊+ → S. An end neighborhood of a mani-
fold M is a component U of the complement of a compact subset of M that has a noncompact closure Cl(U).

Let ϵ > 0 be the Margulis constant. Recall that the (ϵ-)thin part of S is the set of points through which
essential loopswith lengths< ϵ pass. The thin part is a union of open annuli. For a parabolic element, there is
an embedded annulus that is a component of the thin part. It is a component of S \ c for a simple closed curve
c, and a horodisk H in the hyperbolic plane covers it. Here, H/⟨g⟩ is isometric to the end-neighborhood for a
parabolic isometry g acting onH. This end-neighborhood is called a cusp neighborhood. For ϵ > 0, a parabolic
(ϵ-)end-neighborhood is a component of the ϵ-thin part of S that is an end-neighborhood.

We choose a union E of disjoint open cusp-neighborhoods in S in an ϵ-thin part of S and its inverse
image H in 𝕊+ which is a union of mutually disjoint horodisks.

2.2.1 Divergence functions

Definition 2.1. Let g̃ : I → S be an arclength-parameterized geodesic and let g : I → S be a freely homotopic
arc which is a closed arc whenever g̃ is closed. Suppose that there exists a continuous map A : I ×ℝ→ S so
that:
∙ A(t, 0) = g̃(t) for each t ∈ I,
∙ if we define At(s) := A(t, s) for each t ∈ I, s ∈ ℝ, then At is an arclength-parameterized geodesic perpen-

dicular to g̃ at g̃(t) for each t ∈ I, and
∙ A(t, st) = g(t) for some st for each t ∈ I.
Then we say that we can project g to g̃ by the perpendicular family of geodesics At. If |st| < ϵ for all t, then
we say that g is at a d𝕊+ -distance < ϵ. The correspondence g(t)→ g̃(t) for t ∈ I to be called the perpendicular
projection, and the geodesic segment between g(t) to g̃(t) for each t is called the perpendicular projection path
and its length st the perpendicular distance at t.

Of course, the family of perpendicular geodesics may not be uniquely determined, but we make choices.
We call the f defined as below the divergence function from g1 to g2.

Lemma 2.1. Let g1(t) and g2(t), t ∈ [0, l], denote the parameterization of geodesics g1 and g2, where g1 is
arclength parameterized. Suppose that we can project g2 to g1 by a perpendicular family of geodesics At. We
orient these by the forward directions.
∙ We orient At so that the frame of its tangent vector and that of g1 is positively oriented at At(0) = g(t) for

each t ∈ I. Define f(t) to be the oriented path length on At from g1(t) to g2(t).
∙ Let e+ := f(l) and e− := f(0).
∙ Let α+ and α− denote π/2minus the respective angles at the forward endpoint v+ and the starting endpoint

v− of g2 made by A0 and Al and g2 respectively.
Assume l ≥ 1. Then the following hold:
(i) If |f(0)|, |f(l)| ≤ C, then |f(t)| < C for 0 < t < l. Furthermore, |f| has at most one minimum.
(ii) The integral of |f(t)| over [0, l] is less than 2|f(0)| + 2|f(l)|.
(iii) We have ∑m−1i=2 |f(ti)| ≤ 2|f(t1)| + 2|f(tm)| if t1, . . . , tm, ti ≤ ti+1 for each i = 1, . . . ,m − 1, m ≥ 4, satisfies
|ti+1 − ti| ≥ 1.

(iv) For the family of functions l ≥ 1, Fl : ℝ2 → ℝ2 sending (α+, α−) to (e+, e−) for each l ≥ 1 is 3.3 times a func-
tion decreasing the max norm provided |α±| ≤ 1/20.

Proof. (i) We can show by [11] that

f(t) = g(y(t)), g(y) := 12 (log(1 + y)) −
1
2 log(1 − y)) and y(t) := ±±c−s+ sinh(t) + c+s− sinh(l − t)c−c+ sinh(l)

,

where ci = cosh(|ei|), si = sinh(|ei|), i = −, +. Notices that open geodesics become disjoint if only one of the



6 | C. Choi et al., Tameness of Margulis space-times with parabolics

endpoints is changed. We may assume that e− and e+ are positive since old |g(y(t))| is bounded above by
the new |g(y(t))| when we change all signs to be positive. We need to consider the case when the signs are +
without loss of generality.

Now g has the expression as a Taylor series of y with only odd powers:

g(y) = y + y
3

3 +
y5

5 + ⋅ ⋅ ⋅ .

We see that y as a function of t can have exactly one interior minimumwith only non-negative values or else
it is strictly decreasing with some negative values. Since this property holds for the odd powers of y with
the identical interior minimum point and zeros, our result follows for e−, e+ ≥ 0. For other cases, we use
hyperbolic trigonometry.

(ii) For (ii) and (iii), we can still look at y(t)with positive coefficients only since we are seeking the upper
bounds.We denote by ỹ the expression obtained from y by respectively replacing terms sinh(t) and sinh(l − t)
by strictly larger 1

2 exp(t) and
1
2 exp(l − t) for 0 ≤ t ≤ l. That is,

ỹ(t) := c−s+e
t + c+s−el−t

2c−c+ sinh(l)
.

Now,

ỹ(l) = e
l tanh |e+| + tanh |e−|

2 sinh l and ỹ(0) = tanh |e+| + e
l tanh |e−|

2 sinh l .

Using tanh(x) < x for x > 0, and the fact that 1/(2 sinh(l)) < 0.5 and el/(2 sinh(l)) < 1.2 for l ≥ 1 while they
from strictly decreasing functions of l, we can show

ỹ(l) < (1.2)|e+| + (0.5)|e−| and ỹ(0) < (0.5)|e+| + (1.2)|e−|. (2.1)

By hyperbolic right triangle rules, we can show |e+|, |e−| < 0.26 provided |α±| < 0.2 for l ≥ 1 by consider-
ing the contrapositive and the worst cases since it is again enough to consider the case e+, e− ≥ 0. Hence
ỹ(l), ỹ(0) < 0.5 and ỹ(t) < 0.5 by the convexity of ỹ.

Since g is strictly increasing, and 0 < y(t) < ỹ(t) for t > 0, we obtain

l

∫
o

|g(y(t))| dt ≤
l

∫
0

|g(ỹ(t))| dt

provided 0 < ỹ(t) < 1. Since the Taylor series becomes a sum of terms that are positive number times
exp(ml + nt) for m, n ∈ ℤ, we obtain by a term-by-term argument

l

∫
o

|g(y(t))| dt ≤
l

∫
0

|g(ỹ(t))| dt ≤ |g(ỹ(l))| + |g(ỹ(0))|.

Since g(x) < 1.1x for 0 < x < 0.5 by the convexity of g, (2.1) implies

|g(ỹ(l)| + |g(ỹ(0))| < 2(e− + e+) = 2|f(0)| + 2|f(l)|.

(iii) Note that ∑m−1i=2 |f(ti)| is smaller than the integral of |f| over t1 to tm since we can break up |f| into
parts as above and use the step functions dominated by |f|. (We may skip an interval containing the unique
minimal point.) Hence, the sum is smaller than the twice of the sum of |f(t1)| and |f(tm)| by (ii).

(iv) Here again,we can look only at the caseswhen e+, e− ≥ 0 and α− ≤ 0, α+ ≥ 0: Replacing the segments
at v+, v−with oneswith positive e+, e−, we can showbyhyperbolic geometry that themaxnormof old (α+, α−)
is greater than or equal to that of new one while (e+, e−) does not change. In [15], we compute the map
[0, 1) × (−1, 0]→ ℝ+ ×ℝ+ which sends

(x−, x+) = (cos(
π
2 + α−), cos(

π
2 + α+)) = (− sin(α−), − sin(α+)) 󳨃→ (e−, e+).
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We computed by analytic continuation

e− = log(
(x− coth(l) + x+csch(l))

√1 − x2−
+√1 + (x− coth(l) + x+csch(l))

2

1 − x2−
),

e+ = log(
(x+ coth(l) + x−csch(l))

√1 − x2+
+√1 + (x+ coth(l) + x−csch(l))

2

1 − x2+
),

(2.2)

where there is a symmetry switching (e−, x−, x+)with (e+, x+, x−), and wemodified the computations in [15]
to obtain an analytic continuation when x+, x− are very small. We use the series

log(y +√y2 + 1) = log(√y2 + 1) + log(1 + y
√1 + y2

)

=
1
2 log(1 + y2) + (

∞

∑
n=1

(−1)n+1
n (

y
√y2 + 1

)
n
),

which is always absolutely convergent. We may plug into this

y = x− coth(l) + x+csch(l))

√1 − x2−
and x+ coth(l) + x−csch(l)

√1 − x2+

to obtain e− and e+ respectively in (2.2). Since |x+|, |x−| < 1/√2, the functions |e−| and |e+| respectively are
bounded above by

1
2 log(1 + 2v2) + (

∞

∑
n=1

(−1)n+1
n (
√2v)n) = 12 log(1 + 2v2) + log(1 +√2v)

for
v = (|x−| coth(l) + |x+|csch(l)) and (|x+| coth(l) + |x−|csch(l)).

By theTaylor analysis to order1 and the Lagrange formof the error, the function is smaller than 3
2 v for v < 1/8.

(See [8].) Since coth(1) ≤ 1.32 and csch(1) ≤ 0.86, it follows that (x−, x+) 󳨃→ (e−, e+) is 3
2 (1.32 + 0.86) times

a norm-nonincreasing function in terms of max norms provided max{|x−|, |x+|} < 1
8×2.18 . Since x → sin(x) is

strictly convex for0 ≤ x < 1/(8 × 2.18), we take angles to satisfy |α−|, |α+| ≤ 0.05 < arcsin( 1
8×2.18 ). Then since

arcsin(α) < 1.00056α, 0 ≤ α < 0.05, we are done. (See [15].)

A broken geodesic is a path consisting of parameterized geodesics except for isolated sets of points. For a bro-
ken geodesic, a vertex is a nonsmooth point of it. A turning angle at a vertex is the angle that the tangent
vector the ending geodesic and one for the starting geodesic makes at the vertex. Since we are on an oriented
surfaceS, we can say that the path can turn right or left at the vertex. The left-turning anglewill be considered
positive, and the right-turning angle will be considered negative.

Lemma 2.2. Let g be a closed curve in S consisting of geodesic segments. Suppose that g is not parabolic. Sup-
pose that the turning angles at vertices arewithin (−δ, δ). Assume that δ < 1/40. For the closed geodesic g̃ freely
homotopic to g, suppose that each geodesic segment of g has a projected image with the length at least 1. Then
g̃ has an arclength parameterization g̃(t) with following properties:
∙ There is a correspondingperpendicular parametrization g(t)of g so that d𝕊+ (g(t), g̃(t)) ≤ ϵ for0 < ϵ ≤ 6.6δ.
∙ Let ζ be a bounded 1-form defined on a compact subset K. Let CK denote the maximum value of the norm

of ζ . Let α be a union of mutually disjoint geodesic subarcs in a geodesic subarc in g, going into K, corre-
sponding to a union α̃ of subarcs in g̃ where every perpendicular geodesic path between them is also going
into K. Then the absolute value of the difference of respective integrals of ζ on α and α̃ is less than 4CKϵ.

Proof. Let g̃ : I → S denote the closed geodesic. We draw the perpendicular lines at points of g̃ pass-
ing through broken points of g. A vertex g(t0) is good is the geodesic segments ending there has angles
in (π/2 − 2δ, π/2 + 2δ) with the perpendicular line to g̃ at g̃(t0). A geodesic segment e is good at v if it satis-
fies the condition for e for that side. We let f : I → ℝ be a function given by sending t to the perpendicular
distance if g(t) is in the right side of g̃ and to (−1) times that if g(t) is in the left side.
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We prove by induction on the number of vertices. If a vertex of g corresponds to a local maximum or the
local minimum of the perpendicular distance function, then it is a good vertex since the turning angles are
within (−δ, δ). Since g is closed, there are at least two good vertices. For a broken geodesic, a local maxi-
mum of |f| cannot occur in the interior point of a segment by hyperbolic geometry, but a local minimum of |f|
can occur.

We consider amaximal subarcm in gwith no good interior vertex and f is either increasing or decreasing.
Assume that the number of geodesic segments inm is ≥ 2, or the signs onm are the same. Let v be the vertex
with the maximal |f|-value on m. Here, v is good since m is maximal. Suppose that the end vertex v󸀠 of the
first geodesic segment e in m next to v has the same sign of the corresponding f -values. Then e is good at v
and v󸀠 by elementary hyperbolic geometry using the hyperbolic right triangle with vertices v and v󸀠 and the
right angle on the perpendicular line to g̃ passing v. Then the perpendicular distance function to e is given
by above Lemma 2.1 and hence f -values of e are in (−6.6δ, 6.6δ). Hence, so ism since we have the deceasing
or increasing function where v has the maximum |f|-value.

Suppose that f(v) and f(v󸀠) have different signs. Note that v󸀠 is not a local minimum or a local maximum.
Nowconsiderm󸀠 given bymwith the edge eo and v removed. Then the f -values have the same signs onm󸀠 and
the maximal |f|-value occurs at the other end which must be a good vertex also. Now the above applies and
f -values onm󸀠 are in (−6.6δ, 6.6δ). For e, we use the hyperbolic trianglewith the vertex v and the two vertices
that are perpendicular projections v1 and v󸀠1 of v and v󸀠 on g̃ respectively. Let e󸀠 be the edgeopposite v1. Now e󸀠

is good at v and v󸀠 since the angle sumof the trianglemust be< π. Lemma2.1 shows that f(v) ∈ (−6.6δ, 6.6δ).
Since f on e is strictly decreasing or increasing, we have the result for e.

We do these processes of estimation for such maximal subarcs. A segment e with a local minimum of |f|
in its interior can occur after the process ends. The vertices of e can be a vertex of such maximal subarcs or
a good vertex. We need to work with quadrilateral obtained by projecting e to g̃ and the corresponding sides.
We can use a reflection by the geodesic containing the shortest segment between e and its projection to g̃ and
compare. We can show that either both angles at v and v󸀠 satisfy the premises of Lemma 2.1 or |f|-values are
both less than 6.6δ since the adjacent segments are as in the above paragraph or have a local minimum of |f|
in its interior.

Suppose that the number of segments inm is 1with signs changing. Then both endpoints must be good.
Otherwise, we can extend this segment at the other endpoint which is not good. If |f| becomes zero, then we
can use as above the right trianglewith the hypothenuse obtained by extending the segment until |f| becomes
zero. If not, then there is a local minimum point where we can directly use Lemma 2.1.

The last item follows by using the divergence function. We obtain the bounds by (ii) of Lemma 2.1.

Lemma 2.3. Let l be a maximal geodesic in a horodisk B in the upper half-space model given by y > 1. Suppose
that the difference of the x-coordinates of the endpoints is t. Then the angle θ that l makes with the vertical line
satisfies θ(t) = π/2 − arctan(t/2). Also, t 󳨃→ tθ(t) is a strictly increasing function for t ∈ (0,∞), tθ(t) < 2, and
the limit is 2 as t →∞.

Proof. The lemma follows from elementary geometry since the geodesics are circles perpendicular to y = 0
in the upper half-space model. (See [8].)

2.3 Hausdorff limits

The projective sphere 𝕊3 is a compact metric space, and has a natural standard metric d. For a compact set
A ⊂ 𝕊3, we define

d(x, A) = inf{d(x, y) : y ∈ A}.

We define the ϵ-d-neighborhood Nd,ϵ(A) := {x : d(x, A) < ϵ} for a point or a compact set A. We define the
Hausdorff distance between two compact sets A and B as follows:

dH(A, B) = inf{δ : δ > 0, B ⊂ Nd,δ(A), A ⊂ Nd,δ(B)}.
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A sequence {Ai} of compact sets converges to a compact subset A if {dH(Ai , A)}→ 0. The limit A is char-
acterized as follows if it exists:

A := {a ∈ 𝕊3 : a is a limit point of some sequence {ai : ai ∈ Ai}}.

See [4, Proposition E.12] for proof of this and Proposition 2.4 since the Chabauty topology for compact spaces
is the Hausdorff topology. (See Munkres [41] also.)

Proposition 2.4 (Benedetti and Petronio [4]). A sequence {Ai} of compact sets converges to A in the Hausdorff
topology if and only if both of the following hold
∙ If there is a sequence {xij }, xij ∈ Aij , where xij → x for ij →∞, then x ∈ A.
∙ If x ∈ A, then there exists a sequence {xi}, xi ∈ Ai, such that {xi}→ x.

Immediately we obtain:

Corollary 2.5. Suppose that a sequence gi of projective automorphisms of 𝕊3 converges to a projective auto-
morphism g, and {Ki}→ K for a sequence Ki of compact sets. Then {gi(Ki)}→ g(K).

For example, a sequence of closed hemispheres will have a subsequence converging to a closed hemisphere.

2.4 The Poincaré polyhedron theorem

Definition 2.2. Let Ñ be an orientedmanifoldwith empty or nonempty boundary onwhich a free group Γ acts
properly and freely. Let S be a finite generating set {γ1, . . . , γ2g} in Γ with γi+g = γ−1i for indices in ℤ/2gℤ.
The collection of codimension-one submanifolds A1, . . . , A2g satisfying the following properties is called
amatching collection of sets under S:
∙ Ñ is a union of two submanifolds Ñ1 and Ñ \ Ño1 with A1 ∪ ⋅ ⋅ ⋅ ∪ Ag ⊂ bdÑ Ñ1 for i ∈ ℤ/2gℤ,
∙ Ai is oriented by the boundary orientation from Ñ1,
∙ γi(Ai) = Ai+g for i ∈ ℤ/2gℤ,
∙ γk(Al) ∩ Am = 0 for (k, l,m) ̸= (i, i, i + g), and
∙ γi is orientation-preserving for each i ∈ ℤ/2gℤ and is orientation-reversing for Ai and Ai+g.

The following is a version of the Poincaré polyhedron theorem. We generalize Theorem 4.14 of Epstein and
Petronio [24]. Here,wedrop their distance lower-bound conditions,withoutwhichwe can easily find counter-
examples. However, we replace the condition with exhaustion by compact submanifolds where the lower-
bounds hold. Thus, we give a proof. But we did not fully generalize the theorem by allowing sides of codi-
mension ≥ 2.

Proposition 2.6 (Poincaré). Let N be a connected manifold with empty or nonempty boundary covered by
a manifold Ñ with a free deck transformation group ΓN .
∙ Let F be a connected codimension-zero submanifold with boundary in Ñ that is a union ofmutually-disjoint,

codimension-one, properly-embedded, two-sided submanifolds A1, . . . , A2g with boundary orientation.
∙ Let Ni ⊂ N, i = 1, 2, . . . , be an exhausting sequence of compact submanifolds of N, where Ni ⊂ Ni+1

for i = 1, 2, . . . , and the inverse image Ñi of Ni in Ñ is connected.
∙ Let S be a finite generating subset of ΓN and {A1, . . . , A2g} is matched under S.
∙ F ∩ Ñi is compact, and F ∩ Ñi ∩ Aj ̸= 0 for each i and j.
Then F is a fundamental domain of Ñ under ΓN .

Proof. We define X󸀠 := ⨆γ∈ΓN γ(F)/∼, where we introduce an equivalence relation ∼ on⨆γ∈Γ γ(F) given by

x ∈ γ1(F) ∼ y ∈ γ2(F) ⇐⇒
{
{
{

x = y and γ1γ−12 ∈ S, or else
x = y and γ1 = γ2.

Thus,
X󸀠 := ⨆

γ∈Γ
γ(F)/∼
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is an openmanifold immersing into N. We give a complete Riemannianmetric on N where each ∂Ni is strictly
convex. This induces a Γ-invariant Riemannian path-metric on X󸀠 and one on F.

Let Fi = Ñi ∩ F, a compact submanifold bounded by Aj ∩ Ñi for j = 1, . . . , 2g by a generic perturba-
tion of Ni by small amounts. We define X󸀠i := ⨆γ∈ΓN γ(Fi)/∼, where we introduce an equivalence relation ∼
on⨆γ∈Γ γ(Fi) given by

x ∈ γ1(Fi) ∼ y ∈ γ2(Fi) ⇐⇒
{
{
{

x = y and γ1γ−12 ∈ S, or else
x = y and γ1 = γ2.

We restrict the above Riemannian metric to X󸀠i as a submanifold of X󸀠 and obtain a Γ-invariant path met-
ric di. We claim that di is metrically complete: Since F ∩ Ñi is compact by the premise, it follows that Aj ∩ Ñi
is a compact subset. For every point in x ∈ Aj ∩ Ñi, the pathwise di-distance in Ñi to Ak ∩ Ñi, k ̸= j is bounded
below by a positive number δi. Hence, each point of X󸀠i has a normal di-ball B󸀠i of fixed radius δi in the union
of at most two images of F mapping isometric to a δi-di-ball Bi in Ni. Thus, given any Cauchy sequence xi
in X󸀠i , suppose that

di(xk , xl) <
δi
3 for l, k > L for some L.

Then di(xj , xL+1) < δi/3 for j > L. Since the ball of radius δi/3 is in a union of two compact sets, it follows that
xi converges to a point of the δi-di-ball with center xL+1. Hence, X󸀠i has a metrically complete path-metric di.

There is a natural local isometry X󸀠i → Ñi given by sending γ(Fi) to γ(Fi) for each γ. Since {γ(Fi)|γ ∈ Γ} is
a locally finite collection of compact sets in Ñi, the map is proper. The image in Ñi is open since each δi-ball
is in the image of at most two sets of the form γ(Fi). Since Ñi is connected, the openness and closedness
show that X󸀠i → Ñi is surjective. Therefore, X󸀠i → Ni is a covering map being a proper local homeomorphism.
Now, Ñi and X󸀠i are covers of Ni with the identical deck transformation groups. We conclude X󸀠i → Ñi is
a homeomorphism.

There is a natural embedding X󸀠i → X󸀠. We identify X󸀠i with its image. We may identify X󸀠 with ⨆∞i=1 X󸀠i .
Since Ñ = ⋃∞i=1 Ñi holds, it follows that X󸀠 → Ñ is a homeomorphism, and F is the fundamental domain.

3 Margulis invariants and Charette–Drumm invariants

Wewill first discuss parabolic group action in Section 3.1 and then discuss Charette–Drumm invariant ensur-
ing their proper action in Section 3.2. In Section 3.3, we will introduce the parabolic ruled surfaces in E and
the region bounded by them. We will also provide two transversal foliations on the regions.

3.1 Parabolic action

3.1.1 Understanding parabolic actions

Let V be a Lorentzian vector space of dimℝ V = 3with the inner productB. A linear endomorphismN : V → V
is a skew-adjoint endomorphism of V if

B(Nx, y) = −B(x, Ny).

Lemma 3.1. Suppose that N is a skew-adjoint endomorphism of V and x ∈ V . Then B(Nx, x) = 0.

Proof. WehaveB(Nx, x) = −B(x, Nx) = −B(Nx, x) by symmetry. Thuswe obtainB(Nx, x) = 0 as claimed.

Lemma 3.2. Suppose that N is a nonzero nilpotent skew-adjoint endomorphism. Then rank(N) = 2.

Proof. Since N is nilpotent, it is non-invertible and so rank(N)< 3. We have rank(N)> 0. Assume rank(N) = 1.
Then dimKer(N) = 3 − 1 = 2. Since dim(V) = 3, one of the following holds: N(V) ∩ Ker(N) = {0}, or N(V) ⊂
Ker(N). If N(V) ∩ Ker(N) = {0}, then the restriction of N to N(V) is nonzero, contradicting nilpotency. Thus,
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N(V) ⊂ Ker(N), that is, N2 = 0. Then there exists v ∈ V with Nv ̸= 0. Since N2v = 0, the set {v, Nv} is linearly
independent. Complete {Nv} to a basis {Nv,w} of Ker(N). The set {v, Nv,w} is a basis for V. We have:
∙ Lemma 3.1 implies B(Nv, v) = 0.
∙ N2 = 0 implies B(Nv, Nv) = −B(N2v, v) = 0.
∙ B(Nv,w) = −B(v, Nw) = 0 since Nw = 0.
Thus, Nv is a nonzero vector orthogonal to all of V, contradicting nondegeneracy. Hence, rank(N) = 2 as
claimed.

Lemma 3.3. We have N2 ̸= 0.

Proof. Lemma 3.2 implies that dimKer(N) = 1 and dimN(V) = 2. If N2 = 0, then N(V) ⊂ Ker(N), a contradic-
tion.

Lemma 3.4. We have N(V) = Ker(N2) and N2(V) = Ker(N).

Proof. Since dim(V) = 3, the nilpotency implies N3 = 0. By Lemma 3.3, the invariant flag

V ⊃ N(V) ⊃ N2(V) ⊃ {0} (3.1)

ismaximal; that is, dim V/N(V) = dimN(V)/N2(V) = 1.Now,N3 = 0 implies thatN(V) ⊂ Ker(N2) andN2(V) ⊂
Ker(N). Hence, the invariant flag

V ⊃ Ker(N2) ⊃ Ker(N) ⊃ {0} (3.2)
is maximal. It follows that the flags (3.1) and (3.2) are equal, as claimed.

