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Abstract: Let E be a flat Lorentzian space of signature (2, 1). A Margulis space-time is a noncompact com-
plete Lorentz flat 3-manifold E/I" with a free holonomy group I' of rank g, g > 2. We consider the case when
I’ contains a parabolic element. We obtain a characterization of proper I'-actions in terms of Margulis and
Charette-Drumm invariants. We show that E/T" is homeomorphic to the interior of a compact handlebody
of genus g generalizing our earlier result. Also, we obtain a bordification of the Margulis space-time with
parabolics by adding a real projective surface at infinity giving us a compactification as a manifold relative to
parabolic end neighborhoods. Our method is to estimate the translational parts of the affine transformation
group and use some 3-manifold topology.
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1 Introduction

Let Isom* (E) denote the group of orientation-preserving Lorentzian isometries on the oriented flat Lorentzian
space E of the signature (2, 1). Here, we have an exact sequence

1 — R>! — Isom*(E) -5 SO(2, 1) — 1,

where £ is the homomorphism taking the linear parts of the isometries. A parabolic of Isom™* (E) is an element
whose linear part is a parabolic element of SO(2, 1).

A discrete affine group T acting properly on E is either solvable or is free of rank > 2. (See Goldman and
Labourie [27].) While we will assume that T is a free group of rank > 2, we say that I is a proper affine free
group of rank > 2.

We will often require £(T") ¢ SO(2, 1)° for the subgroup SO(2, 1)° of SO(2, 1) acting on the positive cone.
Here, £(T') acts properly discontinuously and freely on a hyperbolic plane H? formed by positive rays in the
cone. We say that I' is a proper affine hyperbolic group of rank g with linear parts in SO(2, 1)°
» if it acts properly discontinuously faithfully and freely on E, and
« L(T)isafree group of rank g, g > 2 in SO(2, 1)°, acting freely and discretely on H?2.

It will be sufficient to prove tameness in this case.
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A real projective structure on a manifold is given by a maximal atlas of charts to RP™, n > 1, with transition
maps in PGL(n + 1, R). A real projective manifold is a manifold with a real projective structure.

Theorem 1.1. Suppose that T is a proper affine free group of rank g, g > 2, with parabolics and linear parts

in SO(2, 1)°. Then:

o E/T is diffeomorphic to the interior of a compact handlebody of genus g.

e Moreover, it is the interior of a real projective 3-manifold M with boundary equal to a totally geodesic real
projective surface, and M deformation retracts to a compact handlebody obtained by removing a union of
finitely many end-neighborhoods homeomorphic to solid tori.

These real projective surfaces are from the paper of Goldman [26]. The second item is the so-called relative
compactification.
For all cases of Margulis space-times, we have:

Corollary 1.2. Let T be a proper affine free group of rank > 2 with parabolics and linear parts in SO(2, 1). Then
E/T is diffeomorphic to the interior of a compact handlebody of genus g. Moreover, it is the interior of a real
projective 3-manifold M with boundary equal to a totally geodesic real projective surface, and M deformation-
retracts to a compact handlebody obtained by removing a union of finitely many end neighborhoods homeomor-
phic to solid tori.

We denote by § the sphere of directions in E, by S, the space of directions of positive time-like directions
and by S_ the space of directions of negative time-like directions. We will consider §, as the projectivization
of S, U S_. Then the quotient space of S, under I' is a complete hyperbolic surface S. Let P, (s) denote the set
of parabolic elements and the identity element of 771 (S). We denote by Ig, (g) the length of the shortest closed
geodesic in $, /T corresponding to the element g € I'. By [6, Theorem 4.1] generalizing the Margulis opposite
sign lemma [40], we will need the following criterion in this paper for our group T'.

Criterion 1.1. Let I’ be an isometry group acting on E, and let a(g) € R for g € T denote the Margulis invariant

of g. The isometry group I satisfies the following conditions:

e« a(y)>O0foreveryy € m1(S) \ Pry(s),

o everyy,y € Pqs) \{I}, has the positive Charette-Drumm invariant, and

« a(g) = cs\els, (g) for every g realized as a closed geodesic in S \ E for the union E of mutually disjoint
cusp neighborhoods for a positive constant cs\g depending on S \ E.

Of course, we can assume the negativity also since the change of the orientation of E changes the signs of
Margulis invariants and Charette—-Drumm invariants by [22] and [6].

Proposition 1.3. Suppose thatT acts properly on E. Then Criterion 1.1 holds up to changing the orientation of E.
Proof. This is proved by [6, Theorem 4.1] and Lemma 1.4. O

Let US denote the inverse image of the projection UX — X for the subset S ¢ ¥ and the unit tangent bundle UZ
of a hyperbolic surface X. Let UE denote the bundle of unit space-like vectors over E.

Lemma 1.4. Suppose that T acts properly on E. Let E' be the union of cusp neighborhoods in an e-thin part of S.
Then there exists a constant C(SI\'EL*,) in (0, 1) depending on E' such that for any closed curve g realized as a closed
geodesicin S\ E'

1
copls. (8) < a(g) < —51s5.(8)-

Co\pr
Proof. Consider the geodesic currents supported in a compact set US \ UE’. Then the argument of Goldman
and Labourie [27] applies to this collection. We have a conjugacy homeomorphism from the set of geodesic
currents on US \ UE' with a compact set of neutral geodesic currents on UE/T. The length of each of these
currents gives us the Margulis invariant. O

We prove the following characterization of a proper action of I in terms of Margulis and Charette-Drumm
invariants.
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Theorem 1.5. An affine finitely generated free group T of rank > 2 in Isom* (E) acts properly discontinuously
on E if and only if Criterion 1.1 holds up to a change of the orientation of E.

The forward part is Proposition 1.3. The converse follows from the main result Theorem 4.8 of Section 4. The
proof is given at the end of Section 4.6

We mention that the tameness of geometrically finite hyperbolic manifolds was first shown by Marden
[36] and later by Thurston [47]. (See Epstein and Marden [23].) Let IH> denote the hyperbolic 3-space. We take
the convex hull GH(A) in H> of the limit set A of the Kleinian group T, and there is a deformation retraction
of H3/T to the compact or finite volume CH(A)/T having a thick and thin decomposition. The paper here
follows some of Marden’s ideas. (See also Beardon and Maskit [3].)

Also, the approaches here are using thick and thin decomposition ideas of hyperbolic manifolds as sug-
gested by Canary. However, we cannot find a canonical type of decomposition yet and artificially construct
the parabolic regions. Only canonically defined regions in analogy to Margulis thin parts in the hyperbolic
manifold theory are the regions bounded by parabolic cylinders. (See Section 3.1.2.)

Note that the tameness of Margulis space-times without parabolics was shown by Choi and Goldman [16]
and Danciger, Guéritaud, and Kassel [18]. Danciger, Guéritaud, and Kassel have also announced a proof [20]
for the tameness of Margulis space-times with parabolics, extending [19]. In addition, they give a proof [20] of
the crooked plane conjecture in this setting, extending their proof in the setting without parabolics from [19].
Their methods, based on the deformation theory of hyperbolic surfaces, seem very different than those of the
present paper.

Differently from them, we directly obtain 3-dimensional compactification relative to parabolic regions.
We estimate by integrals the asymptotics of translation vectors of the affine holonomies. This is done by using
the differential form version of the cocycles and estimating with geodesic flows on the vector bundles over the
unit tangent bundle of the hyperbolic surface, the uniform Anosov nature of the flow (4.3), and the estimation
of the cusp contributions in Appendix B. (See also Goldman and Labourie [27].) In the cusp neighborhoods,
we replace the 1-form with the standard cusp 1-form and use this to estimate the growth of the cocycles. We
use the exponential decreasing of a component of the differential form along the geodesic flows. Then we use
estimates of the integration of the standard cusp 1-forms in Section 4.5.

Using this and the 3-manifold theory, we show that properly embedded disks and parabolic regions in E
meet the inverse images of compact submanifolds in the Margulis space-time in compact subsets and find
fundamental domains.

Since there are many proper affine actions of discrete groups not based on Lie algebraic situations as
in [17-20], we hope that our method can generalize to these spaces with parabolics providing many points
of view. (See Smilga [44-46] for example.)

Organization of the paper. The paper has three parts: the first two sections, Sections 2 and 3, are preliminary.
Appendices A and B are only dependent on these two sections. Then the main argument parts follow: Sec-
tion 4 discusses the geometry of the proper affine action, and Section 5 discusses the topology of the quotient
space.

In Section 2, we review some projective geometry of Margulis space-times, the hyperbolic geometry of
surfaces, Hausdorff convergences, and the Poincaré polyhedron theorem.

In Section 3, we first review the proper action of parabolic elements on the Lorentz space R, We analyze
the corresponding Lie algebra and vector fields. We introduce a canonical parabolic coordinate system of R%1.
In Section 3.2, we generalize the theory of Margulis invariants by Goldman, Labourie, and Margulis [28] and
Ghosh and Treib [30] to groups with parabolics. That is, we introduce Charette-Drumm invariants which
generalize the Margulis invariants for parabolic elements. In Section 3.3, we will study the parabolic regions
and their ruled boundary components.

In Section 4, we will study the limit sets. We show that any sequence of the translation vectors of elements
of I', i.e., cocycle elements, will accumulate in terms of directions only to Sp := $\ $; \ S_. In key result Corol-
lary 4.9, we will prove that the limit points of a sequence of images of a compact set in R?! under elements
of T are in $o. We will also prove the converse part of the equivalence of the properness of the action and
Criterion 1.1, i.e., Theorem 1.5.
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In Section 5, we will find the fundamental domain for M bounded by a finite union of properly embedded
smooth surfaces showing that M is tame. We prove our main results Theorem 1.1 and Corollary 1.2 here. We
make use of parabolic regions bounded by parabolic ruled surfaces. We avoid using almost crooked planes as
in [16]. Instead, we are using disks that are partially ruled in parabolic regions to understand the intersections
with parabolic regions. We will outline this major section in the beginning.

In Appendix A, we will prove facts about the parabolic regions.

In Appendix B, we will show how to modify 1-forms representing homology classes. We give estimates of
some needed integrals here.

2 Preliminary

We will state some necessary facts here, mostly from the paper [16]. Let E denote the oriented flat Lorentzian
space-time given as an affine space with a bilinear inner-product given by

2 2 2
B(X, X) := X7 + X5 — X5, X = (X1, X2, X3).

A Lorentzian norm ||x| is given as B(x, x)%, where (—1)% = i. We will fix a standard orientation on E and the
associated vector space in this paper. Hence, E denote an oriented Lorentz space-time.

A Margulis space-time is a manifold of the form E/T’, where T is a proper affine free subgroup of Isom(E)
ofrank g, g > 2. Elements of PSO(2, 1) are hyperbolic, parabolic, or elliptic. An element of Isom(E) is said to
be hyperbolic, parabolic, or elliptic if its linear part is so.

The topological boundary bdxA of a subset A in another topological space X is given as Cl(A) with the
set of interior points of A removed. We denote by manifold boundary 0A and the interior A° of a mani-
fold A as usual. We define the manifold boundary 04 := Cl(A) \ A° for any i-dimensional manifold A with
i-dimensional manifold closure Cl(A), i = 1, 2, 3, in a topological space X.

2.1 The projective geometry of the Margulis space-time

Let V be a vector space. Define P(V) as V' \ {0}/~, where x ~ y if and only if x = sy for s € R\ {0}. Denote by
PGL(V) the group of automorphisms induced by GL(V) on P(V).

Define the projective sphere S$(V) := V'\ {0}/~,, where x ~, y if and only if x = sy for s € R,. There is
a double cover $(V) — IP(V) with the deck transformation group generated by the antipodal map A : $(V) —
$(V). We will denote by (V) the equivalence class of v. Let a_ = .A(a) denote the antipodal point of a. Also,
givenaset A ¢ $(V), wedefine A_ = A(A). Let SL. (V) denote the group of linear maps of determinant +1. The
group SL. (V) acts on $(V) effectively and transitively.

We embed E as an open hemisphere in $(R*) by sending

(x1,%2,x3) = (1,x1,%2,x3) forxq,xz,x3 €R.

The boundary of E is a great sphere $ given by xo = 0. The rays of the positive cone end in an open disk
$. ¢ S, and the rays of the negative cone end in an open disk $_ c S, where A(S.) = S$z. The closure of E is
a 3-hemisphere H bounded by S.

The group Isom™ (E) of orientation-preserving isometries acts on E as a group of affine transformations
and hence extends to a group SL.(R*) of projective automorphisms of $(R*). It restricts to the projective
automorphism groups of H and of S and S.. respectively.

2.2 Thin parts of hyperbolic surfaces

As a subgroup of SL. (R3) ¢ SL.(RR*), the Lorentz group SO(2, 1) acts on S, U $_, where SO(2, 1)° is the sub-
group acting on S, and is an index two subgroup. The space S, U S_ carries a SO(2, 1)-invariant hyperbolic
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metric, and SO(2, 1)° acting on S, forms a Beltrami-Klein model of the hyperbolic plane. We denote the
complete Beltrami-Klein metric by dg, .

Given a nonelementary discrete subgroup I' of SO(2, 1)° acting freely on §,, we obtain a complete ori-
entable hyperbolic surface S := S, /T’ with the covering map ps : S+ — S. An end neighborhood of a mani-
fold M is a component U of the complement of a compact subset of M that has a noncompact closure Cl(U).

Let € > 0 be the Margulis constant. Recall that the (e-)thin part of S is the set of points through which
essential loops with lengths < € pass. The thin part is a union of open annuli. For a parabolic element, there is
an embedded annulus that is a component of the thin part. It is a component of S \ ¢ for a simple closed curve
¢, and a horodisk H in the hyperbolic plane covers it. Here, H/(g) is isometric to the end-neighborhood for a
parabolicisometry g acting on H. This end-neighborhood is called a cusp neighborhood. For € > 0, a parabolic
(e-)end-neighborhood is a component of the e-thin part of S that is an end-neighborhood.

We choose a union E of disjoint open cusp-neighborhoods in S in an e-thin part of S and its inverse
image . in §, which is a union of mutually disjoint horodisks.

2.2.1 Divergence functions

Definition 2.1. Let g : I — S be an arclength-parameterized geodesic and let g : I — S be a freely homotopic

arc which is a closed arc whenever g is closed. Suppose that there exists a continuous map A : I x R — S so

that:

o A(t,0)=g(t) foreacht eI,

o ifwedefine A¢(s) := A(t,s) foreach t € I, s € R, then A; is an arclength-parameterized geodesic perpen-
dicular to g at g(¢) for each ¢t € I, and

o A(t,st) = g(t) for some s; foreach t € I.

Then we say that we can project g to g by the perpendicular family of geodesics A;. If |s¢| < € for all ¢, then

we say that g is at a ds, -distance < €. The correspondence g(t) — g(t) for t € I to be called the perpendicular

projection, and the geodesic segment between g(t) to g(t) for each t is called the perpendicular projection path

and its length s; the perpendicular distance at t.

Of course, the family of perpendicular geodesics may not be uniquely determined, but we make choices.
We call the f defined as below the divergence function from g1 to g».

Lemma 2.1. Let g1(t) and g,(t), t € [0, l], denote the parameterization of geodesics g, and g,, where g is

arclength parameterized. Suppose that we can project g, to g1 by a perpendicular family of geodesics A¢. We

orient these by the forward directions.

o We orient A; so that the frame of its tangent vector and that of g1 is positively oriented at A:(0) = g(t) for
each t € I. Define f(t) to be the oriented path length on A¢ from g1(t) to g»(t).

o Lete, :=f(l) and e_ := f(0).

o Leta, and a_ denote m/2 minus the respective angles at the forward endpoint v, and the starting endpoint
v_ of g» made by Ag and A; and g respectively.

Assume | > 1. Then the following hold:

1) IfIf(0)l, If(D]| < C, then |f(t)| < C for O < t < l. Furthermore, |f] has at most one minimum.

(ii) The integral of |f(t)| over [0, 1] is less than 2|f(0)| + 2|f(1)].

(iii) We have z;gl If(t)] < 2If(t)| + 21f(tm)| if t1, ..., tm, ti < tiy1 foreachi=1,...,m -1, m > 4, satisfies
[tivr — til = 1.

(iv) For the family of functions1 > 1, F; : R?> — R? sending (a,, a_) to (e,, e_) foreachl > 1is 3.3 times a func-
tion decreasing the max norm provided |a.| < 1/20.

Proof. (i) We can show by [11] that

+c_s, sinh(t) + cys_sinh(l - t)
c_c, sinh(l)

) = /0, 8 1= 5 (10g(1+)) - 5 log(1-y) and y(¢) := +

)

where c¢; = cosh(|e;]), s; = sinh(|e;]), i = —, +. Notices that open geodesics become disjoint if only one of the
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endpoints is changed. We may assume that e_ and e, are positive since old |g(y(t))| is bounded above by
the new |g(y(t))| when we change all signs to be positive. We need to consider the case when the signs are +
without loss of generality.
Now g has the expression as a Taylor series of y with only odd powers:
3yS

g(y)=y+y§+?+~--.

We see that y as a function of ¢ can have exactly one interior minimum with only non-negative values or else
it is strictly decreasing with some negative values. Since this property holds for the odd powers of y with
the identical interior minimum point and zeros, our result follows for e_, e, > 0. For other cases, we use
hyperbolic trigonometry.

(ii) For (ii) and (iii), we can still look at y(t) with positive coefficients only since we are seeking the upper
bounds. We denote by j the expression obtained from y by respectively replacing terms sinh(¢) and sinh(l - ¢)
by strictly larger % exp(t) and % exp(l - t) for 0 < t < L. That is,

c_s,et +c.s_elt

) = 2c_c, sinh(l)

Now,
5 = el tanh |e, | + tanh |e_| tanh |e.| + e! tanh |e_|
2sinhl 2sinh
Using tanh(x) < x for x > 0, and the fact that 1/(2 sinh(1)) < 0.5 and e!/(2 sinh(l)) < 1.2 for I > 1 while they
from strictly decreasing functions of [, we can show

and y(0) =

(D) < (1.2)|e4]| + (0.5)]e-] and §(0) < (0.5)]|e,| + (1.2)|e_]|. (2.1)

By hyperbolic right triangle rules, we can show |e.|, |e_| < 0.26 provided |a.| < 0.2 for > 1 by consider-
ing the contrapositive and the worst cases since it is again enough to consider the case e,, e > 0. Hence
(D), 7(0) < 0.5 and y(t) < 0.5 by the convexity of j.

Since g is strictly increasing, and 0 < y(t) < y(t) for t > 0, we obtain

1 1
j g(y(e)] dt < j g (6)] dt
0

[

provided O < y(t) < 1. Since the Taylor series becomes a sum of terms that are positive number times
exp(ml + nt) for m, n € Z, we obtain by a term-by-term argument

1 1
j lsy(O) dt < j 8GO dt < [gFD)] + |gFO).

o 0

Since g(x) < 1.1x for 0 < x < 0.5 by the convexity of g, (2.1) implies
I8(y(D] +18(¥(0)] < 2(e- + e4) = 2|f(0)] + 2|f(DI.

(iii) Note that Z{Sl |f(t;)| is smaller than the integral of |f] over ¢; to t,, since we can break up |f] into
parts as above and use the step functions dominated by |f]. (We may skip an interval containing the unique
minimal point.) Hence, the sum is smaller than the twice of the sum of |f(t1)| and |f(t,,)| by (ii).

(iv) Here again, we can look only at the caseswhen e, , e_ > Oand a_ < 0, a, > 0: Replacing the segments
atv,, v_with ones with positive e, , e_, we can show by hyperbolic geometry that the max norm of old (a, a_)
is greater than or equal to that of new one while (e,, e_) does not change. In [15], we compute the map
[0,1) x (-1,0] — R, x R, which sends

(x_,x4) = (cos(% + a_), cos(g + a+)) = (-sin(a_), —sin(ay)) — (e_, e).
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We computed by analytic continuation
o — log( (x_ coth(l) + x,csch(l)) e (x_ coth(l) + x,csch(]))2 )
7 \1-x2 1-x2 ’
0. = log< (x4 coth(1) + x_csch(l)) N (x, coth(]) + x_csch(l))2 )
' V1-x2 1-x2 ’

where there is a symmetry switching (e_, x_, x;) with (e,, x,, x_), and we modified the computations in [15]
to obtain an analytic continuation when x,, x_ are very small. We use the series

y
log(y + 2+1):10g< 2+1)+log(1+ )
y+\y Y Ty

1 2 < (-1t y !
_Elog(1+y)+<z n (\/}/2—4-1))

n=1

(2.2)

which is always absolutely convergent. We may plug into this
_ x-coth(l) + x,csch(l)) and x4 coth(l) + x_csch(l)
\1-x? \1-x2

to obtain e_ and e, respectively in (2.2). Since |x.|, |x_| < 1/v/2, the functions |e_| and |e. | respectively are
bounded above by

1 2 SRS n)_1 2
Elog(l +2v )+<HZ1 - (V2v) ) = 510g(1+2v )+ log(1 + V2v)
for

v = (|x_| coth(l) + |x4|csch(l)) and (Jx4|coth(l) + |x_|csch(l)).

By the Taylor analysis to order 1 and the Lagrange form of the error, the function is smaller than %v forv < 1/8.
(See [8].) Since coth(1) < 1.32 and csch(1) < 0.86, it follows that (x_, x,) — (e_, e;) is %(1.32 +0.86) times
a norm-nonincreasing function in terms of max norms provided max{|x_|[, |x;[} < m. Since x — sin(x) is
strictly convex for 0 < x < 1/(8 x 2.18), we take angles to satisfy [a_|, |a.| < 0.05 < arcsin(g3+5)- Thensince
arcsin(a) < 1.00056a, 0 < a < 0.05, we are done. (See [15].) O

A broken geodesic is a path consisting of parameterized geodesics except for isolated sets of points. For a bro-
ken geodesic, a vertex is a nonsmooth point of it. A turning angle at a vertex is the angle that the tangent
vector the ending geodesic and one for the starting geodesic makes at the vertex. Since we are on an oriented
surface S, we can say that the path can turn right or left at the vertex. The left-turning angle will be considered
positive, and the right-turning angle will be considered negative.

