BunnyHop: Exploiting the Instruction Prefetcher

Zhiyuan Zhang', Mingtian Tao®, Sioli O’Connell™,
Chitchanok Chuengsatiansup?®, Daniel Genkin$, Yuval Yarom®

" The University of Adelaide
* The University of Melbourne
§ Georgia Tech.

Abstract

The instruction prefetcher is a microarchitectural component
whose task is to bring program code into the instruction cache.
To predict which code is likely to be executed, the instruction
prefetcher relies on the branch predictor.

In this paper we investigate the instruction prefetcher in
modern Intel processors. We first propose BunnyHop, a tech-
nique that uses the instruction prefetcher to encode branch
prediction information as a cache state. We show how to use
BunnyHop to perform low-noise attacks on the branch predic-
tor. Specifically, we show how to implement attacks similar
to Flush+Reload and Prime+Probe on the branch predictor
instead of on the data caches. We then show that BunnyHop
allows using the instruction prefetcher as a confused deputy
to force cache eviction within a victim. We use this to demon-
strate an attack on an implementation of AES protected with
both cache coloring and data prefetch.

1 Introduction

Over the last decades, awareness of the perils of shar-
ing microarchitectural components has constantly increased.
Microarchitectural side-channel attacks [28, 71] have been
shown to break multiple cryptographic implementations [6,
19, 20, 29, 50, 55, 57, 64, 74, 84] and have also
affected many other applications [24, 32, 34, 65, 67, 68].
Recently, such techniques have been used in transient-
execution attacks to leak information from the speculative
state of the proces-sor [14, 17, 43, 46, 73, 82, 88].

A wide range of components have been exploited for carry-
ing out microarchitectural attacks [3, 5, 8, 23, 31, 35, 52, 56,
59, 62, 79, 83, 85]. However, there remain many components
that have been investigated less, and the security implications
of their operations are yet to be discovered.

One of the less explored components is the instruction
prefetcher [61, 70] whose role is to cache memory blocks
with the aim of reducing the future cost of executing code

from these blocks. Unlike branch prediction, which can re-
sult in speculative execution of instructions, the instruction
prefetcher only brings memory to the cache, but does not
cause execution. Yet, at least on Intel processors, the instruc-
tion prefetcher relies on the branch prediction unit for deter-
mining memory blocks to prefetch [41].

In this work, we ask the following question:

What effects do the instruction prefetcher and branch
predictor have on each other and what are the security
implications of these effects?

Our Contribution

In this paper we investigate the instruction prefetcher and its
implications on security.

We first reverse engineer the prefetcher on several models
of Intel Core processors, finding that the processor prefetches
up to 26 memory blocks, depending on the model. We analyze
the interaction between branch instructions and the instruc-
tion prefetcher, showing that branch instructions train the
prefetcher, whereas non-branch instructions remove the train-
ing. We further investigate the implications of hyperthreading,
demonstrating that the instruction prefetcher is time-shared be-
tween the hyperthreads and that there is no cross-hyperthread
training.

We then design BunnyHop, a technique that translates
branch prediction state to cache state. Specifically, Bunny-
Hop builds on the observation that when the branch predictor
(more specifically, the branch target buffer (BTB)) predicts
that code at a source address branches to a target address,
diverting the instruction prefetcher to the source address will
bring the target address to the cache.

We combine this observation with the Flush+Reload at-
tack [33, 84] to interrogate the contents of the BTB. Because
the Flush+Reload attack has a high signal-to-noise ratio, the
combined technique is more precise than prior techniques for
querying the branch predictor [6, 24, 25, 38, 45, 54],

To demonstrate the power of BunnyHop, we use it to re-
verse engineer the BTB of modern Intel Core processors. We
reproduce results on the number of sets and tag folding from
prior works[45, 75, 88]. We further show that the BTB con-
sists of two substructures, one that stores only short branches,
i.e. those where the target address is close to the source ad-
dress, whereas the other stores all branches, resolving past
discrepancy between [45] and [88] regarding BTB associativ-
ity. We identify the BTB replacement policy that the BTB is
competitively shared between hyperthreads.

To demonstrate the implications on security, we design
three attacks based on BunnyHop. The first two, BunnyHop-
Reload and BunnyHop-Probe, are the BTB counterparts of the
Flush+Reload [33, 84] and the Prime+Probe [49, 55] attacks
respectively. Specifically, in the BunnyHop-Reload attack,
the adversary first evicts a target prediction from the BTB
and then interrogates the BTB to check whether the victim
execution has reinstated the previously evicted prediction. In
the BunnyHop-Probe attack, the adversary fills a BTB set
with prediction and detects victim’s activity by checking if
the BTB set still contains the adversary’s prediction. The
third attack, BunnyHop-Evict, is a new attack that causes the
victim to evict its own cache lines, allowing us to overcome
previously proposed defenses against cache attacks.

We demonstrate the efficacy of BunnyHop-Reload, showing
how to use it to break Kernel Address Space Layout Random-
ization (KASLR). The attack also demonstrates a novel use
of the BTB aliasing to reduce the number of attack rounds re-
quired. We further demonstrate the use of BunnyHop-Reload
to attack an implementation of an elliptic curve secp256k1
running inside an SGX enclave

We use BunnyHop-Evict to implement an Evict+Time attack
against an AES implementation protected with both cache
coloring [66, 86] and table preloading [55, 87]. Finally, We
use BunnyHop-Probe to implement a cross-hyperthread attack
on an implementation of RSA.

In summary, our paper makes the following contributions:
¢ We reverse engineer the instruction prefetcher, demonstrat-
ing that it follows branch prediction advice from the BTB
(Section 3).

Based on the operation of the instruction prefetcher, we de-
velop a technique called BunnyHop, which encodes branch
predictions as cache state, allowing us to use cache attack
techniques for interrogating the BTB. We use BunnyHop
to reveal the structure of BTB and resolve the discrepancy
in past research regarding BT B associativity (Section 4).
We present the BunnyHop-Reload attack, an instantia-
tion of the Flush+Reload attack, targeting the BTB. We
demonstrate the use of this new BunnyHop-Reload attack
through stealing a secret information from an elliptic curve
secp256k1 implementation running on SGX (Section 5).
We further demonstrate another application of our
BunnyHop-Reload through an attack on KASLR (Sec-
tion 6).