Lemma 3.5. The group Ker(N) is null.

Proof. Lemma 3.4 implies Ker(N) = N2(V). Since N is skew-adjoint and N4 = 0,

B(N2(V), N2(V)) ⊂ B(N3(V), N(V)) = {0}

as desired.

Lemma 3.6. We have Ker(N) = N(V)⊥ and N(V) = Ker(N)⊥.

Proof. We have B(N(V), Ker(N)) = B(V, N(Ker(N))) = {0} so that Ker(N) ⊂ N(V)⊥ and N(V) ⊂ Ker(N)⊥. Since
Ker(N) and N(V)⊥ each have the dimension 1, and N(V) and Ker(N)⊥ each have the dimension 2, the lemma
follows.

We find a canonical generator for the line Ker(N) given N, together with a time-orientation.

Lemma 3.7. There exists unique c ∈ Ker(N) such that:
∙ c ̸= 0 is a causal null-vector,
∙ c = N(b) for a unit-space-like b ∈ V (that is, B(b, b) = 1).
Furthermore, the following hold:
∙ b is unique up to addition of λc, λ ∈ ℝ − {0}.
∙ We can choose the unique null vector a so that N(a) = b.
∙ B(a, b) = 0 = B(b, c), B(a, c) = −1.
∙ a, b, c form a basis.
∙ The Lorentz metric has an expression g := dy2 − 2dxdz with respect to the coordinate system given by

a, b, c.

Proof. Lemma 3.4 implies that N defines an isomorphism (of 1-dimensional vector spaces)

N̄ : N(V)/Ker(N)→ N2(V) = Ker(N). (3.3)

Now, B|N(V) × N(V) is factored into the maps

N(V) × N(V)→ N(V)/N(V)⊥ × N(V)/N(V)⊥ and B̂ : N(V)/N(V)⊥ × N(V)/N(V)⊥ → ℝ.

Lemma 3.6 implies that the second map is

B̂ : N(V)/KerN × N(V)/KerN → ℝ.
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Since N(V)/KerN is a 1-dimensional vector space, the quadratic map B̂ is a square of an isomorphism
N(V)/KerN → ℝ. Hence, the restriction to N(V) of the quadratic form u→ B(u, u) is the square of an
isomorphism N(V)/Ker(N)→ ℝ composed with the quotient map N(V)→ N(V)/Ker(N).

Recall dimKer(N) = 1. Since N̄ is injective, the set of unit-space-like vectors in N(V) is the union of two
cosets of Ker(N), mapped by N to two nonzero vectors in Ker(N). By Lemma 3.5, the image is null. The image
is a causal vector in Ker(N) or a non-causal vector in Ker(N). Take the causal one to be c. Since the image has
only two vectors, it follows that c is the unique one.

By (3.3), b can be chosen to be any in N(V) in the coset of Ker(N), and hence b can be changed to b + c0c
since c generates Ker(N).

By Lemma 3.1, B(b, c) = B(N(c), c) = 0.
The subspace N−1(b) is a line since dimKer(N) = 1 and is parallel to a null space and does not pass 0

since b ̸= 0. Hence, it meets a null cone at the unique point. Call this a. By Lemma 3.1, B(a, b) = 0.
Finally,

B(a, c) = B(a, N2(a)) = −B(N(a), N(a)) = −B(b, b) = −1.

The last statement follows by B-values which also implies the independence.

Definition 3.1. Let N be a nilpotent skew adjoint endomorphism. We will call the frame a, b, c satisfying the
above properties:
∙ b = N(a), c = N(b),
∙ a, c are null and b is of unit space-like,
∙ B(a, b) = 0 = B(b, c), B(a, c) = −1.
the adopted frame of N. We will say that N is accordant if the adopted frame has the standard orientation.

Corollary 3.8 shows that associated with N, there is a one-parameter family of frames. However, we remark
that the orientation of {a, b, c} is determined by N as we can see from exchanging N with −N has the
orientation-reversing effect.

Corollary 3.8. Let N be a nilpotent skew adjoint endomorphism. Then the Lorentzian vectors a, b, c satisfying
the property that
∙ B(a, b) = 0 = B(b, c), B(a, c) = −1,
∙ c = N(b), b = N(a), and
∙ b is a unit space-like vector, c ∈ KerN is causally null, and a is null
are determined up to changes b→ b + c0c, a→ a + c0b +

c20
2 c with respect to the a skew-symmetric nilpotent

endomorphism N and B : V × V → ℝ. Furthermore, the adopted frame for N is determined only up to these
changes and translations.

Proof. By Lemma 3.7, we can only change b 󳨃→ b + c0c, a 󳨃→ a + c0b + d0c. Since

B(a + c0b + d0c, b + c0c) = −c0 + c0 = 0,

and
B(a + c0b + d0c, a + c0b + d0c) = c20 − 2d0 = 0,

this is proved.

3.1.2 The action of the parabolic transformations

We represent an affine transformation with the formula x 󳨃→ Ax +w, x ∈ ℝ2,1 by the matrix

(
A w
0 1
) .

Let N be an accordant nilpotent element of the Lie algebra of SO(2, 1): Let us use the frame c, b, a on E
obtained by Corollary 3.8 as the vectors parallel to x-, y-, and z-axes respectively. Then the bilinear form B



C. Choi et al., Tameness of Margulis space-times with parabolics | 13

takes the matrix form

(
0 0 −1
0 1 0
−1 0 0

) . (3.4)

Let γ be a parabolic transformation E→ E. Then it must be of the form

Φ(t) := exp t(N v⃗γ
0 0
) for an accordant nilpotent skew adjoint element N.

Using the frame given by Corollary 3.8 and shifting the origin by translation by (t, v1, v2), t ∈ ℝwhen v⃗γ can
be written as (v1, v2, μ) with respect to the frame, we obtain an affine coordinate system so that γ lies in
a one-parameter group

Φ(t) := exp t(

0 1 0 0
0 0 1 0
0 0 0 μ
0 0 0 0

) =(

1 t t2/2 μt3/6
0 1 t μt2/2
0 0 1 μt
0 0 0 1

) (3.5)

for μ ∈ ℝ, where Φ(t) : E→ E is generated by a vector field

ϕ := y∂x + z∂y + μ∂z , where B(ϕ, ϕ) = z2 − 2μy.

For a parabolic element γ and t ∈ ℝ, we define γt := exp(tη), where γ = exp(η) for a unique Lie algebra
element η of Isom+(E).

Definition 3.2. For any parabolic element γ, the coordinate system where it can be written in the form (3.5)
with the adopted frame for accordant nilpotent N, where γ = exp(tN), t ∈ ℝ is called a parabolic coordinate
system adopted to γ. Furthermore, γ is called accordant if t > 0.

Proposition 3.9. Any parabolic element γ has a parabolic coordinate system. All other parabolic coordinate
system for γ is obtained by changing it by a 2-dimensional parameter family of isometries generated by the
one-parameter family of translations along unique eigen-direction and the frame change given in Corollary 3.8.

Proof. The existence of the coordinate frame is already given. The fact that the2-dimensional family of isome-
tries preserves the form (3.5) is already shown in Corollary 3.8 and near (3.5). Also, from near (3.5) we obtain
the translations must be the one-parameter ones along the unique eigen-direction.

This one-parameter subgroup {Φ(t), t ∈ ℝ} leaves invariant the two polynomials

F2(x, y, z) := z2 − 2μy,
F3(x, y, z) := z3 − 3μyz + 3μ2x,

and the diffeomorphism
F(x, y, z) := (F3(x, y, z), F2(x, y, z), z)

satisfies
F ∘ Φ(t) ∘ F−1 : (x, y, z)→ (x, y, z + μt) (3.6)

All the orbits are twisted cubic curves. In particular, every cyclic parabolic group leaves invariant no line and
no plane for μ ̸= 0. (See Figure 1.)

Now, Q := F2 is the unique quadratic ϕ-invariant function on E up to adding constants and scalar multi-
plications. If Q(p) < 0 for p ∈ E, then the trajectoryΦ(t)(p) is time-like. If Q(p) > 0, thenΦ(t)(p) is space-like.
In addition, if Q(p) = 0, then Φ(t)(p) is a null-curve. The region Q < k is defined canonically for γ for k ∈ ℝ.
(k can be negative.) The region is a parabolic cylinder in the parabolic coordinate system of γ. We will call
this a parabolic cylinder for γ.

Remark 3.1. The expression (3.5) can change by conjugation by a dilatation so that μ= ±1. However, a dilata-
tion is not a Lorentz isometry.
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Figure 1: A number of orbits drawn horizontally.

Definition 3.3. A semicircle tangent to ∂𝕊+ at p ∈ ∂𝕊− is the closure of a component of S \ {p, p−} of the great
circle S tangent to ∂𝕊+ at pwhichdoes notmeet𝕊+. Anaccordant great segment ζp to ∂𝕊+ is an open semicircle
tangent to ∂𝕊+ starting from x in the direction of the orientation of ∂𝕊+. (See [16, Section 3.4].)

We may refer to them as being positively oriented since we need to alter the construction when we change
the orientation.

Remark 3.2. In the parabolic coordinate system of E for a parabolic γ, 𝕊+ is given by ((x, y, z, 0)) in 𝕊 with
y2 − 2xz < 0 with x > 0. Then it is easily shown that

((1, 0, 0, 0)) ((0, 1, 0, 0)) ∪ ((0, 1, 0, 0)) ((−1, 0, 0, 0))

is the accordant great segment Cl(ζ((1,0,0,0))) to the boundary of 𝕊+ with the induced orientation.

For the following if γ is not accordant, we need to use γ−1.

Proposition 3.10. Let γ be accordant parabolic transformation. We use the parabolic coordinate system of γ
so that γ is of the form (3.5) with μ > 0. Then the following hold:
∙ ⟨γ⟩ acts properly on E.
∙ The orbit {γn(p)}, p ∈ E, converges to the unique fixed point xγ in ∂𝕊+ as n →∞ and converges to its

antipode xγ− ∈ ∂𝕊− as n → −∞.
∙ The orbit lies on the parabolic cylinder

Pp := {x ∈ E : Q(x) = Q(p)},

where γ acts on.
∙ The set of lines in E parallel to the vectorxγ in the direction of xγ foliates each parabolic cylinder and gives us

equivalence classes. The space Pp/∼ canbe identifiedwith a real lineℝ. The action of γ on Pp/∼ corresponds
to a translation action onℝ.

∙ Pp can be compactified to a compact subspace in 𝕊3 homeomorphic to a 2-sphere by adding the great
segment Cl(ζxγ ) accordant to ∂𝕊+.

Proof. We have xγ equal to ((1, 0, 0, 0)) in this coordinate system. The properness follows since μt3/6 dom-
inates all other terms. The second item follows since F2 is an invariant. Since F2 is Φt-invariant, it follows
that γ acts on the parabolic cylinder determined by F2. The third item follows by projecting to the z-value.
The fourth item is straightforward from the third item.

LetH0 be a great sphere givenby x = 0 in𝕊3. For each line l in theparabolic cylinder, {γt(Cl(l))∩H0 : t ∈ℝ}
is a parabola compactified by a single point ((0, 1, 0, 0)) as we can see using (3.5). Let H+ be the upper
hemisphere bounded by H0 and H− the lower hemisphere. We have geometric convergence:

{γt(Cl(l)) ∩ H+}→ ((1, 0, 0, 0)) ((0, 1, 0, 0)) as t →∞ or t → −∞,
{γt(Cl(l)) ∩ H−}→ ((−1, 0, 0, 0)) ((0, 1, 0, 0)) as t →∞ or t → −∞.

Hence, by Remark 3.2,
{γt(Cl(l))}→ Cl(ζ((1,0,0,0))) as t →∞ or t → −∞.

For any sequence of points xi on Pp, xi ∈ γti (Cl(l)) for some ti ∈ ℝ. If |ti| is bounded, then {xi} can accumulate
only on Pp. If |ti| is unbounded, then {xi} can accumulate to Cl(ζxγ ) by the above paragraph. The final part
follows.
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3.2 Proper affine deformations and Margulis and Charette–Drumm invariants

Let S be a complete orientable hyperbolic surface with χ(S) < 0 and possibly some cusps. Let

h : π1(S)→ SO(2, 1)o

be a discrete irreducible faithful representation. Now, the image is allowed to have parabolic elements. Each
nonparabolic element γ of π1(S) \ {I} is represented by the unique closed geodesic in S := 𝕊+/h(π1(S)) and
hence is hyperbolic. Let Γ be a proper affine deformation of h(π1(S)). For nonparabolic γ ∈ Γ \ {I}, we define
∙ x+(γ) as an eigenvector of L(γ) in the causally null directions with the eigenvalue > 1,
∙ x−(γ) as one of L(γ) with the eigenvalue < 1, and
∙ x0(γ) as a space-like positive eigenvector of L(γ) of the eigenvalue 1 which is given by

x0(γ) =
x−(γ) × x+(γ)
‖x−(γ) × x+(γ)‖

.

Here, × is the Lorentzian cross-product, and x+(γ) and x−(γ) are well-defined up to choices of sizes; however,
x0(γ) is well-defined since it has a unit Lorentz norm. They define the Margulis invariant

α(γ) = B(γ(x) − x, x0(γ)), x ∈ E, (3.7)

where the value is independent of the choice of x.
In general, an affine deformation of a homomorphism h : π1(S)→ SO(2, 1) is a homomorphism

hb : π1(S)→ Isom+(E)

given by hb(g)(x) = h(g)x + b(g) for a cocycle b : π1(S)→ ℝ2,1 in Z1(π1(S),ℝ2,1h ). The vector space of co-
boundary is denoted by B1(π1(S),ℝ2,1h ). As usual, we define

H1(π1(S),ℝ2,1h ) :=
Z1(π1(S),ℝ2,1h )
B1(π1(S),ℝ2,1h )

.

Let [u] be the class of a cocycle in H1(π1(S),ℝ2,1h ) with u ∈ Z1(π1(S),ℝ2,1h ). Let hu denote the affine
deformation of h according to a cocycle u in [u], and let Γu be the affine deformation hu(π1(S)). There is
a function αu : π1(S) \ Pπ1(S) → ℝ with the following properties:
∙ αu(γn) = |n|αu(γ), n ∈ ℤ.
∙ αu(γ) = 0 if and only if hu(γ) fixes a point.
∙ The function αu depends linearly on u.
∙ If hu(π1(S)) acts properly and freely on E, then |αu(γ)| is the Lorentz length of the unique space-like closed

geodesic in E/hu(π1(S)) corresponding to γ. (See Goldman, Labourie, and Margulis [28].)
Charette and Drumm generalized the Margulis invariants for parabolic elements in [6], where the values are
given only as “positive” or “negative”. Let g ∈ Γ be a parabolic or hyperbolic element of an affine deformation
of a linear group in SO(2, 1)o.

Definition 3.4. An eigenvector v of eigenvalue 1 of a linear hyperbolic or parabolic transformation g is said
to be positive relative to g if {v, x,L(g)x} is positively oriented when x is any null or time-like vector which is
not an eigenvector of g.

It is easy to verify v is positive with respect to g if and only if −v is positive with respect to g−1. Let F(L(g)) be
the oriented 1-dimensional space of eigenvectors of L(g) of eigenvalue 1. Define α̃(γ) : F(L(γ))→ ℝ by

α̃(γ)( ⋅ ) = B(γ(x) − x, ⋅ ),

where x ∈ E is any chosen point. Drumm [22] also shows

α(γ) = α̃(γ)(x0(L(γ)))

provided γ is hyperbolic.
By Definition 3.4, components of F(L(γ)) \ {0} have well-defined signs. We say that the Charette–Drumm

invariant cd(γ) > 0 if α̃(γ) is positive on positive eigenvectors in F(L(γ)) \ {0}. Also, we note cd(γ) > 0 if and
only if cd(γ−1) > 0.
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Lemma 3.11 (Charette–Drumm [6]). Let γ ∈ Γ be a parabolic or hyperbolic element. Then the following holds:
∙ α̃(γ) = B(γ(x) − x, ⋅ ) is independent of the choice of x.
∙ α̃(γ) = 0 if and only if γ has a fixed point in E.
∙ For any η ∈ Aff(E), α̃(ηγη−1)(η(v)) = α̃(γ)(v) for v ∈ F(L(γ)).
∙ For any n ∈ ℤ, v ∈ F(L(γ)), α̃(γn)(v) = |n|α̃(γ)(v).

In the parabolic coordinate system of γ, we obtain

α̃(γ)(x, 0, 0) = −μtx (3.8)

for μ, t given for γ as in (3.5) in Section 3.1.

Lemma 3.12. Let γ be defined by (3.5) for t > 0 in the accordant parabolic coordinate system for γ. Then the
following holds:
∙ μ > 0 if and only if γ has a positive Charette–Drumm invariant.
∙ μ < 0 if and only if γ has a negative Charette–Drumm invariant.
∙ μ ̸= 0 if and only if ⟨γ⟩ acts properly on E.

Proof. We prove the first item: Choose x = (a, 0, c) with ac > 0, a > 0 so that x is a causal time-like vector.
Then {i, x,L(γ)x} is a negatively oriented frame, and i is the negative null eigenvector of L(γ) by Defini-
tion 3.4. By (3.8), the first item follows. The second item follows by the contrapositive of the first item. The
final part follows by Proposition 3.10 and Lemma 3.11 and reversing the orientation of E.

3.3 Parabolic region and two transversal foliations on them

3.3.1 Parabolic regions

Let g be a parabolic element with the expression (3.5) for t > 0 under the parabolic coordinate system of
Section 3.1.2. Assume that the Charette–Drumm invariant of g is positive. That is, μ > 0 by Lemma 3.12.
Recall from Section 3.1.2 that

F2(x, y, z) = z2 − 2μy and F3(x, y, z) = z3 − 3μyz + 3μ2x

are invariants of gt. Recall that Φ(t) : E→ E is generated by a vector field

ϕ := y∂x + z∂y + μ∂z

with the square of the Lorentzian norm ‖ϕ‖2 = z2 − 2μy.
The equation F2(x, y, z) = T gives us a parabolic cylinder PT in the x-direction with the parabola in the

yz-plane. The vector field ϕ satisfies

ϕ(x, y0, 0) = (y0, 0, μ) for all x and T = −2μy0.

Since we are looking for a gt-invariant ruled surface, we take a line l tangent to PT in the direction
of x = (a, 0, c) starting at (0, y0, 0). Since ((x)) ∈ 𝕊+ by the premise, we obtain 2ac > 0with a > 0, c > 0 under
the parabolic coordinate system with the quadratic form (3.4). (See Figure 2.)

We define Ψ(t, s) = gt(l(s)) so that

l(s) = (0, y0, 0) + s(a, 0, c) = (sa, y0, sc), ϕ(l(s)) = (y0, sc, μ).

Thus, ϕ is never parallel to (a, 0, c) unless s = 0. We choose (a, 0, c), c ̸= 0, not parallel to (y0, 0, μ), i.e.,
a
c ̸=

y0
μ .

Then ϕ|l is never parallel to the tangent vectors to l. Since Dgt(ϕ) = ϕ, ϕ is never parallel to tangent vectors
to gt(l), it follows that Ψ is an immersion in E.
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Figure 2: This shows the projective action of a 1-dimensional parabolic group on 𝕊+ with boundary represented as a parabola.
We use the affine patch where x > 0 in the coordinate system. We normalize the homogeneous coordinates by setting x = 1. The
parabola 2z = y2 describes the boundary of 𝕊+ given by y2 < 2xz. See Remark 3.2.

LetHs0 ,κ1 ,κ2 be the space of compact segments u passing E with the following properties:
∙ u has an antipodal pair of endpoints in 𝕊+ and in the antipodal set 𝕊−, and
∙ u ∩ E is equivalent under gt for some t to a line l(s) given by

l(s) = (sa, y0, sc) (3.9)
for y0 ≥ s0, a, c > 0, κ1ac ≤

y0
μ ≤

κ2a
c , and a2 + c2 = 1 for some pair 0 < κ1 ≤ κ2 < 1 and s0 > 0.

This space has a metric coming from the Hausdorff metric dH .
We will prove the following in Appendix A.

Theorem 3.13. Let g, L(g) ∈ SO(2, 1)o, be an accordant parabolic element acting properly on E with the posi-
tive Charette–Drumm invariant. Let l be a line inHs0 ,κ1 ,κ2 for the parabolic coordinate system for g. Then:
∙ For each time-like line l in the ruling of S,

{gt(Cl(l))}→ Cl(ζx∞ ) as t →∞ and t → −∞
geometrically.

∙ For any ϵ-d-neighborhood N of Cl(ζx∞ ) ⊂ 𝕊, we can find such a ruled surface S in N ∩ E.
∙ There exists a {gt : t ∈ ℝ}-invariant surface S ruled by time-like lines containing lo properly embedded in E

with boundary
Cl(S) \ S = {gt(x) : t ∈ ℝ} ∪ {gt(x−) : t ∈ ℝ} ∪ Cl(ζx∞ )

for a point x ∈ 𝕊+, and x∞ is a parabolic fixed point of g in ∂𝕊+ respectively. Furthermore, there exists
a domain R homeomorphic to a 3-cell in E whose topological boundary in the hemisphereH equals Cl(S).
Also, R/⟨g⟩ is homeomorphic to a solid torus.

Definition 3.5. In Theorem 3.13, the surface denoted by S is called a parabolic ruled surface. (Compare
with parabolic cylinders in Section 3.1.2.) The open region R in E bounded by a parabolic ruled surface is
called the parabolic region. The generator of the parabolic group acting on a parabolic ruled surface fixes
a point p ∈ ∂𝕊+.

An immersed image S/⟨g⟩ of the surfaces in a manifold E/Γ is also called a parabolic ruled surface. The
embedded image R/⟨g⟩ of R in a manifold E/Γ is called a parabolic region.

We can choose the parabolic surface and the parabolic regions so that they are in the ϵ-d-neighborhood
N of ⋃x∈a Cl(ζx) ⊂ 𝕊 by the last item of Theorem 3.13. Then we call the parabolic region 1

ϵ -far away from
the compact parts. The isometrically embedded images of such surfaces in E/Γ or E are described in the
same manner.

3.3.2 Two transversal foliations

Assume
0 < κ1 ≤ κ2 < 1.
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Figure 3: Three darker leaves of foliation Sf,r0 and five transversal light-gray leaves ofDf,r0 , where f(ρ) = 3
4

r
√1−r2

and μ = 1.
See [10].

Let f : (0, 1)→ ℝ be a strictly increasing smooth function satisfying

κ1μ
r
√1 − r2

≤ f(ρ) ≤ κ2μ
r
√1 − r2

.

LetHf be the space of compact segments u passing E with the following properties:
∙ u has an antipodal pair of endpoints in 𝕊+ and in 𝕊−,
∙ u ∩ E is equivalent under gt for some t to a line l(s) given by lf,r(s) = (sa, yf (ρ), sc), s ∈ ℝ, where

yf (ρ) := f(ρ), a = r, c = √1 − r2, r ∈ (0, 1).

For fixed r ∈ (0, 1), let Sf,r denote the parabolic ruled surface given by

⋃
t,s∈ℝ

gt(lf,r(s)).

Define Df,r0 ,t for fixed t ∈ ℝ to denote the surface

⋃
s∈ℝ,r∈[r0 ,1)

gt(lf,r(s)).

We will prove the following in Appendix A.

Theorem 3.14. Let r0 ∈ (0, 1). Then the following hold:
∙ The surfaces Sf,r for r ∈ [r0, 1) are properly embedded leaves of a foliation S̃f,r0 of the region Rf,r0 , closed

in E, bounded by Sf,r0 where gt acts on.
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∙ {Df,r0 ,t : t ∈ ℝ} is the set of properly embedded leaves of a foliation D̃f,r0 of Rf,r0 by disks meeting Sf,r for
each r, r0 < r < 1, transversally.
– gt0 (Df,r0 ,t) = Df,r0 ,t+t0 .
– Df,r0 ,t󸀠 ∩ Df,r0 ,t = 0 for t, t󸀠, t ̸= t󸀠.
– Cl(Df,r0 ,t) ∩ 𝕊+ is given as a geodesic ending at the parabolic fixed point of g.

Remark 3.3. The quotient Rf,r0/⟨g⟩ is foliated by the foliation Sf,r0 induced by S̃f,r0 andDf,r0 induced by D̃f,r0 .
The leaves of Sf,r0 are annuli of the form Sf,r/⟨g⟩ and the leaves of Df,r0 are the embedded images of Df,r0 ,t
for t ∈ ℝ. The embedded image of Rf,r0/⟨g⟩ in E/Γ are foliated by induced foliations to be denoted by the same
names. (See Figure 3.)