Lemma 2.2. Let g be a closed curve in S consisting of geodesic segments. Suppose that g is not parabolic. Sup-

pose that the turning angles at vertices are within (-6, 6). Assume that § < 1/40. For the closed geodesic g freely

homotopic to g, suppose that each geodesic segment of g has a projected image with the length at least 1. Then

& has an arclength parameterization g(t) with following properties:

«  Thereis a corresponding perpendicular parametrization g(t) of g so that ds, (g(t), £(t)) < €for0 < € < 6.66.

o Let { be a bounded 1-form defined on a compact subset K. Let Cx denote the maximum value of the norm
of ¢. Let a be a union of mutually disjoint geodesic subarcs in a geodesic subarc in g, going into K, corre-
sponding to a union & of subarcs in g where every perpendicular geodesic path between them is also going
into K. Then the absolute value of the difference of respective integrals of { on a and & is less than 4Cke.

Proof. Let §:1 — S denote the closed geodesic. We draw the perpendicular lines at points of § pass-
ing through broken points of g. A vertex g(to) is good is the geodesic segments ending there has angles
in (/2 - 28, /2 + 26) with the perpendicular line to g at g(to). A geodesic segment e is good at v if it satis-
fies the condition for e for that side. We let f : I — R be a function given by sending ¢ to the perpendicular
distance if g(¢t) is in the right side of g and to (-1) times that if g(t) is in the left side.
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We prove by induction on the number of vertices. If a vertex of g corresponds to a local maximum or the
local minimum of the perpendicular distance function, then it is a good vertex since the turning angles are
within (-8, §). Since g is closed, there are at least two good vertices. For a broken geodesic, a local maxi-
mum of |f] cannot occur in the interior point of a segment by hyperbolic geometry, but a local minimum of |f]
can occur.

We consider a maximal subarc m in g with no good interior vertex and f is either increasing or decreasing.
Assume that the number of geodesic segments in m is > 2, or the signs on m are the same. Let v be the vertex
with the maximal |f]-value on m. Here, v is good since m is maximal. Suppose that the end vertex v’ of the
first geodesic segment e in m next to v has the same sign of the corresponding f-values. Then e is good at v
and v' by elementary hyperbolic geometry using the hyperbolic right triangle with vertices v and v’ and the
right angle on the perpendicular line to g passing v. Then the perpendicular distance function to e is given
by above Lemma 2.1 and hence f-values of e are in (-6.66, 6.66). Hence, so is m since we have the deceasing
or increasing function where v has the maximum |f]-value.

Suppose that f(v) and f(v') have different signs. Note that v’ is not a local minimum or a local maximum.
Now consider m’ given by m with the edge e® and v removed. Then the f-values have the same signs on m’ and
the maximal |f]-value occurs at the other end which must be a good vertex also. Now the above applies and
f-valueson m’ arein (-6.66, 6.66). For e, we use the hyperbolic triangle with the vertex v and the two vertices
that are perpendicular projections v; and v of vand v’ on g respectively. Let e’ be the edge opposite v1. Now e’
is good at v and v’ since the angle sum of the triangle must be < 77. Lemma 2.1 shows that f(v) € (-6.68, 6.66).
Since f on e is strictly decreasing or increasing, we have the result for e.

We do these processes of estimation for such maximal subarcs. A segment e with a local minimum of |f]
in its interior can occur after the process ends. The vertices of e can be a vertex of such maximal subarcs or
a good vertex. We need to work with quadrilateral obtained by projecting e to § and the corresponding sides.
We can use a reflection by the geodesic containing the shortest segment between e and its projection to g and
compare. We can show that either both angles at v and v' satisfy the premises of Lemma 2.1 or |f]-values are
both less than 6.66 since the adjacent segments are as in the above paragraph or have a local minimum of |f]
in its interior.

Suppose that the number of segments in m is 1 with signs changing. Then both endpoints must be good.
Otherwise, we can extend this segment at the other endpoint which is not good. If |f] becomes zero, then we
can use as above the right triangle with the hypothenuse obtained by extending the segment until |f] becomes
zero. If not, then there is a local minimum point where we can directly use Lemma 2.1.

The last item follows by using the divergence function. We obtain the bounds by (ii) of Lemma 2.1. [

Lemma 2.3. Letl be a maximal geodesic in a horodisk B in the upper half-space model given by y > 1. Suppose
that the difference of the x-coordinates of the endpoints is t. Then the angle 0 that | makes with the vertical line
satisfies 0(t) = m/2 — arctan(t/2). Also, t — tO(t) is a strictly increasing function for t € (0, co), t0(t) < 2, and
the limitis 2 as t — oo.

Proof. The lemma follows from elementary geometry since the geodesics are circles perpendicular to y = 0
in the upper half-space model. (See [8].) O

2.3 Hausdorff limits

The projective sphere $3 is a compact metric space, and has a natural standard metric d. For a compact set
A c $3, we define
d(x, A) = inf{d(x,y) : y € A}.

We define the e-d-neighborhood Ng,.(A4) := {x : d(x, A) < €} for a point or a compact set A. We define the
Hausdorff distance between two compact sets A and B as follows:

dy(A,B) =inf{6: 6 >0, B c Nq,s(A), A c Nq,5(B)}.
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A sequence {A;} of compact sets converges to a compact subset A if {dg(A;, A)} — 0. The limit A is char-
acterized as follows if it exists:

A:={a €S> : a is alimit point of some sequence {a; : a; € A;}}.

See [4, Proposition E.12] for proof of this and Proposition 2.4 since the Chabauty topology for compact spaces
is the Hausdorff topology. (See Munkres [41] also.)

Proposition 2.4 (Benedetti and Petronio [4]). A sequence {A;} of compact sets converges to A in the Hausdor(f
topology if and only if both of the following hold

 Ifthereis a sequence {x;}, x;, € A;;, where x;;, — x for i; — oo, then x € A.

o Ifx € A, then there exists a sequence {x;}, x; € Aj, such that {x;} — x.

Immediately we obtain:

Corollary 2.5. Suppose that a sequence g; of projective automorphisms of $> converges to a projective auto-
morphism g, and {K;} — K for a sequence K; of compact sets. Then {g;(K;)} — g(K).

For example, a sequence of closed hemispheres will have a subsequence converging to a closed hemisphere.

2.4 The Poincaré polyhedron theorem

Definition 2.2. Let N be an oriented manifold with empty or nonempty boundary on which a free group I" acts
properly and freely. Let 8 be a finite generating set {y1, ..., y2g} in I' with y;,g = yi‘1 for indices in Z/2g7.
The collection of codimension-one submanifolds A1, ..., A,g satisfying the following properties is called
a matching collection of sets under S:

« Nis aunion of two submanifolds Ny and N \ N§ with A; U---U Ag c bdyN; fori € /287,

«  A;is oriented by the boundary orientation from Ny,

e yi(Aj) =Augforie2/2g7,

o ykxApNnAp=0for(k,l,m)+ (i,i,i+g),and

e yiis orientation-preserving for each i € Z/2g7 and is orientation-reversing for A; and A;.g.

The following is a version of the Poincaré polyhedron theorem. We generalize Theorem 4.14 of Epstein and
Petronio [24]. Here, we drop their distance lower-bound conditions, without which we can easily find counter-
examples. However, we replace the condition with exhaustion by compact submanifolds where the lower-
bounds hold. Thus, we give a proof. But we did not fully generalize the theorem by allowing sides of codi-
mension > 2.

Proposition 2.6 (Poincaré). Let N be a connected manifold with empty or nonempty boundary covered by

a manifold N with a free deck transformation group Ty.

« Let F be a connected codimension-zero submanifold with boundary in N that is a union of mutually-disjoint,
codimension-one, properly-embedded, two-sided submanifolds A1, . .., Ayg with boundary orientation.

e Let NycN,i=1,2,..., be an exhausting sequence of compact submanifolds of N, where N; C Ni;1
fori=1,2,...,and the inverse image N; of N; in N is connected.

e Let 8 be a finite generating subset of Ty and {A+, . . . , Ayg} is matched under 8.

«  FnNjiscompact,and F n N; n Aj # 0 for each i and j.

Then F is a fundamental domain of N under Ty.

Proof. We define X' := |—|yeFN y(F)/~, where we introduce an equivalence relation ~ on |_|yer y(F) given by

x=yandyy;! €8, orelse
X eyi(F) ~y eya(F) = {7 VN2
x=yandy; =y>.
Thus,

X'= [y~

yel
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is an open manifold immersing into N. We give a complete Riemannian metric on N where each 0N; is strictly
convex. This induces a T'-invariant Riemannian path-metric on X' and one on F.

Let F; = N;nF, a compact submanifold bounded by A; n N; for j=1,...,2g by a generic perturba-
tion of N; by small amounts. We define Xl' = I_lyeFN y(F;)/~, where we introduce an equivalence relation ~
on| | r y(Fi) given by

x=yandyy;! €8, orelse
xeyi(Fy) ~y ey (F) = 2
x=yandy; =Y,.

We restrict the above Riemannian metric to X { as a submanifold of X’ and obtain a I'-invariant path met-
ric d;. We claim that d; is metrically complete: Since F n N; is compact by the premise, it follows that A; n N;
is a compact subset. For every pointin x € A; N N;, the pathwise d;-distance in N; to Ay n Nj, k # j is bounded
below by a positive number §;. Hence, each point of X l’ has a normal d;-ball Bl’. of fixed radius §; in the union
of at most two images of F mapping isometric to a §;-d;-ball B; in N;. Thus, given any Cauchy sequence x;
in X!, suppose that

di(xy, x1) < % for 1, k > L for some L.

Then d;(xj, xr+1) < 6;/3 forj > L. Since the ball of radius 8;/3 is in a union of two compact sets, it follows that
X; converges to a point of the §;-d;-ball with center x;,. Hence, Xl’ has a metrically complete path-metric d;.

There is a natural local isometry X { — N; given by sending y(F;) to y(F;) for each y. Since {y(F;)|y € '} is
a locally finite collection of compact sets in Nj, the map is proper. The image in N; is open since each 6;-ball
is in the image of at most two sets of the form y(F;). Since N; is connected, the openness and closedness
show that X ; — Nj is surjective. Therefore, X ; — N; is a covering map being a proper local homeomorphism.
Now, N; and le are covers of N; with the identical deck transformation groups. We conclude le — Nj is
a homeomorphism.

There is a natural embedding X; — X'. We identify X] with its image. We may identify X’ with | [{°, X].
Since N = [J$°, N; holds, it follows that X' — N is a homeomorphism, and F is the fundamental domain. [

3 Margulis invariants and Charette-Drumm invariants

We will first discuss parabolic group action in Section 3.1 and then discuss Charette—-Drumm invariant ensur-
ing their proper action in Section 3.2. In Section 3.3, we will introduce the parabolic ruled surfaces in E and
the region bounded by them. We will also provide two transversal foliations on the regions.

3.1 Parabolic action

3.1.1 Understanding parabolic actions
Let V' be a Lorentzian vector space of dimg V = 3 with the inner product B. A linear endomorphism N : V — V
is a skew-adjoint endomorphism of V if

B(Nx,y) = -B(x, Ny).
Lemma 3.1. Suppose that N is a skew-adjoint endomorphism of V and x € V. Then B(Nx, x) = 0.
Proof. We have B(Nx, x) = -B(x, Nx) = —-B(Nx, x) by symmetry. Thus we obtain B(Nx, xX) = 0 as claimed. [J
Lemma 3.2. Suppose that N is a nonzero nilpotent skew-adjoint endomorphism. Then rank(N) = 2.

Proof. Since N is nilpotent, it is non-invertible and so rank(N) < 3. We have rank(N) > 0. Assume rank(N) = 1.
Then dim Ker(N) = 3 — 1 = 2. Since dim(V) = 3, one of the following holds: N(V) n Ker(N) = {0}, or N(V) ¢
Ker(N). If N(V) n Ker(N) = {0}, then the restriction of N to N(V) is nonzero, contradicting nilpotency. Thus,
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N(V) c Ker(N), that is, N> = 0. Then there exists v € V with Nv # 0. Since N2v = 0, the set {v, Nv} is linearly
independent. Complete {Nv} to a basis {Nv, w} of Ker(N). The set {v, Nv, w} is a basis for V. We have:

o Lemma 3.1 implies B(Nv, v) = 0.

« N? = 0implies B(Nv, Nv) = -B(N?v, v) = 0.

e B(Nv,w)=-B(v, Nw) = 0 since Nw = 0.

Thus, Nv is a nonzero vector orthogonal to all of V, contradicting nondegeneracy. Hence, rank(N) = 2 as
claimed. O

Lemma 3.3. We have N? # 0.

Proof. Lemma 3.2 implies that dim Ker(N) = 1 and dim N(V) = 2. If N? = 0, then N(V) c Ker(N), a contradic-
tion. O

Lemma 3.4. We have N(V) = Ker(N?) and N%(V) = Ker(N).

Proof. Since dim(V) = 3, the nilpotency implies N> = 0. By Lemma 3.3, the invariant flag
V > N(V) > N* (V) > {0} (3.1)

is maximal; that is, dim V/N(V) = dim N(V)/N2(V) = 1. Now, N> = 0 implies that N(V) c Ker(N?)and N%(V) c
Ker(N). Hence, the invariant flag
V > Ker(N?) > Ker(N) > {0} (3.2)

is maximal. It follows that the flags (3.1) and (3.2) are equal, as claimed. O
Lemma 3.5. The group Ker(N) is null.
Proof. Lemma 3.4 implies Ker(N) = N2(V). Since N is skew-adjoint and N* = 0,

B(N*(V), N*(V)) c B(N?(V), N(V)) = {0}

as desired. O
Lemma 3.6. We have Ker(N) = N(V)* and N(V) = Ker(N)*.

Proof. We have B(N(V), Ker(N)) = B(V, N(Ker(N))) = {0} so that Ker(N) ¢ N(V)* and N(V) c Ker(N)*. Since
Ker(N) and N(V)* each have the dimension 1, and N(V) and Ker(N)* each have the dimension 2, the lemma
follows. m

We find a canonical generator for the line Ker(N) given N, together with a time-orientation.

Lemma 3.7. There exists unique c € Ker(N) such that:

e ¢ # 0is a causal null-vector,

o ¢ = N(b) for a unit-space-like b € V (that is, B(b, b) = 1).

Furthermore, the following hold:

o bis unique up to addition of Ac, A € R — {0}.

o We can choose the unique null vector a so that N(a) = b.

« B(a,b)=0=B(b,c),B(a,c)=-1.

e a,b, cforma basis.

« The Lorentz metric has an expression g := dy? — 2dxdz with respect to the coordinate system given by
a,b,c

Proof. Lemma 3.4 implies that N defines an isomorphism (of 1-dimensional vector spaces)
N : N(V)/Ker(N) — N*(V) = Ker(N). (3.3)
Now, B|N(V) x N(V) is factored into the maps
N(V) x N(V) = N(V)/N(V)* x N(V)/N(V)* and B : N(V)/N(V)* x N(V)/N(V)* - R.
Lemma 3.6 implies that the second map is

B : N(V)/KerN x N(V)/KerN — R.
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Since N(V)/KerN is a 1-dimensional vector space, the quadratic map B is a square of an isomorphism
N(V)/KerN — R. Hence, the restriction to N(V) of the quadratic form u — B(u, u) is the square of an
isomorphism N(V)/Ker(N) — R composed with the quotient map N(V) — N(V)/Ker(N).

Recall dim Ker(N) = 1. Since N is injective, the set of unit-space-like vectors in N(V) is the union of two
cosets of Ker(N), mapped by N to two nonzero vectors in Ker(N). By Lemma 3.5, the image is null. The image
is a causal vector in Ker(N) or a non-causal vector in Ker(N). Take the causal one to be c. Since the image has
only two vectors, it follows that ¢ is the unique one.

By (3.3), b can be chosen to be any in N(V) in the coset of Ker(N), and hence b can be changed to b + cgc
since ¢ generates Ker(N).

By Lemma 3.1, B(b, ¢) = B(N(c), ¢) = 0.

The subspace N~'(b) is a line since dim Ker(N) = 1 and is parallel to a null space and does not pass 0
since b # 0. Hence, it meets a null cone at the unique point. Call this a. By Lemma 3.1, B(a, b) = 0.

Finally,

B(a, ¢) = B(a, N*>(a)) = -B(N(a), N(a)) = -B(b, b) = —1.

The last statement follows by B-values which also implies the independence. |

Definition 3.1. Let N be a nilpotent skew adjoint endomorphism. We will call the frame a, b, ¢ satisfying the
above properties:

« b= N(a),c=N(b),

o a,carenull and b is of unit space-like,

« B(a,b)=0=B(b,c),B(a,c)=-1.

the adopted frame of N. We will say that N is accordant if the adopted frame has the standard orientation.

Corollary 3.8 shows that associated with N, there is a one-parameter family of frames. However, we remark

that the orientation of {a, b, c} is determined by N as we can see from exchanging N with —N has the
orientation-reversing effect.

Corollary 3.8. Let N be a nilpotent skew adjoint endomorphism. Then the Lorentzian vectors a, b, ¢ satisfying
the property that

« B(a,b)=0=B(b,c),B(a,c)=-1,

e ¢=N(b),b=N(@),and

o bis a unit space-like vector, ¢ € KerN is causally null, anzd ais null

are determined up to changesb — b + coc,a — a+ cob + C2—°c with respect to the a skew-symmetric nilpotent
endomorphism N and B : V x V — R. Furthermore, the adopted frame for N is determined only up to these
changes and translations.

Proof. By Lemma 3.7, we can only changeb — b + coc,a — a + cob + doc. Since
B(a+ cob + doc,b + coc) = —co + co =0,

and
B(a+ cob + doc,a + cob + dpc) = Cé —2do =0,

this is proved. O

3.1.2 The action of the parabolic transformations

We represent an affine transformation with the formula x — Ax + w, x € R>! by the matrix
A w
0 1)

Let N be an accordant nilpotent element of the Lie algebra of SO(2, 1): Let us use the frame ¢,b,aon E
obtained by Corollary 3.8 as the vectors parallel to x-, y-, and z-axes respectively. Then the bilinear form B
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takes the matrix form

0 0 -1
0 1 0 |. (3.4)
-1 0 O

Let y be a parabolic transformation E — E. Then it must be of the form

-

N
O(t) :=expt (O 13') for an accordant nilpotent skew adjoint element N.
Using the frame given by Corollary 3.8 and shifting the origin by translation by (¢, v1, v2), t € Rwhen v, can
be written as (v1, v2, u) with respect to the frame, we obtain an affine coordinate system so that y lies in
a one-parameter group

01 00 1t 2/2 ut’/é
0 010 0 1 t t2/2
D(t) = exp t - He/ (3.5)
0 0 0 pu 0 0 1 ut
0 00O 0 0 O 1

for u € R, where ®(¢) : E — E is generated by a vector field
¢ := yox + 20y + uod,, where B(¢h, ) = 2> - 2py.

For a parabolic element y and t € R, we define y! := exp(tn), where y = exp(n) for a unique Lie algebra
element 1 of Isom* (E).

Definition 3.2. For any parabolic element y, the coordinate system where it can be written in the form (3.5)
with the adopted frame for accordant nilpotent N, where y = exp(tN), t € R is called a parabolic coordinate
system adopted to y. Furthermore, y is called accordant if t > 0.

Proposition 3.9. Any parabolic element y has a parabolic coordinate system. All other parabolic coordinate
system for y is obtained by changing it by a 2-dimensional parameter family of isometries generated by the
one-parameter family of translations along unique eigen-direction and the frame change given in Corollary 3.8.

Proof. The existence of the coordinate frame is already given. The fact that the 2-dimensional family of isome-
tries preserves the form (3.5) is already shown in Corollary 3.8 and near (3.5). Also, from near (3.5) we obtain
the translations must be the one-parameter ones along the unique eigen-direction. O

This one-parameter subgroup {®(t), t € R} leaves invariant the two polynomials

Fa(x, v, 2) = 2% - 2uy,
F3(x,y,z) = 2> - 3uyz + 3u°x,

and the diffeomorphism
F(x,y,2) := (F3(x,¥,2), F2(x, ¥, 2), 2)

satisfies
Fod(t)o F1:(x,y,2) = (X,Y,z+ ut) (3.6)

All the orbits are twisted cubic curves. In particular, every cyclic parabolic group leaves invariant no line and
no plane for u # 0. (See Figure 1.)

Now, Q := F; is the unique quadratic ¢-invariant function on E up to adding constants and scalar multi-
plications. If Q(p) < O for p € E, then the trajectory ®(t)(p) is time-like. If Q(p) > 0, then ®(t)(p) is space-like.
In addition, if Q(p) = O, then @(t)(p) is a null-curve. The region Q < k is defined canonically for y for k € R.
(k can be negative.) The region is a parabolic cylinder in the parabolic coordinate system of y. We will call
this a parabolic cylinder for y.

Remark 3.1. The expression (3.5) can change by conjugation by a dilatation so that y= +1. However, a dilata-
tion is not a Lorentz isometry.
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Figure 1: A number of orbits drawn horizontally.

Definition 3.3. A semicircle tangent to 0S, at p € 0S_ is the closure of a component of S \ {p, p_} of the great
circle S tangent to 0., at p which does not meet §... An accordant great segment ¢}, to 0S.. is an open semicircle
tangent to 0S, starting from x in the direction of the orientation of 0S,. (See [16, Section 3.4].)

We may refer to them as being positively oriented since we need to alter the construction when we change
the orientation.

Remark 3.2. In the parabolic coordinate system of E for a parabolic y, §, is given by (x, y, z, 0) in § with
y? - 2xz < 0 with x > 0. Then it is easily shown that

((17 Os O) 0)) ((07 17 O; O)) U ((07 15 Os 0)) ((_15 0) 0: 0))
is the accordant great segment Cl({(1,0,0,0)) to the boundary of S, with the induced orientation.
For the following if y is not accordant, we need to use y1.

Proposition 3.10. Let y be accordant parabolic transformation. We use the parabolic coordinate system of y

so that y is of the form (3.5) with u > 0. Then the following hold:

(y) acts properly on E.

e The orbit {y"(p)}, p € E, converges to the unique fixed point x, in 0S, as n — oo and converges to its
antipode x,_ € 0S_ as n — —oo.

o The orbit lies on the parabolic cylinder

P, :={xcE: Q) =QP)},

where y acts on.

e Thesetoflines in E parallel to the vector X,, in the direction of x, foliates each parabolic cylinder and gives us
equivalence classes. The space Py [~ can be identified with a real line R. The action of y on Py, /~ corresponds
to a translation action on R.

