Koro, M., Thorn, S., Vasquez, A. M., Amiot, D. & Arcos, C. (2023, May). Neurodiversity as a baseline in STEM education research: Developing computational thinking skills by co-designing creative wearable music devices. CUNY Neurodiversity Conference, Virtual Concurrent Hour Session.

NEURODIVERSITY AS A BASELINE IN STEM EDUCATION RESEARCH

DEVELOPING COMPUTATIONAL THINKING SKILLS BY CO-DESIGNING CREATIVE
WEARABLE MUSIC DEVICES

This material is based upon work supported by the National Science Foundation under Grant CSforall-2122924. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

STRUCTURE OF THIS PRESENTATION

- PRESENTER INTRODUCTIONS
- PROJECT INTRODUCTION
- IMPLICATIONS
- PROJECT VIDEOS
- GUIDED ACTIVITY
- Q&A

PRESENTERS

SETH THORN

ARIZONA STATE UNIVERSITY
SCHOOL OF ARTS, MEDIA & ENGINEERING

MUSICAL INSTRUMENT DESIGN AND DEVELOPMENT SIGNAL PROCESSING AND EMBEDDED SYSTEMS

RESPONSIBLE FOR CONCEPTUAL AND TECHNICAL DEVELOPMENT OF MUSICAL WEARABLES FOR THIS GRANT PROJECT

DENISE AMIOT

NEURODIVERSITY EDUCATION RESEARCH CENTER/SCIENCE PREP ACADEMY

DIRECTOR OF SCIENCE PREP ACADEMY
ASU/ NERC RESEARCH PARTNERSHIP LIAISON
RECRUIT AND ON-GOING COMMUNICATION WITH TEACHER FELLOWS
CODESIGN WORKSHOPS WITH TEACHER FELLOWS AND ASU TEAM
MUSIC & STEM

MIRKA KORO

ARIZONA STATE UNIVERSITY,
MARY LOU FULTON TEACHERS COLLEGE

QUALITATIVE RESEARCH METHODOLOGIST

RESPONSIBLE FOR THE QUALITATIVE ASPECTS OF THE RESEARCH DESIGN
AND IMPLEMENTATION

CINTYA ARCOS

NEURODIVERSITY EDUCATION RESEARCH CENTER/SCIENCE PREP ACADEMY

PROGRAM ASSISTANT AT SCIENCE PREP ACADEMY NERC/ASU COMMUNICATION LIAISON

ANANI VASQUEZ

ARIZONA STATE UNIVERSITY,

MARY LOU FULTON TEACHERS COLLEGE

Initial Liaison between ASU and NERC
RESEARCH ASSISTANT- DATA COLLECTION, DATA
ANALYSIS, TEACHER WORKSHOP IMPLEMENTATION
NEURODIVERSITY AND CREATIVITY IN EDUCATION AND
RESEARCH METHODS

BACKGROUND AND PURPOSE

STEM EMPLOYERS ARE HIRING NEURODIVERGENT EMPLOYEES

STUDENTS ARE NOT PREPARED FOR NEEDED WORKPLACE SKILLS (ROUX ET AL., 2015; SHATTUCK ET AL., 2012)

STUDENTS DO NOT HAVE EXPERIENCE MERGING CREATIVITY, ARTISTIC FIELDS WITH STEM (LIAO, 2016)

THE PURPOSE OF THIS PRESENTATION IS TO HIGHLIGHT ONE EXAMPLE OF HOW THESE ISSUES ARE BEING ADDRESSED.

COMPUTATIONAL THINKING SKILLS DEVELOPMENT THROUGH THE CO-DESIGN OF CREATIVE WEARABLE MUSIC DEVICES BEGINS WITH A FOUNDATION IN THE NEURODIVERSITY PARADIGM.