4 Orbits of proper affine deformations and translation vectors

We now come to the most important section of this paper. In this section, we assume L(Γ) ⊂ SO(2, 1)o and
work with Criterion 1.1 only without assuming the properness of the Γ-action. In Sections 4.1 and 4.2, we
will present the objects of our discussion. In Section 4.3, we will discuss the Anosov properties of geodesic
flows extended to a flat bundle V. In Section 4.4, we will put the translation cocycle into an integral form. In
Section 4.5, we will compute the translation parts of the holonomy representations. Theorem 4.8 is the main
result where we will give an outline of the proof. We will prove the converse part of Theorem 1.5 at the end of
Section 4.5. In Section 4.6, we obtain Corollary 4.9 which discusses all the accumulation points of Γ.

4.1 Convergence sequences

Let g ∈ Γ. Let λ1(g) denote the largest eigenvalue of L(g), which has eigenvalues λ1(g), 1, 1/λ1(g). Note the
relation

l𝕊+ (g) = log(
λ1(g)
1/λ1(g)

) = 2 log λ1(g). (4.1)

Recall that Γ acts as a convergence group of a circle ∂𝕊+. That is, if gi is a sequence of mutually distinct
elements of Γ, then there exists a subsequence gji and points a, r in ∂𝕊+ so that
∙ as i →∞, {gji |∂𝕊+ \ {r}} uniformly converges to a constant map with value a on every compact subset,

and
∙ as i →∞, {g−1ji |∂𝕊+ \ {a}} uniformly converges to a constant map with value r on every compact subset.
Call a the attractor of {gji } and r the repeller of {gji }. Here, a may or may not equal r. (See [1] for detail.) We
call the sequence gi satisfying the above properties the convergence sequence.

For a point x ∈ E, let Γ(x) denote the orbit of x. We define the Lorentzian limit set

ΛΓ := ⋃
x∈E
(Cl(Γ(x)) \ Γ(x)).

By the properness of the action, we obviously have:

Lemma 4.1. Let Γ be a proper affine free group with rank ≥ 2. Then ΛΓ is a subset of 𝕊.

Recall𝕊0 = 𝕊 \ 𝕊+ \ 𝕊−. For eachpoint x of ∂𝕊+, there exists an accordant great segment ζx (seeDefinition 3.3).
Wedenote byΠ+ : 𝕊0 → ∂𝕊+ themap given by sending every point of Cl(ζx) to x. This is a fibration by [16, Sec-
tion 3.4].

Let ΛΓ,𝕊+ ⊂ Cl(𝕊+) be the limit set of the discrete faithful Fuchsian group action on 𝕊+ by L(Γ). (See [2].)
One of our main results of the section is Corollary 4.9 also giving us:

Theorem 4.2. Let Γ be a proper affine free group of rank greater than or equal to 2 with or without parabolics.
Assume L(Γ) ⊂ SO(2, 1)o. Then ΛΓ ⊂ Π−1+ (ΛΓ,𝕊+ ).
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4.2 The bundles E over US

LetU𝕊+ denote the unit tangent bundle of 𝕊+, i.e., the space of direction vectors on 𝕊+. For any subset A of 𝕊+,
we let UA denote the inverse image of A in U𝕊+ under the projection. The projection ΠS : US→ S lifts to the
projection Π𝕊+ : U𝕊+ → 𝕊+.

Let Γ := hu(π1(S)) be a proper affine hyperbolic free group of rank ≥ 2. We note that Γ acts on U𝕊+ as a
deck transformation group over US. An element γ ∈ Γ goes to the differential map Dγ : U𝕊+ → U𝕊+ defined
by

Dγ(x, u) = (γ(x), dγ(β(t))dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=0
), x ∈ 𝕊+, u ∈ Ux𝕊+

where β(t) is a unit speed geodesic with β(0) = x and β̇(0) = u. Goldman, Labourie and Margulis in [28] con-
structed a flat affine bundle E over the unit tangent bundle US of S. They took the quotient of U𝕊+ × E by the
diagonal action given by

γ(v, x) = (Dγ(x), γ(v)), x ∈ U𝕊+, v ∈ E

for a deck transformation γ ∈ Γ. The cover U𝕊+ × E of E is denoted by Ê and is identical with E × U𝕊+. We
denote by

ΠE : Ê = U𝕊+ × E→ E

the projection.

4.3 The Anosov property of the geodesic flow

We denote the standard 3-vectors by

i := (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Definition 4.1. We say that two positive-valued functions f(t) and g(t), t ∈ ℝ, are compatible or satisfy f ≅ g
if there exists C > 1 such that

1
C ≤

f(t)
g(t) ≤ C for t ∈ ℝ.

Given (((x)) , u) ∈ U𝕊+,
∙ we denote by l(((x)) , u) ⊂ 𝕊+ the oriented complete geodesic passing through ((x)) in the direction of u,
∙ we denote by v+,(((k)),j) and v−,(((k)),j) the respective null vectors 1

√2 j +
1
√2k and

−1
√2 j +

1
√2k in the directions

of the forward and backward endpoints of the oriented complete geodesic l(((k)) , j) ⊂ 𝕊+,
∙ we define v+,(((x)),u) and v−,(((x)),u) respectively as the images of v+,(((k)),j) and v−,(((k)),j) under an element g

for g ∈ SO(2, 1)o provided
g(((k))) = ((x)) and g(j) = u.

The well-definedness of these objects follows since there is a one-to-one correspondence of U𝕊+ with
SO(2, 1)o.

Definition 4.2. We define V as the quotient space of Ṽ := U𝕊+ ×ℝ2,1 under the diagonal action defined by

γ(x, v) = (Dγ(x),L(γ)(v)), x ∈ U𝕊+, v ∈ ℝ2,1, γ ∈ Γ.

We will also need to define Ṽ := 𝕊+ ×ℝ2,1 and the quotient bundle V := Ṽ /Γ where the action is given
by

γ(x, v) = (γ(x),L(γ)(v)), x ∈ 𝕊+, v ∈ ℝ2,1, γ ∈ Γ.

The vector bundle V has a fiberwise Riemannian metric ‖ ⋅ ‖fiber where Γ acts as an isometry group. At
(((x)) , u) ∈ U𝕊+ with x satisfying B(x, x) = −1, we give as a basis

{v+,(((x)),u), v−,(((x)),u), v0,(((x)),u) :=
v−,(((x)),u) × v+,(((x)),u)
‖v−,(((x)),u) × v+,(((x)),u)‖

} (4.2)
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for the fiber over ((x)), where × is the Lorentzian cross product. We choose the positive definite metric
‖ ⋅ ‖fiber on Ṽ so that the above vector frame is orthonormal at the fiber of Ṽ over (((x)) , u). The metric is
SO(2, 1)o-invariant on U𝕊+. Thus, this induces a metric ‖ ⋅ ‖fiber on V as well.

Let Ṽω be the 1-dimensional subbundle of U𝕊+ ×ℝ2,1 containing vω,(((x)),u) for each ω, ω = +, −, 0. It is
redundant to say that vω,(((x)),u) is a fiber over the point ((x)) in 𝕊+ for each ω.

We define a so-called neutral map
ν̃ : U𝕊+ → U𝕊+ ×ℝ2,1

given by (((x)) , u) 󳨃→ v0,(((x)),u). Here, ν̃ is an SO(2, 1)o-equivariant map. By action of the isometry group Γ, we
obtain a neutral section

ν : US→ V

by using the SO(2, 1)o-equivariance of the map. Hence, Ṽ0 coincides with the subspace generated by the
image of the neutral section ν̃.

For any smooth map g : U𝕊+ → U𝕊+ or 𝕊+ → 𝕊+, we denote by 𝔻g the induced automorphism U𝕊+ × E
acting trivially on the E-factor.

Recall from [28, Section 4.4] the geodesic flow Ψt : U𝕊+ → U𝕊+ denote the geodesic flow on U𝕊+ defined
by the hyperbolic metric. Let

𝔻Ψt : U𝕊+ ×ℝ2,1 → U𝕊+ ×ℝ2,1

denote the Goldman–Labourie–Margulis flow. This acts trivially on the second factor and as the geodesic flow
on U𝕊+. The bundle V splits into three Ψt-invariant line bundles V+, V− and V0, which are images of Ṽ+, Ṽ−
and Ṽ0. Our choice of ‖ ⋅ ‖ shows that𝔻Ψt acts as uniform contractions in V+ as t →∞, −∞, i.e.,

‖𝔻Ψt(v+)‖fiber ≅ exp(−t)‖v+‖fiber for v+ ∈ Ṽ+,
‖𝔻Ψt(v−)‖fiber ≅ exp(t)‖v−‖fiber for v− ∈ Ṽ−,
‖𝔻Ψt(v0)‖fiber ≅ ‖v0‖fiber for v0 ∈ Ṽ0.

(4.3)

Here, k in [28] equals 1 since we can explicitly compute k from the framing above. The signs are different
from [28] because we have slightly different objects. The fiberwise metric on U𝕊+ is not dependent on the
group Γ itself. See [28, last paragraph of Section 4.4].

Remark 4.1. The induced geodesic flow on S is denoted by Ψt and the induced action on V by𝔻Ψt. We may
think of translating the picture of the flat bundle over U𝕊+ to the bundle over US. As a bundle over US,𝔻Ψt
contracts and expands uniformly for V± with respect to ‖ ⋅ ‖fiber. However, in the picture over U𝕊+, 𝔻Ψt is
the identity between fibers and objects lifted from V will uniformly increase or decrease exponentially with
respect to any fixed Euclidean metric ‖ ⋅ ‖E on Ṽ. (See Figure 4.)

v−
v0

v−
v0

v+ v−
v0

v+ v− v+
v0

v−
v0

v+
v−
v0

v+
v0
v− v+

K

pS(K )

Figure 4: The frames on U𝕊+ and on US. The circles bound horodisks covering the cusp neighborhoods below. The compact set
K is some small compact set where the closed geodesics pass through. We drew only one closed geodesic.
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Denote by
Ṽ+(((x⃗)) , u), Ṽ−(((x⃗)) , u), Ṽ0(((x⃗)) , u)

the fibers of Ṽ+, Ṽ−, Ṽ0 over (((x⃗)) , u) ∈ US respectively. We denote by

ΠṼ+
: Ṽ→ Ṽ+, ΠṼ−

: Ṽ→ Ṽ−, ΠṼ0
: Ṽ→ Ṽ0

the projections using the direct sum decomposition

Ṽ = Ṽ+ ⊕ Ṽ− ⊕ Ṽ0.

4.4 Computing translation vectors

Here, we will write the cocycle in terms of an integral. Let g be a hyperbolic element. Let ag denote the
attracting fixed point of g in ∂𝕊+ and rg the repelling one. Let Σ+ denote the surface

((𝕊+ ∪ ∂𝕊+) \ ΛΓ,𝕊+ )/Γ.

The surface S is the dense subset of Σ+. The V -valued forms are differential forms with values in the fiber
spaces ofV . (See Definition 4.2.) The Ṽ -valued forms on 𝕊+ are simply theℝ2,1-valued forms on 𝕊+. However,
the group Γ acts by

γ∗(v ⊗ dx) = L(γ)−1(v) ⊗ d(x ∘ γ) = L(γ)−1(v) ⊗ γ∗dx, γ ∈ Γ. (4.4)

(See Labourie [34, Chapter 4].)
Let ‖ ⋅ ‖E denote a Euclidean metric on E by changing signs of the Lorentz metric which we fix from now

on. Let g be a hyperbolic isometry. Let xg be a point of the geodesic lg in 𝕊+ on which g acts preserving an
orientation direction ug. We define

νg := v0,(xg ,ug) = ν̃(xg , ug),

which is independent of the choice of (xg , ug) on lg by (4.2).
Recall from Section 3.2 the cocycle of Γ = hb(π1(S)) for the holonomy homomorphism hb:

b ∈ Z1(π1(S),ℝ2,1h ).

We write every element g as g(x) = Agx + bg, x ∈ E. Then the function b : Γ → ℝ2,1 given by

g 󳨃→ bg for every g

is a cocycle representing an element of

H1(π1(S),ℝ2,1) = H1(S, V )

using the de Rham isomorphism. (See Labourie [34, Theorem 4.2.3].) Let η denote the smooth V -valued
1-form on S representing the cocycle b in the de Rham sense.

Let η̃ : 𝕊+ → ℝ2,1 denote the lift of η to 𝕊+. We can think of η̃, which is h-equivariant, as the differential
of a section sη̃ : 𝕊+ → E which is hb-equivariant:

η̃ = dsη̃ (4.5)

by [25, Theorem 1.14] and lifting to the cover 𝕊+ × E.
Recall from Section 2.2, the end neighborhood E and its inverse image H ⊂ 𝕊+. Let CH(Λ) denote the

convex hull of a closed subset Λ of ∂𝕊+ in 𝕊+. The surface SC := CH(ΛΓ,𝕊+ )/Γ is a finite-volume connected
hyperbolic surface with geodesic boundary and cusp ends. The boundary of SC is a union of finitely many
closed geodesic boundary components, and each end of SC is a cusp. Assume that each component of E is
a subset of SC by choosing suitable cusp neighborhoods. We let F to denote a compact fundamental domain
of CH(ΛΓ,𝕊+ ) \H .
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Let USC denote the space of unit vectors on S with base points at SC, and let UCH(ΛΓ,𝕊+ ) denote one
for CH(ΛΓ,𝕊+ ). We can compute the cocycle b by the following way:

Let K be a small fixed compact domain in CH(ΛΓ,𝕊+ ) \H in 𝕊+. Let η̃ denote the lift of η on 𝕊+. We may
also assume that

η̃|K ≡ 0 (4.6)

by locally changing η by (4.5). We simply need to change the section to a section that is a fixed parallel
section on pS(K ). This can obviously be achieved by using a partition of unity while this does not change
the cohomology class of η. (See [28, Section 4].)

To simplify, we assume that sη̃ at K takes the value of the origin O.

Definition 4.3. Let ΓK̂ denote the set of hyperbolic elements g ∈ Γ that acts on a geodesic lg in 𝕊+ passing
a compact subset K ⊂ 𝕊+ \H .

We lift the discussion to USC and its cover UCH(ΛΓ,𝕊+ ) ⊂ U𝕊+. Let g be an element of ΓK corresponding to
a closed geodesic cg. Let lg be the unit speed geodesic in𝕊+ in connecting xg ∈ K to g(xg) covering cg with the
length tg. Let Πℝ2,1 : U𝕊+ ×ℝ2,1 → ℝ2,1 denote the projection to the second factor. Then by the trivialization
on K

bg = Πℝ2,1( ∫
[0,t0]

η̃(
dlg(t)
dt ) dt),

where tg is the time needed to go from xg to g(xg). (See Labourie [34, Section 4.2.2].) However, we will
consider the case when xg is anywhere in 𝕊+, Since

Πℝ2,1( ∫
[0,tg]

η̃(
dlg(t)
dt ) dt) = g(ΠE ∘ sη̃(xg))) − ΠE ∘ sη̃(xg) = (L(g) − I)(ΠE ∘ sη̃(xg)) + bg ,

we have
bg = Πℝ2,1( ∫

[0,tg]

η̃(
dlg(t)
dt ) dt) + (I − L(g))(ΠE∘sη̃(xg)).

Thus, we obtain

bg = Πℝ2,1( ∫
[0,tg]

𝔻Ψ((xg , ug), t)−1(η̃(
dΨ((xg , ug), t)

dt )) dt) + (I − L(g))(ΠE∘sη̃(xg)),

where the geodesic segmentΨ((xg , ug), [0, tg]) for a unit vectorug at xg, covers a closed curve representing g.
Using the origin O of E, we can consider it as𝕍 with a vector subspace𝕍ω, ω = +, −, 0. Define

Πω,x0 := Πℝ2,1 ∘ ΠṼω ,x0 : {x0} × E→ 𝕍ω,x0 → ℝ
2,1

to denote the projection ΠṼω at the fiber E over x0 ∈ U𝕊+. Define

η̃ω(x0) = ΠṼω,x0
(η̃(x0)),

where ω = +, −, 0. Since Ψt preserves the decomposition,𝔻Ψ(x, t) commutes with these projections.

Definition 4.4. Let K be the compact subset of 𝕊+ \H . Let g ∈ ΓK . We choose xg ∈ K so that the arc
Ψ((xg , ug), [0, tg]) for a unit vector ug at xg covers a closed geodesic representing g, where

(g(xg), Dg(ug)) = Ψ((xg , ug), tg).

The arc here is not necessarily in K of course. We define invariants:

bg,ω := ΠṼω ,xg (bg)

= Πℝ2,1( ∫
[0,tg]

𝔻Ψ((xg , ug), t)−1(η̃ω(
dΨ((xg , ug), t)

dt )) dt) + (I − L(g))(Πω,xg (sη̃(xg))),
(4.7)

whereω = +, −, 0 respectively. The second equalities hold since𝔻Ψ(x, t) andL(g) commutewith projections
ΠṼ+

, ΠṼ−
and ΠṼ0

.
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Proposition 4.3. For nonparabolic g ∈ Γ − {I}, we have

bg,0 = α(g)νg , ‖bg,0‖ = α(g). (4.8)

Proof. First, bg,0 is parallel to νg by (4.7). Since νg is Lorentz orthogonal to the subspace spanned by v+,(xg ,ug)
and v−,(xg ,ug), the component bg,0 is the image bg under the Lorentzian projection to νg. Since bg = g(O) − O
for the origin O by our choice of the E-section near (4.6), and ‖νg‖ = 1, (3.7) and Criterion 1.1 imply the
result.

The normof a 1-formwith values in𝕍0 is given by the fiberwise normof𝕍0 and the normof hyperbolicmetric
for the tangent bundle of S. Finally, we will need:

Definition 4.5. Let K be a compact subset of S, and let K̃ denote the inverse image of K in 𝕊+. The neutral
factor of η|K is given as the maximum norm of η̃0 on UK̃.

4.5 Translation vectors have direction limits in 𝕊0
We aim to prove Theorem 4.8 from Section 4.5.1 to Section 4.5.4. Section 4.5.1 discusses the standard cusp
1-forms and how to integrate along geodesics to obtain the Margulis invariants. Important Lemma 4.6 shows
that long cusp geodesics can absorb many possibly negative perturbations during the argument that we
will present. Section 4.5.2 outlines the proof of Theorem 4.8. In Section 4.5.3, we show α(gi)→∞ and
α(gi)/‖bgi‖→∞ if l𝕊+ (gi)→∞. We will use the fact that a sequence converges to +∞ if we can show that
a subsequence of any subsequence converges to +∞. Hence, we will start with a subsequence and keep tak-
ing subsequences to obtain one that converges to +∞. In Section 4.5.4, we finish the proof of the theorem on
the limit of direction vectors.

4.5.1 Cusp forms

A standard horodisk D is an open disk bounded by a horocycle in 𝕊+ passing ((k)) and ending at the unique
point ((j + k)). We denote by ∂hD the horocycle Cl(D) \ (D ∪ {((j + k))}) for any horodisk D.

Let D󸀠 be a horodisk in 𝕊+. Let p denote a null-vector in the direction of p ∈ Cl(D󸀠) ∩ ∂𝕊+. Let us use an
upper half-space model of the hyperbolic plane with the standard coordinates x, y and p corresponding to
∞. Then we may assume without loss of generality that D󸀠 is given by y > 1.

Definition 4.6. Let g be an accordant parabolic transformation in Γ. Using the parabolic coordinates, let g
be of the form (3.5) for some t > 0. Let E󸀠 be a cusp neighborhood covered by D󸀠 where ⟨g⟩ acts as the deck
transformation group. On D󸀠, we can find a V -valued 1-form

μ(x2/2, −x, 1)dx (4.9)

that is closed but not exact and is g-invariant by (4.4) with respect to a coordinate system adopted to g. We
call such a form on D󸀠 and the induced one on E󸀠 standard cusp 1-forms, μ > 0 is the cusp coefficient of E󸀠.
(See [14] to check the form and the invariance.)

Here, μ > 0 by Lemma 3.12 since t > 0 under the assumption.
LetHj ⊂ 𝕊+, j = 1,2, . . . , denote the horodisks covering the components of E. Let pj denote the parabolic

fixed point corresponding to Hj. Each Hj has standard coordinates xj , yj from the upper half-space model
of 𝕊+ where pj becomes∞, and Hj is given by yj > 1.

Since S has finitely many cusps, we can choose horocyclic end neighborhoods with mutually disjoint
closures. By taking even smaller ones, we may also assume that

d𝕊+ (g(Hi), k(Hj)) > C(4.10)E , C(4.10)E ≥
5
4 , g, k ∈ Γ, i, j = 1, . . . ,m0, (4.10)

whenever g(Hi) ̸= k(Hj) for some fixed constant C(4.10)E depending only on E.
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There are only finitely many cusps in SC. Thus, we can choose finitely many cusps in each orbit class of
cusps whose closures meet the fundamental domain F. We may denote these by H1, . . . ,Hm0 by reordering
if necessary. We denote by p1, . . . , pm0 the corresponding null vectors. We choose a parabolic coordinate
system for each Hj in the Γ-equivariant manner.

Recall from Section 3.2 the cocycle of Γ = hb(π1(S)) for the holonomy homomorphism hb:

b ∈ Z1(π1(S),ℝ2,1h ).

For each γ ∈ π1(S), b(γ) = hb(γ)(x0) − x0 for a basepoint x0. For each peripheral element γ in the boundary
orientation, let γ̂ denote the corresponding deck transformation.We choose an adopted parabolic coordinate
system where h(γ̂) is accordant. Let Eγ be a component of E corresponding to γ. Let γ󸀠 be the homotopy class
in Eγ of the simple closed curve cγ󸀠 bounding Eγ with a basepoint x0,γ. If we choose a basepoint to be the
origin of the coordinate system, we obtain a class u in H1(⟨γ̂⟩,ℝ2,1⟨h(γ̂)⟩). Let c̃γ󸀠 denote the boundary horocycle
corresponding to γ̂. Using the partition of unity, we change the section sη̃ associated with η̃ so that so that
sη̃|c̃γ󸀠 is the orbit of the origin of the one-parameter group of parabolic affine transformations containing h(γ̂).
By (4.5), new η is obtained in Eγ. Since the de Rham class [ηcμ] ∈ H1(E󸀠,V) goes to u ∈ H1(⟨γ̂⟩,ℝ2,1⟨h(γ̂)⟩), we
obtain by Propositions B.1 and B.2:

Corollary 4.4. Let S, Γ, P, E, and γ be as above. Then we may replace a closed V -valued 1-form η on S with
a cohomologous one η󸀠 so that η󸀠|E󸀠 for each component E󸀠 of E is a standard cusp 1-form in a parabolic
coordinate system adopted to the accordant holonomy element following the boundary orientation.

We may choose the 1-form η representing the cohomology class so that η̃, its lift to 𝕊+, is a standard cusp
1-form on Hj. Let μj denote the cusp coefficients for each j, j = 1, 2, . . . . Since there are only finitely
many cusps in 𝕊+/Γ, there are only finitely many values of the cusp coefficients. Let μmin be the minimum
of μ1, μ2, . . . , and let μ be the maximum of μ1, μ2, . . . .

Let ‖ ⋅ ‖E denote a Euclidean metric on E which we fix in this paper.

Lemma 4.5. Let K be a compact subset of 𝕊+ \H . Suppose x ∈ K . Then the matrix Ci with columns

v+,(x,u), v0,(x,u), v−,(x,u) for every u ∈ Ux𝕊+

is in a compact subset of GL(3,ℝ) depending only on K .

Proof. There is a uniformly bounded element of SO(2, 1)o sending a complete geodesic ((0, −1, 1)) ((0, 1, 1))
to lgi and ((1, 0, 0)) to ((νgi )). From this and the way we define the frames in Section 4.3, the conclusion
follows.

Let g be a hyperbolic element. We recall from (4.7) and (4.8),

α(g) = ‖bg,0‖, bg,0 = ΠṼ0 ,xg (bg) = Πℝ2,1(( ∫
[0,tg]

B(νxg ,ug , η̃(
dΨ((xg , ug), t)

dt )) dt)νxg ,ug)

since (I − L(g))(ΠṼ0 ,xg (sη̃(xg))) = 0.
For any subinterval ζ in a cusp with the cusp coefficient μ, we define α(ζ) to be the corresponding part

of the above integral from tζ0 and tζ1 for the corresponding arc-length parametrizing interval [tζ0 , tζ1 ]. Define
R(ζ) as the radius of ζ in the upper half-spacemodelwhere the horocycle is given by y = 1. By Proposition B.4,
and the compatibility (4.3), we can use

α(ζ) = μ(
±√2√R(ζ)2 − 1

R(ζ) + 2R(ζ)√R(ζ)2 − 1)). (4.11)

Definition 4.7. We define r(ζ) := √R(ζ)2 − 1, which equals 1/2 times the absolute value of the difference of
the x-coordinates of the endpoint of ζ in theupper half-spacemodelwhere thehorocycle is givenby y = 1. The
horospherical length h of a cusp neighborhood E is the d𝕊+ -length of ∂E. Note that if twomaximal geodesics ζ
and ζ 󸀠 in a cusp E have the same endpoints, then r(ζ) and r(ζ 󸀠) differ by a half an integer times h.
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One useful result is [31, Theorem 4.6],
r( ̂ζ ) = sinh 1

2 (l𝕊+ (
̂ζ )). (4.12)

From this,we can show that the difference of x-coordinates of the endpoints of an arc of length l is≤ 2 sinh( l2 ).
Heuristically, Lemma 4.6 states that the homotopy classes of maximal geodesics in a cusp neighborhood

will give quadratic differences in α-values. In particular, item (ii) gives us the main estimations to absorb the
negative contributions.