« P, can be compactified to a compact subspace in $> homeomorphic to a 2-sphere by adding the great
segment Cl((xy) accordant to 0S.,.

Proof. We have x, equal to (1, 0, 0, 0) in this coordinate system. The properness follows since ut>/6 dom-
inates all other terms. The second item follows since F, is an invariant. Since F, is ®;-invariant, it follows
that y acts on the parabolic cylinder determined by F,. The third item follows by projecting to the z-value.
The fourth item is straightforward from the third item.

Let Hy be a great sphere given by x = 0in $3. For each line lin the parabolic cylinder, {y!(CI()) N Hy : t € R}
is a parabola compactified by a single point (0, 1, 0, 0) as we can see using (3.5). Let H, be the upper
hemisphere bounded by Hy and H_ the lower hemisphere. We have geometric convergence:

y'«w)nH,} - (1,0,0,0)(0,1,0,0) ast— ocoort— —oo,
i) nH.} - (-1,0,0,0)(0,1,0,0) ast— ocoort— —co.

Hence, by Remark 3.2,
{yt(Cl(l))} — Cl((((l,O,O,O))) ast —- ocoort — —oo.

For any sequence of points x; on Py, x; € yi(Cl(])) for some t; € R. If |¢;] is bounded, then {x;} can accumulate
only on P,. If |t;] is unbounded, then {x;} can accumulate to Cl({y,) by the above paragraph. The final part
follows. O
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3.2 Proper affine deformations and Margulis and Charette—Drumm invariants

Let S be a complete orientable hyperbolic surface with x(S) < 0 and possibly some cusps. Let
h:m(S) — S0(2,1)°

be a discrete irreducible faithful representation. Now, the image is allowed to have parabolic elements. Each
nonparabolic element y of 11(S) \ {I} is represented by the unique closed geodesic in S := S, /h(1(S)) and
hence is hyperbolic. Let I be a proper affine deformation of h(71(S)). For nonparabolic y € I\ {I}, we define
o x,(y) as an eigenvector of £(y) in the causally null directions with the eigenvalue > 1,
o x_(y) as one of £(y) with the eigenvalue < 1, and
»  Xo(y) as a space-like positive eigenvector of £(y) of the eigenvalue 1 which is given by

X-(y) x X4 (y)
Ix-(y) x X (VI
Here, x is the Lorentzian cross-product, and x, (y) and x_(y) are well-defined up to choices of sizes; however,
Xo(y) is well-defined since it has a unit Lorentz norm. They define the Margulis invariant

a(y) = B(y(x) = x,Xo(y)), x¢€E, (3.7)

where the value is independent of the choice of x.
In general, an affine deformation of a homomorphism h : 11(S) — SO(2, 1) is a homomorphism

Xo(y) =

hy : 11(S) — Isom* (E)

given by hp(g)(x) = h(g)x + b(g) for a cocycle b : 1,(S) — R*>! in Z(11(S), IRi’l). The vector space of co-
boundary is denoted by B! (11 (S), IRi’l). As usual, we define

ZY(m(S), Ry
BY(m:(S), Rp")
2,

Let [u] be the class of a cocycle in H(r1(S), ]Rfl’l) with u € Z1(m1(S), Ry 1). Let hy denote the affine
deformation of h according to a cocycle u in [u], and let I'y be the affine deformation hy(711(S)). There is
a function ay : m1(S) \ Pr,(s) — R with the following properties:

o au(y") = Injay(y),n € Z.

o ay(y) = 0ifand only if hy(y) fixes a point.

o The function ay depends linearly on u.

o Ifhy(m11(S)) acts properly and freely on E, then |ay (y)| is the Lorentz length of the unique space-like closed

geodesic in E/hy(111(S)) corresponding to y. (See Goldman, Labourie, and Margulis [28].)

Charette and Drumm generalized the Margulis invariants for parabolic elements in [6], where the values are
given only as “positive” or “negative”. Let g € T be a parabolic or hyperbolic element of an affine deformation
of a linear group in SO(2, 1)°.

HY(m1(S), Ry'") 2=

Definition 3.4. An eigenvector v of eigenvalue 1 of a linear hyperbolic or parabolic transformation g is said
to be positive relative to g if {v, x, £(g)x} is positively oriented when x is any null or time-like vector which is
not an eigenvector of g.

It is easy to verify v is positive with respect to g if and only if —v is positive with respect to g~1. Let F(£(g)) be
the oriented 1-dimensional space of eigenvectors of £(g) of eigenvalue 1. Define a(y) : F(L(y)) — R by

a(y)(+) =By(x) -x,-),
where x € E is any chosen point. Drumm [22] also shows
aly) = a(y)x°(L(y))

provided y is hyperbolic.

By Definition 3.4, components of F(£(y)) \ {0} have well-defined signs. We say that the Charette-Drumm
invariant cd(y) > 0 if &(y) is positive on positive eigenvectors in F(£(y)) \ {0}. Also, we note cd(y) > 0 if and
only if cd(y™) > 0.
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Lemma 3.11 (Charette-Drumm [6]). Let y € T be a parabolic or hyperbolic element. Then the following holds:
o @(y) = B(y(x) - x, ) is independent of the choice of x.

e« a(y)=0ifandonly if y has a fixed point in E.

o Foranyn € AfE(E), a(nyn 1) (n(v)) = &(y)(v) for v e F(L(y)).

o Foranyn e Z,v € F(L(y)), a(y")(v) = |n|a(y)(v).

In the parabolic coordinate system of y, we obtain
a(y)(x, 0,0) = —utx (3.8)
for u, t given for y as in (3.5) in Section 3.1.

Lemma 3.12. Let y be defined by (3.5) for t > O in the accordant parabolic coordinate system for y. Then the
following holds:

e u>O0ifandonlyify has a positive Charette-Drumm invariant.

e u<O0ifand only if y has a negative Charette—Drumm invariant.

o u# 0ifandonlyif (y) acts properly on E.

Proof. We prove the first item: Choose x = (a, 0, ¢) with ac > 0, a > 0 so that x is a causal time-like vector.
Then {i, x, £(y)x} is a negatively oriented frame, and i is the negative null eigenvector of £(y) by Defini-
tion 3.4. By (3.8), the first item follows. The second item follows by the contrapositive of the first item. The
final part follows by Proposition 3.10 and Lemma 3.11 and reversing the orientation of E. O

3.3 Parabolic region and two transversal foliations on them
3.3.1 Parabolic regions

Let g be a parabolic element with the expression (3.5) for t > 0 under the parabolic coordinate system of
Section 3.1.2. Assume that the Charette-Drumm invariant of g is positive. That is, y > O by Lemma 3.12.
Recall from Section 3.1.2 that

Fy(x,y,2) = 22 - 2uy and Fs3(x,y,2) = 2 - 3uyz + Byzx
are invariants of g!. Recall that ®(t) : E — E is generated by a vector field
¢ :=y0x + 20y + U0,

with the square of the Lorentzian norm || ¢|? = z> - 2uy.
The equation F»(x, y, z) = T gives us a parabolic cylinder Pt in the x-direction with the parabola in the
yz-plane. The vector field ¢ satisfies

¢(x,¥0,0) = (yo,0,u) forall x and T =-2uyo.

Since we are looking for a gl-invariant ruled surface, we take a line I tangent to Py in the direction
ofx = (a, 0, c) starting at (0, yg, 0). Since (x) € S, by the premise, we obtain 2ac > O with a > 0, ¢ > O under
the parabolic coordinate system with the quadratic form (3.4). (See Figure 2.)

We define (¢, s) = gf(I(s)) so that

I(s) = (0, y0, 0) + s(a, 0, ¢) = (sa, yo, SC), p(I(s)) = (Yo, SC, 1).
Thus, ¢ is never parallel to (a, O, ¢) unless s = 0. We choose (a, 0, c), ¢ # 0, not parallel to (yo, 0, u), i.e.,
a
a, v
c U

Then ¢|l is never parallel to the tangent vectors to I. Since Dg'(¢p) = ¢, ¢ is never parallel to tangent vectors
to g'(), it follows that ¥ is an immersion in E.
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-3 -2 -1 + 1 2 3

Figure 2: This shows the projective action of a 1-dimensional parabolic group on S, with boundary represented as a parabola.
We use the affine patch where x > 0 in the coordinate system. We normalize the homogeneous coordinates by setting x = 1. The
parabola 2z = y? describes the boundary of §, given by y? < 2xz. See Remark 3.2.

Let Hs,,x,,x, be the space of compact segments u passing E with the following properties:
o u has an antipodal pair of endpoints in S, and in the antipodal set S_, and

o unEisequivalent under g for some ¢ to a line I(s) given by
l(s) = (sa, yo, sc) (3.9)
foryg > so, a, c > 0, % < ’;1—" < %,anda2 +c? =1 forsome pair 0 < x1 < k; < 1and sg > O.
This space has a metric coming from the Hausdorff metric dg.
We will prove the following in Appendix A.

Theorem 3.13. Let g, £(g) € SO(2, 1)°, be an accordant parabolic element acting properly on E with the posi-
tive Charette-Drumm invariant. Let | be a line in Hs, «, x, for the parabolic coordinate system for g. Then:
o For each time-like line l in the ruling of S,
{g'(ClI(D)} - Cl({x,,) ast— ocoandt— —oco
geometrically.
«  For any e-d-neighborhood N of Cl({x ) c S, we can find such a ruled surface Sin N n E.
o Thereexists a {g' : t € R}-invariant surface S ruled by time-like lines containing 1° properly embedded in E
with boundary
CIS)\ S ={g'(x): t e R}u{g'(x_): t € R}UCl({x.)
for a point x € S, and X, is a parabolic fixed point of g in 0S. respectively. Furthermore, there exists
a domain R homeomorphic to a 3-cell in E whose topological boundary in the hemisphere H equals CI(S).
Also, R/{g) is homeomorphic to a solid torus.

Definition 3.5. In Theorem 3.13, the surface denoted by S is called a parabolic ruled surface. (Compare
with parabolic cylinders in Section 3.1.2.) The open region R in E bounded by a parabolic ruled surface is
called the parabolic region. The generator of the parabolic group acting on a parabolic ruled surface fixes
apoint p € 0S,.

An immersed image S/(g) of the surfaces in a manifold E/T is also called a parabolic ruled surface. The
embedded image R/(g) of R in a manifold E/T is called a parabolic region.

We can choose the parabolic surface and the parabolic regions so that they are in the e-d-neighborhood
N of Uyeq Cl(¢x) € S by the last item of Theorem 3.13. Then we call the parabolic region %-far away from
the compact parts. The isometrically embedded images of such surfaces in E/T or E are described in the
same manner.

3.3.2 Two transversal foliations

Assume
O<xkx1 <K< 1.
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Figure 3: Three darker leaves of foliation 8f,, and five transversal light-gray leaves of Dy, where f(p) = % h and p = 1.

See [10]. v

Letf: (0, 1) — R be a strictly increasing smooth function satisfying

r r
Kl = <) < K s

Let Hy be the space of compact segments u passing E with the following properties:

e u has an antipodal pair of endpointsin §, andin §_,
« unEisequivalent under g’ for some ¢ to a line I(s) given by lyr(s) = (sa, yf(p), sc), s € R, where

vr(p) :=flp),a =r,c=V1-1r2,re(0,1).
For fixed r € (0, 1), let Sy, denote the parabolic ruled surface given by

U &'t

t,seR

Define Dy, . for fixed t € R to denote the surface

U &',

seR,re(rg,1)
We will prove the following in Appendix A.

Theorem 3.14. Let rg € (0, 1). Then the following hold:
»  The surfaces Sy, for r € [rg, 1) are properly embedded leaves of a foliation Sf’ ro Of the region Ry,,, closed
in E, bounded by Sy,r, where g* acts on.
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o {Dfro,e 1 t € R} is the set of properly embedded leaves of a foliation @,«, ro Of Ryr, by disks meeting Sy, for
eachr, rg <r < 1, transversally.
gtO(Df,ro,t) = Dfro, tto-
= Dfrov NDppr=0fort, t', t+1t.
—  Cl(Dfy,,t) NS, is given as a geodesic ending at the parabolic fixed point of g.

Remark 3.3. The quotient Ry, /(g) is foliated by the foliation §,,, induced by S f,r, and Dy, induced by D firo-
The leaves of 8, are annuli of the form Sy,,/(g) and the leaves of Dy, are the embedded images of Dy,
for t € R. The embedded image of Ry, /(g) in E/T are foliated by induced foliations to be denoted by the same
names. (See Figure 3.)

4 Orbits of proper affine deformations and translation vectors

We now come to the most important section of this paper. In this section, we assume £(I') ¢ SO(2, 1)° and
work with Criterion 1.1 only without assuming the properness of the I'-action. In Sections 4.1 and 4.2, we
will present the objects of our discussion. In Section 4.3, we will discuss the Anosov properties of geodesic
flows extended to a flat bundle V. In Section 4.4, we will put the translation cocycle into an integral form. In
Section 4.5, we will compute the translation parts of the holonomy representations. Theorem 4.8 is the main
result where we will give an outline of the proof. We will prove the converse part of Theorem 1.5 at the end of
Section 4.5. In Section 4.6, we obtain Corollary 4.9 which discusses all the accumulation points of T.

4.1 Convergence sequences

Let g € T. Let 11(g) denote the largest eigenvalue of £(g), which has eigenvalues A,(g), 1, 1/11(g). Note the

relation
Ai(g)

1/A1(g)

Recall that T acts as a convergence group of a circle 0S,. That is, if g; is a sequence of mutually distinct
elements of T, then there exists a subsequence gj, and points a, r in 0$, so that
e asi— 00, {g;|0S, \ {r}} uniformly converges to a constant map with value a on every compact subset,
and
e asi— oo, {g].’i1 [0S+ \ {a}} uniformly converges to a constant map with value r on every compact subset.
Call a the attractor of {g;,} and r the repeller of {g;,}. Here, a may or may not equal r. (See [1] for detail.) We
call the sequence g; satisfying the above properties the convergence sequence.
For a point x € E, let I'(x) denote the orbit of x. We define the Lorentzian limit set

Is. (¢) = log( ) = 2108 1(9). (4.1)

Ar := [ J(CUT () \ T(x)).

xeE
By the properness of the action, we obviously have:
Lemma 4.1. Let T be a proper affine free group with rank > 2. Then Ar is a subset of S.

Recall $p = $\ S, \ S_. For each point x of S, there exists an accordant great segment {y (see Definition 3.3).
We denote by IT; : So — 0$, the map given by sending every point of C1({y) to x. This is a fibration by [16, Sec-
tion 3.4].
Let Ar,s, ¢ CI(S,) be the limit set of the discrete faithful Fuchsian group action on $, by £(I). (See [2].)
One of our main results of the section is Corollary 4.9 also giving us:

Theorem 4.2. Let T be a proper affine free group of rank greater than or equal to 2 with or without parabolics.
Assume L(T) ¢ SO(2,1)°. Then Ar ¢ TI;*(Ars,).
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4.2 The bundles E over US

Let US, denote the unit tangent bundle of S, i.e., the space of direction vectors on $, . For any subset A of S,
we let UA denote the inverse image of A in US, under the projection. The projection IIs : US — S lifts to the
projection IIg, : US, — S,.

Let T := h,(m11(S)) be a proper affine hyperbolic free group of rank > 2. We note that T acts on US, as a
deck transformation group over US. An element y € I goes to the differential map Dy : US, — US, defined
by
dy(B(1)

dt
where S(t) is a unit speed geodesic with (0) = x and B(O) = u. Goldman, Labourie and Margulis in [28] con-
structed a flat affine bundle E over the unit tangent bundle US of S. They took the quotient of US, x E by the
diagonal action given by

Dy(x,u) = (y(X), ) X €S8, ueUySy
t=0

y(v, x) = (Dy(x), y(v)),x e US,, v eE

for a deck transformation y € I'. The cover US, x E of E is denoted by E and is identical with E x US,. We
denote by
Me:E=US, xE—E

the projection.

4.3 The Anosov property of the geodesic flow

We denote the standard 3-vectors by
i:=(1,0,0), j=(0,1,0), k=(0,0,1).

Definition 4.1. We say that two positive-valued functions f(t) and g(t), t € R, are compatible or satisfy f = g
if there exists C > 1 such that

=

t)
(t

< <C forteR.

alr
ug

Given ((x),u) € US,,

o we denote by I((X) , u) C S, the oriented complete geodesic passing through (x) in the direction of u,

« wedenote by v, (x),j and v_ (x),j the respective null vectors % j+ %k and % j+ %k in the directions
of the forward and backward endpoints of the oriented complete geodesic I((K) , j) ¢ S,

« wedefine v, ((x),u) and vV_ ((x),u) respectively as the images of v, ((),j) and v_ (x),j) under an element g
for g € SO(2, 1)° provided

g((k)) = (x) and g(@)=u.

The well-definedness of these objects follows since there is a one-to-one correspondence of US, with
S0(2, 1)°.

Definition 4.2. We define V as the quotient space of V := US, x R*! under the diagonal action defined by
y(x,v) = (Dy(x), £(Y)(V)), xeUS,, veR>!, yeTl.

We will also need to define 7 := $, x R%! and the quotient bundle ¥ := #/T where the action is given
by
Y, v) = (y(), L(y)(V)), xe€S,, veR>, yel.

The vector bundle V has a fiberwise Riemannian metric | - |lgher Where T' acts as an isometry group. At
((x), u) € US, with x satisfying B(x, x) = —1, we give as a basis

Vo, ((x),w) X Vo, ((x),0) } (4.2)

{V+,(((X)),u)» V-, (x),w)s Vo,((x),u) *= V-0 X Ve 0.0
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for the fiber over (x), where x is the Lorentzian cross product. We choose the positive definite metric
| - llsber on V so that the above vector frame is orthonormal at the fiber of V over ((x),u). The metric is
S0O(2, 1)°-invariant on US... Thus, this induces a metric || - |lgher 0N V as well.
Let V,, be the 1-dimensional subbundle of US, x R%! containing Vo,((x),u) for each w, w = +,—-,0. It is
redundant to say that vy, ((x),u) is a fiber over the point (x) in $. for each w.
We define a so-called neutral map
7:US, — US, x R>?

given by ((x) , u) — Vo ((x),u)- Here, Vis an SO(2, 1)°-equivariant map. By action of the isometry group I, we
obtain a neutral section
v:US—->V

by using the SO(2, 1)°-equivariance of the map. Hence, V, coincides with the subspace generated by the
image of the neutral section v.
For any smooth map g : US, — US, or $; — S, we denote by Dg the induced automorphism US, x E
acting trivially on the E-factor.
Recall from [28, Section 4.4] the geodesic flow ¥, : US, — US, denote the geodesic flow on US, defined
by the hyperbolic metric. Let
DY, : US, x R*! — US, x R*!

denote the Goldman-Labourie—Margulis flow. This acts trivially on the second factor and as the geodesic flow
on US... The bundle V splits into three ¥;-invariant line bundles V., V_ and V,, which are images of V., V_
and V. Our choice of | - || shows that DW¥; acts as uniform contractions in V, as t — co, —09, i.e.,

DY (V. )lifiber = exp(—t) Ve llfiber  for v, € V.,
IDW(V_)lfiber = exp()IV_llfber ~ forv_ e V_, (4.3)

IDY¢(Vo)llfiber = IVollfiber forvg € Vp.

Here, k in [28] equals 1 since we can explicitly compute k from the framing above. The signs are different
from [28] because we have slightly different objects. The fiberwise metric on US, is not dependent on the
group I itself. See [28, last paragraph of Section 4.4].

Remark 4.1. The induced geodesic flow on S is denoted by ¥, and the induced action on V by D¥;. We may
think of translating the picture of the flat bundle over US, to the bundle over US. As a bundle over US, DY¥;
contracts and expands uniformly for V. with respect to | - |gper. However, in the picture over US,, D¥; is
the identity between fibers and objects lifted from V will uniformly increase or decrease exponentially with
respect to any fixed Euclidean metric || - |z on V. (See Figure 4.)

Figure 4: The frames on US, and on US. The circles bound horodisks covering the cusp neighborhoods below. The compact set
2 is some small compact set where the closed geodesics pass through. We drew only one closed geodesic.
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Denote by
V+((()?)) s u)’ V—((()?)) ’ u)’ VO((()?)) s u)
the fibers of V., V_, Vj over ((X), u) € US respectively. We denote by

H‘~,+:V—>V+, H‘~,_:V—>V_, HVO:VHVO

the projections using the direct sum decomposition

4.4 Computing translation vectors

Here, we will write the cocycle in terms of an integral. Let g be a hyperbolic element. Let ag denote the
attracting fixed point of g in 0S, and r, the repelling one. Let X, denote the surface

(($+ U 0S:)\ Ars,)/T.

The surface S is the dense subset of X,. The ¥ -valued forms are differential forms with values in the fiber
spaces of 7. (See Definition 4.2.) The ¥-valued forms on §.. are simply the R?!-valued forms on S, . However,
the group T acts by

y'vedx) =Ly) tMedxoy)=Ly) ' (v)®y*dx, yel. (4.4)

(See Labourie [34, Chapter 4].)

Let || - ||g denote a Euclidean metric on E by changing signs of the Lorentz metric which we fix from now
on. Let g be a hyperbolic isometry. Let x¢ be a point of the geodesic I; in S, on which g acts preserving an
orientation direction uy. We define

Vg i= VO,(xg,ug) = f/(Xg, ug),
which is independent of the choice of (xg, ug) on I by (4.2).
Recall from Section 3.2 the cocycle of I' = hy (711 (S)) for the holonomy homomorphism hp:

b e Z (1 (S), RyY).
We write every element g as g(x) = Agx + bg, x € E. Then the function b : T — R?! given by
g b, foreveryg
is a cocycle representing an element of
H'(m1,(S), R*") = H'(S, ¥)

using the de Rham isomorphism. (See Labourie [34, Theorem 4.2.3].) Let  denote the smooth 7 -valued
1-form on S representing the cocycle b in the de Rham sense.

Let 7 : §; — R>! denote the lift of n to $,. We can think of 77, which is h-equivariant, as the differential
of asection sj : $; — E which is hy-equivariant:

fl = dSﬁ (4-5)

by [25, Theorem 1.14] and lifting to the cover S, x E.