PERSPECTIVES

- NEURODIVERSITY PARADIGM (SILBERMAN, 2016; WALKER, N.D.)
- INCLUSIVE STEM EDUCATION (BURGSTAHLER & LADNER, 2006; LADNER & STEFIK, 2017)
- EMBODIED COGNITION (Barsalou, 2008; Fyfe et al., 2014: Thompson Massaro, 1994; Grassman & Tomasello, 2010)
- Neurodiverse Middle Schoolers, including those labeled with Autism
- MUSIC (ART) IN STEM (DE JAEGHER & DI PAOLO, 2007; LIAO, 2016)
- CO-DESIGN OF TECHNOLOGY AND PEDAGOGY (KRITSIS ET AL., 2018; SYNTHESIS, 2021; THORN ET AL., 2019; TOMAS, 2020)

TECHNOLOGY CO-DESIGN: YEAR 1

YEAR 1:

- DEVELOP SET OF SKEUOMORPHIC INSTRUMENTS (RAINSTICK, CLACKER, CATAPULT) FOR UNDERSTANDING IMU FEATURES MUSICALLY. "WEARABLE JAZZ" AS COLLECTIVELY PLAYABLE INSTRUMENT.
- TFS BRING KITS OF SENSORS AND LAPTOP TO CLASSROOMS. FOCUS ON AFFECTIVE EXPERIENCES FOR STUDENTS THROUGH SONIC AUGMENTATION OF MOVING. ITERATE AND ADAPT BASED ON EXPERIENCES AND FEEDBACK.
- ORGANIZATION OF WORKSHOPS: FROM SINGLE FEATURES TO COLLECTIVE FEATURES, AD HOC EMBEDDED PROTOTYPES, AND GROUP CHOREOGRAPHY.

TECHNOLOGY CO-DESIGN: YEAR 2

- RE-ARTICULATE CODING/CS/CT/ ELEMENTS
- TRACTION FROM EXPLORATION OF FOLEY EXERCISES WITH TEACHING FELLOWS. SCAFFOLDING
 - SELECTION OF FEATURE (CHANGE IN ANGLE, SHAKING, ROLLING, BUTTON PRESS)
 - CREATION OF CORPUS (SOUNDS AND SYNTHESIS)
 - TUNING THE INSTRUMENT (REPEATING, RANDOM, LOOPING, FILTERING, SCALING)
 - ATMOSPHERICS (ECHO, TREMOR CLOUDINESS)
 - PERFORMANCE: FOLEY IS COORDINATED GROUP EFFORT
- CURRICULUM DEVELOPMENT (KITS) BY TEACHING FELLOWS ACCORDING TO AREAS OF SPECIALIZATION LEADING TO YEAR 3 DEPLOYMENT AT SCALE

CO-DESIGN OF TEACHING PRACTICES

- 4 TEACHER FELLOWS
- MULTIMODAL, STUDENT-DIRECTED EXPERIENCES (EMBODIED, ENSEMBLE, CREATIVITY)
- COMPUTATIONAL THINKING SKILLS FOCUSED (AHO, 2012; JONA ET AL., 2014; KAFAI & BURKE, 2014; WING, 2006)
- CROSS-CURRICULAR
- CREATIVITY, COLLABORATION, PROBLEM SOLVING
- PERSONAL WELL-BEING

IMPLICATIONS: INCLUSIVE DESIGN

- WORKING ACROSS DIFFERENT CONTENT AREAS AND CONTEXTS (UNIVERSITY AND SCHOOL)
- NEURODIVERSITY AS A BASELINE
- TARGETS STUDENTS WITH AUTISM BUT THE WORK IS INTENDED TO REACH WIDER AUDIENCE
- APPLICABLE FOR ALL TEACHERS IN SOME WAYS
- MERGES DIFFERENT MODES OF EXPRESSION

IMPLICATIONS: MENTAL HEALTH & WELLNESS

- FOREGROUNDING THE SENSORY AND EMOTIONAL
- INQUIRY PLAY AND CREATIVITY
- INTERSECTION OF CULTURE/ARTS/DISABILITY/MENTAL HEALTH
- SELF MANAGEMENT EXPERIENCES AND PRACTICES
- MORE HOLISTIC STUDENT SUPPORT

IMPLICATIONS: WORKPLACE & EMPLOYMENT

- DEVELOP WORK-BASED SKILLS THAT
 ARE NEEDED TO SUSTAIN EMPLOYMENT
- ADVOCATE FOR NEURODIVERSE
 WORKPLACES AND JOB TRAINING
- PROFESSIONAL DEVELOPMENT FOR TEACHERS AND FUTURE EMPLOYERS

NTEL VIDEOS

GUIDED ACTIVITY

DISCUSSION AND Q&A

- FOCUS QUESTIONS ON THE "ART" OF NEURODIVERSITY:
 - How might this project challenge stereotypes?
 - HOW DOES THIS PROJECT ENGAGE IN CREATIVE METHODS OF SUPPORT, ENGAGEMENT, RESEARCH, AND/OR PROGRAMMING?