Lemma 4.6 (Large cusp radius). Let ζ be amaximal geodesic in a cusp neighborhood E󸀠 with the standard cusp
1-form and a cusp coefficient μ󸀠. Let h be the horospherical length of E󸀠. There exists a positive constant Rc,
independent of μ󸀠 but dependent on h and C, which is defined below so that for any R1 > Rc has the following
properties:
(i) For the set of maximal geodesics in E󸀠, r(ζ 󸀠) 󳨃→ α(ζ 󸀠) for each ζ 󸀠 in it forms a strictly increasing positive

function of r(ζ 󸀠) for r(ζ 󸀠) > R1.
(ii) Let ζ and ζ 󸀠 be two maximal geodesics in E with the same endpoint as ζ but in the different homotopy

classes with respect to endpoints. For any constant 0 ≤ η0 < C with

R − h/2 < r(ζ) < R < r(ζ 󸀠) for R > R1,

we have
α(ζ 󸀠) − α(ζ) − μ󸀠η0 ≥ 2C(4.6)R1 ,Cμ

󸀠r(ζ 󸀠)2

for a constant C(4.6)R1 ,C > 0 depending only on h, R1 and C.

Proof. We choose a horoball Ẽ󸀠 covering E󸀠. Then we can compute α(ζ) for a geodesic ζ by lifting ζ to Ẽ󸀠.
Statement (i) is straightforward.
For (ii), the last term of (4.11) dominates the absolute values of other terms and μη for sufficiently

large R1: Using (4.11), the above term divided by μ󸀠 is bounded below by

r(ζ 󸀠)2 − r(ζ)2 − η0 − 2√2.

Since (x − h/2)/x is an increasing function of x, the supremum on x ∈ (R, R + h/2) is R/(R + h/2). Hence,
we have r(ζ) < CRr(ζ 󸀠) for CR = R/(R + h/2) since the ratio r(ζ)/r(ζ 󸀠) is less than CR for r(ζ 󸀠) ≥ R + h/2. Then
α(ζ 󸀠) − α(ζ) − μ󸀠η0 divided by μ󸀠 is bounded below by

r(ζ 󸀠)2(1 − C2R) − C − 2√2 ≥ (1 − C
2
R)(r(ζ

󸀠)2 −
C + 2√2
1 − C2R

).

Let fR(x) denote the polynomial given by the right side with x replacing r(ζ 󸀠). The largest root of fR(x) is
smaller than

√ (R + h)(C + 2√2)
h .

Since the function R 󳨃→ R dominates any function given by the square root of the 1st order polynomial of R,
there exists R󸀠 > h so that for R > R󸀠, we have

R > √ (R + h)(C + 2
√2)

h 󳨐⇒ fR(x) > 0 for x > R.

Define
c := fR

󸀠+1(R󸀠 + 1)
(R󸀠 + 1)2

> 0.

Then
fR󸀠+1(x) ≥ cx2 for x ≥ R󸀠 + 1

by an easy calculus argument. We take R1 = R󸀠 + 1, and C(4.6)R1 ,C = c/2. We can make R1 as large as we wish to
since we only need c > 0.
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4.5.2 Summing up the contributions

Let {gi} be a sequence of elements in ΓK . We denote by ̂lgi the lift of lgi to U𝕊+ directed towards the attracting
fixed point of gi in ∂𝕊+.

Recalling (4.7), we estimate bgi ,−(x). We give an outline of the rest of the long proof of Theorem 4.8
starting from Section 4.5.2:
(I) First, we estimate the last term in the integral (4.7) for ω = −.
(II) We estimate the contribution of η|SC \ E of the integral (4.7) for ω = −.
(III) We estimate the contribution of the arcs in H

(a) We estimate the contribution of the arc when it is put into a standard position.
(b) We obtain the relationship of the contributions to the arc in the standard position and actual one

by Lemma 4.7.
(c) We estimate the comparisons of sizes by length.

(IV) Then we sum these results to estimate the integral (4.7) for ω = −.
(V) In Section 4.5.3, we show that α(gi)→∞ and α(gi)/‖bgi ,−‖→∞ as l𝕊+ (gi)→∞.
(VI) Finally, we estimate the asymptotic direction as the last item in Section 4.5.4.
Let (x, u) ∈ UK . The arc Ψ((x, u), [0, t]) is a geodesic passing UK . We choose xi ∈ K ∩ lgi for each i and the
unit vector ui at xi in the direction of ̂lgi . We let tgi > 0 be so that Ψ((xi , ui), [0, tgi ]) ⊂ lgi corresponds to the
closed geodesic corresponding to gi.

Let USC denote the unit tangent bundle over SC.
∙ We denote by Hi,1,Hi,2, . . . , the components of H meeting Π𝕊+ (Ψ(xi , ui), t)) as t increases.
∙ Let pi,jdxi,j denote η̃|Hi,j, where ((pi,j)) is the parabolic fixed point in the boundary of Hi,j.
∙ Let ti,j, 0 < ti,j < tgi , be the time the geodesic Ψ((xi , ui), t) enters UHi,j, and ̂ti,j the time it leaves UHi,j

for the first time after ti,j.
∙ We denote Ii,j = [ti,j , ̂ti,j].

(I) We estimate ‖(I − L(gi))(Π−,xg ∘ sη̃(xi))‖E for g ∈ ΓK from (4.7): The matrix of L(gi) with the basis
v+,(xi ,ui), v0,(xi ,ui), v−,(xi ,ui) is a diagonal matrix with entries

λ1(gi), 1, 1/λ1(gi).

Hence, the above is given by
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 − 1

λ1(gi)
)(Π−,xg ∘ sη(xi))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩E
< CK , (4.13)

where we have a uniform constant CK depending only on K by Lemma 4.5 and (4.1) since λ1(gi) > 1 and
‖sη̃‖E|K is bounded by a constant depending only on K .

(II) Define
N(SC \ E) := max{‖η(u)‖fiber : u ∈ USC \ E}.

We have 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

[0,tgi ]\⋃j Ii,j

𝔻Ψ((xi , ui), t)−1(η̃−(
dΨ((xi , ui), t)

dt )) dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩fiber
< C1

for C1 <∞ by the second part of (4.3) applied to 𝔻Ψ((xi , ui), t)−1 and the integrability of the exponential
function. Here, C1 = C1(N(SC \ E)) depends only on N(SC \ E).

Since these integrals have values in the fibers over K , and ‖ ⋅ ‖fiber and ‖ ⋅ ‖E are uniformly compatible
over K , we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

[0,tgi ]\⋃j Ii,j

𝔻Ψ((xi , ui), t)−1(η̃−(
dΨ((xi , ui), t)

dt )) dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩E
< C2 (4.14)

for C2 <∞. (See Remark 4.1.) Hence, C2 depends only on K and N(SC \ E). We write

C2 = C2(K , N(SC \ E)).
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(III) For each Ii,j, we define for the maximal geodesic segment in lgi ∩Hi,j

ηi,j := Π𝕊+ ∘ Ψ((xi , ui), Ii,j) ⊂ Hi,j and

bgi ,−(ηi,j) := ∫
Ii,j

𝔻Ψ((xi , ui), t)−1(η̃−(
dΨ((xi , ui), t)

dt )) dt.

We now estimate bgi ,− contributed by Ii,j by looking at the situation of (4.17).
Recall the fundamental domain F of CH(ΛΓ,𝕊+ ) \H covering SC \ E. Let pi denote the beginning point

in ∂𝕊+ of lgi in 𝕊+, and p󸀠i denote the forward endpoint of lgi in ∂𝕊+. Let qi,j denote the beginning point of ηi,j
itself and ui,j the unit tangent vector to lgi at the point xi in K .

Definition 4.8. We define three maps and two others slightly later.
∙ gi,j: There is an element gi,j ∈ Γ so that gi,j(qi,j) ∈ F, and

gi,j(Hi,j) = Hk for k = 1, . . . ,m0 and gi,j(qi,j) ∈ F ∩ Cl(Hk).

∙ ĥi,j: Since {H1, . . . ,Hm0 } is finite, we can put Hk to the standard horodisk D by a uniformly bounded
sequence h󸀠i,j of elements of SO(2, 1)o. Since gi,j(qi,j) is in a compact set F ∩ Cl(Hk), it follows that
h󸀠i,j(gi,j(qi,j)) is in a uniformly bounded subset of U∂hD. Hence, we can put h󸀠i,j(gi,j(pi)) to be ((0, −1, 1))
by a bounded sequence h󸀠󸀠i,j of parabolic elements fixing ((0, 1, 1)). Let ĥi,j = h󸀠󸀠i,j ∘ h

󸀠
i,j. Then

ĥi,j(Hi,j) = D, ĥi,j(gi,j(pi)) = ((0, −1, 1)) ,

and ĥi,j in a uniformly bounded set of elements of SO(2, 1)o not necessarily in Γ. This is called a normal-
ization map. (There is a bound on the size of ĥi,j depending only on F.)

∙ hi,j: Let hi,j = ĥi,j ∘ gi,j.

The image
ζi,j = hi,j(ηi,j)

satisfies the premise of Lemma B.3. (See Figure 5.)

η

h

gh

h h

F

(0,-1,1) (0,1,1)

j

^
t

(0,-1,1) (0,1,1)

ζ(0,-1,1)

i,j

i,j

i,j

i,j

i,j
i,j

i

K̂

Figure 5: gi,j ∈ Γ moves qi,j to a point of F . ĥi,j sends Hi,j to the standard horodisk D, hi is a normalization map of lgi , h
t
i,j the

normalization map for hi,j(lgi ), where hij = ĥij ∘ gij. See Definitions 4.8 and 4.9. The black dots indicate the images of qi,j.
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(a) We define

bgi ,−(ζi,j) := ∫
Ii,j

𝔻Ψ(hi,j(qi,j), t − ti,j)−1(h−1∗i,j η̃−(
dΨ(hi,j(qi,j), t − ti,j)

dt )) dt. (4.15)

Proposition B.4 implies that
‖bgi ,−(ζi,j)‖E ≤ μkr(ζi,j).

Since there are only finitely many values of μk,

‖bgi ,−(ζi,j)‖E ≤ μr(ζi,j). (4.16)

(b) We compute the actual contribution for ηi. We diagram the flow of the point w ∈ U𝕊+ and the action of
the isometry g not necessarily in Γ:

w

g
��

−t
// Ψ(w, −t)

g
��

g(w) −t // Ψ(g(w), −t).

(4.17)

Lemma 4.7. We have
Πℝ2,1(𝔻h−1i,j (bgi ,−(ζi,j))) = Πℝ2,1(bgi ,−(ηi,j)). (4.18)

Proof. Since the flow commutes with isometry group action on U𝕊+, we have by considering (4.17) and the
triviality of actions in the fibers

𝔻g(𝔻Ψ(w, −t)(v)) = (𝔻g ∘𝔻Ψ(w, −t) ∘𝔻g−1) ∘𝔻g(v)
= 𝔻Ψ(g(w), −t) ∘𝔻g(v) for w ∈ UK , v ∈ ℝ2,1, g ∈ SO(2, 1)o .

(4.19)

We apply𝔻h−1i,j to (4.15). Since Ψ(x, t)
−1 = Ψ(x, −t), we obtain by (4.19)

𝔻h−1i,j (𝔻Ψ(hi,j(qi,j , ui,j), t − ti,j)
−1(h−1∗i,j η̃−(

dΨ(hi,j(qi,j , ui,j), t − ti,j)
dt )))

= 𝔻Ψ((qi,j , ui,j), t − ti,j)−1𝔻h−1i,j (h
−1∗
i,j η̃−(

dΨ(hi,j(qi,j , ui,j), t − ti,j)
dt )).

(4.20)

The above (4.20) equals by (4.4)

𝔻Ψ((qi,j , ui,j), t − ti,j)−1𝔻h−1i,j (h
−1∗
i,j η̃−(

dΨ(hi,j(qi,j , ui,j), t − ti,j)
dt ))

= 𝔻Ψ((qi,j , ui,j), t − ti,j)−1(η̃−(Dh−1i,j (
dΨ(hi,j(qi,j , ui,j), t − ti,j)

dt ))).
(4.21)

By the definition of differentials and (4.17), we obtain

Dh−1i,j (
dΨ(hi,j(qi,j , ui,j), t − ti,j)

dt ) =
d(h−1i,j ∘ Ψ)((hi,j(qi,j , ui,j), t − ti,j)

dt =
dΨ((qi,j , ui,j), t − ti,j)

dt . (4.22)

Above (4.21) equals by (4.22)

𝔻Ψ((qi,j , ui,j), t − ti,j)−1(η̃−(
dΨ((qi,j , ui,j), t − ti,j)

dt )). (4.23)

Since Ψ((xi , ui), ti,j) = (qi,j , ui,j), (4.23) equals

𝔻Ψ(Ψ((xi , ui), ti,j), t − ti,j)−1(η̃−(
dΨ(Ψ((xi , ui), ti,j), t − ti,j)

dt ))

= 𝔻Ψ((xi , ui), t)−1(η̃−(
dΨ((xi , ui), t)

dt )) for every t ∈ [ti,j , ̂ti,j], (xi , ui) ∈ UK ,
(4.24)

where we multiplied by𝔻Ψ((xi , ui), ti,j)−1 which is I on the fibers to the left side. Integrating (4.20) and the
last line of (4.24) for [ti,j , ̂ti,j], we proved (4.18).
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(c) Now, we compare the contributions of these arcs. Now, hi,j(qi,j) ∈ U∂hD is in a uniformly bounded sub-
set F󸀠, UF ⊂ F󸀠, independent of i, j, of U𝕊+ since hi,j(pi) = ((0, −1, 1)) and the complete geodesic containing
hi,j(ηi,j) passes the standard horodisk D. Thus, hi,j(lgi ) is uniformly bounded from the line κ in 𝕊+ connect-
ing ((0, −1, 1)) to ((j + k)), oriented towards ((0, 1, 1)). Let κ̂ denote the lift of κ to U𝕊+ taking the direction
towards ((j + k)).

Definition 4.9. We define two additional normalization maps:
∙ h†i,j: We take a uniformly bounded element h†i,j of SO(2, 1)

o so that

h†i,j(hi,j(lgi )) = κ and h†i,j(hi,j(qi,j)) = ((0, 0, 1)).

∙ hi: Since lgi is a geodesic passing K , we take a uniformly bounded element hi of SO(2, 1)o so that
hi(lgi ) = κ and hi(xi) = ((0, 0, 1)) without changing the orientation. (The bound only depends on K .)

Then
hi ∘ h−1i,j ∘ h

†,−1
i,j (h

†
i,j(ζi,j)) = hi(ηi,j)

and hi ∘ h−1i,j ∘ h
†,−1
i,j acts on κ.

∙ Under hi ∘ h−1i,j ∘ h
†,−1
i,j , h†i,j ∘ hi,j(qi,j) goes to a point hi(qi,j).

∙ We have
d𝕊+ (h

†
i,j ∘ hi,j(qi,j), hi(qi,j)) = ti,j (4.25)

since hi(xi) = ((0, 0, 1)) = h†i,j ∘ hi,j(qi,j) and the d𝕊+ -length of the arc from xi to qi,j is ti,j which is also the
d𝕊+ -length of the arc from hi(xi) to hi(qi,j).

By (4.1) and (4.25), the eigenvalue of L(hi ∘ h−1i,j ∘ h
†,−1
i,j ) at the eigenvector (0, 1, −1) is exp(−ti,j/2). Since

Πℝ2,1 (bgi ,−(ηi,j)) = Πℝ2,1 (h−1∗i,j (bgi ,−(ζi,j))),

it follows that L(hi ∘ h−1i,j ∘ h
†,−1
i,j ) sends theℝ

2,1-vector

Πℝ2,1 (L(h†i,j)(bgi ,−(ζi,j))) ∈ ⟨(0, −1, 1)⟩ to Πℝ2,1 (L(hi)(bgi ,−(ηi,j))) ∈ ⟨(0, −1, 1)⟩

bymultiplyingby exp(−ti,j/2). Since h†i,j and hi areuniformlyboundeddependingonly onK and F,weobtain

C̃(F,K ) exp(−ti,j/2)‖bgi ,−(ζi,j)‖E ≥ ‖bgi ,−(ηi,j)‖E . (4.26)

for a constant C̃(F,K ) > 0 depending only on K and F.

(IV) We sum up the contributions. Hence, 1
R(ζi,j) < 1. By (4.13), (4.14), (4.16), (4.26) and Proposition B.4,

we estimate the upper bound depending only on E,K , η|SC \ E:

‖bgi ,−‖E ≤ C̃(F,K )
mi

∑
j
exp(−

ti,j
2 )(μ

r(ζi,j)(1 + 4R(ζi,j)2)
2√2R(ζi,j)2

) + C2(K , N(SC \ E)) + CK

≤ C̃(F,K )
mi

∑
j
exp(−

ti,j
2 )(4μr(ζi,j)) + C2(K , N(SC \ E)) + CK

(4.27)

since R(ζij) ≥ 1.

4.5.3 α(gi)→∞ and α(gi)‖bgi ,−‖ →∞
In Step (V),wewill prove that α(gi)→∞ and α(gi)/‖bgi ,−‖→ +∞provided l𝕊+ (gi)→∞using the fact thatwe
can absorb many negative uncertainties during perturbation into long edges in the cusps using Lemma 4.6.

We can do this by showing that every subsequence has a subsequence converging to +∞. We give an
outline of the step (V).
(i) First, we will choose some constants such as ϵ, δ, R0 sufficiently small or large.
(ii) Let gi denote a closed geodesic. We replace the maximal segment ζ in a cusp neighborhood with

r(ζ) > R0 + h/2 with one ζ 󸀠 with the same endpoints but with R0 < r(ζ 󸀠) ≤ R0 + h/2. We denote the
result by g̃i.
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(iii) Then we find a closed geodesic ĝi freely homotopic to g̃i. Then we estimate |α(g̃i) − α(ĝi)| in terms of the
constant times the number of components of the above arcs in (4.32). This constant is bounded since
R0δ = 2 by our choice below.

(iv) This is the final step: α(gi) is bounded below by α(ĝi) plus constant times the sum of r(ζ)2. Then we use
the standard Schwartz inequalities.

Definition 4.10. Let gi also denote the arclength-parameterized closed geodesic in S whose lift lgi passes
a fixed compact set K in 𝕊+. Let J be the index set of mutually disjoint subintervals Ii ⊂ I and αi := gi|Ii.
By gi \⋃i∈J αi, we mean the map gi|I \⋃i∈I Ii.

We denote by Eϵ the set obtained by decreasing E inward by ϵ when ϵ > 0 and the (−ϵ)-neighborhood of E
when ϵ < 0.Wewill assume that E−1/2 is still a cusp-neighborhood, and η|E−1/2 is still a standard cusp1-form
for each component by taking sufficiently smaller E if necessary.

We denote by μi,j the cusp coefficient for the cusp neighborhood that ζi,j goes into. There are only finitely
many values. We assume that the horospherical lengths of all cusp neighborhood components of E equal h.
Let CS\E denote the neutral factor of the compact set S \ E. We remark that the following constants depend
only on the two constants h and CS\E1 . There is no obstruction for the following choices.

(i) The first step is to decide on constants to be used later:
∙ Choose δ > 0 so that 0 < δ < 1/40 by Lemma 2.2 and let ϵ = 7δ.
∙ We also require δ < μ/(7CS\E1 ).
∙ Also assume 6hϵ < 1, ϵ < 1/8, and R0 > 10.
∙ We require δ to be given by δ := 2/R0 by taking R0 sufficiently large and δ sufficiently small. By

Lemma 2.3, the angle that ζi,j with r(ζi,j) ≥ R0 makes with the vertical line is < δ in the upper half-space
model.

∙ R0 is a constant satisfying all conclusions for the variable R1 in Lemma4.6 for C > 222 μ
μmin

. For simplicity,
we assume R0 > 10.

(ii) We will replace very long ζi,j in gi with ones that are outside some cusp neighborhood: We denote by ζi,j
the sequence of maximal geodesics in gi going into E. We denote by Ji,t the set of ζi,j with r(ζi,j) > t for t ≥ 0.

For each ζi,j in Ji,R0+h/2, we take a maximal geodesic ̂ζi,j with the same endpoints but with

R0 ≤ r( ̂ζi,j) < R0 +
h
2

since we can decrease the r(ζ)-values by h/2 times integers by wrapping a smaller number of times around
the cusps. Since the geodesics are unique up to homotopy classes relative to endpoints, the homotopy class
of ̂ζi,j is, of course, different from ζi,j relative to the endpoints. Thus, we obtain for ζi,j ∈ Ji,R0+h/2,

α(ζi,j) − α( ̂ζi,j) ≥ μi,jδ(R0 +
h
2), α(ζi,j) − α( ̂ζi,j) − μi,jη0 ≥ C(4.6)R0+h/2,C󸀠μi,jr(ζi,j)

2, C(4,6)R0+h/2,C󸀠 > 0

by Lemma 4.6 where η0 < C󸀠.

(iii) The third step is to estimate the relationship between α-values for gi and the closed curves ĝi and
g̃i to be constructed: Let ĝi denote the closed curve obtained by gi removing ζi,j and adding ̂ζi,j for each
ζi,j ∈ Ji,R0+h/2. By Lemma 2.3, ĝi has turning angles < δ = 2/R0 at each endpoint of maximal geodesic
segments by Lemma 2.3. We define

α̂(ĝi) := α(gi \ ⋃
ζ∈Ji,R0+h/2

ζ) + ∑
ζ∈Ji,R0+h/2

α( ̂ζ ).

There exists a closed geodesic g̃i homotopic to ĝi which is in the ϵ-neighborhood of g̃i for ϵ = 7δ by
Lemma 2.2. Let ER0/2+h/4+ϵ denote the cusp neighborhood obtained by moving E inside by R0/2 + h/4 + ϵ.
Then both ĝi and g̃i are in S \ ER0/2+h/4+ϵ.

Define ̂Ji,0 the subset of Ji,0 of consisting of arcs ζi,j where d𝕊+ -lengths are strictly bigger than 5/4. For
every arc in Ji,0 \ ̂Ji,0, the arcs are in S \ E5/8. We will not remove these from gi in the following because of
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this. By skipping these, we have

| ̂ti,j − ti,j| ≥
5
4 , |ti,j+1 −

̂ti,j| ≥ C(4.10)E ≥
5
4 for every ζi,j ∈ ̂Ji,0, (4.28)

where C(4.10)E is from (4.10).
Each maximal geodesic ζi,j ∈ ̂Ji,0 \ Ji,R0+h/2 in E of gi goes to a geodesic ̃ζi,j in E−1/8 of g̃i by the perpen-

dicular projection which moves points by distances < ϵ < 1/8. We obtain two distances

di,j,± := d𝕊+ (∂±ζi,j , ∂± ̃ζi,j).

These are less than ϵ by Lemma 2.1 since each endpoint of ζi,j ∈ Ji,R0+h/2 moves less than ϵ. The corre-
sponding endpoints are at most distance di,j,± apart, which are values of the divergence functions corre-
sponding to ̂ti,j and ti,j respectively. Hence, their x-coordinate values differ by less than 1.1di,j,± respectively
using (4.12) as 0 < ϵ < 1/8. By last parts of [12] and [13] of the differences in the α-values, we can estimate
for ζi,j ∈ ̂Ji,0 \ Ji,R0+h/2,

|α( ̃ζi,j) − α(ζi,j)| ≤ 5μi,j(R0 + h/2)(di,j,+/2 + di,j,−/2) (4.29)

since we can put in the new x-coordinates and take differences in E−1/2 where η has the form of the stan-
dard cusp 1-form. Here, we need to use the fact that r > 10, ϵ < 1/8, ϵ < r/80, r 󳨃→ √r2 + 1, r > 0, is distance
decreasing, and estimates of differences of the inverses of radii of arcs using calculus.

We claim that the sum of di,j,+ + di,j,− for ζi,j ∈ ̂Ji,0 in g̃i \⋃ζi,j∈Ji,R0+h/2
̃ζi,j is less than 2 times the sum

of di,j,+ and di,j,− over all ζi,j ∈ Ji,R0+h/2 which is less than 4ϵ|Ji,R0+h/2|: We move

gi \ ⋃
ζi,j∈Ji,R0+h/2

ζi,j to g̃i \ ⋃
ζi,j∈Ji,R0+h/2

̃ζi,j

by perpendicular projections, and hence, the endpoints of ζi,j for ζi,j ∈ Ji,R0+h/2 moving to ̃ζi,j gives us
the divergence functions. The sum of the values of the divergence functions at ti,j , ̂ti,j for the endpoints
of ζi,j ∈ ̂Ji,0 \ Ji,R0+h/2 in a component of gi \⋃ζ∈Ji,R0+h/2 ζ , is less than 2 times the sum of the values of its
endpoints by (4.28) and Lemma 2.1.