Recall from Section 2.2, the end neighborhood E and its inverse image 7 c S,. Let CH(A) denote the
convex hull of a closed subset A of 0S, in S.. The surface S¢ := CH(Ar,s,)/I is a finite-volume connected
hyperbolic surface with geodesic boundary and cusp ends. The boundary of S¢ is a union of finitely many
closed geodesic boundary components, and each end of S¢ is a cusp. Assume that each component of E is
a subset of S¢ by choosing suitable cusp neighborhoods. We let F to denote a compact fundamental domain
of CH(Ars,) \ 2.
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Let US¢ denote the space of unit vectors on S with base points at S¢, and let UCH(Ar,s,) denote one
for CH(Ar,s, ). We can compute the cocycle b by the following way:
Let # be a small fixed compact domain in CH(Ar,s,) \ 27 in S,. Let ; denote the lift of  on S.. We may
also assume that
nlz =0 (4.6)

by locally changing n by (4.5). We simply need to change the section to a section that is a fixed parallel
section on ps(.¥). This can obviously be achieved by using a partition of unity while this does not change
the cohomology class of 1. (See [28, Section 4].)

To simplify, we assume that sj; at 7" takes the value of the origin O.

Definition 4.3. Let I'; denote the set of hyperbolic elements g € I' that acts on a geodesic Ig in $, passing
a compact subset 7 ¢ $, \ 7.

We lift the discussion to US¢ and its cover UCH(Ar,s,) ¢ US.. Let g be an element of T ;» corresponding to
aclosed geodesic cg. Let I be the unit speed geodesic in S, in connecting xg € %" to g(x4) covering c, with the
length t,. Let IIg21 : US, x R%1 — R?! denote the projection to the second factor. Then by the trivialization

on .7 ] i
nglR“( J (% )dt)’

[0,t0]

where ¢, is the time needed to go from xg to g(x,). (See Labourie [34, Section 4.2.2].) However, we will
consider the case when xg is anywhere in S, Since

dl
nmm< | n(%) dt) = g(ITg o 57(xg))) — g o 55(xg) = (£(8) = D(ITg o 57(xg)) + b,
[0,t¢]

we have

dl(t
b, = H]Rm( J f1< ;E ))dt) + (- £(9) (Meosq (xg)).
[0.¢;]

Thus, we obtain

av s ,t
b, = n]Rz,l( | ¥ w07 (L 220 dt) + (- £(2))(Meosy (x)),

[0,t]

where the geodesic segment W((xg, ug), [0, tg]) for a unit vector ug at xg, covers a closed curve representing g.
Using the origin O of E, we can consider it as V with a vector subspace V, w = +, —, 0. Define

My ,x := Mpe o g, ot X0} XE = Vg py — R
to denote the projection Ily  at the fiber E over xo € US.. Define
flu(x0) = Ty, (7(x0)),
where w = +, —, 0. Since ¥, preserves the decomposition, DW¥(x, t) commutes with these projections.

Definition 4.4. Let .7 be the compact subset of S, \ 7. Let g € I ». We choose x4 € 7" so that the arc
Y((xg,ug), [0, tg]) for a unit vector ug at xg covers a closed geodesic representing g, where
(8(xg), Dg(ug)) = ¥((xg, ug), tg).
The arc here is not necessarily in .# of course. We define invariants:
bg, :=1g, , (bg)

avy ) )
:n]Ru( | m«xg,ug),t)-l(m,(w»dt)+<I—L<g>>(nw,xg(sf,(xg>)),

[0,6]

(4.7)

where w = +, —, 0 respectively. The second equalities hold since DW¥(x, t) and £(g) commute with projections
H‘*L s Hv_ and HVO'
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Proposition 4.3. For nonparabolic g € T — {I}, we have

bgo = a(g)vg, Ibgol = a(g). (4.8)

Proof. First, bg o is parallel to v by (4.7). Since v is Lorentz orthogonal to the subspace spanned by Vit (xg,ug)
and V_ (x,,u,), the component by o is the image b, under the Lorentzian projection to v,. Since bg = g(0) — O
for the origin O by our choice of the E-section near (4.6), and |vg| = 1, (3.7) and Criterion 1.1 imply the
result. O

The norm of a 1-form with values in V is given by the fiberwise norm of V and the norm of hyperbolic metric
for the tangent bundle of S. Finally, we will need:

Definition 4.5. Let K be a compact subset of S, and let K denote the inverse image of K in $,. The neutral
factor of n|K is given as the maximum norm of 7y on UK.

4.5 Translation vectors have direction limits in §,

We aim to prove Theorem 4.8 from Section 4.5.1 to Section 4.5.4. Section 4.5.1 discusses the standard cusp
1-forms and how to integrate along geodesics to obtain the Margulis invariants. Important Lemma 4.6 shows
that long cusp geodesics can absorb many possibly negative perturbations during the argument that we
will present. Section 4.5.2 outlines the proof of Theorem 4.8. In Section 4.5.3, we show a(g;) — oo and
a(gi)/lbg,ll — oo if Is, (gi) — co. We will use the fact that a sequence converges to +oo if we can show that
a subsequence of any subsequence converges to +co. Hence, we will start with a subsequence and keep tak-
ing subsequences to obtain one that converges to +co. In Section 4.5.4, we finish the proof of the theorem on
the limit of direction vectors.

4.5.1 Cusp forms

A standard horodisk D is an open disk bounded by a horocycle in $, passing (k) and ending at the unique
point (j + k). We denote by 05D the horocycle CI(D) \ (D U {(j + k)}) for any horodisk D.

Let D' be a horodisk in S,. Let p denote a null-vector in the direction of p € CI(D') n 0S,. Let us use an
upper half-space model of the hyperbolic plane with the standard coordinates x, y and p corresponding to
co. Then we may assume without loss of generality that D' is given by y > 1.

Definition 4.6. Let g be an accordant parabolic transformation in I'. Using the parabolic coordinates, let g
be of the form (3.5) for some ¢ > 0. Let E’ be a cusp neighborhood covered by D' where (g) acts as the deck
transformation group. On D', we can find a ¥ -valued 1-form

u(x*/2, -x, 1)dx (4.9)

that is closed but not exact and is g-invariant by (4.4) with respect to a coordinate system adopted to g. We
call such a form on D’ and the induced one on E’ standard cusp 1-forms, u > 0 is the cusp coefficient of E'.
(See [14] to check the form and the invariance.)

Here, u > 0 by Lemma 3.12 since t > 0 under the assumption.

Let 74 ¢ S+,j=1,2,...,denote the horodisks covering the components of E. Let p; denote the parabolic
fixed point corresponding to .. Each .7 has standard coordinates x;, y; from the upper half-space model
of $, where p; becomes oo, and . is given by y; > 1.

Since S has finitely many cusps, we can choose horocyclic end neighborhoods with mutually disjoint
closures. By taking even smaller ones, we may also assume that

ds, (8(A4), k() > Ci10, 410 5 % g kel, i,j=1,...,mo, (4.10)

whenever g(J4) # k(%) for some fixed constant Cif"lo) depending only on E.
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There are only finitely many cusps in S¢. Thus, we can choose finitely many cusps in each orbit class of
cusps whose closures meet the fundamental domain F. We may denote these by 773, . . ., 7, by reordering
if necessary. We denote by p1, ..., pm, the corresponding null vectors. We choose a parabolic coordinate
system for each .77 in the I'-equivariant manner.

Recall from Section 3.2 the cocycle of I' = hy(711(S)) for the holonomy homomorphism hy:

b € Z1(mi(S), R;H).

For each y € m1(S), b(y) = hp(y)(xo) — xo for a basepoint xg. For each peripheral element y in the boundary
orientation, let y denote the corresponding deck transformation. We choose an adopted parabolic coordinate
system where h(y) is accordant. Let E, be a component of E corresponding to y. Let y’ be the homotopy class
in E, of the simple closed curve ¢, bounding E, with a basepoint xo,,. If we choose a basepoint to be the
origin of the coordinate system, we obtain a class uin H'((}), IR%;&)?))). Let ¢, denote the boundary horocycle
corresponding to y. Using the partition of unity, we change the section s; associated with 7 so that so that
S7¢y is the orbit of the origin of the one-parameter group of parabolic affine transformations containing h(y).
By (4.5), new 1 is obtained in E,,. Since the de Rham class [nf,] € HY(E', V) goes to u € H((}), IR?,’I}W), we

obtain by Propositions B.1 and B.2:

Corollary 4.4. Let S, T, P, E, and y be as above. Then we may replace a closed ¥ -valued 1-form n on S with
a cohomologous one n' so that n'|E' for each component E' of E is a standard cusp 1-form in a parabolic
coordinate system adopted to the accordant holonomy element following the boundary orientation.

We may choose the 1-form 5 representing the cohomology class so that 7, its lift to S, is a standard cusp

1-form on 4. Let y; denote the cusp coefficients for each j, j = 1, 2, ... . Since there are only finitely
many cusps in S, /I, there are only finitely many values of the cusp coefficients. Let umin be the minimum
of ui, ya, ..., and let u be the maximum of uq, py, ... .

Let || - | denote a Euclidean metric on E which we fix in this paper.

Lemma 4.5. Let ¥ be a compact subset of S, \ 7. Suppose x € ¢ . Then the matrix €; with columns
Vi (qu)» Vo,(qu)> Vo, (uy)  foreveryu € Uy S,

is in a compact subset of GL(3, R) depending only on % .

Proof. There is a uniformly bounded element of SO(2, 1)° sending a complete geodesic (0, -1, 1) (0, 1, 1)
to lg, and (1,0, 0) to (vg,). From this and the way we define the frames in Section 4.3, the conclusion
follows. O

Let g be a hyperbolic element. We recall from (4.7) and (4.8),

d¥((xe, ug), t
a8 = ool by = g, 0y) = oo ([ 8(me i 520 ) o, )

[0,t]

since (I — L(g))(l'[vo,xg(sﬁ(xg))) =0.

For any subinterval ¢ in a cusp with the cusp coefficient p, we define a({) to be the corresponding part
of the above integral from ¢, and t;, for the corresponding arc-length parametrizing interval [f,, t;, ]. Define
R({) as the radius of ¢ in the upper half-space model where the horocycle is given by y = 1. By Proposition B.4,
and the compatibility (4.3), we can use

+vV24/R(02 -1
a(d) =p(% + 2R(O\R((? - 1)). (4.11)

Definition 4.7. We define r({) := 1/R({)2 - 1, which equals 1/2 times the absolute value of the difference of
the x-coordinates of the endpoint of { in the upper half-space model where the horocycleis given by y = 1. The
horospherical length h of a cusp neighborhood E is the dg, -length of 0E. Note that if two maximal geodesics {
and ¢’ in a cusp E have the same endpoints, then r(¢) and r({’) differ by a half an integer times h.
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One useful result is [31, Theorem 4.6],
N 1 N
r(¢) = sinh 5(1&(( ). (4.12)

From this, we can show that the difference of x-coordinates of the endpoints of an arc of length lis < 2 sinh(%).

Heuristically, Lemma 4.6 states that the homotopy classes of maximal geodesics in a cusp neighborhood
will give quadratic differences in a-values. In particular, item (ii) gives us the main estimations to absorb the
negative contributions.

Lemma 4.6 (Large cusp radius). Let { be a maximal geodesic in a cusp neighborhood E' with the standard cusp

1-form and a cusp coefficient u'. Let h be the horospherical length of E'. There exists a positive constant R,

independent of i’ but dependent on h and C, which is defined below so that for any R, > R. has the following

properties:

(i) For the set of maximal geodesics in E', r({") — a({") for each {' in it forms a strictly increasing positive
function of r({") for r({") > Ry.

(ii) Let ¢ and {' be two maximal geodesics in E with the same endpoint as { but in the different homotopy
classes with respect to endpoints. For any constant 0 < 1o < C with

R-h/2<r() <R<r({{") forR>Ry,
we have
a(") - a(Q) - p'no 2 2Cx L' r(¢")?
for a constant Cg‘l"ec) > 0 depending only on h, Ry and C.

Proof. We choose a horoball E’ covering E'. Then we can compute a(¢{) for a geodesic ¢ by lifting { to E'.
Statement (i) is straightforward.
For (ii), the last term of (4.11) dominates the absolute values of other terms and un for sufficiently
large R;: Using (4.11), the above term divided by u’ is bounded below by

r({")? - r()? - no - 2V2.

Since (x — h/2)/x is an increasing function of x, the supremum on x € (R, R + h/2) is R/(R + h/2). Hence,
we have r({) < Cgrr({") for Cr = R/(R + h/2) since the ratio r({)/r({") is less than Cg for r({’) > R + h/2. Then
a(¢") - a({) — u'no divided by u’ is bounded below by

C+2\/§).

r((:)z(l_c}ze)_c_zx/fz(1—C12Q)(r((’)2— 2
1-c2

Let fr(x) denote the polynomial given by the right side with x replacing r({’). The largest root of fr(x) is
smaller than

h

Since the function R — R dominates any function given by the square root of the 1st order polynomial of R,
there exists R’ > h so that for R > R’, we have

\/(R+h)(C+2\/§)

\](R+h)(C+2x/§)
R B+ 2V

h = fr(x) >0forx > R.

Define
o fR’+1(R, + 1) >0
(R" +1)2 '
Then

frrea1(x)>cx* forx>R' +1

by an easy calculus argument. We take Ry = R’ + 1, and Cg*l',sc) = ¢/2. We can make R as large as we wish to
since we only need ¢ > 0. O
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4.5.2 Summing up the contributions

Let {g;} be a sequence of elements in I ». We denote by 7&. the lift of I, to US, directed towards the attracting
fixed point of g; in 0S..
Recalling (4.7), we estimate bg, _(x). We give an outline of the rest of the long proof of Theorem 4.8
starting from Section 4.5.2:
(I) First, we estimate the last term in the integral (4.7) for w = —.
(I) We estimate the contribution of 17|S¢ \ E of the integral (4.7) for w = -.
(IIT) We estimate the contribution of the arcs in ./#
(a) We estimate the contribution of the arc when it is put into a standard position.
(b) We obtain the relationship of the contributions to the arc in the standard position and actual one
by Lemma 4.7.
(c) We estimate the comparisons of sizes by length.
(IV) Then we sum these results to estimate the integral (4.7) for w = -.
(V) InSection 4.5.3, we show that a(g;) — co and a(g;)/|[bg, -l — oo as Is, (g;) — co.
(VI) Finally, we estimate the asymptotic direction as the last item in Section 4.5.4.
Let (x, u) € U.#. The arc W((x, u), [0, t]) is a geodesic passing U.%Z". We choose x; € .# N Ig, for each i and the
unit vector u; at x; in the direction of Tgi. We let fg, > 0 be so that W((x;, u;), [0, tg,]) C lg, corresponds to the
closed geodesic corresponding to g;.
Let US¢ denote the unit tangent bundle over S¢.
e Wedenote by .74 1, 7 2, . . ., the components of .77 meeting IIg, (¥ (x;, w;), t)) as t increases.
+ Letp;jdx;; denote ]| j, where (p; ;) is the parabolic fixed point in the boundary of 7% ;.
e Lett;j, 0<tj<tg, be the time the geodesic ¥((x;, u;), t) enters U.54 j, and fi,j the time it leaves U4 ;
for the first time after ¢; ;.
o Wedenote Ii’j = [ti’j, Z‘i’j].

() We estimate [|(I - £(gi))(I1- x, ° s5(xi))lg for g € T» from (4.7): The matrix of £(g;) with the basis
Vi, (xi,m)» Vo, (x,u)» V-, (x;,u;) 1S @ diagonal matrix with entries

Al(gi)’ 1’ 1/A1(g1)'

Hence, the above is given by
H_ o Sp(X || < C ’ .13
||( /11(g1 )( Xg q( i) H (4.13)

where we have a uniform constant C » depending only on .# by Lemma 4.5 and (4.1) since A;(g;) > 1 and
[s7llel-#" is bounded by a constant depending only on 7",

(1) Define
N(Sc \ E) := max{|ln(u)llfper : w € USc \ E}.

We have

<C1

d¥((xi, w), t)
)) a fiber

dt

| o w0 (i
[0,tg;\U; I

for C1 < oo by the second part of (4.3) applied to DW¥((x;, u;), t)~! and the integrability of the exponential
function. Here, C; = C1(N(S¢ \ E)) depends only on N(S¢ \ E).

Since these integrals have values in the fibers over %", and | - ||aper and || - || are uniformly compatible
over %, we have

<C (4.14)
E

),

DY ((x;, uy), ) ( (
[0,tg;\U; I

for C, < 0. (See Remark 4.1.) Hence, C, depends only on .#” and N(S¢ \ E). We write

C2 = C2(A7, N(Sc \ E)).
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() For each I; j, we define for the maximal geodesic segment in Iy, N 4 ;
nij =g, e Y((xi,wy), I;j) ¢ 74; and

bg,,-(Mi,j) := J DY ((x;, wy), l‘Y%ﬁ—(W)) dt.
Lij

We now estimate bg, _ contributed by I; ; by looking at the situation of (4.17).

Recall the fundamental domain F of CH(Ar,s,) \ ## covering Sc \ E. Let p; denote the beginning point
in 08, of lg, in S, and p; denote the forward endpoint of I, in 9S.. Let g; ; denote the beginning point of 1; ;
itself and u; ; the unit tangent vector to Ig, at the point x; in #".

Definition 4.8. We define three maps and two others slightly later.
e gij: Thereis an element g; ; € I so that g; j(qi ;) € F, and

gij(4j) = fork=1,...,mp and g;j(q;i;) € FnCl(#).

e h;j:Since {/4, ..., /nm,} is finite, we can put .7 to the standard horodisk D by a uniformly bounded
sequence hlf,}. of elements of SO(2, 1)°. Since g; j(qi;) is in a compact set F n Cl(#4), it follows that
hlf’i(g,-,,-(qi,,-)) is in a uniformly bounded subset of UdyD. Hence, we can put hlf’j(gi,,-(p,-)) to be (0, -1, 1)
by a bounded sequence h;’ ; of parabolic elements fixing (0, 1, 1). Let hij = h;fj o hlf,j. Then

hij(#4;) = D, hij(gij(pi) = (0, -1, 1),

and fli,,- in a uniformly bounded set of elements of SO(2, 1)° not necessarily in I'. This is called a normal-
ization map. (There is a bound on the size of h; ; depending only on F.)
. hi,]': Let hi’j = hi,j ° gij-

The image
Gij = hij(ni)

satisfies the premise of Lemma B.3. (See Figure 5.)

i .
(0-1,1) o (011 @ (0-1,1) U(o,u)

Figure 5: g j € [ moves g; j to a point of F. f1,~,,~ sends 7] ; to the standard horodisk D, h; is a normalization map of Ig;, h,’.’j
normalization map for h; j(lg;), where hj; = hij o gij. See Definitions 4.8 and 4.9. The black dots indicate the images of g; ;.

the
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(@) We define

(4.15)

d¥(hi j(qi), t - ti) )) dt.

by, (6 = [ D@, ¢~ 6 (ki) i 4

I,'J'
Proposition B.4 implies that
Ibg,,-(SiDlE < pcr(Si,j).

Since there are only finitely many values of py,
g, (i )lE < pur(gi;)- (4.16)

(b) We compute the actual contribution for n;. We diagram the flow of the point w € US, and the action of

the isometry g not necessarily in I':

w—" Y(w, —t) (4.17)

[
g(w) — ¥(g(w), -t).

Lemma 4.7. We have

nmz,l(n)h;}(bgi,_((i,j))) = g2 (bg,, - (i) (4.18)
Proof. Since the flow commutes with isometry group action on US,, we have by considering (4.17) and the
triviality of actions in the fibers

Dg(DY (W, ~t)(V)) = (Dg e D¥(w, ~t) e Dg ") » Dg(V)

’1 o (4.19)
= DY (g(w), -t) o IDg(v) forweUx,veR>", geS0(2,1)°.
We apply thl.‘} to (4.15). Since W(x, t)~! = ¥(x, —t), we obtain by (4.19)
_ 1l o1x= (AY(hij(qij,vij), t—ti)
]Dh,"}<]D\P(hi,j(Qi,j,ui,j),t—ti,j) 1<hi,} 'Z—( o q”dt” o )))
(4.20)
- - —1% d\P(h,( ','7u','),t_t',')
— ]D\P((Qi,j,ui,j), t_ti,j) 11Dhi’)]'-(hi’}]: rl—( 1,) qi }dtl] 1,) )).
The above (4.20) equals by (4.4)
_ 1fy1s (AY(hij(qij, Wi ), t =t )
DY((qij, uij), t - ti ) 11Dhl~,}(hi,} l1—< = ”dtl] = ))
(4.21)
“1f - _1/ AY¥(hij(qij, uij), t - tij)
=D‘I"((Qi,j,ui,j),t—ti,j) 1(U—<Dhi’}( 1,] QI]dtl] 1,] )))
By the definition of differentials and (4.17), we obtain
AW (hij(gigaij), t -t Ay e O ((hij(dig, i), = i)  dW((gij,ui)), t - ti))
1 Jj\4i,j, Wi, G\ _ J _ Jo Wi J
Dhivl‘( dt ) - dt dt - (422)
Above (4.21) equals by (4.22)
_ ~ dq"((Q,, u',')at_t',-)
DY((gij, wij), t - tij) 1('1—( = dlt} e )) (4.23)
Since W((x;, uy), tij) = (qij, Wi j), (4.23) equals
1/ - d‘}’(‘{’((x, u')’ t',')’ t- t,)
DY ¥ (0, w), i, - i) (- )
(4.24)

d\IJ((Xi, ui)’ t)
dt

where we multiplied by DW((x;, u;), t; ;)! which is I on the fibers to the left side. Integrating (4.20) and the
last line of (4.24) for [t; j, ¢;,j], we proved (4.18). O

= DY ((x;, wy), t)_1<f17< )) for every t € [t;j, tij], (xi, w;) € UZ,
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() Now, we compare the contributions of these arcs. Now, h; j(q; ;) € UdxD is in a uniformly bounded sub-
set F/, UF c F', independent of i, j, of US, since h; j(p;) = (0, -1, 1) and the complete geodesic containing
hi j(ni,;) passes the standard horodisk D. Thus, h; j(lg,) is uniformly bounded from the line k in §, connect-
ing (0, -1, 1) to (j + k), oriented towards (0, 1, 1). Let k denote the lift of x to US, taking the direction
towards (j + k).