* We present the BunnyHop-Evict attack, a combination of
BunnyHop and Evict+Time attacks. BunnyHop-Evict is a
confused deputy attack on the instruction prefetcher, which
induces a victim to evict its own data from a cache. We
demonstrate the use of BunnyHop-Evict through attacking a
hardened implementation of AES 128 running in a kernel
module (Section 7).

¢ We present the BunnyHop-Probe attack where we put to-
gether our BunnyHop attack and Prime+Probe attack. We
show how to use our BunnyHop-Probe attack to tackle
ASLR and recover the key from square-and-multiply-
always RSA (Section 8).

The source code for BunnyHop is available at https://
github.com/OxADE1A1DE/BunnyHop.

Responsible Disclosure. The results in this paper were
reported to Intel. The company responded that the issue is
covered by its software cryptography guidelines [22] and that
no embargo period is required.

2 Background

Branch Prediction. The front end of modern CPUs is re-
sponsible for fetching, decoding, and feeding instructions to

the execution engine. Execution paths that depend on branch

instructions cannot be decided until the branch condition is

resolved. Hence branch instructions can stall the pipeline.
To keep the pipeline busy, the processor predicts the condi-
tions and targets of the branch and speculatively executes the

predicted path. When the condition or target is resolved, the

processor verifies the prediction. In the case of a correct pre-
diction, speculative execution bridges over the potential stall.
If the prediction turns out to be wrong, instructions that were

incorrectly executed are squashed and execution continues

from the correct path.

The branch prediction unit (BPU) in the front end uses
historical branch data to predict future branch outcomes. This
historical data is recorded in several structures within the BPU.
Particularly, in this work we are interested in the branch target
buffer (BTB), which records the target address of branches.

Instruction Caching. To maintain a consistent stream of
instructions, the front end must bridge the speed gap between
the fast processor and the slower memory. One of the main
techniques for bridging the gap is caching recently executed
instructions in the level-1 instruction cache (L1-1). The L1-1
interfaces with the rest of the memory subsystem, including
the level-2 cache and the last-level cache (LLC).

Instruction Prefetch. While programs tend to exhibit sig-
nificant locality, there are cases where instructions are not
in the L1-1 cache. To reduce the wait for such instructions,
the instruction prefetcher brings memory locations predicted
to contain future instructions into the L1-1 cache. To predict
future instructions, the instruction prefetcher relies on other

https://github.com/0xADE1A1DE/BunnyHop
https://github.com/0xADE1A1DE/BunnyHop

components such as the BTB [16, 21, 44, 70] or on execution
history [27, 90].

Cache Structure. As caches play an important role in the
microarchitecture, we now look at how they are implemented.
Most modern caches are set associative. That is, the cache
consists of multiple sets, which consist of multiple ways. Each
element is mapped to a single cache set, but can be stored in
any of the ways of the set. A tag identifies the element within a
set. To check if an element is cached, the processor computes
the set id, and searches for a tag match within the ways. If the
tag matches, the processor can use the entry. Otherwise, the
entry needs to be retrieved or recomputed.

Replacement Policy. Typically, when inserting an element
to the cache, there is a need to replace another entry. The
replacement policy of a cache determines which element is to
be replaced. The least recently used (LRU) policy chooses the
element in the set that was not used for the longest time. To
reduce the resources required for implementing this replace-
ment policy, many caches use a pseudo LRU (PLRU) policy
that approximates LRU.

Cache Attacks. Because the state of caches depends on prior
executions and, at the same time, affects the future execution
speed, monitoring execution speed can reveal information
on past execution. Various cache attacks [28] have been pro-
posed in the past, targeting multiple caches, including data
caches [49, 55, 84], instruction caches [7, 91], and branch
prediction caches [6, 24, 59].

Prime+Probe. Prime+Probe [49, 55] is a cache attack that
exploits contention on a cache set. In the attack, the adver-
sary first fills all the ways in a cache set with their data. The
adversary then waits for the victim to execute. Finally, the
adversary measures the time to access the previously cached
data. A short time indicates that the data is still cached, hence
the victim did not access the data that maps to the same set. A
long access time indicates that some of the previously cached
data has been evicted, presumably due to contention with the
victim.

Flush+Reload. In the Flush+Reload attack [33, 84], the
attacker first evicts a victim entry from the cache. Later, the
attacker attempts to access the victim entry. A fast access
time indicates that the entry is cached, hence the victim has
accessed it. Slow access indicates that the victim has not
accessed the data.

Evict+Time. In the Evict+Time attack [55], the attacker first
evicts an entry that the victim may use from the cache. The
attacker then measures the time it takes the victim to execute
an operation. A fast execution time indicates that the victim
has not used the evicted entry.

Spectre Attacks. For decades, speculative execution was con-
sidered a harmless performance improvement. However, the
discovery of Spectre [43] showed that it does have severe se-
curity implications. Specifically, Spectre observes that squash-
ing mispredicted instructions does not revert the changes they

made in the microarchitecture. Consequently, an attacker can
force a branch misprediction to bypass software-based pro-
tection, access secret data, and transmit it through a microar-
chitectural channel, e.g. via the cache.

Spectre attacks differ in the type of prediction they abuse.
Spectre-v1 exploits misprediction of conditional branches, i.e.
whether the branch is taken or not. Spectre-v2 exploits indirect
branches to speculatively execute arbitrary code within the
address space of the victim.

Spectre-v2 Countermeasure. To protect against Spectre-v2,

Intel proposed several countermeasures:

¢ Retpolines [30, 39] are a drop-in replacement for indirect
branches that use a RET instruction instead of the indirect
branch.

¢ Indirect Branch Prediction Barrier (IBPB) [10, 40] is a
branch prediction barrier that prevents indirect branches
that execute before the barrier from affecting branches that
execute after the barrier.

¢ Single Thread Indirect Branch Predictors (STIBP) [10, 40]
is a configuration option that prevents indirect branches on
one hyperthread from causing speculative execution on the
other hyperthread.

¢ Indirect Branch Restricted Speculation (IBRS) [10, 40] is

a configuration option that prevent indirect branches ex-

ecuted at a low privilege (e.g. user mode) from affecting

the prediction of branches at a higher privilege (e.g. kernel
mode).
See Barberis et al. [11] for a more detailed discussion.