Since each endpoint of ζi,j ∈ Ji,R0+h/2 moves less than ϵ, we have by (4.29)

∑
ζi,j∈ ̂Ji,0\Ji,R0+h/2

|α( ̃ζi,j) − α(ζi,j)| ≤ 10μ(R0 + h/2)ϵ|Ji,R0+h/2|. (4.30)

As in the third paragraph above, for arcs ̂ζi,j ∈ Ji,R0+h/2, we have

|α( ̃ζi,j) − α( ̂ζi,j)| ≤ 5μ(R0 + h/2)ϵ.

Hence,
∑

ζi,j∈Ji,R0+h/2
|α( ̃ζi,j) − α( ̂ζi,j)| ≤ 5μ(R0 + h/2)ϵ|Ji,R0+h/2|. (4.31)

For α-values outside these, we integrate η projected to the neutral bundle over

gi \ ⋃
ζi,j∈ ̂Ji,0

ζi,j and g̃i \ ⋃
ζi,j∈ ̂Ji,0

̃ζi,j ,

they all happen inside S \ E5/8+ϵ. By Lemmas 2.1 and 2.2, the absolute value of the α-value difference is
bounded above by the neutral factor CS\E5/8+ϵ times 2 times the sum of perpendicular distances at the end-
points of the corresponding arcs. These values are from endpoints of arcs in ̂Ji,0 considered by a paragraph
above (4.29) or endpoints of arcs in JR0+h/2. Hence the absolute value of the α-value difference is bounded
above by 4ϵCS\E5/8+ϵ |Ji,R0+h|.

Hence, we obtain by (4.30) and (4.31) and the assumptions in (i).

|α(g̃i) − α̂(ĝi)| ≤ |Ji,R0+h/2|(4CS\E5/8+ϵ ϵ + 15μ(R0 + h/2)ϵ),
15(R0ϵ + hϵ/2) = 15 × 2 × 7 + 15hϵ/2 < 218.

(4.32)
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(iv) Lastly, we apply the above to complete the convergences to∞. At (i), we chose above a sufficiently small
ϵ so that CS\E1ϵ < μ. Since CS\E1 ≥ CS\E5/8+ϵ , we obtain

α(gi) = α̂(ĝi) + ∑
ζ∈Ji,R0+h/2

(α(ζ) − α( ̂ζ ))

≥ α(g̃i) + ∑
ζ∈Ji,R0+h/2

(α(ζ) − α( ̂ζ ) − (4CS\E1ϵ + 218μ))

≥ α(g̃i) + ∑
ζ∈Ji,R0+h/2

μminC(4.6)R0+h/2,C󸀠 r(ζ)
2 for C󸀠 := 222μμmin

,

(4.33)

by Lemma 4.6 and (4.32).
Now we can show that α(gi)→∞ provided l𝕊+ (gi)→∞: Suppose that l𝕊+ (gi)→∞. If α(g̃i)→∞, then

α(gi)→∞ by (4.33), and we are done. Suppose that α(g̃i) is bounded above. Then l𝕊+ (g̃i) is also bounded
above by Lemma 1.4. Since r( ̂ζi,j) ≥ R0, we have l𝕊+ ( ̃ζi,j) ≥ l𝕊+ ( ̂ζi,j) − 2ϵ = 2arcsinh(R0) − 2ϵ by (4.12). Since
R0 > 10, arcsinh(10) > 2.99, 1/8 > ϵ by assumptions in (i), it follows that |Ji,R0+h/2| is bounded above. Only
possibility is r(ζi,j)→∞ for some members ζi,j of Ji,R0+h/2 in order that l𝕊+ (gi)→∞. This also implies
α(gi)→∞ by (4.33).

Now we go to the ratio limit. Notice that

∑
ζi,j∈Ji,0

exp(
−ti,j
2 )r(ζi,j) ≤ ∑ζi,j∈Ji,R0+h/2

exp(
−ti,j
2 )r(ζi,j) + ∑

ζi,j∈Ji,0\Ji,R0+h/2
exp(
−ti,j
2 )r(ζi,j). (4.34)

The second term is bounded above by a constant since each term is bounded above. This termcanbe absorbed
into CK in (4.35).

We obtain by (4.27), (4.33), and (4.34) that

α(gi)
bgi ,−
≥

α(g̃i) +∑ζ∈Ji,R0+h/2 μminC(4.6)R0+h/2,C󸀠 r(ζ)
2

C̃(F,K )∑ζi,j∈Ji,R0+h/2 exp(
−ti,j
2 )r(ζi,j) + C2(K , N(SC \ E)) + CK

. (4.35)

If Ji,R0+h/2 = 0 for infinitely many i, then α(gi)→∞ up to a choice of a subsequence by Lemma 1.4. Since
the nominator is a sum of bounded constants, we are done. Suppose not and that we have a sequence such
that ∑ζi,j∈Ji,R0+h/2 exp(−ti,j/2)r(ζi,j))→ 0 as i →∞. Define ̂ti to be the first ti,j, where r(ζi,j) > R0 + h/2. This
means that ̂ti →∞ and l𝕊+ (g̃i)→∞ and g̃i ⊂ S \ ER0+h/2+ϵ. By Lemma 1.4, α(g̃i)→∞, and we are done for
the purpose of Section 4.5.3.

Since we need to show the result for subsequences only, we may assume that

C0C̃(F,K ) ∑
ζi,j∈Ji,R0+h/2

exp(
−ti,j
2 )r(ζi,j) ≥ (C2(K , N(SC \ E)) + CK )

for a constant C0 > 0. Hence, we obtain
α(gi)
‖bgi ,−‖

≥
α(g̃i)

C̃(F,K )(1 + C0)∑ζi,j∈Ji,R0+h/2 exp(
−ti,j
2 )r(ζi,j)

+
μminC(4.6)R0+h/2,b,C󸀠 ∑ζ∈Ji,R0+h/2 r(ζ)

2

C̃(F,K )(1 + C0)∑ζi,j∈Ji,R0+h/2 exp(
−ti,j
2 )r(ζi,j)

.

We define
e⃗i := (exp(

ti,j
2 ))ζi,j∈Ji,R0+h/2

,

⃗ri := (r(ζi,j))ζi,j∈Ji,R0+h/2 ∈ ℝ
|Ji,R0+h/2|,

‖v⃗‖i,R0+h/2 := √v⃗ ⋅ v⃗, v⃗ ∈ ℝ|Ji,R0+h/2|.
Using the Schwarz inequality

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑

ζi,j∈Ji,R0+h/2
(
−ti,j
2 )r(ζi,j)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖e⃗i‖i,R0+h/2‖ ⃗ri‖i,R0+h/2,
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we obtain that (4.35) is bigger than or equal to 1
C̃(F,K ) times

α(g̃i)
(1 + C0)‖e⃗i‖i,R0+h/2‖ ⃗ri‖i,R0+h/2

+
μminC(4.6)R0+h/2,b,C󸀠‖ ⃗ri‖i,R0+h/2
(1 + C0)‖e⃗i‖i,R0+h/2

.

For each arc ζ in Ji,R0+h/2, there is a corresponding maximal geodesic ζf in g̃i given by the perpendicular
projection and extending to a maximal geodesic arc in E.

Using the perpendicular projection paths at the endpoints and the triangle inequalities, we obtain

l𝕊+ (g̃i) ≥ lS(g̃i \ ⋃
ζ∈Ji,R0+h/2

̃ζ) + ∑
ζ∈Ji,R0+h/2

l𝕊+ ( ̃ζ ) ≥ lS\E(gi) + ∑
ζ∈Ji,R0+h/2

(l𝕊+ ( ̂ζ ) − 2ϵ+(ζ) − 2ϵ−(ζ))

where ϵ+(ζ) and ϵ−(ζ) respectively are the vertical projection path lengths from the forward and backward
endpoints of ζ ∈ Ji,R0+h/2 to the corresponding ones of the arc ̃ζ in g̃i. We obtain l𝕊+ ( ̂ζ ) ≥ 2arcsinh(R0) > 5.8
by (4.12) as R0 > 10 by the assumption in (i). Since ϵ±(ζ) ≤ ϵ < 1/8, the positivity of the later terms follows.

By Lemma 1.4, α(g̃i) ≥ c(1.4)S\ER0/2+h/2+ϵ
l𝕊+ (g̃i). We obtain (4.35) is bigger than or equal to 1

C̃(F,K ) times

c(1.4)S\ER0/2+h/2+ϵ
lS\E(gi)

(1 + C0)‖e⃗i‖i,R0+h/2‖ ⃗ri‖i,R0+h/2
+
μminC(4.6)R0+h/2,b,C󸀠‖ ⃗ri‖i,R0+h/2
(1 + C0)‖e⃗i‖i,R0+h/2

.

Now, this is a function converging to∞ as

max{lS\E(gi), ‖ ⃗ri‖i,R0+h/2}→∞.

Suppose that l𝕊+ (gi)→∞. Then we claim that max{lS\E(gi), ‖ ⃗ri‖i,R0+h/2}→∞:
Suppose that lS\E(gi) is bounded. Then the number of maximal geodesic arcs of gi going into S \ E is

finite by (4.10). Then r(ζi,j)→∞ for some index (i, j) as i →∞ since otherwise we will have l𝕊+ (gi) bounded
by (4.12). Hence, ‖ ⃗ri‖i,R0+h/2 →∞.

Conversely, suppose that {‖ ⃗ri‖i,R0+h/2} is bounded above. If |Ji,R0+h/2|→∞, then lS\E(gi)→∞ by (4.28).
Otherwise, if |Ji,R0+h/2| is bounded, there is an upper bound to the absolute values of the coordinates of ⃗ri and
l𝕊+ (ζ) for ζ ∈ Ji,R0+h/2, implying the absurdity that l𝕊+ (gi) is bounded above.

We are done proving the main aim of Section 4.5.3.

4.5.4 The direction result

(VI) We come to the last step.

Theorem 4.8. Assume Criterion 1.1 and L(Γ) ⊂ SO(2, 1)o. Let η be a V-valued 1-form corresponding to
the boundary cocycle for Γ. Let K be a compact subset of CH(ΛΓ,𝕊+ ) \H . For every sequence {gi} with
{l𝕊+ (gi)}→∞ of elements of ΓK , the following hold:
∙ {‖bgi‖E}→∞.
∙ α(gi)→∞ and α(gi)/‖bgi ,−‖E →∞.
∙ {d(((bgi )) , Cl(ζagi ))}→ 0.

Proof. The first item follows since otherwise gi(O) is in a bounded set contradicting the properness of the
Γ-action.

By Lemma 4.5, we may also assume that

{v+,(xi ,ui)}→ v+, νgi → ν, and {v−,(xi ,ui)}→ v− (4.36)

for an independent set of vectors v+, ν, v− by choosing subsequences if necessary. These are all positively
oriented in E. Let C∞ denote the matrix with columns v+, ν, and v−.

We showed in Section 4.5.3 that

α(gi)→∞ and α(gi)
‖bgi ,−‖

→∞ as l𝕊+ (gi)→∞.
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Hence, for i →∞

{((‖bgi ,+‖E : ‖bgi ,0‖E : ‖bgi ,−‖E))}→ ((±1 : 0 : 0)) or ((∗1 : ∗2 : 0)) ,

where ∗2 ≥ 0 since α(gi) > 0 by Criterion 1.1. Then (4.36) implies

{d( ((bgi )) , Cl(ζagi ))}→ 0 as l𝕊+ (gi)→∞

by the above conclusion.

4.6 Accumulation points of Γ-orbits

RecallNd,ϵ( ⋅ ) fromSection 2.3.We again usedH in 𝕊3.We say that γi(K) for a compact set K and a sequence γi
accumulates only to a set A if γi(zi), zi ∈ K has accumulation points only in A. Of course, the same definition
extends to the case when K is a point. It is easy to see that this condition is equivalent to the condition that

for every ϵ > 0, there is I so that γi(K) ⊂ Nd,ϵ(A) for i > I.

(For the point case, we need to change the symbol ⊂ to the symbol ∈.)

Corollary 4.9. Assume Criterion 1.1 and L(Γ) ⊂ SO(2, 1)o. Let K ⊂ E be a compact subset. Let y ∈ 𝕊+, and let
γi ∈ Γ be a sequence such that {γi(y)}→ y∞ for y∞ ∈ ∂𝕊+. Then for every ϵ > 0, there exists I0 such that

γi(K) ⊂ Nd,ϵ(Cl(ζy∞ )) for i > I0. (4.37)

Equivalently, any sequence {γi(zi) : zi ∈ K} accumulates only to Cl(ζy∞ ).

Proof. It is enough to prove for subsequences of every subsequence that the conclusion holds. To obtain all
limit points of {γi(K)}, we will use the fact that Γ acts as a convergence group on ∂𝕊+ from Section 4.1. Up to
choosing subsequences, we assume that {γi} is a convergence sequence with the attracting point a and the
repelling point r.

We first consider the case a ̸= r. Then γi acts on a geodesic li in𝕊+ passing a compact setK for sufficiently
large i. Let xi ∈ K ∩ li, where li is given the direction ui so that γi acts in the forward direction. Using the
notation of the proof of Theorem 4.8, we have

a(γi) = ((v+,(xi ,ui))) , r(γi) = ((v−,(xi ,ui))).

We only need to consider subsequences {γi}, γi ∈ Γ, where the sequence a(γi) ∈ ∂𝕊+ of attracting fixed points
and the sequence r(γi) ∈ ∂𝕊+ of repelling fixed points are both convergent. Here,

{a(γi)}→ a and {r(γi)}→ r in ∂𝕊+.

Since {γi(y)}→ y∞ ∈ ∂𝕊+, it follows that γi is unbounded in Γ and hence {l𝕊+ (γi)}→∞, and {λ(γi)}→∞
for the largest eigenvalue λ(γi) of γi.

The convergences are uniform on the compact set K ⊂ E. To explain, we recall (4.36). We introduce the
(x(i), y(i), z(i))-coordinate system where

v+,(xi ,ui), νγi , and v−,(xi ,ui)

form a coordinate basis parallel to the x(i)-, y(i)-, and z(i)-axes respectively.We let x, y, z denote the coordinate
functions, where (v+, ν, v−) forms a coordinate basis.

Note that K is in a region Ri given by

[−C1, C1] × [−C2, C2] × [−C3, C3]

in the (x(i), y(i), z(i))-coordinate system. We may assume C1, C2, C3 are independent of i since the coordi-
nate functions x(i), y(i), and z(i) converge respectively to coordinate functions x, y, and z on E. We write
γi(x) = Aγi x + bγi . Since the sequence of largest eigenvalues of the linear parts of γi goes to +∞, it follows
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that Aγi (Ri) is given under the (x(i), y(i), z(i))-coordinate system by

[−Di , Di] × [−Ei , Ei] × [−Fi , Fi]

where {Di}→∞, Ei = C2, {Fi}→ 0 for Fi > 0. By Definition 4.4, γi(Ri) is in

Si := [−∞,∞] × [−Ei + α(γi), Ei + α(γi)] × [−Fi −
‖bγi ,−‖E
‖v−,(xi ,ui)‖E

, Fi +
‖bγi ,−‖E
‖v−,(xi ,ui)‖E

] (4.38)

in the (x(i), y(i), z(i))-coordinate system. Recall coordinate changemapsCi andC∞ near (4.36). For sufficiently
large i, we deduce that γi(Ri) is a subset of Nd,ϵ(Cl(ζa)) as follows: There is a sequence of coordinate change
maps hi : E→ E with a uniformly bounded matrix C∞C −1i such that

x ∘ hi = x(i), y ∘ hi = y(i), z ∘ hi = z(i).

Since
x(i) → x, y(i) → y, z(i) → z

by (4.36), we obtain hi → I𝕊3 as i →∞. What hi does is to send a box in the (x(i), y(i), z(i))-coordinate system
to the box of the same coordinates in the (x, y, z)-coordinate system.

Since α(γi)→∞ and α(γi)/‖bγi ,−‖E →∞ by Theorem 4.8, equation (4.38) implies that hi(Si)→ Cl(ζa)
geometrically. Since hi → I𝕊3 , we deduce that Si → Cl(ζa) by Corollary 2.5. Hence, for every ϵ > 0, we have

γi(Ri) ⊂ Si ⊂ Nd,ϵ(Cl(ζa))

for sufficiently large i, and (4.37) holds.
Finally, suppose that a = r. We choose γ so that

a( lim
i→∞

γγi) = γ(a) ̸= r = lim
i→∞

r(γi)

and use the sequence γγi as our convergence sequence. Then {γγi(K)} accumulates only on Cl(ζγ(a)) =
γ(Cl(ζa)). Therefore, {γi(K)} accumulates only to Cl(ζa).

We end with the following:

Converse part of Theorem 1.5. Suppose that Γ ⊂ SO(2, 1)o. To show the proper action of Γ, we show that for
any sequence {gi} of infinite elements, gi(K) ∩ K ̸= 0 for only finitely many elements. Suppose not. Then by
taking a subsequence, we may assume that γi(y)→ y∞ for y∞ ∈ ∂𝕊+. By Corollary 4.9, we showed that this
cannot happen.

If Γ is not in SO(2, 1)o, then we use the index 2 subgroup Γ󸀠 ⊂ SO(2, 1)o and it acts properly on E and so
does Γ.

5 The topology of Margulis space-times with parabolics

We first give an outline of this long section. We discuss the classical theory of Scott and Tucker [43] on open
3-manifolds homotopy equivalent to compact ones. Next, we will construct parabolic regions in M̃.

In Section 5.2, we will find a fundamental region for Γ in E using the work of Epstein and Petronio [24].
By Proposition 5.1, we obtain an exhausting sequence

M(1) ⊂ M(2) ⊂ M(3) ⊂ ⋅ ⋅ ⋅ ⊂ E/Γ.

In Section 5.2.2,we discuss someboundedness properties of the inverse image M̃(J) ofM(J) for some Jmeeting
with disks and topological polytopes. First, we construct the candidate disks to bound a candidate fun-
damental domain. The key step is Proposition 5.5 that the universal cover M̃(J) of an element M(J) of the
exhausting sequence meets the candidate disks and parabolic regions in bounded sets. This implies Corol-
lary 5.7 that M̃(J) meets a candidate fundamental domain F in a compact submanifold and hence F \ M̃(J) is
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a compact finite-sided topological polytope. In Section 5.2.3, we choose our candidate disksDj, j = 1, . . . , g,
and the candidate fundamental domain F. Then we divide M̃ into M̃(J) and M̃ \ M̃(J). We show F \ M̃(J) for
sufficiently large J is the fundamental domain of M̃ \ M̃(J) using Proposition 2.6 (the Poincaré fundamental
domain theorem). Candidate disks in M̃ are replaced by ones mapping to embedded disks in M by replacing
the parts in M̃(J) by Theorem 5.3, i.e., Dehn’s lemma. We obtain the fundamental domain of M̃(J), proving the
tameness of M, and the first part of Theorem 1.1.

In Section 5.3, we will show that for a choice of parabolic regions sufficiently far from M̃(J), their images
under Γ are mutually disjoint. To show this, we use the tessellations by the images of a fundamental domain,
and we explain how they intersect with the parabolic regions. Then we can account for every image by its
relationship with the images of the fundamental domain.

In Section 5.4, we will discuss the relative compactification of M̃. We will prove the final part of Theo-
rem 1.1 and Corollary 1.2. (See Marden [36–38] for many aspects of ideas in this section.)

5.1 Handlebody exhaustion of the Margulis space-times

The ends of 𝕊+/L(Γ) are finitely many, and some of these are cusps. A peripheral element of Γ is an element
corresponding to a closed loop in the complete hyperbolic surface freely homotopic to one in an endneighbor-
hood homeomorphic to an annulus. Let I󸀠 denote the collection of the maximal peripheral cyclic subgroups
of Γ, and let I denote the ones with hyperbolic holonomy. Each peripheral element of Γ acts on a point of ∂𝕊+
as a parabolic element or on a connected arc ai ⊂ ∂𝕊+, i ∈ Iwith the hyperbolic cyclic group ⟨ϑi⟩ acting on it.
Here,

Σ+ := (𝕊+ ∪⋃
i∈I
ai)/Γ

is a finite-type surfacewith finitelymany punctures and boundary components covered by arcs of the form ai.
We define Ai := ⋃x∈ai ζx, i ∈ I, an open domain where ζx is the accordant great segment for x. We define

Σ̃ := 𝕊+ ∪ 𝕊− ∪⋃
i∈I
(Ai ∪ ai ∪A(ai)). (5.1)

Then Γ acts properly on Σ̃, and Σ := Σ̃/Γ is a real projective surface. This followsby the sameproof as [16, Theo-
rem 5.3] without change. Again, Σ has twice the number of punctures as Σ+ and χ(Σ) = 2χ(Σ+).

We define Ñ := E ∪ Σ̃.We will show below that Γ acts properly on Ñ to give us a manifold quotient Ñ/Γ :
Let N be a manifold. A sequence Ni of submanifolds of N is exhausting if Ni ⊂ Ni+1 for all i and every

compact subset of N is a subset of Ni for some i. We obtain N = ⋃∞i=1 Ni necessarily.
The following is essentially due to Scott and Tucker [43], which we learned from some talks by Ohshika

[42] in this form (See also Canary and Minsky [5, p. 5]).

Proposition 5.1. Let E/Γ be a Margulis space-time with parabolics. Then E/Γ has a sequence of handlebodies

M(1) ⊂ M(2) ⊂ ⋅ ⋅ ⋅ ⊂ M(i) ⊂ M(i+1) ⊂ ⋅ ⋅ ⋅

so that M0 = ⋃∞i=1M(i). They have the following properties:
∙ π1(M(1))→ π1(M) is an isomorphism.
∙ The inverse image M̃(i) of M(i) in M̃ is connected.
∙ π1(M(i))→ π1(M) is surjective.
∙ For each compact subset K ⊂ E/Γ, there exists an integer I so that for i > I, K ⊂ M(i).

Proof. The existence of exhaustion is clear. We choose M(1) by using the 1-complex homotopy equivalent
to M. π1(M(i))→ π1(M) is surjective since π1(M(1))→ π1(M) factors into this map and π1(M(1))→ π1(M(i)).
Choose a base point x0 of M(1). Any closed loop in M with a basepoint in M1 is homotopic to a closed loop
in M(i). Hence, any two points of the inverse image x0 in M̃ is connected by a path in M̃(i) by the homotopy
path-lifting theorem of Poincaré. Thus, M̃(i) is connected.
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5.1.1 Parabolic solid-torus regions

Let S := 𝕊+/L(Γ). It has finitely many ends. Some of these are cusp ends, and some are hyperbolic ends. Note
that Γ has parabolics

g1, . . . , gm0 ,

each of which represents a generator of the fundamental group of a cusp neighborhood of S. We let each of

gm0+1, . . . , gm0+h0

represent the generator of each of the fundamental groups of the hyperbolic end neighborhoods of S. We
choose the generators along the boundary orientation of S.

Recall the notations from Section 2.2. We take components Hi ⊂ 𝕊+, i ∈ I󸀠 \ I in 𝕊+ of H . A parabolic
primitive element gi conjugate to gj for some j acts on Hi. We also note for every g ∈ Γ,
∙ either g(Hi) = Hi and g = gni for n ∈ ℤ, or else
∙ g(Hi) ∩Hi = 0.
We define Hi,− = A(Hi). There is a fixed point pi of gi in bd𝕊Hi ∩ ∂𝕊+ for each i ∈ I󸀠 \ I.

For each i ∈ 1, . . . ,m0, Theorem3.14 gives us a properly embedded ruled surface Si := Sfi ,r0 ⊂ E for some
fixed function fi : (0, 1)→ ℝ and

Cl(Si) \ Si = Cl(ζa(gi)) ∪ ∂hHi ∪ ∂hHi,−,

where a(gi) is the parabolic fixed point of gi in ∂𝕊+. The set Si is called a parabolic ruled surface. The compo-
nent of E \ Si whose closure containsH o

i is called a parabolic region, denoted byPi, which is homeomorphic
to a 3-cell by Theorem 3.13. These are distinct from parabolic cylinders. Here, fi is fixed for each conjugacy
class of parabolic elements. (See Section 3.1 for detail.)

For each i ∈ I󸀠 \ I, we define Si = γ(Sj) and Pi = γ(Pj) for any j, j = 1, . . . ,m0, and γ so that γ(Hj) = Hi.
This surface Si is well-defined since any element acting on Hj acts on Si and Pi. We have the Γ-equivariant
choice of parabolic ruled surfaces and parabolic regions.