Definition 4.9. We define two additional normalization maps:
. h:."].: We take a uniformly bounded element th’ i of SO(2, 1)° so that
hi;(hij(lg)) = x and  h (hi;(gi)) = (0,0, 1).
« h;: Since Iy, is a geodesic passing .7, we take a uniformly bounded element h; of SO(2, 1)° so that
hi(lg,) = x and h;(x;) = (0, 0, 1) without changing the orientation. (The bound only depends on .7".)
Then
hiohp} e k] (R (G) = hi(nig)
and h; o hl‘]1 0 h{’fl acts on k.
e Under h;j o hl‘)1 o h{’j*l, h}i}. o hj j(qi,;) goes to a point h;(qi,j).
e«  We have
ds, (hl; © hij(qi)), hi(qi) = ti (4.25)
since h;(x;) = (0,0, 1) = h{j o hi j(g;,;) and the dg, -length of the arc from x; to g; j is t; j which is also the
ds, -length of the arc from h;(x;) to hi(q;j).
By (4.1) and (4.25), the eigenvalue of £(h; o h;]l o hZ’}_l) at the eigenvector (0, 1, —1) is exp(-t; j/2). Since

Mgz (bg, - (1)) = Mgz (h;j* (bg, - (§i1)),
it follows that £ (h; o hl‘]1 o h;r”i_l) sends the R?:!-vector
Hlevl(L(h;r,j)(bgi,—((i,i))) €((0,-1,1)) to Ilra1(L(hi)(bg,-(n:,))) € (0, -1, 1))
by multiplying by exp(-¢; j/2). Since th, i and h; are uniformly bounded depending only on .#" and F, we obtain
C(F, ) exp(~t;j/2)lIbg,,-(Gi)lE = Ibg, - (i )lE- (4.26)
for a constant C(F, .#) > 0 depending only on .#" and F.

(IV) We sum up the contributions. Hence, ﬁ}) < 1. By (4.13), (4.14), (4.16), (4.26) and Proposition B.4,

we estimate the upper bound depending onlyon E, 7", n|S¢ \ E:

1)1+ 4R(G )P
2V2R((;)?

Iyl < C(F, ) Y exp( - ) (i )+ €20, NS\ ) + Cr
j
(4.27)

- m; ti;
<CE )Y exp(—T’])(l{yr((iJ)) + Co(H NS\ E)) + Coxr
i

since R({j) = 1.

a(gi)
g,

4.5.3 a(gj) — oo and — 00

In Step (V), we will prove that a(g;) — coand a(g;)/[bg, -l — +oo provided s, (g;) — co using the fact that we

can absorb many negative uncertainties during perturbation into long edges in the cusps using Lemma 4.6.
We can do this by showing that every subsequence has a subsequence converging to +co. We give an

outline of the step (V).

(i) First, we will choose some constants such as €, 6§, Ro sufficiently small or large.

(ii) Let g; denote a closed geodesic. We replace the maximal segment ¢ in a cusp neighborhood with
r({) > Ro + h/2 with one {’ with the same endpoints but with Ry < r({’) < Ro + h/2. We denote the
result by g;.
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(iii) Then we find a closed geodesic g; freely homotopic to g;. Then we estimate |a(g;) — a(g;)| in terms of the
constant times the number of components of the above arcs in (4.32). This constant is bounded since
R6 = 2 by our choice below.

(iv) This is the final step: a(g;) is bounded below by a(g;) plus constant times the sum of r({)?. Then we use
the standard Schwartz inequalities.

Definition 4.10. Let g; also denote the arclength-parameterized closed geodesic in S whose lift I;, passes
a fixed compact set X in S,. Let J be the index set of mutually disjoint subintervals I; ¢ I and a; := gi|I;.
By i \ Uiy @i, we mean the map gilI \ U;e; Li-

We denote by E. the set obtained by decreasing E inward by € when € > 0 and the (—¢)-neighborhood of E
when € < 0. We will assume that E_; , is still a cusp-neighborhood, and 17|E_1; is still a standard cusp 1-form
for each component by taking sufficiently smaller E if necessary.

We denote by p; j the cusp coefficient for the cusp neighborhood that {; ; goes into. There are only finitely
many values. We assume that the horospherical lengths of all cusp neighborhood components of E equal h.
Let Cs\r denote the neutral factor of the compact set S \ E. We remark that the following constants depend
only on the two constants h and Cs\g, . There is no obstruction for the following choices.

(i) The first step is to decide on constants to be used later:

o Choose § > 0sothat0 < 6 < 1/40 by Lemma 2.2 and let € = 76.

«  Wealso require § < u/(7Cs\g, ).

e Alsoassume 6he < 1,€ < 1/8,and Ry > 10.

o We require 6 to be given by 6 := 2/Ro by taking R, sufficiently large and é sufficiently small. By
Lemma 2.3, the angle that {; j with r({; ;) > Ro makes with the vertical line is < § in the upper half-space
model.

o Rpisaconstantsatisfying all conclusions for the variable R in Lemma 4.6 for C > 222 ’% For simplicity,
we assume Rp > 10.

(i) We will replace very long ¢; ; in g; with ones that are outside some cusp neighborhood: We denote by {; ;
the sequence of maximal geodesics in g; going into E. We denote by J; ¢ the set of {; j with r({; ;) > t for ¢ > 0.
For each (; ; in J; r,+n/2, we take a maximal geodesic ¢; ; with the same endpoints but with

5 h
Ry < T((i,j) < Rp+ 5

since we can decrease the r({)-values by h/2 times integers by wrapping a smaller number of times around
the cusps. Since the geodesics are unique up to homotopy classes relative to endpoints, the homotopy class
of { j is, of course, different from ¢; ; relative to the endpoints. Thus, we obtain for {; ; € Ji ry+n/2,

. h .
(i) - alGiy) = ui,ja(Ro + 5), a(Gij) - a(Gij) = pijno = Co oy n o MifT(Gi)?s  Choenyp >0

by Lemma 4.6 where 1 < C'.

(iii) The third step is to estimate the relationship between a-values for g; and the closed curves g; and
gi to be constructed: Let g; denote the closed curve obtained by g; removing ¢; ; and adding Z,-,,- for each
Gij € Ji,Ro+h/2- By Lemma 2.3, g; has turning angles < § = 2/R, at each endpoint of maximal geodesic
segments by Lemma 2.3. We define

@ =a(s\ U ¢)+ Y ad.
C€liRg+h/2 C€]iRg+h/2
There exists a closed geodesic g; homotopic to §; which is in the e-neighborhood of g; for € = 76§ by
Lemma 2.2. Let Eg,/2+h/4+¢c denote the cusp neighborhood obtained by moving E inside by Ro/2 + h/4 + €.
Then both g; and g; arein S\ Er,/2+h/4+e-
Define J; o the subset of J; o of consisting of arcs (i,j where dg, -lengths are strictly bigger than 5/4. For
every arc in J; o \7,-,0, the arcs are in S\ E5;3. We will not remove these from g; in the following because of
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this. By skipping these, we have

[tij+1 — tijl > Cg"lo) > forevery (;j € Ji.0s (4.28)

>
4

INET

Iti,j = tijl =

where Cg;.m) is from (4.10).
Each maximal geodesic ¢;; € 71-,0 \ Ji,ro,+h/2 In E of g; goes to a geodesic Z” in E_4/g of g; by the perpen-
dicular projection which moves points by distances < € < 1/8. We obtain two distances

dij+ = ds, 0+ j, 0+ j)-

These are less than € by Lemma 2.1 since each endpoint of {;; € J; r,~n/> moves less than €. The corre-
sponding endpoints are at most distance d; ;. apart, which are values of the divergence functions corre-
sponding to fi, j and ¢; j respectively. Hence, their x-coordinate values differ by less than 1.1d; j . respectively
using (4.12) as 0 < € < 1/8. By last parts of [12] and [13] of the differences in the a-values, we can estimate
for ¢ij € Jio \ Ji,Ry+h/2s
(i) — a(Gi)l < 5pij(Ro + h/2)(dij+ /2 + dij[2) (4.29)

since we can put in the new x-coordinates and take differences in E_;/, where n has the form of the stan-
dard cusp 1-form. Here, we need to use the fact thatr > 10, € < 1/8, € < r/80,r — Vr2 + 1, r > 0, is distance
decreasing, and estimates of differences of the inverses of radii of arcs using calculus.

We claim that the sum of d;j . +d; - for {;; € Ji,o in & \ U jeimgone {i,j is less than 2 times the sum
of d; j,+ and d; j - over all {; ; € Ji r,+n/2 Which is less than 4€|J; r,+r/2|: We move

g\ U ¢ tozm\v U G
Gi,j€Ji,Rg+h/2 Gi,j€Ji,Rg+h/2
by perpendicular projections, and hence, the endpoints of {;; for {i; € Ji ry+r/> moving to {;; gives us
the divergence functions. The sum of the values of the divergence functions at t; ;, ¢;; for the endpoints
of ;e ji,o \ Ji,Ro+h/2 in a component of g; \ U(e],- Rosh2 ¢, is less than 2 times the sum of the values of its

endpoints by (4.28) and Lemma 2.1.
Since each endpoint of {j j € J; r,+n/2 moves less than €, we have by (4.29)

> laG) - a(Gi)l < 10u(Ro + h/2)€lfi ryenyal- (4.30)

Gij€lio\irg+hs2

As in the third paragraph above, for arcs ZI j € Ji,Ro+h/2, We have
|a(Gi,j) — (i)l < 5p(Ro + h/2)e.

Hence, X
Y la(G) - alij)l < 5u(Ro + h/2)€lTi rysny2l. (4.31)

Gi,j€Ji,Rg+h/2

For a-values outside these, we integrate 1 projected to the neutral bundle over

g\ U G and &\ U G
Gij€lio Gij€lio
they all happen inside S\ E5;s4c. By Lemmas 2.1 and 2.2, the absolute value of the a-value difference is
bounded above by the neutral factor Cs\g;,,,. times 2 times the sum of perpendicular distances at the end-
points of the corresponding arcs. These values are from endpoints of arcs in ],-,0 considered by a paragraph
above (4.29) or endpoints of arcs in Jg,.n/2. Hence the absolute value of the a-value difference is bounded
above by 4€Cs\g;),, . |Ji,Ro+hl-
Hence, we obtain by (4.30) and (4.31) and the assumptions in (i).

la(gi) — a(@i)| < Ji,Ro+n/21(4Cs\Ess,. € + 15U(Ro + h/2)€),

(4.32)
15(Ro€ + he/2) =15x2x 7+ 15he/2 < 218.
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(iv) Lastly, we apply the above to complete the convergences to co. At (i), we chose above a sufficiently small
€ so that Cs\g, € < u. Since Cs\g, > Cs\E; ,,., We Obtain

ag)=a@)+ Y (@@)-aQ)

C€li,Rg+h/2
> a(g) + z (a() - (X(Z) — (4Cs\E, € + 218p)) 4.33)
C€li,Rg+h/2 .
- . 222
> a(gi) + Z yminC;:;f;l/z’C,r(oz for C' := _.}1’
{€irg+h/2 Hmin

by Lemma 4.6 and (4.32).

Now we can show that a(g;) — oo provided Is, (g;) — oco: Suppose that Is (g;) — oo. If a(g;) — oo, then
a(gi) — oo by (4.33), and we are done. Suppose that a(g;) is bounded above. Then g, (g;) is also bounded
above by Lemma 1.4. Since r(Zi,,-) > Ry, we have l&(&,j) > l$+(fi,,-) - 2€ = 2arcsinh(Rg) — 2€ by (4.12). Since
R > 10, arcsinh(10) > 2.99, 1/8 > € by assumptions in (i), it follows that |J; g,+n/2| is bounded above. Only
possibility is r({j ;) — oo for some members {;; of J; r,+n/2 in order that Ig (gi) — co. This also implies
a(g;) — co by (4.33).

Now we go to the ratio limit. Notice that

y exp( 5 )r((, P exp( )r((l PRI exp( fij )r((, 2. (4.34)
Gii€lio Gij€li.Rg+h/2 Gij€Ji,0\i,Rg+h/2
The second term is bounded above by a constant since each term is bounded above. This term can be absorbed
into C ¢ in (4.35).
We obtain by (4.27), (4.33), and (4.34) that
- (4.6)
a(gi) > a(gi) + Z(sz Ro+h/2 Hmi“CR0+h/2 c r(oz
Do COE, ) T e XP(HING) + Co(H, N(Sc \ B)) + Cop

(4.35)

If Ji,ry+n/2 = 0 for infinitely many i, then a(g;) — co up to a choice of a subsequence by Lemma 1.4. Since
the nominator is a sum of bounded constants, we are done. Suppose not and that we have a sequence such
that ZQiE]LRw/Z exp(-ti,;j/2)r({ij)) — 0 as i — co. Define t; to be the first tij, where r({; ;) > Ro + h/2. This
means that t; — oo and [g, (§;) — co and g; € S\ Er,+h/2+¢. By Lemma 1.4, a(g;) — oo, and we are done for
the purpose of Section 4.5.3.

Since we need to show the result for subsequences only, we may assume that
Collhx) Y exp( 2 )riGis) 2 (Cal, NSC\ B + C)
Gij€Ji,Rg+h/2
for a constant Cy > 0. Hence, we obtain
a(gi) a(gi)
Ibg,-Il ~ C(F, )1 + Co) z(”e,, rooas XD (= RN

IlmlnCR o+h/2,b,C’ Z(GL Ro+h/2 r(oz
C(F )1+ Co) 2(116]1 Ro+h12 EXp( tij ) (Gij)

e (ool )
l 2 (i,ieji,RoHl/Z’

Fi:= (r((i,]'))(i,ieli,RoM/z € th’Rmh/z"
IVlli,Rp+j2 1= NV -V, 7 € RVirornral,

We define

Using the Schwarz inequality

—ti 5 >
> ( 2}>T((i,j)| < l8illi,ro+ns2 IFilli,Ro+h/2

Gi,j€Ji,Rg+h/2
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we obtain that (4.35) is bigger than or equal to ——— @ F = times
a(gi) }lmmCRoJrh/z b, Clllrilli,Ro+h/2
(1 + Co)lléilli, rg+h/2I7illi, Ry+h/2 (1 + Co)ll&illi,rg+h/2

For each arc ¢ in J; g,+n/2, there is a corresponding maximal geodesic {f in g; given by the perpendicular
projection and extending to a maximal geodesic arc in E.
Using the perpendicular projection paths at the endpoints and the triangle inequalities, we obtain

l&(gf)zls(g,-\ U Z)+ Y s (Dzlse@)+ Y Us, () - 26 - 2e())
{€liRg+h/2 C€lirg+h/2 {€li.Rg+h/2

where €, ({) and e_({) respectively are the vertical projection path lengths from the forward and backward
endpoints of { € J; r,+n/2 to the corresponding ones of the arc Z“ in g;. We obtain [, ({) > 2arcsinh(Ro) > 5.8
by (4.12) as Ry > 10 by the assumption in (i). Since €.({) < € < 1/8, the positivity of the later terms follows.

~ 1.4 N . e
By Lemma 1.4, a(g;) > C(S\Elzo/z+h/2+e ls, (8i). We obtain (4.35) is bigger than or equal to i3 % times
(1.4) "

S\ERg/2+h/2+¢ lS\E(gi) }’lmmCR0+h/2 b,C' "ri"i,R0+h/2

5 5 +
(1 + Co)llé;lli,ro+ny21I7illi, Ry +1/2 (1 + Co)ll&illi,Ry+h/2

Now, this is a function converging to co as

max{ls\e(gi), I7illi,ro+n/2} — 00.

Suppose that Is, (gi) — co. Then we claim that max{ls\g(gi), II7illi,r,+h/2} — o0t

Suppose that Is\g(g;) is bounded. Then the number of maximal geodesic arcs of g; going into S\ E is
finite by (4.10). Then r({; ;) — oo for some index (i, j) as i — co since otherwise we will have g, (g;) bounded
by (4.12). Hence, ||?i||i,R0+h/2 — 00.

Conversely, suppose that {||7i[li,r,+r/2} is bounded above. If |J; gr,+n/2| — 00, then Is\g(gi) — oo by (4.28).
Otherwise, if |]i r,+n/2| is bounded, there is an upper bound to the absolute values of the coordinates of 7; and
Is ({) for ¢ € Ji ry+n/2, implying the absurdity that g, (g;) is bounded above.

We are done proving the main aim of Section 4.5.3.

4.5.4 The direction result

(VI) We come to the last step.

Theorem 4.8. Assume Criterion 1.1 and L(I') c SO(2,1)°. Let n be a V-valued 1-form corresponding to
the boundary cocycle for I'. Let ¢ be a compact subset of CH(Ars,) \ 5. For every sequence {g;} with
{ls, (gi)} — oo of elements of T, the following hold:

« Albgllg} — 0.

« a(gi) — ocoand a(gi)/Ibg, -llg — oo.

+ {d(((bg,) , Cl(a, N} — O.

Proof. The first item follows since otherwise g;(0) is in a bounded set contradicting the properness of the
I'-action.
By Lemma 4.5, we may also assume that

Vi ooupt = Ve, Vg =V, and  {V_ (,un} — V- (4.36)

for an independent set of vectors v, v, v_ by choosing subsequences if necessary. These are all positively
oriented in E. Let 4, denote the matrix with columns v,, v, and v_.
We showed in Section 4.5.3 that

a(gi)
bg, I

a(gi) —» oo and — o0 aslg (gi) — oo.
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Hence, fori — oo

{(IIbg,+lIE = Ibg;,0llE = Ibg;,-llE)} — (£1:0:0) or (1 : 2 :0),

where *, > 0 since a(g;) > 0 by Criterion 1.1. Then (4.36) implies

{d(((bg;)» Cl¢a,))} — O asls, (gi) — o0

by the above conclusion. O

4.6 Accumulation points of I'-orbits

Recall Ng (- ) from Section 2.3. We again use dy in $>. We say that y;(K) for a compact set K and a sequence y;
accumulates only to a set A if yi(zi), z; € K has accumulation points only in A. Of course, the same definition
extends to the case when K is a point. It is easy to see that this condition is equivalent to the condition that

for every € > 0, there is I so that y;(K) c Nq,c(A) fori > I.
(For the point case, we need to change the symbol c to the symbol €.)

Corollary 4.9. Assume Criterion 1.1 and £(T') c SO(2, 1)°. Let K c E be a compact subset. Let y € S, and let
vi € T be a sequence such that {yi(y)} = Yo fOr Yoo € 0S.. Then for every € > 0, there exists I such that

Yi(K) € Ng,e(Cl({y, ) fori> . (4.37)
Equivalently, any sequence {yi(z;) : z; € K} accumulates only to CI({y,).

Proof. Itis enough to prove for subsequences of every subsequence that the conclusion holds. To obtain all
limit points of {y;(K)}, we will use the fact that I" acts as a convergence group on 0$, from Section 4.1. Up to
choosing subsequences, we assume that {y;} is a convergence sequence with the attracting point a and the
repelling point r.

We first consider the case a # r. Then y; acts on a geodesic [; in §, passing a compact set .7 for sufficiently
large i. Let x; € 2# N l;, where [; is given the direction u; so that y; acts in the forward direction. Using the
notation of the proof of Theorem 4.8, we have

a(yi) = (V,00,u) » 1) = (V- 0x1,u))-

We only need to consider subsequences {y;}, y; € I, where the sequence a(y;) € 0S. of attracting fixed points
and the sequence r(y;) € 0$, of repelling fixed points are both convergent. Here,

{a(y)} —a and {r(yp} —r inos,.

Since {yi(¥)} = Yoo € 0S., it follows that y; is unbounded in I and hence {Is, (y;)} — oo, and {A(y;)} — oo
for the largest eigenvalue A(y;) of y;.

The convergences are uniform on the compact set K ¢ E. To explain, we recall (4.36). We introduce the
(x®, y®  z0y_coordinate system where

Viou)s  Vy o and Vo gy

form a coordinate basis parallel to the x®-, y0- and z()-axes respectively. We let x, y, z denote the coordinate
functions, where (v,, v, v_) forms a coordinate basis.
Note that K is in a region R; given by

[-C1, C1] x [-C3, C3] x [-C3, C3]

in the (x, y® z(D).coordinate system. We may assume C1, C,, C3 are independent of i since the coordi-
nate functions x®, y®, and z{) converge respectively to coordinate functions x, y, and z on E. We write
vi(x) = Ay, x + by,. Since the sequence of largest eigenvalues of the linear parts of y; goes to +oo, it follows
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that Ay, (R;) is given under the (x®, y®, z0)-coordinate system by
[-Di, Di] x [-Ej, Ei] x [-Fj, Fi]
where {D;} — o0, E; = C3, {F;} — 0 for F; > 0. By Definition 4.4, y;(R;) is in

by, - b, -
oy, Mg . by, -l

s (4.38)
Vo, ceulle” ' IV o lE

Si = [~00, 00] X [-E; + a(yi), Ei + a(yi)] x | -F; -

inthe (x®, y® z().coordinate system. Recall coordinate change maps ; and %, near (4.36). For sufficiently
large i, we deduce that y;(R;) is a subset of Nq,(Cl({;)) as follows: There is a sequence of coordinate change
maps h; : E — E with a uniformly bounded matrix %”oo%i‘l such that

xohi=xD, yohi=y®, zoh;=z0,

Since
XD Sx, oy Ly 20 g

by (4.36), we obtain h; — Ig3 as i — co. What h; does is to send a box in the (x, y, z())-coordinate system
to the box of the same coordinates in the (x, y, z)-coordinate system.

Since a(y;) — oo and a(y;)/|by,,-llg — co by Theorem 4.8, equation (4.38) implies that h;(S;) — Cl({s)
geometrically. Since h; — Ig3, we deduce that S; — CI({,) by Corollary 2.5. Hence, for every € > 0, we have

Yi(Ri) € Si € Na,e(Cl(¢a))

for sufficiently large i, and (4.37) holds.
Finally, suppose that a = r. We choose y so that

a( lim yyi) = y(a) # r = lim r(yy)
1—00 1—00

and use the sequence yy; as our convergence sequence. Then {yy;(K)} accumulates only on Cl({y)) =
Y(C1({y)). Therefore, {y;(K)} accumulates only to Cl({,). O

We end with the following:

Converse part of Theorem 1.5. Suppose that I' ¢ SO(2, 1)°. To show the proper action of I', we show that for
any sequence {g;} of infinite elements, g;(K) N K # 0 for only finitely many elements. Suppose not. Then by
taking a subsequence, we may assume that y;(y) — Y for yo € 0S.. By Corollary 4.9, we showed that this
cannot happen.