3 Reverse Instruction

Prefetcher

Engineering the

The instruction prefetcher forms part of the instruction fetch

unit (IFU) of the processor [41]. To gain understanding on

the operation of the prefetcher, we build on the observation

that prefetching a memory location inserts it to the cache.
We perform the analysis on multiple Intel processors. (See
Table 1.) In the text we describe the results for a Core i7-
10710U processor.

3.1 Prefetch Depth

The first question we answer is what the prefetch depth is,
i.e. how many memory lines are prefetched ahead of the in-
struction pointer. For that, we use a function that consists of a
single RET instruction, followed by unused memory. We flush
memory lines following the RET instruction from the cache,
call the function, and measure the time to reload the memory
lines in the unused memory. To eliminate potential effects of
the branch prediction unit on the instruction prefetcher [41],
we invoke the Indirect Branch Predictor Barrier (IBPB) before
calling the function.

We find that after calling the function, the 14 memory
blocks following the RET instructions are typically in the

Model Depth Model Depth
i7-2600S 1 i5-8265U 14
i5-3470 2 i7-9750H 14
i7-4770 7 i7-10710U 14
i5-5250U 7 i9-11900K 14
i7-6700 14 i9-12900KF (P) 26

i9-12900KF (E) 8

Table 1: Instruction prefetcher depth in processor models.

cache, whereas blocks 15 and above are not in the cache.
Hence, we conclude that the prefetcher depth is 14. We note
that the depth varies between processor models. See Table 1
for complete details.

Because the flushed memory blocks are after a RET instruc-
tion, we know that their contents have not been architecturally
executed. However, that does not guarantee that they have
not been speculatively executed. An alternative explanation is
that the instructions have been cached because the processor
speculatively executed them. To rule out this explanation, we
add a memory access after the RET instruction. We then per-
form a Flush+Reload attack on the memory location targeted
by the memory access, finding that it is not cached when the
function is invoked. Having confirmed that the code after
the RET instruction is not executed, we conclude that the
instruction must have been prefetched.

Obs. 1. The instruction prefetcher prefetches multiple
memory lines, with a model-dependent limit.

branch_train: branch_probe:

JMP T1 RET

NOP (1019) NOP (1023)
T1: T2:

RET

Listing 1: Testing Branch Instruction Prefetch.

3.2 Prefetching and Branches

Intel states that instruction fetching is helped by the BPU [41].
Indeed, we observe that without IBPB, repeated executions
of our empty function do not show evidence of prefetching.

To analyze the effects of branches on prefetching, we rely
on branch shadowing [24, 45, 64], a technique that exploits
aliasing between branches at addresses that share the least
significant 30 bits.

We use Assemblyline [1] to create two functions
branch_train and branch_probe, shown in Listing 1.
branch_train consists of a JMP instruction that jumps 1019
bytes forward before returning. We note that the length of
the JMP instruction is five bytes, hence T1 is at an offset of

H trainer1 1 ! trainer2 ! tester 1
. VP « ' i VP i e e, 0x0000
[1 1
N 1 [[Il 0x0040
i 1 Ll Ll 1
' ! E :. [Rer <— _: 0x0080
‘ P 0x00c0
R ! e
' 1 0x0600
:-{-——-EE-T——-- ' : l lMemory BIockA‘ 0x0640
[X
------] CLLLErs CLLLLTl
' 0x0a00
l ‘ I. - l_ - _EE_T ______ lMemory Block B ‘ X
0x0a40

Figure 1: Memory layouts of the function trainerl, the
function trainer2 and the function tester.

1024 bytes from the start of branch_train. The function
branch_test is an empty function with a single RET, similar
to the one used in Section 3.1, labeled T2 at an offset of 1024
bytes from the start.

We instantiate the functions at aliased addresses, i.e. ad-
dresses that have the same 32 least significant bits. Note
that because the functions are at aliased addresses, T1 and
T2 are also aliased. We invoke branch_train and then
branch_probe before testing for prefetched memory lines.
We find that although branch_probe does not perform any
branch, the memory line at T2 is prefetched, as well as the 13
subsequent memory lines.

We then change branch_train to execute a chain of
branches. We find that the prefetcher follows these branches,
even if the code of branch_probe does not include them,
without affecting the prefetch depth.

Obs. 2. The instruction prefetcher follows trained
branches, irrespective of the code in the prefetched mem-
ory.

3.3 Prefetching and BPU collisions

We now turn our attention to understanding how aliased
branches affect each other. For this, we add a second trainer
and check the interaction between the two trainers. An ex-
ample of such a setup appears in Figure 1, where the first
trainer, trainer1l jumps to offset 1536 (0x600), the sec-
ond, trainer2, jumps to offset 2560 (0xa00), and the tester
branches to offset 128 (0x80). We instantiate all three func-
tions at aliased addresses, execute them in order (i.e. first
trainerl, then trainer2, and finally tester) and check
which memory block is prefetched. We find that invariably the
instruction prefetcher follows the latest aliased branch. That
is, in the example in Figure 1, memory block B is prefetched,
whereas memory block A is not.

We then test trainerl and trainer2 with different
branching instruction types, including conditional branches,
indirect branches, calls and return instructions. When chang-
ing the code, we make sure that we maintain the branch
source address (i.e. the address of the instruction following

the branch) and the branch destination address. We further
ensure that conditional branches are taken. We find that for
direct branches memory block B is always prefetched. How-
ever, for indirect branches in some cases memory block A is
prefetched and in other memory block B. This agrees with
the claim that the branch prediction unit can predict multiple
destinations for indirect branches [88]. We leave the task of
determining how the instruction prefetcher chooses between
the potential destinations to future work.

When trainer2 uses a conditional branch that is not taken,
the results become more complex. If the offsets of trainerl
and trainer2 are the same, the instruction prefetcher fol-
lows the training from trainer1. However, if the offsets are
different, the instruction prefetcher sometimes follows the
training from trainer1l, i.e. prefetches memory block A. In
other cases it forgets the training and does not prefetch either
memory block A or B. Moreover, if we replace the JMP in-
struction in trainer2 with non-branch instructions, such as a
sequence of NOP instructions, it forgets the training and
does not prefetch either memory block A or B.