Theorem 3.14 gives us a foliation Sfi ,ri with leaves that are parabolic ruled surfaces and a transversal
foliation Dfi ,ri for each Pi for each i = 1, . . . ,m0. For other Pi, we use the induced ones from Pj such that
Pi =γ(Pj) for j = 1, . . . ,m0.

Finally, we will make these Si and Pi sufficiently far whenever it is necessary to do so in this paper. (See
Definition 3.5.) We may do so without acknowledging.

5.2 Finding the fundamental domain

A topological polytope in E is a3-manifold closed as a subset of E andwhose closure in Cl(E) is a compactmani-
fold with boundary that is a union of finitely many smoothly and properly embedded compact submanifold.
In [16], we defined a crooked circle to be a simple closed curve in 𝕊 of the form

d ∪A(d) ∪ ⋃
x∈∂d

Cl(ζx)

for a complete geodesic d in 𝕊+ with boundary in a parabolic fixed point or in a boundary component of Σ̃+.
We may refer to them as being positively oriented since the definition depends on the orientations of E.

Recall parabolic regions from Section 5.1.1.

Definition 5.1. A crooked-circle diskD is a properly embedded opendisk in Ewhose boundary ∂D is a crooked
circle satisfying the condition: If x is a parabolic fixed point in ∂d and Pi is a sufficiently far away parabolic
region for x, Pi ∩ D is a ruled surface in a leaf of the transversal foliationDfi ,ri obtained as in Theorem 3.14.

A disk D in E is separating if it is properly embedded and E \ D has two components. Crooked-circle disks and
parabolic ruled surfaces are separating.
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5.2.1 The simple case of the properly acting parabolic cyclic group

Theorem 5.2 is a much easier version of that of Theorem 1.1 presented analogously.

Theorem 5.2 (Small tameness). Assume as in Theorem 1.1. Suppose that D is a crooked-circle disk in E with
a point p ∈ ∂D fixed by a parabolic element γ with a positive Charette–Drumm invariant. Then we can modify
D inside a compact set in E so that D ∩ γ(D) = 0. If we denote FP to be the connected domain in E bounded by D
and γ(D), then FP is a fundamental domain of ⟨γ⟩ in E. Furthermore, E/⟨γ⟩ is homeomorphic to a solid torus.

Proof. We take an arbitrary compact set K in E. Then there exists a sufficiently far away parabolic region R󸀠p
where γ acts so that K ∩ R󸀠p = 0. We have

⋃
n∈ℤ

γn(K) ∩ R󸀠p = 0 (5.2)

since R󸀠p is γ-invariant.
By taking sufficiently large K, we may assume that T̃ := ⋃n∈ℤ γn(K) is connected. By the proper discon-

tinuity of the action of ⟨γ⟩, K meets only finitely many γn(K). Choose K as a generic 3-ball so that T := T̃/⟨γ⟩
is a compact manifold.

We take a sequence of generic compact 3-balls Ki exhausting E. Then the corresponding Ti, i = 1, 2, . . . ,
form an exhausting sequence of compact 3-manifolds of E/⟨γ⟩. We denote T̃i := ⋃n∈ℤ γn(Ki).

(I) We first show that T̃i meet with D in a compact set and find a candidate fundamental domain F bounded
by two disks in a compact set.

By Theorem 1.5 and Corollary 4.9, γn(Ki) as n → ±∞ can have accumulation points only in Cl(ζp). We
have D ∩ R󸀠p ∩ T̃i = 0 by (5.2) for sufficiently far choice of R󸀠p. Since {γn(Ki) : n ∈ ℤ} is a locally finite collection
of sets in E accumulating only to Cl(ζp) by Corollary 4.9, and D \ R󸀠p is d-bounded away from Cl(ζp), it follows
that (D \ R󸀠p) ∩ T̃i is compact. Hence, D ∩ T̃i is compact for each i. Similarly, so is γ(D) ∩ T̃i.

By construction in Definition 5.1 and Theorem 3.14,

D ∩ γ(D) ∩ R󸀠p = 0 and (∂D ∩ γ(∂D)) \ Cl(R󸀠p) = 0.

Since D ∩ R󸀠p is a ruled disk so that γ(D ∩ R󸀠p) ∩ D ∩ R󸀠p = 0, we can find a thin tubular neighborhood T󸀠󸀠

in Cl(D \ R󸀠p) of ∂Cl(D \ R󸀠p) so that T󸀠󸀠 ∩ γ(T󸀠󸀠) = 0. We add the disk D ∩ R󸀠p to T󸀠󸀠 to obtain T󸀠. Hence, we
have γ(T󸀠) ∩ T󸀠 = 0.

We modify the disk γ(D) \ γ(T󸀠) to another disk D1 to be disjoint from D. Then D and D1 bound a topo-
logical polytope F closed in E.

Choose a sufficiently large i so that

D \ T󸀠, D1 \ γ(T󸀠), D ∩ D1 ⊂ T̃i ,

and we choose sufficiently far R󸀠p so that R󸀠p ∩ γn(Ki) = 0 for every n ∈ ℤ. We obtain that

T󸀠 \ T̃i = D \ T̃i and γ(T󸀠) \ T̃i = γ(D) \ T̃i

is a matching set under {γ, γ−1}. They are also in bdF ∩ E.
Also, (F \ R󸀠p) ∩ T̃i is again compact in E since F \ R󸀠p is d-bounded away from Cl(ζp) and γn(Ki) accu-

mulates only to Cl(ζp) by Corollary 4.9. Since R󸀠p ∩ T̃i = 0, it follows that F ∩ T̃i is compact, and F \ T̃oi is
a topological polytope.

(II) We find a fundamental domain that is a topological polytope.
Since {Tj \ Toi : j > i} is an exhausting sequence of E/⟨γ⟩ \ T

o
i , Proposition 2.6 implies that

T󸀠 ∩ (F \ T̃oi ) and γ(T󸀠) ∩ (F \ T̃oi )

bound a topological polytope F \ T̃oi that is a fundamental domain of E \ T̃oi under ⟨γ⟩.
We choose a generic set denoted by Ti so that D ∩ T̃i is a union of simple closed curves. The image

in E/⟨γ⟩ of the bounded component of D \ T̃oi is embedded since F \ T̃oi is a fundamental domain of E \ T̃oi
under ⟨γ⟩. We take mutually disjoint tubular neighborhoods of the images of these bounded components
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in E/⟨γ⟩ \ Toi whose lifts in E \ T̃oi are disjoint. We add these tubular neighborhoods to T̃i, and now each
component of D ∩ T̃i is a disk.

Theorem 5.3 (Dehn’s lemma, see Hempel [32]). Let M󸀠 be a 3-manifold M and let f : B → M be a map from
adisk B such that for some neighborhood of A of the boundary ∂B in B. If f|A is an embedding and f−1(f(A)) = A,
then f|∂B extends to an embedding g : B → M.

By Theorem 5.3, we replace the images in Ti of disk components of D ∩ T̃i by embedded disks in Ti. We
lift these disks to T̃i and attach the adjacent ones to D \ T̃oi . We obtain a disk D󸀠󸀠, and it is clear that
D󸀠󸀠 ∩ γ(D󸀠󸀠) = 0.

We rename D󸀠󸀠 by D. Let FP denote the region in E bounded by D and γ(D). Since Cl(FP) \ Cl(R󸀠p) is
bounded away from Cl(ζp) under d, and {γn(K)|n ∈ ℤ} is a locally finite collection of sets in E accumulat-
ing only to Cl(ζp) by Theorem 1.5 and Corollary 4.9, we obtain that (FP \ R󸀠p) ∩ T̃i is a compact set. Since
T̃i ∩ R󸀠p = 0, FP ∩ T̃i is also compact.

Also, FP ∩ T̃i is compact for each i. By Proposition 2.6, FP is a fundamental domain in E of ⟨γ⟩. The
existence of the fundamental domain tells us that E/⟨γ⟩ is tame and hence is homeomorphic to a solid
torus.

Remark 5.1. Using the closure of the fundamental domain FP and identifying D and γ(D), we deduce that

(E ∪ 𝕊+ ∪ 𝕊− ∪ ⋃
x∈∂𝕊+\{p}

Cl(ζx))/⟨γ⟩

is homeomorphic to A × [0, 1) for a compact annulus A = ⋃x∈∂𝕊+\{p} Cl(ζx)/⟨γ⟩, forming a relative compacti-
fication.

As an alternative proof of Theorem 5.2, we may use a γ-invariant foliation of E by crooked planes from
the results of Charette and Kim [7] to prove the relative compactification. A fairly simple computation shows
that there exists such a foliation in E/⟨γ⟩.

5.2.2 The boundedness of M̃(J) ∩ F for some polytope F
We choose an exhausting sequence M(J), J = 1, 2, 3, . . . , by Proposition 5.1. We aim to prove Corollary 5.7
showing that the M̃(J) meets a “candidate” fundamental domain in a bounded set.

Lemma 5.4. Let R be a conical region in 𝕊+ that is a fundamental domain of a parabolic element γ with p
as the fixed point in ∂𝕊+, and let FP be a fundamental domain in E of γ bounded by two embedded disjoint
crooked-circle disks D1 and γ(D1) in E, where

Cl(R) ∩ 𝕊+ = Cl(FP) ∩ 𝕊+ and Cl(D1) ∩ γ(Cl(D1)) = Cl(ζp).

Let L be a fundamental domain of M̃(J). Suppose that
∙ the sequence {ηj}, ηj ∈ Γ, takes infinitely many values, and
∙ {ηj(y)}, y ∈ 𝕊+, accumulates only to

Cl(R) ∩ ∂𝕊+ \ {p}.

Then
∞

⋃
j=1
ηj(L) ⊂

m0

⋃
i=−m0

γi(FP) for some finite m0.

Proof. Since Cl(FP) ∩ 𝕊 is bounded by two crooked circles Cl(D1) ∩ 𝕊 and Cl(D2) ∩ 𝕊, we obtain

(Cl(FP) \ Cl(ζp)) ∩ 𝕊0 = ⋃
z∈Cl(R)∩∂𝕊+\{p}

Cl(ζz).

Since ηj(y) accumulates only to Cl(R) ∩ ∂𝕊+ \ {p}, it follows that ηj(L) accumulates only to

(Cl(FP) \ Cl(ζp)) ∩ 𝕊0 = ⋃
z∈Cl(R)∩∂𝕊+\{p}

Cl(ζz) (5.3)
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by Theorem 1.5 and Corollary 4.9. The relative boundary bdHCl(FP) in the 3-hemisphereH is a union of two
disks Cl(D1) and γ(Cl(D1)) with boundary in 𝕊.

Since bdHFP has two components Cl(D1) and γ(Cl(D1)which coincide with a component of bdHγ−1(FP)
and one of bdHγ(FP) respectively,

F󸀠󸀠 := Cl(FP) ∪ γ(Cl(FP)) ∪ γ−1(Cl(FP))

has the boundary set
bdHF󸀠󸀠 = γ2(Cl(D1)) ∪ γ−1(Cl(D1)) ⊂ H,

and it follows that F󸀠󸀠 − Cl(ζp) contains a neighborhood of (Cl(FP) \ Cl(ζp)) ∩ 𝕊0 in H. Hence, we obtain by
(5.3) that except for finitely many ηj(L),

ηj(L) ⊂ (Cl(FP) ∪ γ(Cl(FP)) ∪ γ−1(Cl(FP))) \ Cl(ζp).

Since FP is a fundamental domain of γ, we obtain E ⊂ ⋃i∈ℤ γi(FP). By the paragraph above, we obtain

∞

⋃
j=1
ηj(L) ⊂

m0

⋃
i=−m0

γi(FP) for some finite m0.

The following is a crucial step in this paper:

Proposition 5.5 (Boundedness of M̃(J) in disks). Let J be an arbitrary positive integer. For any crooked-circle
disk D, D ∩ M̃(J) is compact, i.e., bounded, and has only finitely many components.

Proof. Suppose not. Thenwe can find a compact fundamental domain L of M̃(J) and an unbounded sequence
gj ∈ Γ, gj(L) ∩ D ̸= 0 for infinitely many j. Again, we may assume without loss of generality that gj is a con-
vergence sequence acting on ∂𝕊+ with a as an attractor and r as a repeller. (See Section 4.1.) Hence, we can
find a sequence xj ∈ L with gj(xj) ∈ D, and {gj(xj)} accumulates to a point x of

𝕊 ∩ ∂D.

If x ∈ 𝕊+ ∪ 𝕊−, then Theorem 1.5 and Corollary 4.9 contradict this. In fact, we have x ∈ Cl(ζy) for
some y ∈ ΛΓ,𝕊+ .

If Cl(D) is disjoint from ΛΓ,𝕊+ , then D ∩ M̃(J) is compact by the above paragraph. We are finished in
this case.

Now assume D ∩ Cl(𝕊+) ∩ ΛΓ,𝕊+ is a finite set of parabolic fixed points or is empty. Suppose that there
exists a sequence

{gj(xj) ∈ D : xj ∈ L}→ x ∈ Cl(ζp) (5.4)

for a fixed point p, p ∈ ∂D, of a parabolic element γ ∈ Γ (see Definition 3.3). Let y be a point of 𝕊+. If {gj(y)}
converges to q ̸= p, then

x ∈ Cl(ζq) ̸= Cl(ζp) with Cl(ζq) ∩ Cl(ζp) = 0

by Theorem 1.5 and Corollary 4.9. Since this is a contradiction, we obtain gj(y)→ p.
We obtain gj(y)→ p for a point y ∈ 𝕊+. We can choose a sequence γk(j) ∈ Γ, k(j) ∈ ℤ, so that γk(j)gj(y) is

in a conical region R closed in 𝕊+ bounded by two complete geodesics l, γ(l) with the common endpoint p
in ∂𝕊+.

Since p is not a conical limit point by Tukia [48], γk(j)gj(y) is bounded away from p in R. Therefore,
ηj := γk(j)gj is a sequence so that ηj(y) = γk(j)gj(y) has accumulation points only in (Cl(R) ∩ ∂𝕊+) \ {p}.

Here, k(j) is an unbounded sequence since γk(j)gj(y) still converges to p otherwise. By choosing a subse-
quence and the choice of γ, we may assume without loss of generality that k(j)→∞.

We now modify the disk D in a compact set in E by Theorem 5.2. Hence, the new disk D does not violate
the existence of a sequence as in (5.4).

By Theorem 5.2, we find a fundamental domain FP closed in E of ⟨γ⟩ bounded by a crooked-circle disk D
and its image γ(D) disjoint from D. Here, Cl(FP) ∩ 𝕊+ = R.
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Suppose that ηj takes infinitely many values. Since ∂D is a crooked circle, Cl(D) and γ(Cl(D))meet only
in Cl(ζp), Lemma 5.4 shows that

∞

⋃
j=1
ηj(L) ⊂

m0

⋃
i=−m0

γi(FP) for some finite m0.

When ηj takes only finitely many values, this is also obvious.
Since k(j)→∞, the finiteness of m1 and the nature of the parabolic action of γ−k(j) show

gj(xj) = γ−k(j)ηj(xj), xj ∈ L,

cannot lie on the fixed disk D containing ζp.

Proposition 5.6. Let η ∈ Γ be a parabolic element acting on a parabolic region Rη. Let pη denote the parabolic
fixed point of η in ∂𝕊+. Let R̂η denote the closure in Rη of a component of Rη − D1 − D2 for two crooked-circle
disks D1 and D2 whose closures contain Cl(ζpη ). Assume that Di ∩ Rη, i = 1, 2, is a ruled disk of the form of
Theorem 3.14. Suppose that D1 ∩ Rη and ηδ(D1) ∩ Rη for δ = 1 or −1 bound a region in Rη containing R̂η. Then
R̂η ∩ M̃(J) is compact for each J. Furthermore, we may assume that

M̃(J) ∩ Rη = 0 for j = 1, . . . ,m0,

by choosing Rη sufficiently far away. (See Definition 3.5.)

Proof. Suppose that R̂η ∩ M̃(J) is not compact. Then again, we can find a compact fundamental domain L
of M(J) so that gk(L) meets R̂η for infinitely many k. Then {gk(L)} has limit points in Cl(ζx) for x ∈ ΛΓ,𝕊+ by
Theorem 1.5 and Corollary 4.9. Since we have a sequence

{xk}, xk ∈ Cl(R̂η) ∩ gk(L) and Cl(R̂η) ∩ 𝕊0 ⊂ Cl(ζpη )

for the parabolic fixed point pη on ∂𝕊+ fixed by η, it follows that {gk(L)} has limit points in Cl(ζpη )
Let y ∈ 𝕊+.Weagainwrite ηi = γk(i)gi so that ηi(y) is in a conical regionR as in theproof of Proposition5.5.

The sequence {ηi(y)} accumulates only to (Cl(R) ∩ ∂𝕊+) \ {pη}. Again k(i)→ ±∞ since gi(y)→ pη. Now,

gi(xi) = γ−k(i)ηi(xi), xi ∈ L,

cannot lie on R̂η by Lemma 5.4 since k(i)→ ±∞.
For the final item,we can choose a newparabolic region R󸀠η sufficiently far away so that R󸀠η ∩ R̂η ∩ M̃(J) = 0.

Then R󸀠η ∩ M̃(J) = 0 by the parabolic action of ⟨η⟩.

Recall Σ̃ from (5.1).

Corollary 5.7 (Finiteness). Let F be a topological polytope in E bounded by finitely many crooked-circle disks.
Suppose that every pair of these disks the closures of which contain ζp for a parabolic fixed point p satisfy the
properties of D1 and D2 in Proposition 5.6. Assume

Cl(F) ∩ 𝕊 ⊂ Cl(F) ∩ (Σ̃ ∪ ⋃
k∈IF

Cl(ζpk ))

for a finite subset IF ⊂ I󸀠 \ I. Then the subspaces F ∩ M̃(J) and Cl(F) \ M̃o
(J) are both compact topological poly-

topes for each J.

Proof. The premise says that F is disjoint from ΛΓ except at⋃k∈IF Cl(ζpk ). Propositions 5.5 and 5.6 imply that
⋃γ∈Γ γ(L) ∩ F = M̃(J) ∩ F can have accumulation points outside itself only in the compact surface

(Σ̃ ∩ Cl(F)) \ ⋃
k∈IF

Hk ⊂ Cl(F) ∩ (𝕊+ ∪ 𝕊− ∪⋃
i∈I
(Ai ∪ ai ∪A(ai)))

by (5.1). This set is disjoint from⋃x∈ΛΓ,𝕊+
Cl(ζx). The existence of the accumulation points in here contradicts

Theorem 1.5 and Corollary 4.9. Hence, M̃(J) ∩ F is a bounded subset of F.
Also, Cl(F) \ Mo

(J) is bounded by a union of finitely many smooth finite-type surfaces. Hence, it is a com-
pact topological polytope. (See Figure 6.)
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Figure 6: The fundamental domain bounded by disksDj, j = 1, . . . , 2g, and some horodisks drawn topologically.

5.2.3 Choosing the candidate fundamental domain and side-pairing disks

Suppose that g is the rank of Γ. We recall from [16, Section 7]. Now Σ+ denotes the surface

((𝕊+ ∪ ∂𝕊+) \ ΛΓ,𝕊+ )/Γ,

where S is a dense subset of Σ+ with χ(S) = 1 − g. Also, Σ+ = (𝕊+ ∪⋃i∈I ai)/Γ. We add to (𝕊+ ∪ ∂𝕊+) \ ΛΓ,𝕊+ the
set of ideal parabolic fixed points ai , i ∈ I󸀠 \ I. The topology is given by a basis consisting of horodisks with
fixed points added or the open disks in (𝕊+ ∪ ∂𝕊+) \ ΛΓ,𝕊+ . We obtain a new surface

Σ̂+ := 𝕊+ ∪ ⋃
i∈I󸀠

ai/Γ.

We choose a collection {d̂j : j = 1, . . . ,m0} of disjoint geodesics ending at one of the ideal vertices or the
boundary arc of Σ̂+ so that the complement of their union is the union ofmutually disjoint open regions, each
of which is homeomorphic to one of the following:
∙ a hexagon where three alternate edges are arcs in ∂Σ̂+,
∙ a pentagonwith one ideal vertex (collapsed froma boundary component) and two alternate edges in ∂Σ̂+,
∙ a quadrilateral with two ideal vertices (collapsed from two boundary components) and one edge in ∂Σ̂+,

or
∙ a triangle with three ideal vertices.
We may choose a set d̂ij , j = 1, . . . , 2g, where the complement of their union is a connected cell. We relabel
these to be d̂1, . . . , d̂2g.

The lifts of the geodesics are geodesics in 𝕊+ ending at points of⋃i∈I ai.

Lemma 5.8. Wecan choose themutually disjoint collectionDj ⊂ E of properly embedded open disks and a tubu-
lar neighborhood Tj ⊂ Cl(Dj) of ∂Dj for each j, j = 1, . . . , 2g, that form a matching set {Tj|j = 1, . . . , 2g} for
a collection S0 of generators of Γ. Finally, ∂Dj = dj ∪A(dj) ∪⋃x∈∂dj Cl(ζx) for a lift dj of d̂j.

Proof. We choose lifts d1, . . . , d2g of d̂1, . . . , d̂g bounding a connected fundamental domain in Cl(𝕊+). Since
a component L of

𝕊+ \⋃
g∈Γ

2g
⋃
i=1
g(dj)

is the fundamental domain of the Γ-action on 𝕊+, we obtain γ1, . . . , γg generating Γ forming a matching col-
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lection S0 by adding γ−11 , . . . , γ−1g . Label γ−1j = γg+j for j = 1, . . . , g. Hence, we may assume that γj(dj) = dg+j
for j = 1, . . . , 2g,mod2g and {d1, . . . , d2g} is a matching set for S0.

Let p1, . . . , pm1 denote the set of parabolic fixed points on any of dj. By choosing the parabolic regions
Rp1 , . . . , Rpm1 sufficiently far away, we may assume that these are mutually disjoint. (See Section 3.3. Tem-
porarily, we are not using the terminology of Section 5.1.1. )

We remove the interior of Rpj , j = 1, . . . ,m1 from E. Let Spj denote the ruled surface boundary in E of Rpj ,
where gtj , t ∈ ℝ acts on. Note that Rpj meets 𝕊+ in a closed horodisk Hpj . Then we define

Σ̃∗ := (Σ̃ ∪
m1

⋃
j=1
Spj) \

m1

⋃
j=1

H o
pj \

m1

⋃
j=1

H o
pj ,−.

We assume that dj to be disjoint from Hpk if pk is not an endpoint of dj by taking the cusp neighborhood
sufficiently small.
∙ For each geodesic segment dj passingHpk for some k, we let d󸀠j := dj ∩ Σ̃

∗. For each point of x ∈ ∂d󸀠j ∩ 𝕊+,
we obtain a line Lx in the ruled surface Spj . (See Appendix A.) We denote it by ζx.

∙ For the endpoint of d󸀠j in ∂𝕊+, i.e., in⋃i∈I ai, we already defined ζx in Definition 3.3.
We define

d̃j = d󸀠j ∪A(d
󸀠
j ) ∪ ⋃

x∈∂d󸀠j

Cl(ζx).

Then d̃j ∩ d̃k = 0 for j ̸= k, j, k = 1, . . . , 2g since {d󸀠j |j = 1, . . . , 2g} is a mutually disjoint collection of simple
closed curves. Since dj ∩Hpk is a geodesic ending in pk or is empty for all j, k by our choice, dj ∩ ∂hHpk is
the unique point or is empty. Also,

dj ∩ ∂hHpk , j = 1, . . . , 2g,

are distinct for a fixed k as dj are mutually disjoint. Thus, {Cl(ζx), x ∈ ∂d󸀠j } is a mutually disjoint collection.
Furthermore, d̃1, . . . , d̃2g form a matching set for S0.
For each x ∈ ∂d󸀠j , j = 1, . . . , g, we take

∙ for x ∈ ∂𝕊+, a disk Zx of the form
⋃
y∈b

Cl(ζy) ⊂ Ak = ⋃
y∈ak

Cl(ζy)

where b is a small open interval in ak and x ∈ ak ∩ ∂d󸀠j , and
∙ for x ∈ ∂Hpj , a ruled tubular open neighborhood Zx of Cl(ζx) in the ruled surface Cl(Spj ).
Here, each Zx, x ∈ ∂d󸀠j , j = 1, . . . , g, is chosen sufficiently thin so that under elements of S0, the collection
of Zx and their images is a collection of mutually disjoint sets. We take a union of all of these disks with

(𝕊+ ∪ 𝕊−) \
m
⋃
j=1

Hpj \
m
⋃
j=1

Hpj ,−

to E \⋃2gj=1 Rpj to obtain a 3-manifold with boundary. Then we can apply Theorem 5.3 for the simple closed
curve d̃j to obtain open disks D󸀠j so that d̃j = ∂D󸀠j for each j = 1, . . . , g. These are chosen to be mutually
disjoint by the same theorem.