If T is not in SO(2, 1)°, then we use the index 2 subgroup I'" ¢ SO(2, 1)° and it acts properly on E and so
doesT. O

5 The topology of Margulis space-times with parabolics

We first give an outline of this long section. We discuss the classical theory of Scott and Tucker [43] on open
3-manifolds homotopy equivalent to compact ones. Next, we will construct parabolic regions in M.

In Section 5.2, we will find a fundamental region for I' in E using the work of Epstein and Petronio [24].
By Proposition 5.1, we obtain an exhausting sequence

M(l) C M(z) C M(3) C---C E/F.

In Section 5.2.2, we discuss some boundedness properties of the inverse image M;, of M(;, for some ] meeting
with disks and topological polytopes. First, we construct the candidate disks to bound a candidate fun-
damental domain. The key step is Proposition 5.5 that the universal cover M of an element M, of the
exhausting sequence meets the candidate disks and parabolic regions in bounded sets. This implies Corol-
lary 5.7 that M;, meets a candidate fundamental domain F in a compact submanifold and hence F \ M, is



DE GRUYTER C. Choi et al., Tameness of Margulis space-times with parabolics =— 37

a compact finite-sided topological polytope. In Section 5.2.3, we choose our candidate disks Dj,j =1, ..., g,
and the candidate fundamental domain F. Then we divide M into M, and M \ M(;,. We show F \ M, for
sufficiently large J is the fundamental domain of M \ M(;, using Proposition 2.6 (the Poincaré fundamental
domain theorem). Candidate disks in M are replaced by ones mapping to embedded disks in M by replacing
the parts in M ¢) by Theorem 5.3, i.e., Dehn’s lemma. We obtain the fundamental domain of M (), proving the
tameness of M, and the first part of Theorem 1.1.

In Section 5.3, we will show that for a choice of parabolic regions sufficiently far from My, their images
under I' are mutually disjoint. To show this, we use the tessellations by the images of a fundamental domain,
and we explain how they intersect with the parabolic regions. Then we can account for every image by its
relationship with the images of the fundamental domain.

In Section 5.4, we will discuss the relative compactification of M. We will prove the final part of Theo-
rem 1.1 and Corollary 1.2. (See Marden [36-38] for many aspects of ideas in this section.)

5.1 Handlebody exhaustion of the Margulis space-times

The ends of $,/£(T') are finitely many, and some of these are cusps. A peripheral element of I is an element
corresponding to a closed loop in the complete hyperbolic surface freely homotopic to one in an end neighbor-
hood homeomorphic to an annulus. Let J' denote the collection of the maximal peripheral cyclic subgroups
of I', and let J denote the ones with hyperbolic holonomy. Each peripheral element of T acts on a point of 0$,
as a parabolic element or on a connected arc a; C 0S,, i € Jwith the hyperbolic cyclic group (9;) acting on it.
Here,

5, = <$+ vJa)ir
ied
is a finite-type surface with finitely many punctures and boundary components covered by arcs of the form a;.
We define A; := Uxea,- {x, 1 € J, an open domain where (j is the accordant great segment for x. We define

£:=8,uS Ul JAivauA@)). (5.1)
ied

Then T acts properly on £, and X := £/T is a real projective surface. This follows by the same proofas [16, Theo-
rem 5.3] without change. Again, X has twice the number of punctures as Z, and y(Z) = 2y(Z,).

We define N := E U £. We will show below that T acts properly on N to give us a manifold quotient N/T :

Let N be a manifold. A sequence N; of submanifolds of N is exhausting if N; c N;, for all i and every
compact subset of N is a subset of N; for some i. We obtain N = | J;°; N; necessarily.

The following is essentially due to Scott and Tucker [43], which we learned from some talks by Ohshika
[42] in this form (See also Canary and Minsky [5, p. 5]).

Proposition 5.1. Let E/T be a Margulis space-time with parabolics. Then E/T has a sequence of handlebodies
M(l) C M(z) C---C M(i) C M(,‘+1) Coeee

so that Mo = | Ji2; M. They have the following properties:

o m1(Mq)) — m1(M) is an isomorphism.

« Theinverse image M of M in M is connected.

o m(Mgy) — m1(M) is surjective.

o Foreach compact subset K c E/T, there exists an integer I so that fori > I, K ¢ M.

Proof. The existence of exhaustion is clear. We choose M(;) by using the 1-complex homotopy equivalent
to M. m1(M;)) — m1(M) is surjective since 711 (M(1)) — 1 (M) factors into this map and 711 (M(1)) — m1(M)).
Choose a base point xo of M(1). Any closed loop in M with a basepoint in M; is homotopic to a closed loop
in M(;). Hence, any two points of the inverse image xo in M is connected by a path in M; by the homotopy
path-lifting theorem of Poincaré. Thus, M; is connected. O
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5.1.1 Parabolic solid-torus regions

Let S :=$,/L(T). It has finitely many ends. Some of these are cusp ends, and some are hyperbolic ends. Note
that I' has parabolics

gls---agmoy

each of which represents a generator of the fundamental group of a cusp neighborhood of S. We let each of

Smo+1s « + + s Smo+ho

represent the generator of each of the fundamental groups of the hyperbolic end neighborhoods of S. We
choose the generators along the boundary orientation of S.

Recall the notations from Section 2.2. We take components % ¢ S,, i €J'\Jin S, of 2#. A parabolic
primitive element g; conjugate to gj for some j acts on 7. We also note for every g € T,
o either g(4) = #and g = gf forn € Z, or else
o g)n A =0.
We define J# _ = A(J%). There is a fixed point p; of g; in bds.7% n 0S, foreachi e 3"\ J.

Foreachie 1,..., mo, Theorem 3.14 gives us a properly embedded ruled surface S; := Sy, ;, ¢ Eforsome
fixed function f; : (0,1) - Rand

CI(Si) \ Si = Cl({u(gy)) U O U 05—,

where a(g;) is the parabolic fixed point of g; in 9S,. The set S; is called a parabolic ruled surface. The compo-
nent of E \ S; whose closure contains ./’ is called a parabolic region, denoted by P;, which is homeomorphic
to a 3-cell by Theorem 3.13. These are distinct from parabolic cylinders. Here, f; is fixed for each conjugacy
class of parabolic elements. (See Section 3.1 for detail.)

ForeachieJ'\J, we define S; = y(S;) and P; = y(P;) forany j,j =1, ..., mo, and y so that y(J%) = J4.
This surface S; is well-defined since any element acting on .%; acts on S; and P;. We have the I'-equivariant
choice of parabolic ruled surfaces and parabolic regions.

Theorem 3.14 gives us a foliation Sy, ,, with leaves that are parabolic ruled surfaces and a transversal
foliation Dy, ,, for each P; for each i =1, ..., mo. For other P;, we use the induced ones from P; such that
Pi=y(Ppforj=1,...,mo.

Finally, we will make these S; and P; sufficiently far whenever it is necessary to do so in this paper. (See
Definition 3.5.) We may do so without acknowledging.

5.2 Finding the fundamental domain

A topological polytope in E is a 3-manifold closed as a subset of E and whose closure in CI(E) is a compact mani-
fold with boundary that is a union of finitely many smoothly and properly embedded compact submanifold.
In [16], we defined a crooked circle to be a simple closed curve in S of the form

duAd)u | Cl&)
xeod
for a complete geodesic d in $, with boundary in a parabolic fixed point or in a boundary component of Z,.
We may refer to them as being positively oriented since the definition depends on the orientations of E.
Recall parabolic regions from Section 5.1.1.

Definition 5.1. A crooked-circle disk D is a properly embedded open disk in E whose boundary oD is a crooked
circle satisfying the condition: If x is a parabolic fixed point in 0d and P; is a sufficiently far away parabolic
region for x, P; N D is a ruled surface in a leaf of the transversal foliation Dy, ,, obtained as in Theorem 3.14.

A disk D in E is separating if it is properly embedded and E \ D has two components. Crooked-circle disks and
parabolic ruled surfaces are separating.
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5.2.1 The simple case of the properly acting parabolic cyclic group

Theorem 5.2 is a much easier version of that of Theorem 1.1 presented analogously.

Theorem 5.2 (Small tameness). Assume as in Theorem 1.1. Suppose that D is a crooked-circle disk in E with
a point p € oD fixed by a parabolic element y with a positive Charette—Drumm invariant. Then we can modify
D inside a compact set in E so that D n y(D) = 0. If we denote Fp to be the connected domain in E bounded by D
and y(D), then Fp is a fundamental domain of (y) in E. Furthermore, E/(y) is homeomorphic to a solid torus.

Proof. We take an arbitrary compact set K in E. Then there exists a sufficiently far away parabolic region R;,
where y acts so that K n RI’J = @. We have
U y"(K)NR), =0 (5.2)
nez
since R), is y-invariant.

By taking sufficiently large K, we may assume that T := | J,,.,, y"(K) is connected. By the proper discon-
tinuity of the action of (y), K meets only finitely many y"(K). Choose K as a generic 3-ball so that T := T/(y)
is a compact manifold.

We take a sequence of generic compact 3-balls K; exhausting E. Then the corresponding T;,i=1, 2, ...,
form an exhausting sequence of compact 3-manifolds of E/(y). We denote T := Unez V' (Ki).

(I) We first show that T; meet with D in a compact set and find a candidate fundamental domain F bounded
by two disks in a compact set.

By Theorem 1.5 and Corollary 4.9, y"(K;) as n — +co can have accumulation points only in Cl({,). We
have D n R;, n T; = 0 by (5.2) for sufficiently far choice of Rl’g. Since {y"(K;) : n € Z}isalocally finite collection
of sets in E accumulating only to Cl(¢,) by Corollary 4.9, and D \ R; is d-bounded away from CI({), it follows
that (D \ R}) n T; is compact. Hence, D n T; is compact for each i. Similarly, so is y(D) n T;.

By construction in Definition 5.1 and Theorem 3.14,

Dny(D)nR,=0 and (3D Ny(dD))\CL(R}) = 0.

Since DN R, is a ruled disk so that y(D N R,) N D N R, =06, we can find a thin tubular neighborhood T"
in CI(D \ R},)) of oCI(D \ R},) so that T" ny(T") = 0. We add the disk DN R}, to T"' to obtain T'. Hence, we
have y(T")n T' = 0.

We modify the disk y(D) \ y(T’) to another disk D; to be disjoint from D. Then D and D; bound a topo-
logical polytope F closed in E.

Choose a sufficiently large i so that

D\T,Di\y(T),DnD; c Ty,
and we choose sufficiently far R), so that R, N y"(K;) = 0 for every n € Z. We obtain that
T'\T;=D\T; and y(T")\T;=yD)\T;
is a matching set under {y, y~'}. They are also in bdF n E.
Also, (F\ RI’J) n T; is again compact in E since F \ R;, is d-bounded away from CI({,) and y"(K;) accu-

mulates only to Cl({,) by Corollary 4.9. Since R;, N T; = 0, it follows that F n T; is compact, and F\ Tl? is
a topological polytope.

(I) We find a fundamental domain that is a topological polytope.
Since {T; \ Tl?’ : j > i} is an exhausting sequence of E/(y) \ Tl? , Proposition 2.6 implies that

T'n(F\T?) and y(T")N(F\T?)

bound a topological polytope F \ Tl? that is a fundamental domain of E \ T;’ under (y).

We choose a generic set denoted by T; so that D n T; is a union of simple closed curves. The image
in E/(y) of the bounded component of D \ Tlf’ is embedded since F'\ T{’ is a fundamental domain of E\ T P
under (y). We take mutually disjoint tubular neighborhoods of the images of these bounded components
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in E/(y) \ T{ whose lifts in E\ Tlf’ are disjoint. We add these tubular neighborhoods to T;, and now each
component of D n T is a disk.

Theorem 5.3 (Dehn’s lemma, see Hempel [32]). Let M' be a 3-manifold M and let f : B — M be a map from
a disk B such that for some neighborhood of A of the boundary 0B in B. Iff|A is an embedding and f "1 (f(A)) = A,
then fl0B extends to an embedding g : B — M.

By Theorem 5.3, we replace the images in T; of disk components of D n T; by embedded disks in T;. We
lift these disks to T; and attach the adjacent ones to D\ T;’. We obtain a disk D", and it is clear that
D" ny(D") = 0.

We rename D" by D. Let Fp denote the region in E bounded by D and y(D). Since CI(Fp) \ CI(R),) is
bounded away from CI({) under d, and {y"(K)|n € Z} is a locally finite collection of sets in E accumulat-
ing only to Cl({y) by Theorem 1.5 and Corollary 4.9, we obtain that (Fp \ R;,) N T; is a compact set. Since
T;nRy, = 0, Fp n T; is also compact.

Also, Fp n T; is compact for each i. By Proposition 2.6, Fp is a fundamental domain in E of (y). The
existence of the fundamental domain tells us that E/(y) is tame and hence is homeomorphic to a solid
torus. O

Remark 5.1. Using the closure of the fundamental domain Fp and identifying D and y(D), we deduce that

(E us,us.u | J Cl({x)>/<y>
x€08.\{p}
is homeomorphic to A x [0, 1) for a compact annulus A = [Jcps,\(p; C1(¢x)/(y), forming a relative compacti-
fication.
As an alternative proof of Theorem 5.2, we may use a y-invariant foliation of E by crooked planes from
the results of Charette and Kim [7] to prove the relative compactification. A fairly simple computation shows
that there exists such a foliation in E/(y).

5.2.2 The boundedness of M, N F for some polytope F

We choose an exhausting sequence M), J =1, 2, 3, ..., by Proposition 5.1. We aim to prove Corollary 5.7
showing that the M;, meets a “candidate” fundamental domain in a bounded set.

Lemma 5.4. Let R be a conical region in S, that is a fundamental domain of a parabolic element y with p
as the fixed point in 0S., and let Fp be a fundamental domain in E of y bounded by two embedded disjoint
crooked-circle disks D1 and y(D1) in E, where

CI(R)NS, =Cl(Fp) NS, and CI(D1) N y(Cl(D4)) = CI({p).

Let L be a fundamental domain of M. Suppose that
« thesequence {n;}, nj € T, takes infinitely many values, and
e {njW} y € S, accumulates only to
CI(R) n oS, \ {p}.

Then
[oe] mo X
Unitw < | ¥'(Fp) for some finite mo.
j=1 i=—mo

Proof. Since CI(Fp) N S is bounded by two crooked circles CI(D1) N $ and CI(D,) N S, we obtain
CUF\CGNNSo= | Clg).

zeCl(R)NOS ., \{p}

Since 1j(y) accumulates only to CI(R) N 0. \ {p}, it follows that ;(L) accumulates only to
CFp)\CIGNNSo= | <l (5.3)

zeCl(R)NOS: \{p}
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by Theorem 1.5 and Corollary 4.9. The relative boundary bds¢Cl(Fp) in the 3-hemisphere H is a union of two
disks CI(D1) and y(Cl(D4)) with boundary in S.

Since bdg¢Fp has two components Cl(D1) and y(Cl(D1) which coincide with a component of bdscy~(Fp)
and one of bdsy(Fp) respectively,

F" := CI(Fp) U y(CI(Fp)) Uy~ (CL(Fp))

has the boundary set
bdscF" = y?(Cl(D1)) Uy 1 (CI(D1)) < K,

and it follows that F"' — Cl(¢{p) contains a neighborhood of (CI(Fp) \ Cl(¢»)) N So in H. Hence, we obtain by
(5.3) that except for finitely many ni(L),

n;(L) < (CI(Fp) U y(C1(Fp)) Uy (CL(Fp))) \ CL({}).

Since Fp is a fundamental domain of y, we obtain E c | ;. yi(F p). By the paragraph above, we obtain

00 mo )
U nj(L) c U y'(Fp) for some finite mg. O
j:1 i=—mg

The following is a crucial step in this paper:

Proposition 5.5 (Boundedness of My, in disks). Let ] be an arbitrary positive integer. For any crooked-circle
disk D, D n M(]) is compact, i.e., bounded, and has only finitely many components.

Proof. Suppose not. Then we can find a compact fundamental domain L of M(;, and an unbounded sequence
gj €T, gj(L) n D # 0 for infinitely many j. Again, we may assume without loss of generality that g; is a con-
vergence sequence acting on 0$, with a as an attractor and r as a repeller. (See Section 4.1.) Hence, we can
find a sequence x; € L with g;(x;) € D, and {gj(x;)} accumulates to a point x of

SnoD.

If xe$,US_, then Theorem 1.5 and Corollary 4.9 contradict this. In fact, we have x e Cl(¢,) for
somey € Ars,.
If CI(D) is disjoint from Ars,, then D n M, is compact by the above paragraph. We are finished in
this case.
Now assume D N CI(S+) N Ar,s, is a finite set of parabolic fixed points or is empty. Suppose that there
exists a sequence
{gj(xj) € D : xj € L} — x € Cl({p) (5.4)

for a fixed point p, p € 0D, of a parabolic element y € I' (see Definition 3.3). Let y be a point of S... If {gj(y)}
converges to q # p, then
x € Cl(¢y) # Cl(p) with C1({y) NCl({p) =0

by Theorem 1.5 and Corollary 4.9. Since this is a contradiction, we obtain gj(y) — p.

We obtain g;j(y) — p for a point y € S,. We can choose a sequence y0) € T, k(j) € Z, so that y*V)g;(y) is
in a conical region R closed in $; bounded by two complete geodesics [, y(I) with the common endpoint p
in 0S,.

Since p is not a conical limit point by Tukia [48], yk0) gj(y) is bounded away from p in R. Therefore,
nj := y*0g; is a sequence so that n;(y) = y*?’g;(y) has accumulation points only in (CI(R) N 9S,) \ {p}.

Here, k(j) is an unbounded sequence since y*() gj(y) still converges to p otherwise. By choosing a subse-
quence and the choice of y, we may assume without loss of generality that k(j) — co.

We now modify the disk D in a compact set in E by Theorem 5.2. Hence, the new disk D does not violate
the existence of a sequence as in (5.4).

By Theorem 5.2, we find a fundamental domain Fp closed in E of (y) bounded by a crooked-circle disk D
and its image y(D) disjoint from D. Here, CI(Fp) N S, = R.
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Suppose that 7; takes infinitely many values. Since oD is a crooked circle, CI(D) and y(Cl(D)) meet only
in CI({p), Lemma 5.4 shows that

[e¢] mo .
U nj(L) c U y'(Fp) for some finite mg.
j=1 i=—my
When n; takes only finitely many values, this is also obvious.
Since k(j) — oo, the finiteness of m; and the nature of the parabolic action of y %) show

g0 =y i), e,
cannot lie on the fixed disk D containing (. O

Proposition 5.6. Let n € I' be a parabolic element acting on a parabolic region R;,. Let p, denote the parabolic
fixed point of n in 9S.. Let 1?,1 denote the closure in R, of a component of Ry, — D1 — D, for two crooked-circle
disks D1 and D, whose closures contain Cl((p,’). Assume that Di N Ry, i = 1, 2, is a ruled disk of the form of
Theorem 3.14. Suppose that D1 N Ry, and n%(D1)n Ry for 6 = 1 or -1 bound a region in R, containing Rn- Then
Rn N My, is compact for each J. Furthermore, we may assume that

M(]) ﬂRq =0 fOI’jZ 1,...,mop,
by choosing Ry, sufficiently far away. (See Definition 3.5.)

Proof. Suppose that R,, N M) is not compact. Then again, we can find a compact fundamental domain L
of M so that gi(L) meets f%,, for infinitely many k. Then {gi(L)} has limit points in Cl({x) for x € Ar,s, by
Theorem 1.5 and Corollary 4.9. Since we have a sequence

{xi}, xi € CIRy) N gk(L) and  Cl(Ry) N So < CI(§p,)

for the parabolic fixed point p, on 9S. fixed by 7, it follows that {g,(L)} has limit points in Cl({p,)
Lety € S,. Weagainwrite n; = y*Vg; so that 1;(y) isin a conical region R as in the proof of Proposition 5.5.
The sequence {n;(y)} accumulates only to (CI(R) N 0S,) \ {py}. Again k(i) — +oo since g;(y) — py. Now,

gi0) =y i),  xieL,

cannot lie on Rn by Lemma 5.4 since k(i) — +oo.
For the final item, we can choose a new parabolic region R{l sufficiently far away so that R;l n Rq nMy) = 0.
Then R N M) = 0 by the parabolic action of (n). O

Recall £ from (5.1).

Corollary 5.7 (Finiteness). Let F be a topological polytope in E bounded by finitely many crooked-circle disks.
Suppose that every pair of these disks the closures of which contain {y, for a parabolic fixed point p satisfy the
properties of D and D, in Proposition 5.6. Assume

aF ns camn (v | a))
kEjp
for a finite subset Jp ¢ 3"\ J. Then the subspaces F n M, and CI(F) \ M?I) are both compact topological poly-
topes for each ]J.

Proof. The premise says that F is disjoint from Ar except at | Jicj, Cl({p,). Propositions 5.5 and 5.6 imply that
Uyer Y(L)NF = M) n F can have accumulation points outside itself only in the compact surface

EncE\ | # < CiF)n (s+ us_u JAaiva UA(ai)))
kelr ied
by (5.1). This set is disjoint from  J, Ars, Cl({y). The existence of the accumulation points in here contradicts
Theorem 1.5 and Corollary 4.9. Hence, M(j) N F is a bounded subset of F.
Also, CI(F) \ M ?1) is bounded by a union of finitely many smooth finite-type surfaces. Hence, it is a com-
pact topological polytope. (See Figure 6.) O
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Figure 6: The fundamental domain bounded by disks D;, j = 1, ..., 2g, and some horodisks drawn topologically.