REFERENCES

- Aho, A. V. (2012). Computation and Computational Thinking. Computer Journal, 55(7), 832–835.
- Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.
- Burgstahler, S., & Ladner, R. (2006). An alliance to increase the participation of individuals with disabilities in computing careers. *ACM SIGACCESS Accessibility and Computing*, 85, 3–9. https://doi.org/10.1145/1166118.1166119
- De Jaegher H., and Di Paolo E (2007). Participatory Sense-Making: An enactive approach to social cognition. *Phenomenology and the Cognitive Sciences*, 6(4), 485-507.
- Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. *Educ. Psychol. Rev.* 26, 9–25. doi: 10.1007/s10648-014-9249-3
- Grassmann, S., & Tomasello, M. (2010). Young children follow pointing over words in interpreting acts of reference. *Developmental Science*, 13(1), 252-263.

REFERENCES

- Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti, E. (2014). *Embedding computational thinking in science, technology, engineering, and math (CT-STEM).* Future Directions in Computer Science Education Summit Meeting, Orlando, FL. http://ccl.sesp.northwestern.edu/papers/2014/OrtonKaiNorthwestern-1.pdf
- Kafai, Y. B., & Burke, Q. (2014). Connected Code: Why Children Need to Learn Programming. MIT Press.
- Kritsis, K., Gkiokas, A., Acosta, C. Á., Lamerand, Q., Piéchaud, R., Kaliakatsos-Papakostas, M., & Katsouros, V. (2018). A web-based 3D environment for gestural interaction with virtual music instruments as a STEAM education tool. In T. M. Luke Dahl Douglas Bowman (Ed.), *Proceedings of the International Conference on New Interfaces for Musical Expression* (pp. 348–349). Virginia Tech. https://doi.org/10.5281/zenodo.1302613
- Ladner, R. E., & Stefik, A. (2017). AccessCSforall: making computer science accessible to K-12 students in the United States. SIGACCESS Access. Comput., 118, 3–8.
- Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education. *Art Education*, 69(6), 44-49.
- Roux, A. M., Shattuck, P. T., Rast, J. E., Rava, J. A., & Anderson, K. A. (2015). *National Autism Indicators Report:*Transition into Young Adulthood. Life Course Outcomes Research Program, A.J. Drexel Autism Institute,
 Drexel University.

REFERENCES

- Shattuck, P. T., Narendorf, S. C., Cooper, B., Sterzing, P. R., Wagner, M., & Taylor, J. L. (2012). Postsecondary education and employment among youth with an autism spectrum disorder. *Pediatrics*, 129(6), 1042-1049.
- Silberman, S. (2016). NeuroTribes: The legacy of autism and the future of neurodiversity. New York, NY: Avery.
- Synthesis (2021). Synthesis Center for Transversal Research. Arizona State University. Online: http://synthesiscenter.net.
- Thorn, S. D., & Wei, S. X. (2019). Instruments of Articulation: Signal Processing in Live Performance. *Proceedings of the 6th International Conference on Movement and Computing*. https://doi.org/10.1145/3347122.3347133
- Tomás, E. (2020). A playful approach to teaching NIME: Pedagogical methods from a practice-based perspective. In R. Michon & F. Schroeder (Eds.), *Proceedings of the International Conference on New Interfaces for Musical Expression* (pp. 143–148). Birmingham City University. https://www.nime.org/proceedings/2020/nime2020 paper28.pdf
- Walker, N. (n.d.). Neurodiversity: Terms and definitions. Neuroqueer.
 - https://neuroqueer.com/neurodiversity-terms-and-definitions/
- Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.