ThenweobtainD󸀠j+g as the image γj(D󸀠j ) for γj ∈ S0. Since theboundary components ofD󸀠 j, j = 1, . . . , 2g,
are mutually disjoint, using Theorem 5.3 again, we may do disk exchanges to obtain mutually disjoint
disksD󸀠󸀠j , j = 1, . . . , 2g.

Let pk be a parabolic fixed point where dj ends. Now for each ζx , x ∈ ∂d󸀠j , is in the boundary of a leaf of
the foliationDf,r in Rpk obtained by Theorem 3.14. For each such pk and dj, we add the disk toD󸀠j by joining
them at each ζx , x ∈ ∂d󸀠j . We call the resultsDj, j = 1, . . . , 2g. These are mutually disjoint.

Now,
Cl(Dj) ∩ Cl(Rpk ) ∩ 𝕊+ = Hpk ∩ dj = Hpk ∩ d̃j .

Hence, by adding these arcs back, we obtain

∂Dj = dj ∪A(dj) ∪ ⋃
x∈∂dj

Cl(ζx).
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Figure 7: M̃(J) meeting with disks.

Since we do not change the sufficiently thin tubular neighborhoods of ∂Dj under the above disk exchanges,
there exists a matching collection of tubular neighborhoods {Tj : j = 1, . . . , 2g} of {∂Dj : j = 1, . . . , 2g}
under S0.

Here, of course, the disk collection is not yet a matching set under S0. By Lemma 5.8, the collection {Cl(Dj)}
aremutually disjoint in Cl(E). The collectionDj, j = 1, 2, . . . , 2g, bound a region F closed in Ewith a compact
closure in Cl(E), a finite-sided polytope in the topological sense.

Now we consider K0 to be the set
2g
⋃
j=1
(Dj \ Toj ) ∪ ⋃

1≤j<k≤2g
(Dj ∩Dk).

By Proposition 5.1, we choose M(J) in our exhaustion sequence of M so that

M̃(J) ⊃ Nd,ϵ(K0) (5.5)

for an ϵ-neighborhood, ϵ > 0. (See Figure 7.)

5.2.4 Outside tameness

The following is enough to prove tameness.

Proposition 5.9 (Outside tameness). Let M denote a Margulis space-time E/Γ, where Γ is an isometry group
withL(Γ) ⊂ SO(2, 1)o. Let F be the domain bounded by⋃2gi=1Di. Suppose thatM(J) satisfies (5.5). Then F \ M̃(J)
is a fundamental domain ofM \M(J), andM is tame. Furthermore,⨆2gi=1Di \ M̃(J) embeds to a union of mutually
disjoint properly embedded surfaces in M.

Proof. By Corollary 5.7, F \ M̃o
(J) is a tame 3-manifold. Let X denote F \ M̃o

(J), a tame 3-manifold bounded by
a union of finitely many compact surfaces. Note that

M(J+1) \Mo
(J) ⊂ M(J+2) \M

o
(J) ⊂ ⋅ ⋅ ⋅

is an exhausting sequence of compact submanifolds in M \Mo
(J). SinceDi \ M̃o

(J) ⊂ Ti, it follows that

{Di \ M̃o
(J)|i = 1, . . . , 2g} ⊂ bdF ∩ E
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is a matching collection under S0 by Lemma 5.8. Also, F ∩ (M̃(J+n) \ M̃o
(J)) for each n is a compact topologi-

cal polytope by Corollary 5.7. By Proposition 2.6, X is the fundamental domain of E \ M̃o
(J). Hence, M \M

o
(J)

is tame.
The tameness ofM follows sinceM \Mo

(J) andM(J) are tame. The last statement follows since⨆2gi=1Di \ M̃o
(J)

is the boundary of a fundamental domain in E \ M̃o
(J).

5.2.5 Considering the whole disksDi ∩ M̃(J)
Weconsider bounded components ofDi \ M̃o

(J) for i = 1, . . . , 2g. By Proposition 5.9, the union of these planar
surfaces embeds to the union of disjoint ones inM. We take themutually disjoint thin tubular neighborhoods
of the images of compact planar components ofDi \ M̃o

(J) and take the inverse image to E.We add these to M̃(J).
Let us call the result M̃(J) ⊂ M̃ again. Since Γ acts on M̃(J), we obtain a compact submanifold M(J) in M.

Thus, byTheorem5.3 applied toM(J), each component ofDi ∩ ∂M̃(J) bounds adiskmapping to amutually
disjoint collection of embedded disks in M(J). We modify Di by replacing each component of Di ∩ M̃(J) with
lifts of these disks. (See [29] and [32] for some details.)

The results are still embedded in M̃ since we modify only inside M̃(J) where the disks are also disjoint.
Hence, we conclude

γj(Dj) = Dj+g for γj ∈ S,
γj(Dl) ∩Dm = 0 for (j, l,m) ̸= (j, j, j + g) mod 2g.

(5.6)

We summarize:

Proposition 5.10. LetM denote aMargulis space-time E/Γwhere Γ is an isometry groupwithL(Γ) ⊂ SO(2, 1)o.
Then there exists a fundamental domain R closed in E bounded by finitely many crooked-circle disks Dj,
j = 1, . . . , 2g. Moreover, Cl(R) ∩ (E ∪ Σ̃) is the fundamental domain of a manifold (E ∪ Σ̃)/Γ with boundary Σ.
Here, Ro and Cl(R) are 3-cells, and E/Γ is homeomorphic to the interior of a handlebody of genus g.

Proof. Let R be the region in E with boundary equal to⋃2gj=1Dj. SinceDj is a properly embedded separating
disk in a cell, repeated applications of Lemma 1.12 of [36] imply that Ro is a cell. Since Cl(R) is a polyhedral
manifold whose interior is a 3-cell, it is a 3-cell.

Since by (5.6),
{Dj : j = 1, . . . , 2g}

is amatched set under S0, it follows thatR is the fundamental domain by Proposition 2.6. The quotient space
is homeomorphic to the interior of a handlebody since we can find a homeomorphism of R to the standard
3-ball, whereDj, i = 1, . . . , 2g, correspond to disjoint open disks with piecewise smooth boundary.

Also,
{Cl(Dj) ∩ (E ∪ Σ̃) : j = 1, . . . , 2g}

is a matched set under S0. Also, every point in Ñ := E ∪ Σ̃ is equivalent to a point of R󸀠 := Cl(R) ∩ Ñ by the
action of Γ. Hence, R󸀠 is a fundamental domain giving us the properness of the action of Γ on Ñ := E ∪ Σ̃.
Thus, Ñ/Γ is a manifold with boundary Σ.

This proves the first part of Theorem 1.1. The remaining part of Theorem 1.1will be completed in Section 5.4.

5.3 Parabolic regions and the intersection properties

We will now choose the parabolic regions so that their images under the deck transformation groups are
mutually disjoint. We will need this in Proposition 5.13.

The basic idea used is that disks are separating E into two components. We choose the parabolic regions
for each parabolic point in the closure of the fundamental domain so that theymeet the fundamental domain
R is in a nice manner. Using this, we can show that each image of a parabolic region meets an image of
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the fundamental domain in finitely many manners. This will essentially give us the needed intersection
properties.

The above fundamental domain R is bounded by a union of disks Di , i = 1, . . . , 2g, in the boundary
ofR. We callDi the facial disks ofR. By construction, the closure ofDi is disjoint from ΛΓ,𝕊+ ⊂ ∂𝕊+ except for
parabolic points. The set of parabolic points meeting at least one Cl(Di) is a finite set {p1, . . . , pm1 }. (Possibly
two or more of the points pi may be in the same orbit of Γ.)

We use the notations of Section 5.1.1. For each pi, i = 1, . . . ,m1, we have a parabolic region of the
form γ(Pj) for some j, j = 1, . . . ,m0, and γ ∈ Γ whose closure contains pi. For each i, we denote by Pi this
region γ(Pj). We denote by ηi the parabolic element fixing pi, following the boundary orientation if we
remove E, and hence ηi = γηjγ−1 for some j = 1, . . . ,m0.

Now, we choose Pj, j = 1, . . . ,m0, so that Cl(Pi) ∩ 𝕊+ for each i equals a component of the inverse image
of E. These Rj, j = 1, . . . ,m0, form a mutually disjoint collection of closed cusp neighborhoods of S as given
in Section 2.2. Note that Cl(Pi) ∩ 𝕊+ for each i equals a component of the inverse image of E. Also, by our
construction in Theorem 3.13, we have Cl(Pi) ∩ 𝕊− = A(Cl(Pi) ∩ 𝕊+).

Definition 5.2. Let pi and Pi be as above for i ∈ I󸀠 \ I, and let ηi be the parabolic primitive element fixing pi.
Let Dfi ,ri ,t denote the canonically defined properly embedded disks by Theorem 3.14. We say that an image
γ(R), γ ∈ Γ, of the fundamental domain R bounded by crooked-circle disks meets nicely with η(Pi), η ∈ Γ, if

η(Pi) ∩ γ(R) = ⋃
t∈[t1 ,t2]

Dfi ,ri ,t for some t1, t2 ∈ ℝ, t1 < t2 (5.7)

and
Cl(ζη(pi)) ⊂ Cl(γ(R)), η(Pi) ⊂ (⋃

k∈ℤ
γηki (

k0
⋃
j=1
κj(R)))

o

for a finite collection of {κj ∈ Γ}, where Cl(ζη(pi)) ⊂ Cl(γ(κj(R))).

Of course, by the definition γ ∘ ηki ∘ κj(R), k ∈ ℤ, meets with η(Pj) nicely as well.

Lemma 5.11. Let Γ satisfy Criterion 1.1. Let R be the fundamental domain of E/Γ bounded by crooked-circle
disks as constructed by Proposition 5.10. Let q be a parabolic fixed point in Cl(R). Then q = pi for some i,
i = 1, . . . ,m1. Moreover, the following hold:
∙ Cl(ζpi ) ⊂ Cl(R),
∙ Cl(ζpi ) is a subset of the closures of exactly two facial disksDl andDm among the facial disks of R, and
∙ the corresponding parabolic regionPimeets nicelywithRprovidedwe choosePi, i = 1, . . . ,m0, sufficiently

far away.

Proof. Since q ∈ Cl(R), we obtain q = pi by the construction in Lemma 5.8 of ∂Dj, j = 1, . . . , 2g. Since the
closure of Dj is compact, either Dj contains ζpi in its boundary, or there is an ϵ-d-neighborhood of Cl(ζpi )
disjoint from it for some ϵ > 0. We can choose the boundary ruled surface of Pi sufficiently far so that (5.7)
holds and hence only facial disks of R that meet Pi are the two facial disks whose closures contain ζpi . (See
Definition 3.5.) Let us call theseDj andDk.

Now, ∂Pi ∩ E = Si is an open disk separating Pi from E \ Cl(Pi). The set ∂Pi ∩ R has the boundary formed
by two lines respectively inDj andDk. We take finitely many images κl(R), l = 1, . . . , k0 of R with κ1 = I so
that κl(R) ∩ κl+1(R) is a copy ofDi0 for some i0 whose closure contains ζpi . Since the collection {γ(R) : γ ∈ Γ}
tessellates E, we can choose enough of κj so that κk0+1(R) = η±1i (κ1(R)) for either + or − sign.

Except for the closures of facial disks of {κj(R) : j = 1, . . . , k0} containing Cl(ζpi ), the closures of other
facial disks contained in the boundary of {κj(R) : j = 1, . . . , k0} are disjoint from Cl(ζpi ). Let K̂ denote the
union of the closures of these images of facial disks of {κj(R) : j = 1, . . . , k0} disjoint from Cl(ζpi ). Since these
are separating disks inH, we may choose Pi sufficiently far so that Cl(Pi) ∩ K̂ = 0.

Since Cl(Pi) is ηi-invariant, it follows that Cl(Pi) is disjoint from⋃m∈ℤ ηmi (K̂). Now,⋃m∈ℤ η
m
i (K̂) is a sep-

arating set in E. A component of E \⋃m∈ℤ ηmi (K̂) equals

(⋃
k∈ℤ

ηki (
k0
⋃
j=1
κj(R)))

o

.
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Since Pi is a connected set, we obtain

Pi ⊂ (⋃
k∈ℤ

ηki (
k0
⋃
j=1
κj(R)))

o

, (5.8)

as desired

Notice that (5.8) gives us the conditions of Definition 5.2.

Proposition 5.12. Let Pi be a parabolic region for the parabolic fixed point pi, i = 1, . . . ,m0, as we chose at
the beginning of Section 5.3. We can always choose Pi , i = 1, . . . ,m0, so that for every pair η, γ ∈ Γ, so that
exclusively one of the following holds:
∙ η(pi) ̸∈ γ(Cl(R)), or else
∙ γ(R)meets η(Pi) nicely, and γ(Pj) = η(Pi) for some j = 1, . . . ,m1.

Proof. Wemay assume γ = I since we can change η to γ−1η. Then the result follows by Lemma 5.11.

We choose Pj far away for j = 1, . . . ,m0 so that the conclusions of Proposition 5.12 are satisfied.
Let P = ⋃γ∈Γ⋃i=1,...,m0

γ(Pi), and let PR := (P1 ∪ ⋅ ⋅ ⋅ ∪ Pm1 ) ∩ R.

Proposition 5.13. We can choose the sufficiently far away parabolic regions

P1, . . . ,Pm0

meeting R nicely so that they are disjoint in E. Then the following hold:
∙ The following are equivalent:

(1) γ(Pi)meets R nicely.
(2) γ(Pi) = Pj for some j, j = 1, . . . ,m1.
(3) γ(Pi) ∩ R ̸= 0.

∙ Rmeets only P1, . . . ,Pm1 among all images γ(Pr) for γ ∈ Γ, r = 1, . . . ,m0.
∙ Moreover, for every pair γ, η ∈ Γ,

γ(Pj) ∩ η(Pk) = 0 or γ(Pj) = η(Pk), j, k = 1, . . . ,m0.

Proof. We first choose Pi , i = 1, . . . ,m0, sufficiently far so that Pi ∩ Pj ∩ R = 0 for i ̸= j, i, j = 1, . . . ,m1, and
every Pj, j = 1, . . . ,m1, meets R nicely by Proposition 5.12.

Obviously, (2) implies (1). For the first item, we show that (1) implies (2): Suppose γ(Pj)meets R nicely.
Then γ(pj) is in Cl(R). Since γ(pj) is a parabolic fixed point, it equals pl for some l = 1, . . . ,m1. Only elements
of Γ fixing pl are of the form ηml for some integer m ∈ ℤ. We have

γ(Cl(Pj)) ∩ 𝕊+ = γ(Hk) ∪ γ(∂hHk)

for a horodiskHk. Now, γ(Hk) = Hl. Hence, the parabolic group acting on γ(Pj) is the same one acting onPl.
By our choice of Pj in Section 5.3 from choosing orbit representatives of parabolic fixed points, we obtain

γ(Pj) = Pl for some l = 1, . . . ,m1.

Clearly, (2) implies (3) by Lemma 5.11.
Now we show that (3) implies (2): Suppose that γ(Pj) ∩ R ̸= 0. Now, γ(pj) ∈ η(Cl(R)) for some η ∈ Γ, and

γ(Pj)meets η(R) nicely and γ(Pj) = η(Pk) for some k by Proposition 5.12. Moreover,

η(Pk) ⊂ (⋃
l∈ℤ

ηηlk(
k0
⋃
r=1
κr(R)))

o

(5.9)

by Proposition 5.12. Hence, γ(Pj)meets with only the images of R of the form ηηlkκj(R). If

ηηlk(κj(R)) = R for some k, l, j,

then γ(Pj) meets R nicely since we can check Definition 5.2. If ηηlk(κj(R)) ̸= R for all k, l, j, then γ(Pj) does
not meet R by (5.9). By Lemma 5.11, (2) implies (1). We proved the first item.
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The second item follows from it.
Suppose that two respective images P󸀠i and P

󸀠
j of somePk andPl for k, l = 1, . . . ,m0meets in a nonempty

set. Hence, they meet in γ(R) for some γ ∈ Γ. Thus,

γ−1(P󸀠i ) ∩ γ
−1(P󸀠j ) ∩ R ̸= 0.

The first item implies that

Pj = γ−1(P󸀠i ) and Pl = γ−1(P󸀠j ) for some l,m = 1, . . . ,m1

However, Pj ∩ Pl ∩ R = 0 or P󸀠i = P
󸀠
j by our construction of parabolic regions.

5.4 Relative compactification

5.4.1 Proof of Theorem 1.1

Proposition5.10proves the first part of the theorem. First,we recall our bordifying surface as definedby (5.1):

Σ̃0 := 𝕊+ ∪ 𝕊− ∪⋃
i∈I
(Ai ∪ ai ∪A(ai)).

We set Σ := Σ̃0/Γ and N := (E ∪ Σ̃)/Γ, which is a manifold by Proposition 5.10.
By Proposition 5.13, we define P to be a union of mutually disjoint parabolic regions of the form γ(Pi)

for γ ∈ Γ, i = 1, . . . ,m0. Since the boundary of their union in 𝕊 is the union of mutually disjoint closed
horodisks, their closures in H = Cl(E) are mutually disjoint. Now, we take the closure Cl(P) of P and take
the relative interior P󸀠 in the closed hemisphereH. Let ∂EP󸀠 denote bdP󸀠 ∩ E. Then define Ñ󸀠 := (E ∪ Σ̃) \ P󸀠.
Note that Γ acts properly discontinuously on Ñ󸀠 since Ñ󸀠 is a Γ-invariant proper subspace of Ñ. We note that
∂EP󸀠 is transversal to 𝕊. Thus, N󸀠 := Ñ󸀠/Γ is a manifold.

The manifold boundary ∂N󸀠 of N󸀠 is

((Σ̃ \ P󸀠) ∪ ∂EP󸀠)/Γ.

Define P󸀠󸀠 = P󸀠/Γ. Also, (∂EP󸀠)/Γ is a union of a finite number of disjoint annuli. Note that ∂N󸀠 is homeomor-
phic to (Σ \ P󸀠󸀠) ∪ (∂EP󸀠)/Γ.

Recall that the union of facial disksDi, i = 1, . . . , 2g, bounds the fundamental domain R inH. Then
2g
⋃
i=1

Cl(Di) ∩ ((E ∪ Σ̃) \ P󸀠)

bounds a fundamental domain
Cl(R) ∩ ((E ∪ Σ̃) \ P󸀠).

The boundary is homeomorphic to a 2-sphere and, hence, the fundamental domain is homeomorphic to
a compact 3-cell. Since this fundamental domain is compact, N󸀠 is compact.

Since we pasted disjoint disks on a cell, N󸀠 is homotopy equivalent to a bouquet of circles. Now, N󸀠 has
no fake-cell since Ñ󸀠 is a subset of E. It follows that N󸀠 is homeomorphic to a compact handlebody of genus g
by Theorem 5.2 of [32].

Let P̂ be the closure of P󸀠 in Ñ. We realize that N󸀠 is a deformation retract of N by collapsing P̂/Γ, homeo-
morphic to a disjoint union of copies of A2 × [0, 1), to its boundary in N homeomorphic to a disjoint union of
embedded images of A2 for a compact annulus A2 with boundary. This completes the proof of Theorem 1.1.

5.4.2 Proof of Corollary 1.2

If L(Γ) ⊂ SO(2, 1)o, we are done by Theorem 1.1.
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Suppose not. We have an index-two subgroup Γ󸀠 of Γ acting on 𝕊+ with L(Γ󸀠) ⊂ SO(2, 1)o. Then Γ󸀠 acts
on (E ∪ Σ̃) \ P󸀠, where we construct Σ̃ and P󸀠 as above for Γ󸀠. There exists an element ϕ of Γ − Γ󸀠 so that
ϕ(𝕊+) = 𝕊− and ϕ2 ∈ Γ󸀠 and ϕ normalizes Γ󸀠. Since ϕ acts as an orientation-preserving map of 𝕊, and

L(ϕ) ∘ L(Γ󸀠) ∘ L(ϕ)−1 = L(Γ󸀠),

it follows thatϕ induces a diffeomorphism𝕊+/Γ󸀠with𝕊−/Γ󸀠 preserving orientations. Since𝕊− is a Kleinmodel
also, we can define a limit set ΛΓ󸀠 ,𝕊− . Hence, for the limit sets, we have

ϕ(ΛΓ󸀠 ,𝕊+ ) = ΛΓ󸀠 ,𝕊− and ϕ(∂𝕊+ \ ΛΓ󸀠 ,𝕊+ ) = ∂𝕊− \ ΛΓ󸀠 ,𝕊− .

Since each element of L(Γ󸀠) commutes withA, we obtain

A(ΛΓ󸀠 ,𝕊+ ) = ΛΓ󸀠 ,𝕊− and A(∂𝕊+ \ ΛΓ󸀠 ,𝕊+ ) = ∂𝕊− \ ΛΓ󸀠 ,𝕊− .

Let I denote the collection of open intervals of ∂𝕊+ \ ΛΓ󸀠 ,𝕊+ . We define Σ̃ for Γ󸀠 as in (5.1),

𝕊+ ∪ 𝕊− ∪ ⋃
a∈I
(a ∪A(a) ∪ ⋃

x∈a
ζx).

Since ϕ is orientation-preserving, it follows that ϕ sends the disk Aa = ⋃x∈a ζx, a ∈ I, to AA(ϕ(a)). Since
a 󳨃→ Aϕ(a) gives us an automorphism of I, ϕ acts on Σ̃.

Given a component P1 of P󸀠, there is a parabolic primitive element γ1 acting on it. Then γ2 := ϕ ∘ γ1 ∘ ϕ−1

acts onϕ(P1). Since γ2 ∈ Γ󸀠 also, it follows that γ2 acts ona component P2 of P󸀠.Wedenote γ∗2(P1) = P2,where
we may not yet have γ(P1) = P2.

Let P̃denote the set of parabolic fixed points of ∂𝕊+. Then let a finite P̂denote the collection of the Γ󸀠-orbit
classes of P̃. The above action of ϕ induces an automorphism of P̂.

Lemma 5.14. There is no fixed point in P̂ under this action of ϕ on P̂.

Proof. Suppose not. Then using orbit equivalence under Γ, there exists an isometry ψ ∈ Γ \ Γ󸀠 so that
A ∘ L(ψ)(q) = q for a parabolic fixed point q. Note that A ∘ L(ψ) acts on 𝕊+ acting on a component Hi
for some i. Since A ∘ L(ψ) acts as an orientation reversing isometry on 𝕊+, it follows that A ∘ L(ψ) acts on a
complete geodesic lq ending at q. Since it must fix the point ∂hHi ∩ lq, it fixes each point of lq. Hence, L(ψ)
acts as −I on a time-like vector subspace Plq corresponding to lq, and is the identity on a space-like vector
subspace. Since ψ cannot have a fixed point on E, it follows that ψ2 cannot be the identity on E, and it is
a Lorentzian translation on a space-like geodesic l orthogonal to Plq , and ψ2 ∈ Γ󸀠 since [Γ : Γ󸀠] = 2. However,
Γ󸀠 does not have a translation element as it is an affine deformation of L(Γ󸀠).

Since there is no fixed point of the action, we divide the collection P̂ of components of P󸀠 into equivalence
classes of orbits under Γ󸀠. This is a finite set P̂1, . . . , P̂2m. Now ϕ acts on this set. We may assume that ϕ
sends P̂i to P̂m+i.

We replace each element of P̂m+i with ϕ(P󸀠󸀠) for the corresponding element P󸀠󸀠 of P̂i for i = 1, . . . ,m. We
obtain a new set P󸀠. Here, for the parabolic element γ󸀠󸀠󸀠 corresponding to ϕ(P󸀠󸀠), we have

γ󸀠󸀠󸀠 = ϕ ∘ γ󸀠󸀠 ∘ ϕ−1

for a parabolic element γ󸀠󸀠 acting on P󸀠󸀠. Since γ󸀠󸀠󸀠 is in the unique one-parameter subgroup γ󸀠󸀠󸀠t, t ∈ ℝ,
of parabolic isometries, it follows that γ󸀠󸀠󸀠t, t ∈ ℝ, acts on ϕ(P󸀠󸀠). Therefore, the boundary ∂ϕ(P󸀠󸀠) ∩ E is
a parabolic ruled surface for γ󸀠󸀠󸀠 as defined by Definition 3.5.

Obviously, Γ acts on P󸀠. Also, we may assume that elements of P󸀠 are mutually disjoint: we take a finite
set of components of P󸀠 that meets the fundamental domain R. We can make these disjoint by taking them
sufficiently far away. Proposition 5.13 shows that these are mutually disjoint.

Therefore,N󸀠 := ((E∪ Σ̃) \P󸀠)/Γ is compact and is homeomorphic to a handlebody of genus gby [32, Theo-
rem 5.2] as in Section 5.4.1. Since ϕ does not act on any component of P󸀠, we can show that N deformation
retracts to N󸀠 as above.
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A Parabolic ruled surfaces

We will be using the parabolic coordinate system obtained in Section 3.1. These constructions are canonical
except for the ambiguity in the x-coordinates up to translations. (See Remark 3.1.)