Obs. 3. Direct branches replace the prefetcher prediction,
indirect branches may replace the prediction, and non-
branch instructions may delete existing predictions.

3.4 Prefetching and Hyperthreading

Previous works show that the branch predictor is shared be-
tween hyperthreads [24, 72]. To test whether the prefetcher is
also shared, we execute trainer1 from Figure 1 on one hy-
perthread, and then tester on the second hyperthread of the
same core. We find that memory block A is never prefetched
and conclude that there is no training across hyperthreads.

Obs. 4. There is no cross-hyperthread training of the in-
struction prefetcher.

3.5 Prefetcher Operation

op_train: op_probe:
RET NOP n
RET

Listing 2: Testing Instruction Prefetch on hyperthreads.

To better understand how the instruction prefetcher pro-
gresses over time, we test how prefetching depth is affected
by temporal restrictions. For that, we use the code in List-
ing 2. We first invoke the function op_train, which trains
the prefetcher not to prefetch subsequent memory blocks. We
then run op_probe, which consists of a sequence of NOP
instructions followed by a RET.

The reasoning behind this arrangement is that when exe-
cuting op_probe, the prefetcher initially follows the training.
However, at some stage the first NOP instruction is decoded.
This instruction does not match the prediction, resulting in a
prefetcher resteer to prefetch subsequent memory lines. This
prefetch direction continues until the RET is decoded, resteer-
ing the prefetcher again. By changing the number of NOP
instructions in op_probe we control the time between the
first resteer and the decoding of the RET.

We vary the number of NOP instructions between 0 and 50
and test under two conditions. First we test on one hyperthread
when the other hyperthread is idle, then we test again, but with
the other hyperthread active. Figure 2 shows the results.

15
— Idle
- 12 Busy
)
o
< 97
<
2
Q
T
1
0 - -
0 10 20 30 40 50

Number of NOP instructions

Figure 2: Prefetch depth as a function of the number of NOP
instructions in op_probe on one hyperthread, when the other
hyperthread is idle or busy.

As expected, when the number of NOPs is 0, there is no
prefetch. However, when adding a single NOP, the prefetch
depth jumps to six for the idle case and three for the busy. The
prefetch depth then increases with the number of NOPs.

We know that the processor fetches code in blocks of 16
bytes and can decode up to five instructions per cycle [41].
Observing the way the prefetch depth changes with the num-
ber of NOPs for the idle case, we see a depth increase every
five NOPs, and a further increase whenever crossing a 16-byte
boundary. Thus, we conclude that the prefetcher prefetches
one memory block per cycle. We believe that the jump to
depth six with one NOP instruction is due to the L1 cache
latency (four cycles) and the time to decode and resteer the
prefetcher.

Observing the busy line, we see that the prefetch depth is
roughly half that of the idle case. This agrees with having a
single prefetcher that alternates between the hyperthreads.

Obs. 5. The prefetcher prefetches one cache line per cy-
cle, alternating between the two hyperthreads if both are
active.

i7-6700
. i5-8260U)

Model i7-4770 i7-9750H i9-11900K
i7-10710U

Capacity 4,096 4,096 5,120

Set index [12:4] [13:5] [13:5]

Ways (S+L) 4+4 4+4 6+4

Tag [30:22][21:13] [29:22][21:14] [33:24][23:14]

Short bits [9:0] [9:0] [11:0]

Replacement PLRU Alt.+LRU UPLRU

Table 2: BTB information for processor models.

4 Reverse Engineering the BTB

So far, we have studied the behavior of the instruction
prefetcher. In this section we use the instruction prefetcher
to study the structure of the branch target buffer (BTB). For
the investigation we use our proposed BunnyHop technique,
which is based on the observation that we can use the
instruc-tion prefetcher to transfer state from the BPU to the
cache. Specifically, when executing a NOP instruction at an
address that has a prediction for a branch, the instruction
prefetcher will prefetch the target of the predicted branch,
inserting it into the cache.

Similar to past works [45, 75, 88], to reverse engineer
the BTB, we first invoke the function btb_train from List-
ing 3 (left) to create an entry in the BTB. The function exe-
cutes a JMP instruction with a predefined offset, thus creating a
BTB entry indicating that the address of the JMP instruc-tion
contains the branch. We then execute a sequence of test
branches that we wish to test whether it removes the entry
that btb_train created.

To check if the test branches evicted the entry, we invoke
the function btb_probe from Listing 3 (right). The functions
btb_train and btb_probe are aliased hence if the entry is
still in the BTB when btb_probe is invoked, the instruction
prefetcher will follow the entry and prefetch the predicted
branch target. Finally, we use the Flush+Reload technique
to test if the predicted target address is cached. If it is, we
determine that the test branches did not evict the entry that
btb_train created.

btb_train: btb_probe:
IMP T1 NOP 32
NOP skip RET

T1:
RET

Listing 3: Code for Reverse Engineering the BTB.

We follow the approach of past works [45, 75, 88], replac-
ing their detection method with our technique. Where these
works agree, we confirm their findings, including that the
BTB is set-associative, what bits are used to select the set,
and the tag function. (See Table 2 for a summary.) Moreover,

we identify an additional structure inside the BTB, reverse
engineer its replacement policy, and clarify the interaction
between the BTB and the branch history buffer (BHB). We
now describe the experiments that uncover these results. As
earlier, results in the text refer to Core i7-10710U. See Table 2
for other processor models.

4.1 Long and Short Branches

One issue where the works of Lee et al. [45] and Zhang et

al. [88] disagree is the associativity of the BTB. The former

specifies associativity of four, whereas the latter specifies

eight. To test the associativity, we use a branch offset of 2048

for our btb_train. We further make sure that the addresses

of btb_train and btb_probe agree on bits [31:0]. For test

branches we use JMP instructions at addresses that share the

25 least significant bits of btb_train, but have a different

value at bits [29:26]. Observe (Table 2) that bits [13:5] deter-
mine the BTB set, hence all of the test branches fall in the

same BTB setas btb_train. Moreover, the tag is determined

by folding bits [29:14], i.e. the bitwise XOR of bits [29:22]

and bits [21:14]. Hence, the test branches have different tags,
which are also different from the tag of btb_train, so they
are not aliased.