5.2.3 Choosing the candidate fundamental domain and side-pairing disks

Suppose that g is the rank of I'. We recall from [16, Section 7]. Now X, denotes the surface
(($+ U 0Ss)\ Ars,)/T,
where S is a dense subset of X, with x(S) = 1 — g. Also, X, = (S+ U [J;ey a;)/T. Weadd to (S, U 0S,) \ Ars, the
set of ideal parabolic fixed points a;, i € J' \ J. The topology is given by a basis consisting of horodisks with
fixed points added or the open disks in (S U 0S4) \ Ar,s, . We obtain a new surface
£, =8, U] ayT.
ied’

We choose a collection {EI,- :j=1,...,mp}of disjoint geodesics ending at one of the ideal vertices or the
boundary arc of £, so that the complement of their union is the union of mutually disjoint open regions, each
of which is homeomorphic to one of the following:

« ahexagon where three alternate edges are arcs in 0%,
« apentagon with one ideal vertex (collapsed from a boundary component) and two alternate edges in 9%,
« aquadrilateral with two ideal vertices (collapsed from two boundary components) and one edge in 0%,

or
o atriangle with three ideal vertices.
We may choose a set d,-]., j=1,...,28, where the complement of their union is a connected cell. We relabel

these to be &1, cov, dog.
The lifts of the geodesics are geodesics in S, ending at points of ;.5 ai.

Lemma 5.8. We can choose the mutually disjoint collection D; c E of properly embedded open disks and a tubu-
lar neighborhood T; c CI(Dj) of 0D; for each j, j =1, ..., 2g, that form a matching set {T;lj =1, ..., 2g} for
a collection 3o of generators of I'. Finally, 0D; = dj U A(dj) U Uyeoq, CI($x) for a lift d; of d;.

Proof. We chooseliftsdy, ..., dyg of d Tyenes ag bounding a connected fundamental domain in CI(S, ). Since

a component L of
2g
s\ JUse@
geli=1

is the fundamental domain of the I'-action on §,, we obtain y1, . . ., yg generating I' forming a matching col-
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lection 8o by adding y;', ..., yg'. Label ;" = yg,jforj = 1,..., . Hence, we may assume that y;(d;) = dg.;
forj=1,...,2g,mod2gand {d, ..., dog} is a matching set for 8.

Let p1, ..., pm, denote the set of parabolic fixed points on any of d;. By choosing the parabolic regions
Rp,, ..., Ry, sufficiently far away, we may assume that these are mutually disjoint. (See Section 3.3. Tem-
porarily, we are not using the terminology of Section 5.1.1.)

We remove the interior of Rp;, j=1,...,myfromE.LetS D; denote the ruled surface boundary in E of Ryp;,
where g)? , t € Racts on. Note that Ry, meets §, in a closed horodisk .77,. Then we define

5 - mq mq mq
2= (2003, )\ U Um-
j=1 j=1 j=1

We assume that d; to be disjoint from .7, if py is not an endpoint of d; by taking the cusp neighborhood
sufficiently small.
« Foreach geodesic segment d; passing .7}, for some k, we let d}f i=d;n ¥*. For each point of x ¢ ad]f ns.,,
we obtain a line L, in the ruled surface Sp;- (See Appendix A.) We denote it by (.

e For the endpoint of d]f in 08, i.e., in {J;cy a;, we already defined ¢y in Definition 3.3.
We define

dj=djuAWd)u [ ] Cl&).

xead}f

Then aj Nndx=0forj+kjk=1,...,2gsince {d]’. li=1,...,2g}is a mutually disjoint collection of simple
closed curves. Since d; N .7, is a geodesic ending in py or is empty for all j, k by our choice, d; N 0p. 7, is
the unique point or is empty. Also,

dinontty, j=1,...,28,

are distinct for a ﬁ)}ed k as ~dj are mutually disjoint. Thus, {CI({y), x € ad}f} is a mutually disjoint collection.
Furthermore, d1, .. ., dog form a matching set for 8.
For each x € ad)f,j =1,...,8, wetake

o« forx € 0S,, adisk Z, of the form

gy cAx= | aigy)
yeb yeay
where b is a small open interval in ay and x € a; n ad]f, and
« forx € 0.4, aruled tubular open neighborhood Zy of CI(¢y) in the ruled surface CI(S),).
Here, each Z,, x € ad]’. ,j=1,...,8, is chosen sufficiently thin so that under elements of Sy, the collection
of Z, and their images is a collection of mutually disjoint sets. We take a union of all of these disks with

m m
S+ uSINJ 5, \ [ 5,.-
j=1 j=1
toE\ U].zfl Ry, to obtain a 3-manifold with boundary. Then we can apply Theorem 5.3 for the simple closed
curve &,- to obtain open disks JD}’. so that &,- = aw; for each j=1,...,g. These are chosen to be mutually
disjoint by the same theorem.

Then we obtain D]f 1gas theimage yj(DIf ) for yj € 89. Since the boundary components of D! pi=1,...,28,
are mutually disjoint, using Theorem 5.3 again, we may do disk exchanges to obtain mutually disjoint
disks D]f’,j =1,...,2g.

Let py be a parabolic fixed point where d; ends. Now for each {y, x € ad]f, is in the boundary of a leaf of
the foliation Dy, in Ry, obtained by Theorem 3.14. For each such py and d;, we add the disk to @; by joining
them at each (, x € ad]f . We call the results Dj, j = 1, ..., 2g. These are mutually disjoint.

Now,

CL(Dj) NCI(Ry,) NS, = H, Ndj = Hp, N d;.

Hence, by adding these arcs back, we obtain

0D;j = dj U A(dj) U U CL(¢x).
Xdei
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.

"

Figure 7: M meeting with disks.

Since we do not change the sufficiently thin tubular neighborhoods of 0D; under the above disk exchanges,
there exists a matching collection of tubular neighborhoods {Tj:j=1,...,2g} of {0D;:j=1,...,2g}
under 8. O

Here, of course, the disk collection is not yet a matching set under 8y. By Lemma 5.8, the collection {CI(D;)}
are mutually disjoint in CI(E). The collection Dj,j = 1, 2, ..., 2g, bound a region F closed in E with a compact
closure in CI(E), a finite-sided polytope in the topological sense.

Now we consider K to be the set

28
Uit J 050D,
j=1 1<j<k<2g

By Proposition 5.1, we choose Mj) in our exhaustion sequence of M so that
M) > Nae(Ko) (5.5)

for an e-neighborhood, € > 0. (See Figure 7.)

5.2.4 Outside tameness

The following is enough to prove tameness.

Proposition 5.9 (Outside tameness). Let M denote a Margulis space-time E/T, where T is an isometry group
with £(T) c SO(2, 1)°. Let F be the domain bounded by Uizf1 D;. Suppose that My, satisfies (5.5). Then F \ My,
is a fundamental domain of M \ My, and M is tame. Furthermore, |_|1.2:g1 D; \ Mj) embeds to a union of mutually
disjoint properly embedded surfaces in M.

Proof. By Corollary 5.7, F\ M ("]) is a tame 3-manifold. Let X denote F \ i ?J)’ a tame 3-manifold bounded by
a union of finitely many compact surfaces. Note that

M(]+1) \MO(]) C M(]+2) \M?I) Ceee
is an exhausting sequence of compact submanifolds in M \ M ?I)' Since D; \ M f]) c Tj, it follows that

{JD,-\M("])lizl,...,Zg}cbanE
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is a matching collection under 8y by Lemma 5.8. Also, F n (M(Hn) \ 1\7[("])) for each n is a compact topologi-
cal polytope by Corollary 5.7. By Proposition 2.6, X is the fundamental domain of E \ M?I)' Hence, M \ ME’])
is tame.

The tameness of M follows since M \ M| f]) and M(j are tame. The last statement follows since |_|i2:g1 Di\ M E)I)
is the boundary of a fundamental domain in E \ /. E’]). O

5.2.5 Considering the whole disks D; n M,

We consider bounded components of D; \ M 8) fori=1,...,2g.ByProposition 5.9, the union of these planar
surfaces embeds to the union of disjoint ones in M. We take the mutually disjoint thin tubular neighborhoods
of the images of compact planar components of D; \ M E’]) and take the inverse image to E. We add these to Mj,.
Let us call the result My ¢ M again. Since I acts on M(j), we obtain a compact submanifold M) in M.

Thus, by Theorem 5.3 applied to M(;), each component of D; N dM(;, bounds a disk mapping to a mutually
disjoint collection of embedded disks in M. We modify D; by replacing each component of D; N M(;, with
lifts of these disks. (See [29] and [32] for some details.)

The results are still embedded in M since we modify only inside M ;, where the disks are also disjoint.

Hence, we conclude

y]‘(Dj) = ®j+g for Vi € S,

(5.6)
ViD)NDpy =0 for (j,I,m) # (j,j,j +g) mod 2g.

We summarize:

Proposition 5.10. Let M denote a Margulis space-time E/T where T is an isometry group with £L(T') c SO(2, 1)°.
Then there exists a fundamental domain R closed in E bounded by finitely many crooked-circle disks Dj,
j=1,...,2g. Moreover, C(R) n (EuU Z) is the fundamental domain of a manifold (E U £)/T with boundary .
Here, R° and CI(R) are 3-cells, and E/T is homeomorphic to the interior of a handlebody of genus g.

Proof. Let R be the region in E with boundary equal to Uf:gl D;. Since Dj is a properly embedded separating
disk in a cell, repeated applications of Lemma 1.12 of [36] imply that R° is a cell. Since CI(R) is a polyhedral
manifold whose interior is a 3-cell, it is a 3-cell.
Since by (5.6),
{D]’:j=1,...,2g}

is a matched set under Sy, it follows that R is the fundamental domain by Proposition 2.6. The quotient space
is homeomorphic to the interior of a handlebody since we can find a homeomorphism of R to the standard
3-ball, where Dj,i =1, ..., 2g, correspond to disjoint open disks with piecewise smooth boundary.
Also,
{CADHNEUVE):j=1,...,28}

is a matched set under 8. Also, every point in N := E U £ is equivalent to a point of R’ := CI(R) n N by the
action of T. Hence, R’ is a fundamental domain giving us the properness of the action of I' on N := EU Z.
Thus, N/T is a manifold with boundary . O

This proves the first part of Theorem 1.1. The remaining part of Theorem 1.1 will be completed in Section 5.4.

5.3 Parabolic regions and the intersection properties

We will now choose the parabolic regions so that their images under the deck transformation groups are
mutually disjoint. We will need this in Proposition 5.13.

The basic idea used is that disks are separating E into two components. We choose the parabolic regions
for each parabolic point in the closure of the fundamental domain so that they meet the fundamental domain
R is in a nice manner. Using this, we can show that each image of a parabolic region meets an image of
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the fundamental domain in finitely many manners. This will essentially give us the needed intersection
properties.

The above fundamental domain R is bounded by a union of disks D;,i=1,...,2g, in the boundary
of R. We call D; the facial disks of R. By construction, the closure of D; is disjoint from Ar s, c 0S. except for
parabolic points. The set of parabolic points meeting at least one CI(D;) is a finite set {p1, . . . , Pm, }. (Possibly
two or more of the points p; may be in the same orbit of I'.)

We use the notations of Section 5.1.1. For each p;, i=1,..., m;, we have a parabolic region of the
form y(P;) for some j, j=1,...,mp, and y € I' whose closure contains p;. For each i, we denote by P; this
region y(P;). We denote by n; the parabolic element fixing p;, following the boundary orientation if we
remove E, and hence n; = ynjy~! forsomej =1, ..., mo.

Now, we choose P;,j =1, ..., mo, so that CI(P;) N S, for each i equals a component of the inverse image
of E. These Rj,j =1, ..., mo, form a mutually disjoint collection of closed cusp neighborhoods of S as given
in Section 2.2. Note that CI(P;) n S, for each i equals a component of the inverse image of E. Also, by our
construction in Theorem 3.13, we have CI(P;) n S_ = A(CI(P;) N S,).

Definition 5.2. Let p; and P; be as above fori € J' \ J, and let 17; be the parabolic primitive element fixing p;.
Let Dy, .+ denote the canonically defined properly embedded disks by Theorem 3.14. We say that an image
Y(R), y €T, of the fundamental domain R bounded by crooked-circle disks meets nicely with n(%;), n € T, if

nP)NyR) = U Dy« forsomety, t; eR,t; <t (5.7)
telty,tr]

and . .
Cl(Gypn) € ClY(R)),  n(Py) < ( U yn{.‘(U K,-(iR)))
kez j=1
for a finite collection of {k; € T'}, where Cl({y(,)) < Cl(y(kj(R))).

Of course, by the definition y o nf.‘ o kj(R), k € Z, meets with n(P;) nicely as well.

Lemma 5.11. Let T satisfy Criterion 1.1. Let R be the fundamental domain of E/T bounded by crooked-circle

disks as constructed by Proposition 5.10. Let q be a parabolic fixed point in CI(R). Then q = p; for some i,

i=1,...,my. Moreover, the following hold:

. Cl(gp,) c CUR),

o Cl(¢p,) is a subset of the closures of exactly two facial disks D; and D, among the facial disks of R, and

o thecorresponding parabolic region P; meets nicely with R provided we choose P;,i = 1, ..., my, sufficiently
far away.

Proof. Since g € CI(R), we obtain g = p; by the construction in Lemma 5.8 of 0Dj, j = 1, ..., 2g. Since the
closure of D;j is compact, either D; contains (p, in its boundary, or there is an e-d-neighborhood of CI({p,)
disjoint from it for some € > 0. We can choose the boundary ruled surface of P; sufficiently far so that (5.7)
holds and hence only facial disks of R that meet P; are the two facial disks whose closures contain {p,. (See
Definition 3.5.) Let us call these D; and Dy.

Now, 0P; N E = S; is an open disk separating P; from E \ CI(P;). The set 0P; N R has the boundary formed
by two lines respectively in D; and Dy. We take finitely many images x;(R),l=1, ..., ko of R with k1 =Iso
that x;(R) N k141 (R) is a copy of D;, for some iy whose closure contains {p,. Since the collection {y(R) : y € T}
tessellates E, we can choose enough of x; so that xj,1(R) = )ﬁl(Kl(fR)) for either + or — sign.

Except for the closures of facial disks of {xj(R) : j=1,..., ko} containing Cl({p,), the closures of other
facial disks contained in the boundary of {x;(R) : j =1, ..., ko} are disjoint from CI({y,). Let K denote the
union of the closures of these images of facial disks of {xj(R) : j = 1, ..., ko} disjoint from CI({},). Since these

are separating disks in 3, we may choose P; sufficiently far so that CI(?;) n K =0.
Since CI(P;) is n;-invariant, it follows that C1(;) is disjoint from | J,,,c, n?"(f(). Now, ez n{”(f() is a sep-
arating set in E. A component of E \ ez 17" (K) equals

ko 0
(U nf(( Kj(iR))> .
kez j=1
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Since P; is a connected set, we obtain

ko o
P; € (U nff( xj(ﬂz))) , (5.8)
j=1

keZ

as desired O
Notice that (5.8) gives us the conditions of Definition 5.2.

Proposition 5.12. Let P; be a parabolic region for the parabolic fixed point p;, i =1, ..., mo, as we chose at
the beginning of Section 5.3. We can always choose P;,i =1, ..., mo, so that for every pair n,y € T, so that
exclusively one of the following holds:

o n(pi) ¢ y(CUR)), or else

e Y(R) meets n(P;) nicely, and y(P;) = n(P;) forsomej=1,...,m.

Proof. We may assume y = I since we can change 7 to y~ 5. Then the result follows by Lemma 5.11. O

We choose P; far away forj = 1, ..., mg so that the conclusions of Proposition 5.12 are satisfied.
LetP = Uyer Ui=1,....m, Y(Pi), and let Py := (PrU---UPp, ) NR.

Proposition 5.13. We can choose the sufficiently far away parabolic regions
Piyeees Py

meeting R nicely so that they are disjoint in E. Then the following hold:
e The following are equivalent:
(1) y(P;) meets R nicely.
(2) y(Pi) = Pjforsomej,j=1,...,m.
3) y(@P)HNR+0.
o« Rmeetsonly Pq,..., Py, among allimages y(P,) fory e I,r=1,...,mo.
o Moreover, for every pairy,n €T,

y@P)nn®P =0 or y@)=nPr), jk=1,...,mo.

Proof. We first choose P;,i=1,..., mo, sufficiently farsothat ’; nPjnR =0fori+j,i,j=1,...,my,and

every Pj,j =1,..., my, meets R nicely by Proposition 5.12.
Obviously, (2) implies (1). For the first item, we show that (1) implies (2): Suppose y(;) meets R nicely.
Then y(pj;) is in CI(R). Since y(pj) is a parabolic fixed point, it equals p; forsomel =1, ..., m;. Only elements

of T fixing p; are of the form ;" for some integer m € Z. We have
Y(CUP))) N S = y(Hi) U y(On i)

for a horodisk ;. Now, y(7#4) = 4. Hence, the parabolic group acting on y(?;) is the same one acting on P;.
By our choice of P; in Section 5.3 from choosing orbit representatives of parabolic fixed points, we obtain

y(P;) =P, forsomel=1,...,m;.

Clearly, (2) implies (3) by Lemma 5.11.
Now we show that (3) implies (2): Suppose that y(P;) N R # 0. Now, y(p;) € n(Cl(R)) for some n € T, and
y(P;) meets n(R) nicely and y(P;) = n(Py) for some k by Proposition 5.12. Moreover,

ko 0
n(Py) (U nni(U xr(ﬂz))) (5.9)
lez r=1
by Proposition 5.12. Hence, y(P;) meets with only the images of R of the form nnf(xj(ﬂz). If

nni(xj(ﬂz)) =R forsomek,l,j,

then y(P;) meets R nicely since we can check Definition 5.2. If nqﬁ((K,—(R)) # R for all k, [, j, then y(P;) does
not meet R by (5.9). By Lemma 5.11, (2) implies (1). We proved the first item.
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The second item follows from it.
Suppose that two respective images Plf and P]f of some Py and P;fork, =1, ..., my meetsinanonempty
set. Hence, they meet in y(R) for some y € I'. Thus,

y HPY Ny N (PHNR #0.
The first item implies that
Pi=y NP}) and P = yfl(P]’.) forsomel,m=1,...,m

However, P;nP;nR =0 or Pl’. = P]f by our construction of parabolic regions. O

5.4 Relative compactification
5.4.1 Proof of Theorem 1.1

Proposition 5.10 proves the first part of the theorem. First, we recall our bordifying surface as defined by (5.1):

Zo:=8,US_U| JAiua;iuAa)).
ieJd
We set X := £o/T and N := (E U £)/T, which is a manifold by Proposition 5.10.

By Proposition 5.13, we define P to be a union of mutually disjoint parabolic regions of the form y(P;)
foryel,i=1,...,mp. Since the boundary of their union in § is the union of mutually disjoint closed
horodisks, their closures in J = CI(E) are mutually disjoint. Now, we take the closure Cl(P) of P and take
the relative interior P’ in the closed hemisphere K. Let 0gP’ denote bdP' N E. Then define N’ := (Eu %) \ P'.
Note that T acts propetly discontinuously on N’ since N’ is a T-invariant proper subspace of N. We note that
OP' is transversal to S. Thus, N’ := N'/T is a manifold.

The manifold boundary ON’ of N’ is

(E\P") U oeP)/T.

Define P"" = P'/T. Also, (0¢P')/T is a union of a finite number of disjoint annuli. Note that ON' is homeomor-
phic to (Z\ P"") u (0gP")/T.
Recall that the union of facial disks D;, i =1, ..., 2g, bounds the fundamental domain R in H. Then

2g
Jamyn(Eu\P)
i=1

bounds a fundamental domain
CIR) N(EUZ)\P.

The boundary is homeomorphic to a 2-sphere and, hence, the fundamental domain is homeomorphic to
a compact 3-cell. Since this fundamental domain is compact, N’ is compact.

Since we pasted disjoint disks on a cell, N’ is homotopy equivalent to a bouquet of circles. Now, N’ has
no fake-cell since N’ is a subset of E. It follows that N’ is homeomorphic to a compact handlebody of genus g
by Theorem 5.2 of [32].

Let P be the closure of P! in N. We realize that N’ is a deformation retract of N by collapsing P/T’, homeo-
morphic to a disjoint union of copies of A% x [0, 1), to its boundary in N homeomorphic to a disjoint union of
embedded images of A2 for a compact annulus A2 with boundary. This completes the proof of Theorem 1.1.

5.4.2 Proof of Corollary 1.2

If £(T') c SO(2, 1)°, we are done by Theorem 1.1.
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Suppose not. We have an index-two subgroup I'’ of T acting on $, with £(I'") ¢ SO(2, 1)°. Then I’ acts
on (EUZ)\ P, where we construct £ and P’ as above for I''. There exists an element ¢ of I' - I’ so that
¢(S,) =S_and ¢? € I'" and ¢ normalizes I''. Since ¢ acts as an orientation-preserving map of §, and

L() o L(T') o L()~t = £(T),

it follows that ¢ induces a diffeomorphism S, /T’ with §_ /T’ preserving orientations. Since $_ is a Klein model
also, we can define a limit set A s_. Hence, for the limit sets, we have

¢(Ars,) =Arrs. and  P(0S; \ Ars,) =0S_\Ars_.
Since each element of £(I'") commutes with A, we obtain
A(Ar,s,) =Ars. and A(0S:\Ars,)=0S_\Ars_.

Let J denote the collection of open intervals of 0S, \ Ar,s, . We define 2 for " asin (5.1),

S, US_U U(auA(a) U U (x).
aed xea
Since ¢ is orientation-preserving, it follows that ¢ sends the disk Ag = [Jyeq x> a €7, t0 An(¢(ay). Since
a — Adg(a) gives us an automorphism of J, ¢ acts on .

Given a component P of P’, there is a parabolic primitive element y; acting onit. Theny; := poy; o !
actson ¢(P1).Since y, € I also, it follows that y, acts on a component P, of P'. We denote y5(P1) = P>, where
we may not yet have y(P;) = P;.

Let P denote the set of parabolic fixed points of 0S, . Then let a finite P denote the collection of the I -orbit
classes of P. The above action of ¢ induces an automorphism of P.

Lemma 5.14. There is no fixed point in P under this action of ¢ on P.