A.1 Proper embedding of ruled surfaces

Only prerequisites are Sections 2 and 3.1. Our purpose is to prove Theorem 3.13 using Lemma A.1, Proposi-
tion A.2, and Lemma A.3.

Lemma A.1. Assume as in Theorem 3.13. Every gt-orbit inHκ1 ,κ2 starts and ends at ζ((1,0,0,0)).

Proof. Let l be a segment so that Cl(l) ∈ Hs0 ,κ1 ,κ2 . An endpoint of l∞ must be ((1, 0, 0, 0)) since

gti (q)→ ((1, 0, 0, 0))

for eachpoint q ∈ l ∩ PT . SinceCl(l)has apair of antipodal points, the other endpoint of Cl(l∞) is ((−1, 0, 0, 0)).
We compute the intersection of an arbitrary image of gt(l) at the plane given by x = 0

((0, − ct(μt
3 + 6ty0)

6a + 3ct2
+
μt2

2 + y0, μt −
c(μt3 + 6ty0)
6a + 3ct2

, 1))

= ((0, −μt
2 + 6y0
6a
ct2 + 3

+
μt2

2 + y0, μt −
μt + 6y0/t

6a
ct2 + 3

, 1))→ ((0, 1, 0, 0)) ∈ 𝕊3
(A.1)

as t →∞ or t → −∞. See [9]. Since this point is in Cl(l∞), we showed that l∞ = ζ((1,0,0,0)).

Proposition A.2. Assume as in Theorem 3.13. Choose κ1 and κ2 satisfying 0 < κ1 ≤ κ2 < 1. Then the closure
ofHs0 ,κ1 ,κ2 under dH is a compact setHs0 ,κ1 ,κ2 ∪ {ζ((1,0,0,0))}.

(a) (b)

Figure 8: Two parabolic ruled surfaces. See [9].
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Proof. The space of open geodesic segments of d-length π in the 3-hemisphere H forms a compact metric
space under the Hausdorff metric dH . We show this by showing that every sequence of elements ofHs0 ,κ1 ,κ2
has an accumulation point inHs0 ,κ1 ,κ2 or accumulates to Cl(ζ((1,0,0,0))).

Given a sequence of segments {ui} inHs0 ,κ1 ,κ2 , ui = gti (li), where li ∩ E is given by

li(s) = (sai , y0,i , sci) for y0,i ≥ s0, ai , ci > 0,
κ1ai
ci
≤
y0,i
μ ≤

κ2ai
ci

, a2i + c
2
i = 1.

The boundedness of one of y0,i or ai
ci implies that of the other. If y0,i or ai

ci is bounded above, then li
geometrically converges to an element of Hs0 ,κ1 ,κ2 up to a choice of a subsequence. If ti → ±∞, then
ui → ζ((1,0,0,0)) since the estimates in (A.1) in the proof of Lemma A.1 hold in this case. If ti is bounded,
then ui → u0 ∈ Hs0 ,κ1 ,κ2 .

Hence, we are left with the case where

y0,i →∞,
ai
ci
→∞, and ti → ±∞.

We will show that ui → ζ((1,0,0,0)): Suppose not. Then ui converges to a line u∞ passing E under the
metric dH . Then u∞ has the direction (1, 0, 0) since ((L(Φt)(v)))→ ((1, 0, 0)) for a generic vector v.

By applying an element of gt to u∞ and the sequence ui, we may assume that u∞ ∩ E is given as the line

x = s, y = C, z = 0, s ∈ ℝ.

Since ui geometrically converges to u∞, it follows that ui intersected with x = 0 is near (0, C, 0). By changing
ui by a bounded gsi with si → 0, we may assume without loss of generality that ui passes (0, Ci , 0)while we
still have ui → u under dH . Here, Ci → C.

By our construction, ui is contained in a hyperplane Pi tangent to a parabolic cylinder Si given by the
equation 2μy = z2 + 2μC1,i for some C1,i ∈ ℝ. The line ui meets Si at the unique point (x∗i , y

∗
i , z
∗
i ). Project Pi

and Si to the yz-plane. Then the image of Pi passes (Ci , 0) and tangent to the parabola 2μy = z2 + 2μC1,i. We
compute by elementary geometry

z∗i = ±√2μC1,i − 2μCi and y∗i = 2C1,i − Ci .

Now, we wish to compute ti so that gti (l) = ui as in (3.9) where l(s) passes (0, C1,i , 0). We compute t
satisfying

Φt(0, C1,i , 0) = (tC1,i +
μt3

3 , C1,i +
μt2

2 , μt) = (x∗i , y
∗
i , z
∗
i )

recalling (3.5). We let ti denote the answer

y∗i = 2C1,i − Ci = C1,i +
μt2i
2 and ti = ±√

2(C1,i − Ci)
μ . (A.2)

The vector αi tangent to ui is given by

(tiC1,i +
μt3i
6 , C1,i +

μt2i
2 , μti) − (0, Ci , 0) = (tiC1,i +

μt3i
6 , C1,i − Ci +

μt2i
2 , μti).

Since the sequence of the directions of the vectors converges to (1, 0, 0) by our assumption on ui, we obtain
ti → ±∞.

Recall

L(Φti )
−1 =(

1 −ti
t2i
2

0 1 −ti
0 0 1

) .

We compute L(Φ−1ti )(αi) to be

(tiC1,i +
μt3i
6 − ti(C1,i − Ci) −

μt3i
2 +

μt3i
2 , C1,i − Ci +

μt2i
2 − μt

2
i , μti) = (

μt3i
6 + tiCi , 0, μti).

Recall the condition (3.9) to g−ti (ui) = l, which yields C1,i/μ ≤ κ2(t2i /6 + Ci/μ), and we obtain

C1,i ≤ κ2
1
3 |C1,i − Ci| + κ2Ci and κ2 < 1

by (A.2). Since ti → ±∞, we obtain C1,i → +∞ and Ci → C. This contradicts the above inequality.
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We conclude that ui can converge only to points ofHs0 ,κ1 ,κ2 or ζ((1,0,0,0)). This gives us a sequential con-
vergence property. The closure ofHs0 ,κ1 ,κ2 is a compact metric spaceHs0 ,κ1 ,κ2 ∪ {ζ((1,0,0,0))}.

Lemma A.3. Let M be a compact metric space. Suppose that there exists a 1-dimensional flow ϕt : M → M,
t ∈ ℝ, with a fixed point p. Suppose that the orbit of every point starts and ends at p, and the orbit space
(M \ {p})/∼ is not compact. Then every ϵ-ball of p contains an orbit starting and ending at p.

Proof. Choose a compact set K = M \ Bϵ(p) for an open ϵ-ball of p. Since

( ⋃
t∈ℝ

ϕt(K))/∼ = K/∼

is compact, and (M \ {p})/∼ is not compact, it follows that

M \ ⋃
t∈ℝ

ϕt(K) = ⋂
t∈ℝ

ϕt(Bϵ(p)) ⊂ Bϵ(p)

is not empty. Then a point here gives us an example of the closed orbit.

Proof of Theorem 3.13. We will first show that Ψ : ℝ2 → E is a proper injective map.
Since gt acts on PT󸀠 for each T󸀠, we have a self-intersection of Ψ if

gt(l(s) ∩ PT󸀠 ) = l(s󸀠) ∩ PT󸀠 for some t > 0, s, s󸀠 ∈ ℝ and T󸀠 ∈ ℝ.

The following hold:
∙ l(s) ∩ PT󸀠 is a pair of points provided T󸀠 > −2μy0, or
∙ T󸀠 = −2μy0 and l(s) ∩ PT󸀠 is (0, y0, 0), or else
∙ l(s) ∩ PT󸀠 is empty for T󸀠 < −2μy0.
Thus, only in the first case, we can have a self-intersection of the image of Ψ under the quotient space E/⟨g⟩.
Now l(s) ∩ PT󸀠 can be computed as follows:

(sc)2 − 2μy0 = T󸀠 and s0 =
√T󸀠 + 2μy0

c
and the points are (±s0a, y0, ±s0c). And we obtain

F3(±s0a, y0, ±s0c) = ±(s30c
3 − 3μy0s0c + 3μ2s0a).

These are distinct unless the value is 0. Since F3 is invariant under g, it follows that if F3-values of two points
are distinct, then they cannot be in the same orbit of ⟨g⟩. If F3 = 0, we must have

a
c = −

T󸀠

3μ2
+
y0
3μ .

Since −T󸀠 < 2μy0, we obtain
a
c <

2μy0
3μ2
+
y0
3μ =

y0
μ .

Thus, if we choose y0 < μ ac , the self-intersection of Ψ never happens. For example, choosing y0 sufficiently
small or choosing a

c sufficiently large would satisfy the condition. This proves the injectivity of Ψ. By (3.6),
gt acts properly on each parabolic cylinder PT since F1 and F2 are invariants of the vector field on ϕ, and
each intersection of F1 ∩ F2 is a complete flow line.

We now prove the properness of Ψ. Suppose that there is a compact set K ⊂ E and gti (l) ∩ K is not empty
for a sequence {ti} of real numbers such that ti →∞. (The case when ti → −∞ is entirely similar.) However,
K is in the region B in E bounded by two parabolic cylinders PT1 and PT2 for some pair T1 and T2. Then l
meets PTj , j = 1 at most two points. If l does not meet B, then gt(l), t ∈ ℝ is disjoint from K since the region
bounded by PTj is gt-invariant. If l ∩ B ̸= 0, then

gti (l ∩ B)→ {((1, 0, 0, 0))} or {((−1, 0, 0, 0))} as ti → ±∞

by convexity since the endpoints of l ∩ B do this. This proves the properness ofΨ : ℝ2 → E and that gti (l) can
have limit points only in 𝕊.
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The first item is proved by Lemma A.1.
Choose κ1 and κ2 satisfying 0 < κ1 ≤ κ2 < 1. There is a continuous map ιR : Hs0 ,κ1 ,κ2 → 𝕊+ by taking the

endpoints in 𝕊+. The image is a horodiskE. SinceE/∼ is not compact, it follows thatHs0 ,κ1 ,κ2/∼ is not compact
under the orbit equivalence relation under gt , t ∈ ℝ

By Proposition A.2,Hs0 ,κ1 ,κ2 ∪ {ζ((1,0,0,0))} is compact. In any ϵ-dH-neighborhood N̂, ϵ > 0, of Cl(ζ((1,0,0,0)))
inHs0 ,κ1 ,κ2 , we can find a gt-orbit in N̂ by Lemma A.3. Take any neighborhood N of Cl(ζ((1,0,0,0))) in 𝕊3. Since
we are using the Hausdorff metric, we can find an ϵ-dH-neighborhood N̂ inHs0 ,κ1 ,κ2 ∪ {ζ((1,0,0,0))} so that any
segment in N̂ is a segment in N. Then the gt-orbit as above will give us the desired ruled surface in N. This
proves the second item.

The first and second items imply the fact on the boundary of Sf,r. Clearly,Sf,r bounds a domain in E with
boundary Cl(Sf,r). This domain is homeomorphic to a 3-cell by [36, Lemma 1.12]. Also, g sends the disk
leaves of the foliationDf,r0 of the domain to a disjoint disk leaf in Theorem 3.14. Hence, the quotient space
is homeomorphic to a solid torus.

A.2 Two transversal foliations

Proof of Theorem 3.14. The fact that Sf,r is a properly embedded surface is proved in Theorem 3.13. We
defined lf,r(s) = (sr, f(ρ), s√1 − r2). We define

lf : [r0, 1) ×ℝ→ E given by lf (r, s) = (sr, f(ρ), s√1 − r2).

Let ulf,r denote the vector field (r, 0,√1 − r2) tangent to lf,r(s). Also, the vector field ϕ generating gt is given
by (y, z, μ).

∂lf
∂r = Yf = (s, f

󸀠(ρ), −sr
√1 − r2

)

is tangent to Df,r0 ,0 obtained by taking a tangent vector along the direction of ∂
∂r . A triple product of three

vectors is the volume of the span of three vectors in E. We compute the triple product on the line lf,r

(ulf,r , Yf , ϕ) = √1 − r2(
μr
√1 − r2

− f(ρ))f 󸀠(ρ) + s2 > 0, (A.3)

which follows by our condition on f and r. It follows that ulf,r , Yf , ϕ form always an independent frame in the
standard orientation on lf,r, and so are their images under gt since gt is volume-preserving. Thus,

Dgt(ulf,r ), Dgt(Yf ), Dgt(ϕ)

form an independent frame at each point of Sf,r.
We claim that Sf,r is disjoint from Sf,r󸀠 for r0 ≤ r < r󸀠 < 1: By (A.3), Yf is transversal to Sf,r on lf,r.We define

the vector field Yf on Sf,r so that

Yf (gt(sr, f(ρ), s√1 − r2)) = Dgt(Yf (sr, f(ρ), s√1 − r2)).

The extended Yf is transversal to Sf,r since the triple product is invariant under the Lorentzian isometries.
Define Ξf (r, t, s) = gt(lf (r, s))), which gives us a parametrization of Sf,r. We obtain the partial derivative with
respect to r by chain-rules:

∂Ξf (r, t, s)
∂r = Dgt(Yf (lf (r, s))) = Yf (Ξf (r, t, s)).

Solving the following ordinary differential equation with respect to the variable r

∂Ξf (r, t, s)
∂r = Yf (Ξf (r, t, s))

gives us a flow Ξf (r, t, s) for r in some interval with fixed t, s. Using the quasi-linear Cauchy theorem
([35, Theorem 9.52]) and the transversality, we obtain the disjointness.
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Also, for each point x of Rf,r0 , there is a leaf Sf,r󸀠 containing it: Let xi be a sequence converging to x and
xi ∈ Sf,ri , ri > r0. Then let Li be the line in Sf,ri containing xi. Since we showed that Hs0 ,κ1 ,κ2 ∪ Cl(ζ((1,0,0,0)))
is compact by Proposition A.2, Cl(Li) geometrically converges to an element of Hs0 ,κ1 ,κ2 or to Cl(ζ((1,0,0,0)))
by choosing a subsequence if necessary. Proposition A.2 shows that Li = gti (lf (ri)) for bounded ti in the first
case. Hence, x is in Sf,limi ri . In the other case, xi does not have x as a limit. This proves the closedness of the
foliated subset in Rf,r0 .

Using the flows, we can prove the openness of the set⋃r0≤r<1 Sf,r󸀠 . Hence, Rf,r0 is foliated by leaves Sf,r,
r ≥ r0.

Since each line in Df,r0 ,0 lies on a different plane given by equations of the form y = c, it follows that
Df,r0 ,0 is an embedded surface, and so are Df,r0 ,t. Proposition A.2 implies that Df,r0 ,0 is properly embedded
since Cl(lf,ri ) geometrically converges to Cl(ζ((1,0,0,0))) as ri → 1. Hence, Df,r0 ,t is properly embedded for all t.

Since gt0 is generated by a vector field ϕ transversal to Df,r0 ,t for every t by the above paragraph, the
images under the flows of Df,r0 ,t are disjoint from Df,r0 ,t. Also, gt0 (Df,r0 ,t) = Df,r0 ,t+t0 follows by our above
definition of Df,r0 ,t.

Also, Rf,r0 is foliated by leaves of the form Df,r0 ,t as follows:⋃t∈ℝ Df,r0 ,t is open since we can use the flow
generated by gt. The closedness follows by Proposition A.2 again as above.

Now, we have a foliation by leaves of the form Sf,r for r ∈ [r0, 1). Then Df,r0 ,t ∩ Sf,r contains a geodesic
given by gt(l(s)), s ∈ ℝ. At t = 0, the tangent space of Df,r0 ,0 is generated by ul , Yf , and that of Sf,r is gener-
ated by ul , ϕ. The independence above implies the transversality of Df,r0 ,0 and Sf,r. Thus, the transversality
of Df,r0 ,t and Sf,r follows.

Remark A.1. There seems to be a vast literature on ruled surfaces onwhich a one-parameter Lorentzian isom-
etry groupacts; however, there seems to beno article on the topological properties. SeeDillen andKühlen [21]
for a survey of geometric aspects.

B The flatℝ2,1-bundle valued 1-forms on a cusp neighborhood
Only prerequisites are Sections 2 and 3.1 and the notation in Section 4, in particular Definition 4.1.

B.1 Replacing forms by standard cusp 1-forms in the cusp neighborhoods

Suppose that Γ is a discrete Lorentzian isometry group so that Γ is a Fuchsian group acting on 𝕊+ with
a parabolic element g fixing p ∈ ∂𝕊+. Let S := 𝕊+/Γ be a complete hyperbolic surface with a cusp neighbor-
hood E. Note that E is covered by a horodisk P ⊂ 𝕊+ with p ∈ bd𝕊P. Then P/⟨g⟩ is isometric to E.

We recall the vector bundle V given as the quotient of Ṽ = 𝕊+ ×ℝ2,1 with action given by

γ(x, v) = (γ(x),L(γ)(v)) for γ ∈ Γ, v ∈ ℝ2,1.

Recall (4.4) that for Ṽ -valued 1-forms on 𝕊+, the action is given by

γ∗(v ⊗ dx) = L(γ)−1(v) ⊗ dx ∘ γ.

Proposition B.1. LetS, Γ, P, E, and γ be as above in Section B.1. Let η be a closedV -valued1-form representing
a class in H1(S, V ). Let ζ be a closed V -valued 1-form in E so that ζ is cohomologous to η|E in H1(E, V ).
Then we can find a closed V -valued 1-form η󸀠 on S cohomologous to η and a cusp neighborhood E󸀠 ⊂ E so that
η󸀠|E󸀠 = ζ|E󸀠.

Proof. Let E󸀠 ⊂ E be a smaller cusp neighborhood so that Cl(E󸀠) ⊂ E. Consider η − ζ on E󸀠. Then η − ζ = df
for a section f : E󸀠 → V . We can extend f to a smooth section f : S→ V by a partition of unity so that f = 0
on S \ E. Then define η󸀠 = η on S \ E and η󸀠 = ζ on E󸀠 and η󸀠 = η − df on E \ E󸀠.

Proposition B.2. We have H1(E, V ) = ℝ.
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Proof. Recall that E is homotopy equivalent to 𝕊1. Thus, π1(E) is an infinite cyclic group. Note that V |E
is P ×ℝ2,1/⟨g⟩. Recall that L(g) = I + N(g) + N(g)2/2 for a nilpotent matrix N(g) of rank 2 from (3.5). We
conclude using the knowledge of [28, Section 3]:

Z1(⟨g⟩, V ) = {v : ℤ→ ℝ2,1 | L(gi)v(gj) − v(gi+j) = 0 for all i, j ∈ ℤ} ≅ ℝ2,1,
B1(⟨g⟩, V ) = {v : ℤ→ ℝ2,1 | v(g) = L(g)v0 − v0, v0 ∈ ℝ2,1}

= N(g)((I + 12N(g))(ℝ
2,1)) = N(g)(ℝ2,1),

H1(⟨g⟩, V ) = ℝ2,1/N(g)(ℝ2,1) ≅ ℝ.

The second to last equation follows since I + N(g)/2 is invertible. The last follows since N(g) is of rank two
by Section 3.1.

B.2 The integral of the standard cusp 1-form

We will use the notation of Section 4.4. Let P be the standard horodisk in 𝕊+ with p as a null vector in the
direction of Cl(P) ∩ ∂𝕊+. The standard cusp 1-form for P is given where P is given by y > 1 in the upper half-
space model U2 of the hyperbolic plane. A geodesic in P is given by equation (x ± R)2 + y2 = R2 in U2 and
parameterized by ζ(θ) := (R cos θ ∓ R, R sin θ). The starting point and the endpoint are given by R sin θ = 1.
Thus, the beginning θ0 and ending θ1 = π − θ0 is one of the values of sin−1( 1R ).

We assume that a complete geodesic l passes a cusp region with the cusp point p = ((p)) and the standard
cusp 1-form. We assume that by choice of the coordinates of U2, p =∞ and the geodesic starts at (0, 0) and
ends at (2R, 0) or at (−2R, 0). We say that l and any horizontal translation of l in the upper half model have
radius R.

There is an isometry H : U2 → 𝕊+ to the Klein model 𝕊+:

H(x, y) := ((
󳨀󳨀󳨀󳨀󳨀󳨀→
H(x, y))) , where

󳨀󳨀󳨀󳨀󳨀󳨀→
H(x, y) := ( 2x

x2 + y2 + 1
, 1 − 2

x2 + y2 + 1
, 1),

(See Hongchan Kim [33, Theorem 7.1].) This extends to the boundary y = 0 and induces a homeomorphism
from U2 ∪ {∞} to the closure of the unit disk where∞ goes to ((j + k)).

The standard horodisk in U2 is given by y > 1. The image of this under H is the standard horodisk Q of
the Klein model. The standard horodisk has the point ((j + k)) of 𝕊+ in the boundary and ∂hQ ∋ ((k)).

This makes things simpler.

Lemma B.3. Let g, l, and ‖ ⋅ ‖E be as above. Let D be the standard horodisk. Set

v(x) = (x, − x
2

2√2
+

1
√2

, x
2

2 +
1
√2
) for x ∈ ℝ.

Let l be a complete geodesic passing D of radius R and starts at H(0, 0) and ends at H(±2R, 0). Assume R > 1.
Suppose that l corresponds in 𝕊+ to the geodesic passing a point of ∂hD in the direction of a unit vector u away
from H(0, 0) ∈ ∂U2. Then the following hold:
∙ for any point z on l with coordinate x in the upper half-space model,

‖ΠṼ0(z,u)(μv(x))‖E =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
μ(x − ±

√2
R )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

for the cusp coefficient μ, and
∙ we have

‖ΠṼ−(z,u)(μv)‖E =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
μ(4R2 + 1)
4√2R2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
and ‖ΠṼ+(z,u)(μv)‖E =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
μ( 1

4√2R2
−
±x
2R +

x2

2√2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

Proof. These are simple computations using H, and the frames used there form uniformly boundedmatrices
in GL(3,ℝ). Hence, the estimations are uniformly compatible with the standard Euclidean metric results.
(See [12] and [13].)



C. Choi et al., Tameness of Margulis space-times with parabolics | 57

Let ζ = l ∩ D be a geodesic segment with both endpoints in ∂hD. Suppose that l is in the form of Lemma B.3
parameterized by the angle θ from the center of the semicircle in the upper-half-space model containing l.
Also, recall the geodesic flow Ψt acting on ℝ2,1 × U𝕊+ from Section 3.2. We reparametrize l by Ψ(z, θ) for z
the beginning point of ζ and θ ∈ (0, π)with z = Ψ(z, θ0). Let η denote the standard 1-form defined on D. We
define

b(ζ) :=
π−θ0

∫
θ0

𝔻Ψ(z, θ − θ0)−1(η(
dΨ(z, θ)
dθ )) dθ,

where θ0 and π − θ0 are the start and the end angles of the semicircle l parameterized by angles.
We recall b±(ζ) from (4.15) as the Ṽ±-component of b(ζ): that is,

b±(ζ) :=
π−θ0

∫
θ0

ΠṼ±
(𝔻Ψ(z, θ − θ0)−1(η(

dΨ(z, θ)
dθ ))) dθ.

We define
α(ζ) := ∫B(ν, η(dΨ(z, θ)dθ )) dθ.

Proposition B.4. Let g, l, and ‖ ⋅ ‖E be as above. Let D be the standard horodisk. Let η be a standard cusp
1-form for a cusp constant μ > 0. (See (4.9).) Suppose that a complement geodesic l of radius R is in the form
of Lemma B.3. Let ζ = l ∩ D be a geodesic segment with both endpoints in ∂hD. Then we obtain

‖b−(ζ)‖E = μ
√−1 + R2(1 + 4R2)

2√2R2
≤

5
2√2

μR,

μ(−√2 + 2R2)
√−1 + R2

R ≤ α(ζ) = μ
√−1 + R2

R (±√2 + 2R2) ≤ μ(√2 + 2R2),

where R ≥ 1.

Proof. In this case, we may regard 𝔻Ψ(z, θ)−1 as the identity since we will work directly over 𝕊+ (see
Remark 4.1): Since the projection ΠṼ−

to Ṽ− commutes with𝔻Ψ(z, θ)−1, we have

b−(ζ) :=
π−θ0

∫
θ0

𝔻Ψ(z, θ)−1(ΠṼ−
(η)) dx(dΨ(z, θ)dθ ) dθ.

By computations in [12] or [13], we obtain

‖b−(ζ)‖ = μ√−1 + R2
(1 + 4R2)
2√2R2

.

And we evaluate the contribution of l ∩ P to b0:

α(ζ) =
μ(√−1 + R2)(±√2 + 2R2))

R .

Note. During the preparation of this manuscript, our coauthor Todd Drumm tragically passed away. Todd
pioneered the field by developing the geometric approach toMargulis’s breakthrough discovery [39] and [40]
of proper affine actions of nonabelian free groups. We miss him dearly and dedicate this work to his lasting
memory.
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