We first use test branches with an offset of 2048 bytes.
When using less than four branches, the entry created by
btb_train is never evicted. However, with four or more
test branches invoking btb_probe no longer prefetches the
predicted target, indicating eviction of the entry. This result
agrees with the claim of Lee et al. [45] that the associativity
of the BTB is four. We then use test branches with an off-
set of 512 bytes and find that four branches are not enough
and we need eight test branches to evict the entry created by
btb_train, as specified in Zhang et al. [88].

Having determined that there are two types of branch off-
sets, we experiment with combinations of branch addresses
and offsets to find out how the processor decides the type of
the branch. We find that if the address of the last byte of the
JMP instruction and the target address of the branch share
all but bits [9:0], the branch is considered “short”, and the
associativity of the BTB is eight. Otherwise, the branch is
“long” and the associativity is four.

[Obs. 6. The BTB supports two branch types, short and]
long.

When we use a short branch for btb_train, we find that
eight short test branches always evict the entry created by
btb_train. However, when using long test branches with a
short training branch, in some cases as few as four long
branches evict the short training branch, whereas in others 20
long branches fail to evict the training branch.

This behavior of short and long branches is consistent with
the variable-size BTB (VS-BTB) of Hoogerbrugge [37]. In

a VS-BTB, a BTB set contains two types of entries. Long
entries can store all branches, whereas short entries can only
store short branches.

Obs. 7. The processor appears to use a variable-size BTB,
with four long ways and four short ways.

4.2 Predicted Branch Address

One of the main aims of the VS-BTB design is to reduce
the number of bits stored in the BTB by using fewer bits to
store short branches. Specifically, for short branches, the VS-
BTB only stores some of the least significant bits of the target
address. With this structure, replacing the least significant bits
of the source address with the bits stored in the BTB produces
the target address. In this section we aim to find how many
target address bits are stored in the BTB.

We create random pairs of btb_train and btb_probe
at aliased addresses, i.e. where the addresses match on bits
[13:0] and on the (folded) tag in bits [29:14]. Given a guess
that the BTB stores k bits of the target address, we compute
the predicted branch address for each pair assuming the guess
is correct. That is, if btb_train jumps to target address t and
btb_probe is at address p, we generate the predicted address
r such that r[46:k]= p[46:k] and r[k 1:0]=t[k 1:0]. We
then invoke btb_train, flush the guessed predicted target
address from the cache, invoke btb_probe, and test whether
the predicted target address is prefetched.

—— long branch
short branch
—— combined

Success rate
e o o &
= o © o
L L L L

o
N
s

°
o
N

Figure 3: Prefetch probability for target bit guesses.

We perform the experiment once when btb_train uses a
long branch and then when it uses a short branch. For each
guess of the number of target address bits we calculate the
probability that the predicted target address is prefetched.
As Figure 3 shows for long branches we achieve an almost
perfect prediction for a guess of 32. Hence we conclude that
long ways store 32 bits of the target address.

When using a short branch in btb_train, we see that the
probability of detecting a prefetch also peaks at a guess of 32
bits, but the probability is significantly lower than that of long
branches. We hypothesize that the reason is that our predicted
target branch only matches if the short branch is stored in a
long way of the BTB. To test the hypothesis we repeat the
experiment, but this time we combine the success rate for a

guess of k bits with the success rate for a guess of 10 bits. That
is, we mark a test as successful if we find evidence of prefetch
for either guesses. As we can see in the figure, the combined
guess has a baseline success rate of about 50%, achieving
almost perfect success at k = 32. Thus, we conclude that in
our experiment, about 50% of the short branches fall in short
ways, which store 10 target address bits.

Obs. 8. Long BTB ways store 32 bits of the target address.
Short ways store 10.

4.3 BTB Replacement Policy

We now turn our attention to the replacement policy used
in the BTB. For that, we use the approach of Abel and
Reineke [2]. That is, we perform several btb_train func-
tions that all fall within the same BTB set. We then use the
corresponding btb_probe functions to determine which train-
ing remains in the BTB. We now describe the replacement
policies we have identified.

Core i7-6700. Recall that the processor uses a variable-size
BTB with four short ways and four long ways. To recover the
replacement policy, we first focus on long branches that can
only be stored in long ways. We then look at short branches
that can be stored in both long and short ways. Finally, we
identify the interaction between the two branch types.

Following the procedure of Abel and Reineke [2] with long
branches, we find that long ways have an LRU replacement
policy. Repeating with short branches, we find that the eight
ways are divided into two banks of four ways each. Within
each bank, the processor uses an LRU replacement policy.
To decide which bank is used for replacement, the proces-
sor tracks the least recently used bank, and in the case of a
replacement will use LRU within that bank.

To determine whether the banks correspond to long and
short ways, we create eight pairs of short btb_train and
btb_probe functions, such that all functions are in the same
BTB sets. The functions in the pair also have the same tag,
but their addresses differ on some bits in [31:14]. Recall from
Section 4.2 that in such a case, the prefetched address will
depend on whether the branch is stored in a short way orin
a long way. We then invoke the trainer functions one by one,
and use the probes to test whether the trainers are stored in
long or short ways. We find that the branches alternate
between long and short ways. We conclude that the banks we
identified correspond to short and long ways.

In summary, the BT B consists of two banks, one for short
and the other for long ways. Each bank has an LRU replace-
ment policy. Replacement for short branches chooses the least
recently used bank, following LRU within the bank. We call
this policy “Alternating LRU”, denoted as Alt.+LRU in Ta-
ble 2.

Core i9-11900K. We first identify the BTB of the Core

i9-11900K processor has four long ways. Following the pro-
cedure of Abel and Reineke [2] we find that the replacement
policy for these is tree-PLRU.

Experimenting with combinations of short and long
branches, we find that the BTB supports six short ways. The
replacement policy used for short branches is tree-PLRU on a
tree that includes both the short and the long ways. As the tree,
which is depicted in Figure 4, is not balanced, we call this
policy “unbalanced PLRU”, noted as “UPLRU” in Table 2.

long ‘

long ‘

long ‘

long ‘

Figure 4: Tree of unbalanced PLRU (Core i9-11900K)

5 The BunnyHop-Reload Attack

So far we have demonstrated how the instruction prefetcher
can be used to reverse engineer the BTB. In this section we
start looking at the security implications of the instruction
prefetcher. We demonstrate BunnyHop-Reload, the branch-
prediction equivalent of the Flush+Reload attack [84].