Proof. Suppose not. Then using orbit equivalence under T, there exists an isometry ¥ € I\ I’ so that
Ao L(Y)(q) = q for a parabolic fixed point g. Note that A - £() acts on $, acting on a component %
for some i. Since A o £L() acts as an orientation reversing isometry on S, it follows that A o £L(1) actson a
complete geodesic /; ending at g. Since it must fix the point 057 N [, it fixes each point of I;. Hence, £(1)
acts as I on a time-like vector subspace P;, corresponding to l4, and is the identity on a space-like vector
subspace. Since Y cannot have a fixed point on E, it follows that 1/)2 cannot be the identity on E, and it is
a Lorentzian translation on a space-like geodesic I orthogonal to P;,, and Y? € I' since [T : T'] = 2. However,
I'" does not have a translation element as it is an affine deformation of £(I''). O

Since there is no fixed point of the action, we divide the collection P of components of P’ into equivalence

classes of orbits under I, This is a finite set Py, ..., Pypy. Now ¢ acts on this set. We may assume that ¢
sends P; to Ppsi.
We replace each element of Py,,; with ¢(P") for the corresponding element P of P; fori =1, ..., m. We

"

obtain a new set P'. Here, for the parabolic element y""’ corresponding to ¢(P""), we have

yIII — ¢ ° yH ° ¢—1

for a parabolic element y" acting on P". Since y'" is in the unique one-parameter subgroup y"'{, t € R,
of parabolic isometries, it follows that y'"{, t € R, acts on ¢(P"). Therefore, the boundary o¢(P"") N E is
a parabolic ruled surface for y""’ as defined by Definition 3.5.

Obviously, T acts on P'. Also, we may assume that elements of P’ are mutually disjoint: we take a finite
set of components of P’ that meets the fundamental domain R. We can make these disjoint by taking them
sufficiently far away. Proposition 5.13 shows that these are mutually disjoint.

Therefore, N := ((EUZ)\ P')/T is compact and is homeomorphic to a handlebody of genus g by [32, Theo-
rem 5.2] as in Section 5.4.1. Since ¢ does not act on any component of P, we can show that N deformation
retracts to N' as above.
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A Parabolic ruled surfaces

We will be using the parabolic coordinate system obtained in Section 3.1. These constructions are canonical
except for the ambiguity in the x-coordinates up to translations. (See Remark 3.1.)

A.1 Proper embedding of ruled surfaces

Only prerequisites are Sections 2 and 3.1. Our purpose is to prove Theorem 3.13 using Lemma A.1, Proposi-
tion A.2, and Lemma A.3.

Lemma A.1. Assume as in Theorem 3.13. Every gt-orbit in H, x, starts and ends at (1,0,0,0)-

Proof. Let I be a segment so that Cl(I) € Hs, x, x,- An endpoint of I, must be (1, 0,0, 0) since
g(g) - (1,0,0,0)

for each point g € I n Pr.Since CI(l) has a pair of antipodal points, the other endpoint of Cl(l/,) is (-1, 0, 0, 0).
We compute the intersection of an arbitrary image of g{(l) at the plane given by x = 0

3 2 3
((0,_ct(yt + 61ty0) . ut* - c(ut® + 6ty0)’ 1))

6a + 3ct? 2 0K 6a + 3ct?

t2+6 t2 t+6yo/t (A1)
= <<o,-"6a—y°+”—+yo, t- ”6(1—”"1» ~(0,1,0,0) € §°
o2 +3 2 o2 3
ast — coor t — —co. See [9]. Since this point is in Cl(l,), we showed that lo, = {(1,0,0,0)- O

Proposition A.2. Assume as in Theorem 3.13. Choose k1 and k; satisfying 0 < k1 < k3 < 1. Then the closure
of Hsy,xy,x, under dy is a compact set Hs, i, x, U {{(1,0,0,0)}-

(@

Figure 8: Two parabolic ruled surfaces. See [9].
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Proof. The space of open geodesic segments of d-length 7 in the 3-hemisphere H forms a compact metric
space under the Hausdorff metric di. We show this by showing that every sequence of elements of Hs, «, x,
has an accumulation point in Hs, x, x, or accumulates to Cl({(1,0,0,0))-

Given a sequence of segments {u;} in Fs, x, .x,» Ui = 8 (l;), where I; N E is given by

li(s) = (sai, yo,i,Sci) foryo; > so, ai, ¢i > 0, ada _Yoi ladi a?+ct=1.
Ci u Ci

The boundedness of one of yq; or ‘C’—: implies that of the other. If yo; or ‘;—I' is bounded above, then I;
geometrically converges to an element of Hs, x,,x, uUp to a choice of a subsequence. If t; —» +oo, then
ui — {(1,0,0,0) since the estimates in (A.1) in the proof of Lemma A.1 hold in this case. If ¢; is bounded,
then u; — ug € Hsy, iy i, -

Hence, we are left with the case where

Yo,i — 09, Z—ii — 00, and t; — *oo.

We will show that u; — {(1,0,0,0y: Suppose not. Then u; converges to a line uy, passing E under the
metric dg. Then u, has the direction (1, 0, 0) since (£(®)(v)) — (1, 0, 0) for a generic vector v.

By applying an element of g’ to u., and the sequence u;, we may assume that ug, N E is given as the line

x=s, y=C, z=0, seR.

Since u; geometrically converges to U, it follows that u; intersected with x = 0 is near (0, C, 0). By changing
u; by a bounded g5 with s; — 0, we may assume without loss of generality that u; passes (0, C;, 0) while we
still have u; — u under dg. Here, C; — C.

By our construction, u; is contained in a hyperplane P; tangent to a parabolic cylinder S; given by the
equation 2uy = z2 + 2uCy; for some Cy; € R. The line u; meets S; at the unique point (xF,yi,z]). Project P;
and S; to the yz-plane. Then the image of P; passes (C;, 0) and tangent to the parabola 2uy = z? + 2uCy ;. We
compute by elementary geometry

Z;k =+4/2uCq,; - 2uC; and y;" =2Cq,; - C;.

Now, we wish to compute ¢; so that g'i(l) = u; as in (3.9) where I(s) passes (0, Cy,;, 0). We compute ¢
satisfying

@4(0, C4,i,0) = <tC1,i + I;—tB Cri+ yth,,Uf> =(x{, v, %)
recalling (3.5). We let t; denote the answer
vi :2C1,,~—Ci:C1,i+yTti2 and ti:i\jw' (A.2)
The vector a; tangent to u; is given by
(tiC1,i + }%? Cii+ y—ztiz,lll‘i) -(0,C;,0) = (ticl,i + % Cri-Ci+ I%tiz,ﬂfi)

Since the sequence of the directions of the vectors converges to (1, 0, 0) by our assumption on u;, we obtain

ti — too.

Recall ,
1 -t &
L((Dli)_l =10 1 -t
0O O 1
We compute £(®;")(a;) to be
3 3 3 2 3
(tiCu + }%l —ti(C1,i - Ci) — % + % Cri-Ci+ % —Hf,-z,llfi> = (l% +t:Ci, O’Fti>-

Recall the condition (3.9) to g~% (u;) = I, which yields C ;/u < Kz(tl-2/6 + Ci/1), and we obtain
1
C1,i < K2§|C1,i - Cil+xk,C; and x; <1

by (A.2). Since t; — +oo, we obtain C;,; — +oco and C; — C. This contradicts the above inequality.
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We conclude that u; can converge only to points of Hs, «,,x, O {(1,0,0,0y- This gives us a sequential con-
vergence property. The closure of Hs, i, x, is @ compact metric space IHs, i, ,x, U 1{(1,0,0,0)}- O

Lemma A.3. Let M be a compact metric space. Suppose that there exists a 1-dimensional flow ¢;: M — M,
t € R, with a fixed point p. Suppose that the orbit of every point starts and ends at p, and the orbit space
(M \ {p})/~ is not compact. Then every e-ball of p contains an orbit starting and ending at p.

Proof. Choose a compact set K = M \ B¢(p) for an open ¢-ball of p. Since

(U w0/~ =K/~

teR

is compact, and (M \ {p})/~ is not compact, it follows that

M\ | ¢e(K) = (] pe(Be(p)) < Be(p)

teR teR

is not empty. Then a point here gives us an example of the closed orbit. O

Proof of Theorem 3.13. We will first show that ¥ : R? — E is a proper injective map.
Since g acts on Py for each T’, we have a self-intersection of ¥ if

gl(s)nPp)=1(s")nPp forsomet>0,s,s' e Rand T’ € R.

The following hold:

« I(s) N Py is a pair of points provided T’ > —2uyo, or

e T'=-2uyoandlI(s)n Py is (0, yo, 0), or else

e I(s)n Py is empty for T' < —2uyo.

Thus, only in the first case, we can have a self-intersection of the image of ¥ under the quotient space E/(g).
Now I(s) N P can be computed as follows:

VT + 2pyo
c

(sc)?-2uyo=T and so=
and the points are (+soa, Yo, +Soc). And we obtain
F3(804, Yo, £50C) = +(s3¢® - 3uyosoc + 3u’soa).

These are distinct unless the value is 0. Since Fj3 is invariant under g, it follows that if F5-values of two points
are distinct, then they cannot be in the same orbit of (g). If F3 = 0, we must have

Since —-T' < 2uyq, we obtain

a_2Wo Yo _Yo

c 3pr 3u p
Thus, if we choose yo < u$, the self-intersection of ¥ never happens. For example, choosing y, sufficiently
small or choosing ¢ sufficiently large would satisfy the condition. This proves the injectivity of V. By (3.6),
gt acts properly on each parabolic cylinder Py since F; and F, are invariants of the vector field on ¢, and
each intersection of F1 N F; is a complete flow line.

We now prove the properness of W. Suppose that there is a compact set K ¢ E and g’i(l) n K is not empty
for a sequence {t;} of real numbers such that t; — oco. (The case when t; — —oo is entirely similar.) However,
K is in the region B in E bounded by two parabolic cylinders Pr, and Py, for some pair T; and T,. Then [
meets Pr;, j = 1 at most two points. If [ does not meet B, then gl(D), t € Ris disjoint from K since the region
bounded by Pr; is g'-invariant. If I n B # 0, then

g"(InB) - {(1,0,0,0)} or {(-1,0,0,0)} ast; — +co

by convexity since the endpoints of I N B do this. This proves the properness of ¥ : R?> — E and that g’ (I) can
have limit points only in S.
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The first item is proved by Lemma A.1.

Choose k1 and x; satisfying 0 < k1 < k» < 1. There is a continuous map tr : Hs, x,,x, — S+ by taking the
endpointsin .. Theimage is a horodisk €. Since £/~ is not compact, it follows that Hs, ,,x, /~ is not compact
under the orbit equivalence relation under gf, t ¢ R

By Proposition A.2, Hs, x,,x, U {{(1,0,0,0)} is compact. In any e-dy-neighborhood N,e>0,of C1(¢(1,0,0,0))
in Hsy,x,,x,» We can find a gl-orbitin N by Lemma A.3. Take any neighborhood N of Cl({(1,0,0,0)) in $3. Since
we are using the Hausdorff metric, we can find an e-dg-neighborhood N in Hso,ir,0 U {(1,0,0,0} SO that any
segment in N is a segment in N. Then the gf-orbit as above will give us the desired ruled surface in N. This
proves the second item.

The first and second items imply the fact on the boundary of Sy,,. Clearly,Sy,, bounds a domain in E with
boundary CI(Sy,,). This domain is homeomorphic to a 3-cell by [36, Lemma 1.12]. Also, g sends the disk
leaves of the foliation Dy,;, of the domain to a disjoint disk leaf in Theorem 3.14. Hence, the quotient space
is homeomorphic to a solid torus. O

A.2 Two transversal foliations

Proof of Theorem 3.14. The fact that Sy, is a properly embedded surface is proved in Theorem 3.13. We
defined I;(s) = (s1, f(p), sV1 — r?). We define

lr:[ro,1)xR—E givenby Is(r,s) = (sr, f(p), sV1—12).

Let uy,, denote the vector field (r, 0, V1 - r2) tangent to If,,(s). Also, the vector field ¢ generating gl is given

by (v, z, u). N
_f: _ ’ —-Sr )
v =(s.F' ), ==

is tangent to Dy,,,o obtained by taking a tangent vector along the direction of a%' A triple product of three
vectors is the volume of the span of three vectors in E. We compute the triple product on the line Iy,

(u,,, Yr, @) = V1 - rz(\/% —f(p))f’(p) +5% >0, (A.3)

which follows by our condition on f and r. It follows that uy,, Yz, ¢ form always an independent frame in the
standard orientation on Ir, and so are their images under g since g' is volume-preserving. Thus,

Dg'(uy,), Dg'(Yp), Dg'(¢)

form an independent frame at each point of Sg,,.
We claim that Sy, is disjoint from Sy, forro < r < r' < 1: By (A.3), Yy is transversal to Ss, on I5,,. We define
the vector field Y on Sy, so that

Y(g'(st, f(p), sV1 - 12)) = Dg'(Yy(sr, f(p), sV1 - 12)).

The extended Yy is transversal to Sy, since the triple product is invariant under the Lorentzian isometries.
Define Ef(r, t, s) = g‘(lf(r, s))), which gives us a parametrization of Sf,,. We obtain the partial derivative with
respect to r by chain-rules:

0Ef(1, t, 8)
or

Solving the following ordinary differential equation with respect to the variable r

= Dg'(Ys(le(r, 8))) = Yf(Ef(r, t, S)).

0Ef(1, t, )
or

gives us a flow Ef(r, t, s) for r in some interval with fixed ¢, s. Using the quasi-linear Cauchy theorem
([35, Theorem 9.52]) and the transversality, we obtain the disjointness.

= Yp(Ef(r, t,5))
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Also, for each point x of Ry, there is a leaf Sy, containing it: Let x; be a sequence converging to x and
Xi € Sfr;» 1i > ro. Then let L; be the line in Sy, containing x;. Since we showed that Hs i, «, U Cl({(1,0,0,0))
is compact by Proposition A.2, Cl(L;) geometrically converges to an element of s, x, x, Or to Cl({(1,0,0,0))
by choosing a subsequence if necessary. Proposition A.2 shows that L; = gt (I¢(r;)) for bounded ¢; in the first
case. Hence, x is in Sfjim, ;. In the other case, x; does not have x as a limit. This proves the closedness of the
foliated subset in Ry,y,.

Using the flows, we can prove the openness of the set (J, ,.; Sf,»- Hence, Ry, is foliated by leaves S,
r=ro.

Since each line in Dy, o lies on a different plane given by equations of the form y = c, it follows that
Dfy,0 is an embedded surface, and so are Dy, . Proposition A.2 implies that Dy, o is properly embedded
since Cl(lf,;,) geometrically converges to C1({(1,0,0,0y) as r; — 1. Hence, Dy,  is properly embedded for all ¢.

Since g’ is generated by a vector field ¢ transversal to Dy, ( for every t by the above paragraph, the
images under the flows of Dy,  are disjoint from Dy, ¢. Also, g% (Dfr,.¢) = Dfr,,t+¢, follows by our above
definition of Dy, .

Also, Ry, is foliated by leaves of the form Dy,  as follows: | ;g Dy,r,,¢ is 0pen since we can use the flow
generated by g!. The closedness follows by Proposition A.2 again as above.

Now, we have a foliation by leaves of the form Sy, for r € [rg, 1). Then Dy, N Sf,, contains a geodesic
given by g!(I(s)), s € R. At t = 0, the tangent space of Dy 1,0 is generated by u;, Yy, and that of Sy, is gener-
ated by u;, ¢. The independence above implies the transversality of Dy, o and Sy,r. Thus, the transversality
of Dy, and Sy, follows. O

Remark A.1. There seems to be a vast literature on ruled surfaces on which a one-parameter Lorentzian isom-
etry group acts; however, there seems to be no article on the topological properties. See Dillen and Kiihlen [21]
for a survey of geometric aspects.

B The flat R*!-bundle valued 1-forms on a cusp neighborhood

Only prerequisites are Sections 2 and 3.1 and the notation in Section 4, in particular Definition 4.1.

B.1 Replacing forms by standard cusp 1-forms in the cusp neighborhoods

Suppose that T is a discrete Lorentzian isometry group so that I' is a Fuchsian group acting on $, with
a parabolic element g fixing p € 0S,. Let S := $, /T be a complete hyperbolic surface with a cusp neighbor-
hood E. Note that E is covered by a horodisk P ¢ S, with p € bdgP. Then P/(g) is isometric to E.

We recall the vector bundle ¥ given as the quotient of 7 = §, x R?! with action given by

Y6, V) = (y(x), L(y)(v)) fory eT, veR>'.
Recall (4.4) that for #-valued 1-forms on S,, the action is given by
y*(vedx) = L(y) t(v)@dxoy.

Proposition B.1. LetS,T, P, E, and y be as above in Section B.1. Let n be a closed ¥ -valued 1-form representing
a class in H'(S, 7). Let { be a closed ¥ -valued 1-form in E so that { is cohomologous to n|E in H'(E, 7).
Then we can find a closed ¥ -valued 1-form n' on S cohomologous to n and a cusp neighborhood E' ¢ E so that
n'|E" = {E'.

Proof. Let E' ¢ E be a smaller cusp neighborhood so that CI(E") ¢ E. Consider n — { on E'. Then n - { = df
for a section f : E' — #. We can extend f to a smooth section f: S — # by a partition of unity so that f = 0
onS\ E.Thendefinen' =nonS\Eandn' ={onE andn’' =n-dfonE\E'. O

Proposition B.2. We have H'(E, ¥) = R.
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Proof. Recall that E is homotopy equivalent to $'. Thus, 71(E) is an infinite cyclic group. Note that #|E
is Px R>1/(g). Recall that £(g) = I+ N(g) + N(g)?/2 for a nilpotent matrix N(g) of rank 2 from (3.5). We
conclude using the knowledge of [28, Section 3]:

ZM(g), V) ={v:Z - R*' | £(g")v(g) - v(g") = Oforalli,j € Z} = R*?,
B'((g), V) ={v:Z — R*! | v(g) = L(g)Vo - Vo, Vo € R>1}

= N)((1+ SN )Y ) = @),
H'((g),7) = R*!/N(g)(R*") = R.

The second to last equation follows since I + N(g)/2 is invertible. The last follows since N(g) is of rank two
by Section 3.1. O

B.2 The integral of the standard cusp 1-form

We will use the notation of Section 4.4. Let P be the standard horodisk in S, with p as a null vector in the
direction of C1(P) N 0S,. The standard cusp 1-form for P is given where P is given by y > 1 in the upper half-
space model U? of the hyperbolic plane. A geodesic in P is given by equation (x + R)? + y? = R? in U? and
parameterized by () := (R cos 8 ¥ R, Rsin ). The starting point and the endpoint are given by Rsin 6 = 1.
Thus, the beginning 6y and ending 6, = 7 — 6 is one of the values of sin‘l(i}).

We assume that a complete geodesic [ passes a cusp region with the cusp point p = (p) and the standard
cusp 1-form. We assume that by choice of the coordinates of U2, p = co and the geodesic starts at (0, 0) and
ends at (2R, 0) or at (-2R, 0). We say that [ and any horizontal translation of / in the upper half model have
radius R.

There is an isometry H : U> — §, to the Klein model §.,:

—_— —_— 2x 2
H(x,y) := ((H(x, y))) ,  where H(x, y) := (Xz L 1-5 I 1),

(See Hongchan Kim [33, Theorem 7.1].) This extends to the boundary y = 0 and induces a homeomorphism
from U? U {co} to the closure of the unit disk where co goes to (j + k).

The standard horodisk in U? is given by y > 1. The image of this under H is the standard horodisk Q of
the Klein model. The standard horodisk has the point (j + k) of S, in the boundary and 0,Q > (k).

This makes things simpler.

LemmaB.3. Letg, l,and | - |g be as above. Let D be the standard horodisk. Set
x? 1 x2 1 )
—— + _, — + —
22 V22 2
Let 1 be a complete geodesic passing D of radius R and starts at H(0, 0) and ends at H(+2R, 0). Assume R > 1.
Suppose that 1 corresponds in S, to the geodesic passing a point of oy D in the direction of a unit vector u away

from H(0, 0) € 0U2. Then the following hold:
e for any point z on l with coordinate x in the upper half-space model,

v(x) = (x, forx e R.

+V2
1T, ¢z, (VOO = ly(x - T)l
for the cusp coefficient u, and
e wehave
MR + 1) | ( 1 +X x2 )l
H" A4 e and H- v _ 1w .
I V_(z,u)(y MEe 4\/§R2 [ V+(z,u)(}1 e H 4\/§R2 R 2\/5

Proof. These are simple computations using H, and the frames used there form uniformly bounded matrices
in GL(3, R). Hence, the estimations are uniformly compatible with the standard Euclidean metric results.
(See [12] and [13].) |
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Let { = In D be a geodesic segment with both endpoints in 9, D. Suppose that [ is in the form of Lemma B.3
parameterized by the angle 6 from the center of the semicircle in the upper-half-space model containing .
Also, recall the geodesic flow ¥; acting on R?! x US, from Section 3.2. We reparametrize | by ¥(z, ) for z
the beginning point of { and 8 € (0, m) with z = W(z, 0y). Let  denote the standard 1-form defined on D. We

define
-6

0
b(Q) := I DY¥(z, 0 - 90)-1(;7(%39))) a6,
0o
where 6y and 7 — 0 are the start and the end angles of the semicircle [ parameterized by angles.
We recall b ({) from (4.15) as the V.-component of b({): that is,

7'[—90

b () = J nf,i<mf(z, o- 90)-1(;1(%))) 4.
6o

a(() := J B(v, n(%)) daeo.

Proposition B.4. Let g, I, and | - || be as above. Let D be the standard horodisk. Let n be a standard cusp
1-form for a cusp constant p > 0. (See (4.9).) Suppose that a complement geodesic 1 of radius R is in the form
of Lemma B.3. Let { = I n D be a geodesic segment with both endpoints in onD. Then we obtain

V-1 + R2(1 + 4R?) .5
2VaR2 v

u(-v2 + zRZ)—“_lR+R2 <a(() = y—'_1R+R2(¢x/§+ 2R?) < u(V2 + 2R?),

We define

b-(Dlle = R,

where R > 1.
Proof. In this case, we may regard DW¥(z, 6)~! as the identity since we will work directly over S, (see
Remark 4.1): Since the projection IT; to V_ commutes with D¥(z, )1, we have

ﬂ—90

b= | DY 6y ) dx(
0o

d¥(z, 0)
=22 ) de.

By computations in [12] or [13], we obtain

(1+4R?)
b_()l = uV-1+R2——=.
(Ol = uv-1+ VIR

And we evaluate the contribution of I n P to bg:

(V=1 +R%)(+V2 + 2R?))
a(f) = R .
Note. During the preparation of this manuscript, our coauthor Todd Drumm tragically passed away. Todd
pioneered the field by developing the geometric approach to Margulis’s breakthrough discovery [39] and [40]
of proper affine actions of nonabelian free groups. We miss him dearly and dedicate this work to his lasting
memory.
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