Recall that in a Flush+Reload attack, the adversary first
evicts a memory location from the cache. The adversary then
waits before testing whether the memory location is cached,
indicating that the victim has accessed it. BunnyHop-Reload
follows a similar sequence, aiming to detect whether the vic-
tim has taken a specific branch. For that, the adversary first
evicts the BTB entry of the victim branch by executing a NOP
instruction at an aliased address. The adversary then waits for
the victim to execute. Finally, it exploits the BunnyHop effect
to test whether the victim has taken the branch. That is, the
adversary executes a NOP instruction at an aliased address
then checks whether the instruction prefetcher prefetched the
target of the branch.

To demonstrate the effectiveness of BunnyHop-Reload, we
use it to recover secret information from a vulnerable im-
plementation of the elliptic curve secp256k1, running inside
an SGX enclave. We first provide background on SGX and
describe the victim and the attack setup. We then describe the
attack and the experimental results.

SGX. Intel Software Guard Extensions (SGX) is an instruc-
tion set extension that provides a secure execution environ-
ment, called an enclave, which is protected against strong
adversaries, including those that control the operating system.
While enclaves are isolated from other code which executes

Algorithm 1: wNAF Algorithm:

Input :scalar d in wNAF do, ..., d- 1 and
precomputed points
{G,131G,[5]G,....[2%¥ 1]G}

Output:[d]G

1Q ?

2 forjfrom‘ 1 downto O do
3 if j= ' 1then

4 | Q point_double(Q)
5 end

6

7 if dj = 0then

8 ‘ Q point_add(Q;[d;]G)
9 end

10

11 end

on the processor, they do share the use of microarchitectural
components, allowing adversaries to mount side-channel at-
tacks [18, 38, 45, 47, 51, 52, 59, 59, 69, 76]. Moreover, past
research has demonstrated that including the operating system
in the threat model allows for very strong adversaries [76, 77].

Victim. Our victim code is the implementation of the
secp256k1 elliptic curve found in OpenSSL version 1.1.0h.
The implementation uses the wNAF algorithm (Algorithm 1)
for performing scalar multiplication over an elliptic curve.
In a nutshell, wNAF represents a scalar as a sequence of
digits that can be either 0 or odd values between 2%+ 1

and 2% 1 for an implementation-dependent window size w.
The algorithm scans the scalar performing an elliptic curve
point double operation for every digit, and an elliptic curve

point addition for each non-zero digit. Like prior attacks on
the secp256k1 curve [12, 26, 58], our attack aims to find the
positions of the non-zero digits.

Experiment Setup. We conduct the experiment on an Intel
Core i7-10710U, with 6 cores, running Ubuntu 20.04. As in
other SGX attacks [20, 47, 69, 76, 77, 78], we disable the
Intel SpeedStep and Turbo Boost technology. Furthermore,
we disable address space layout randomization within the
enclave. We use SGX-step [76] to single-step the enclave.

Attack. We use AssemblyLine [1] to construct a spy function
that consists of six NOPs followed by a RET. We instantiate
the function at an address the shares the 32 least significant
bits with the branch at Line 7 of Algorithm 1. Executing the
spy function achieves two aims. First, as described in Sec-
tion 3.2, in case there is a branch training for the victim branch,
executing the spy will prefetch the target address of the branch
prediction. Second, as seen in Section 3.3 because the NOP
instructions are not branching, executing them deletes the
training of aliased branches from the BTB.

For the attack, we use SGX-step to single-step the en-
clave. After executing an enclave instruction, we test for two

events. The first event is the execution of code in the func-
tion point_double(), invoked at Line 4 of Algorithm 1. The
second event is taking the monitored branch at Line 7.

To test the point_double() function, we mark the page
where it resides as not accessed before each victim function
step. Executing the code in the function would mark the page
state as accessed, which we can detect after executing a single
victim instruction.

To monitor the branch, we use BunnyHop-Reload. That is,
we calculate the predicted branch target address based on the
known branch offset of the branch at Line 7 and the known
address of our spy function. That is after SGX-step interrupts
the enclave, we flush the predicted target from the cache, and
invoke the spy. Due to the BunnyHop effect, if the victim
has taken the victim branch, the instruction prefetcher will
prefetch the predicted target, allowing us to test whether it is
cached. Executing the spy also removes any training, setting
up the state for executing the next instruction.

Experiment Result. Monitoring the execution of
point_double() allows us to track the digit index. We com-
bine this with the results of the BunnyHop-Reload attack to
detect whether the digit is zero or not.

We randomly generated 25 pairs of public and private keys,
for each pair of keys, we run the attack once achieving a
success rate of above 98%.

6 Exploiting Target Leak

One of the main differences between the Flush+Reload attack
and BunnyHop-Reload is that the former only reveals whether
instructions have been executed (as executed instructions will
have been cached) while the latter additionally reveals part of
the target address for branch instructions. In this section we
show how we can exploit this information to build a novel and
efficient attack on kernel address space layout randomization
(KASLR).

Cache attacks are divided into contention-based (e.g.
Prime+Probe) and reuse-based (e.g. Flush+Reload). Aliasing
in the BTB blurs the difference between those. Performing
an aliased jump both replaces the existing entry, similar to
Prime+Probe, and creates a new entry that the attacker can use,
similar to Flush+Reload. Jump over ASLR [24] exploits the
contention aspect. Our attack exploits the new entry created
by the victim. Compared with Jump over ASLR, our method
only needs to invoke the system call once. Like our attack,
the RBTBP attack [54] exploits the new entry created by the
victim. However, as Oliviera and Dutra [54] state, RBTBP
cannot bypass Spectre-v2 mitigations.

Attack Overview. The aim of KASLR is to hide kernel
addresses from adversaries to protect against code injection
attacks. The Linux implementation of KASLR randomizes
bits [29:21] of the base address of the kernel. Our aim in
this attack is to recover the values of these bits. We note that

recovering any known address in the kernel is sufficient for
breaking KASLR because the offset from the base is fixed.

Recall that in Section 4.2 we show that the BTB contains
both short and long ways. Long ways are capable of storing
long branches and store bits [31:0] of the target branch ad-
dress. Thus, if we can recover the target of a known branch in
the kernel, we completely break KASLR.

Thus, for the attack we choose a long branch in the kernel,
and invoke a system call that takes the branch. We then cre-
ate an aliased function in user space, which when executed
will prefetch the predicted branch target address. An aliased
function contains multiple NOPs and a RET. The first NOP in
the function is aliased with the kernel branch. We then test all
possible target addresses to see which has been prefetched,
identifying bits [31:0] of the kernel branch target.

Creating an Aliased Function. To create an aliased function,
we need to know the tag of the targeted kernel branch. Recall
that the tag is created from folding bits [29:14] of the branch
address. Because KASLR randomizes bits [29:21], we do not
know what the tag is. However, as there are only 256 different
tags, we can brute force the tag by generating 256 functions,
each matching one branch address.

We do need to take care that invoking a large number of
function does not evict the target branch from the BTB. We
only need a single CALL instruction for invoking all of the
functions, and can choose its address so it does not use the
same BTB set as the victim branch. Moreover, each of our
aliased function contains 32 NOP instructions, forcing the
subsequent RET into the next BTB set.

Experiment Setup. Our attack targets the kill system call.
The kill system call takes an integer parameter pid, indi-
cating the ID of the process that receives the signal, and
invokes the function kill_something_info. In the case
that pid is less than 1 and is not -1 or INT_MIN, the func-
tion kill_something_info usesa CALL instruction to call
__kill_pgrp_info, which we target.

We run the experiment on Ubuntu 20.04 LTS with the
kernel version 5.13.0-52-generic. We set the kernel command
line to enable all of the Spectre-v2 defenses by adding the
parameter spectre_v2=on.

Evaluation. We test possible loaded addresses after each
execution of an aliased function. We test our attack on several
processors with 10 random KASLR offsets (10 reboots) and
each offset 10000 times. In about 5.78% of the attempts fail to
obtain results and have to repeat the attack. After repeating (if
necessary), the attack recovers the correct offset in almost all
cases. Detailed accuracy rates are summarized in Table 3.

Comparison with Jump over ASLR. To compare against
prior attacks, we implement the attack from Jump over
ASLR [24] on multiple processors. On Skylake and newer
processors, the attack fails because the timing difference is
not significant enough to filter out the branch collision. On
the Haswell machine, we can reproduce the Jump over ASLR

Model Accuracy
i7-6700 100.00%
i5-8265U 99.92%
i7-9750 99.98%
i7-10710U 99.94%

Table 3: Accuracy of breaking KASLR with BunnyHop-
Reload.

attack, where it takes around 60 milliseconds and has close to
100% accuracy. Note that our attack has similar accuracy but
is significantly faster than Jump over ASLR.

7 The BunnyHop-Evict Attack

Cache-based timing attacks can be broadly classified by
the type of information measured by the attack. Time-
driven attacks measure victim process execution time to
infer the presence or absence of cache collisions, and in
turn infer the memory access patterns of the victim pro-
cess [4, 28, 53]. Time-driven attacks can be mitigated through
preloading [15, 55, 87], a mitigation technique that masks
delays in program execution time that are caused by memory
access patterns that miss the cache. Preloading loads program
memory into the cache before it is used to specifically avoid
memory access patterns that miss the cache.

In contrast, access-driven attacks measure and often manip-
ulate the state of the cache (the presence or absence of specific
cache lines in the cache) to infer memory access patterns of
the victim process. Access-driven attacks can be mitigated
through page coloring, a technique which separates security
domains within the cache such that an attacker and their vic-
tim cannot influence the cache state of the other [66, 86, 89].

In this section we introduce BunnyHop-Evict, a confused-
deputy attack [36] in which the instruction prefetcher is in-
duced into evicting the victim’s data from the cache instead
of just prefetching the victim code. Specifically, to cause evic-
tion, we train the branch predictor so that when the program
executes a target instruction, the prefetcher prefetches a se-
quence of memory locations that form an eviction set. As we
have seen in Section 3.1, prefetching brings the prefetched lo-
cation into the cache. This causes contention on the cache set,
resulting in an eviction of a target memory line. We harden the
table-based implementation of AES in OpenSSL to support
both preloading and page coloring. We then use BunnyHop-
Evict to mount an attack on the hardened implementation and
recover the last-round encryption key, completely bypassing
both mitigations.

7.1 Overview

Listing 4 shows a proof-of-concept target, an AES 128 ker-
nel module that presents an AP for user-space processes to

encrypt messages with a secret key. The implementation is
based on OpenSSL 0.9.8b which uses a T-table lookup during
the last-round of encryption. To mitigate time-driven cache
attacks, we apply preloading on Lines 6 to 10. To mitigate
access-driven cache attacks, we implement page coloring and
ensure that the user-space processes and our kernel module
use separate colors.

ssize_t device_read(char * buffer) {
» copy_buffer_to_aes_input();

s for (i =0; 0 < 16; i++) {

6 *(volatile u32*)&TeO[i * 16];
7 *(volatile u32*)&Tel[i * 16];
8 *(volatile u32*)&Te2[i * 16];
9 *(volatile u32*)&Te3[i * 16];
10 *(volatile u32*)&Te4[i * 16];

15 memory_barrier
7 AES_encrypt(input, output, &aeskey);

19 copy_aes_output_to_buffer();
0 return 0;

Listing 4: AES Kernel Module

Attacking the Victim. The key operating principle behind
BunnyHop-Evict is that an attacker can induce the victim into
prefetching an address of the attacker’s choosing at a specific
point in the program execution. We poison the victim so that
when Line 17 is executed the prefetcher will prefetch memory
to the cache, partially evicting the T-table and exposing the
victim to a typical time-based cache attack that can recover the
last-round key [53]. We choose Line 17 because this is after
the victim has loaded prefetched the entire T-table into the
cache but before they have started executing the encryption.
We accomplish this task by extending the techniques from
Section 3, where we show how a process can control the BTB
to control which addresses are prefetched by the prefetcher.

Experiment Setup. We perform these experiments on an In-
tel i7-6700 and an Intel i5-8265U, running Ubuntu 20.04 with
all Spectre countermeasures enabled.! The kernel is patched
to use page coloring to isolate kernel processes from user pro-
cesses in the cache. Moreover, to prevent concurrent attacks
on core-local caches, we disable hyperthreading.

1Retpoline, IBPB, IBRS_FW, STIBP, and IBRS enabled via the
spectre-v2=on kernel parameter.

7.2 Attack Description

The attack takes place over three distinct steps: BTB Poison-
ing, Victim Execution, and Key Recovery.

BTB Poisoning. First, the attacker aims to poison the BTB
so that the prefetcher will prefetch enough memory to evict
part of the preloaded T-table from the cache. The attacker
executes a function consisting of a chain of fourteen direct
jumps such that the virtual address of the first direct jump
shares bits [30:0] with the instruction on Line 17 and the
virtual addresses of the remaining branches share bits [11:0]
with the virtual addresses of Te4[0]. Since the L1, and L2
caches are virtually indexed, addresses that share bits [11:6]
are mapped to the same L1 and L2 cache set. Although the
last-level cache is physically indexed, on a page colored sys-
tem, virtual addresses that share bits [11:6] are also mapped
to the same last-level cache set.

Victim Execution. The attacker then executes device_read

through the /dev file system API. On Line 2 the victim copies
the plaintext provided by the attacker into a buffer managed

by the AES algorithm. Lines 5—10 preload the entire T-table

into the cache. Then, in Line 15 the victim waits until preload-
ing completes. Finally, in Line 17 the victim begins executing

the AES encryption algorithm. At this point, the prefetcher
queries the BTB and finds the poisoned entry from earlier.
The prefetcher prefetches memory addresses selected by the
attacker, which map to the same cache set as Te4[0] thereby

evicting it from the cache. Note that the prefetched memory

blocks are cached in all of the cache levels in the hierarchy, in-
cluding the L1-1 instruction cache, and the unified L2 and LLC

caches. At some point, the processor decodes the instructions
on Line 17 and executes the rest of the AES encryption algo-
rithm, where, during the last round, accesses to the Te4[0]

can influence the execution time of the victim. Finally, on

Line 19 the victim copies the now encrypted ciphertext back

to the attacker process.

Key Recovery. During this whole process, the attacker mea-
sures the total execution time of device_read. Since the
attacker induces the victim to evict Te4[0] from the cache,
any access to entries that share the same cache line as Te4[0]
must be served by system memory thereby increasing the total
execution time of the encryption.

7.3 Experimental Results

We repeat the attack 35,000 times with randomly generated
plaintexts and collect both the ciphertext and execution time
for each. We then compute the Pearson correlation between
the collected timing and targeted key byte guesses. That is,
we first determine whether the evicted table entry is accessed
for each combination of a key byte guess and ciphertext then
calculate the correlation between the predicted execution time
and the real execution time of the victim. Figure 5 shows
how the correlation changes with the number of ciphertexts.

—— Correct Guess: 0x30

0.10 A
00s il

0.00 [

Pearson Correlation

—0.05

0 5000 10000 15000 20000 25000 30000 35000
Number of Ciphertexts

Figure 5: Pearson correlation for guesses for the first key byte,
showing positive correlation for the correct guess 0x30.

The X axis shows the number of ciphertexts, whereas the Y
axis shows the Pearson correlation. Each line corresponds to
one key guess. As we can see, the lines for most key guesses
converge towards zero, indicating no correlation. However,
when the number of ciphertexts grows above 15,000, one line
corresponds to key byte guess 0x30, showing an evidence of a
positive correlation. Comparing to the ground truth, we find
that value of the corresponding key byte is indeed 0x30.

8 The BunnyHop-Probe Attack

Cache attacks can be classified into contention-based and
reuse-based attacks. So far, we have demonstrated BunnyHop-
Reload, a reuse-based BunnyHop attack, to infer the contents
of the BT B on the same thread. In this section, we demon-
strate BunnyHop-Probe, a contention-based BunnyHop attack
to infer the branch status of a sibling thread. BunnyHop-Probe
primes a BTB cache set, waits for the victim process and then
probes the BT B cache set. In the prime phase, the attacker
primes an entire BTB cache set with direct branches. The
attacker then exploits the known replacement policy (Sec-
tion 4.3) to identify the eviction candidate, i.e. the element
that will be predicted on the next miss in the target cache set.
In the probe phase the attacker uses BunnyHop to test if the
eviction candidate is still in the BTB. We first evaluate the
feasibility of BunnyHop-Probe with a toy example, then we
mount an attack on square-and-multiply-always implementa-
tion of RSA from GnuPG 1.4.14, which was proposed ads a
countermeasure for the Flush+Reload attack [84].

8.1 Toy Example

We evaluate the feasibility of BunnyHop-Probe on several
platforms with an artificial example. The code is listed in
Listing 5. The victim processes a secret byte bit-by-bit and a
branch is taken if the bit is one (line 8). The spy process
creates shared memory of victim’s binary and uses a Flush+
Reload technique to detect when the memis accessed by the

Model Accuracy
i7-6700 99.13%
i5-8265U 93.25%
i7-9750 87.13%
i7-10710U 91.88%

Table 4: BunnyHop-Probe accuracy.

victim (line 4). The spy process starts BunnyHop-Probe after
the mamis accessed by the victim. To evaluate the accuracy, we
collect 25 samples that observe all eight accesses to the mam
for each byte and we repeat the procedure for 100 randomly
picked bytes. The result is listed in Table 4. The BunnyHop-
Probe accuracy is close to 100% on the skylake machine
while on newer machines the accuracy is relatively lower.

victim: 1 SpYy:
repeat 8 times: 2 for (;;)
wait(); 3 {
memory_barrier; . flag = accessed(mem);
5 if (flag)
access(mem); 6 {
memory_barrier; prime_BTB_cache();
wait(); 8 wait();
secret(s); 9 probe_BTB_cache();
memory_barrier; memory_barrier;
1 check_result();
12 }
13 }

Listing 5: Two functions are executed on two hyperthreads.
The spy process contains an infinite loop to BunnyHop-Probe
the victim branch.

8.2 Attack Overview

The attack model assumes that a spy process is running on a
thread while the victim is decrypting messages with RSA
4096 bits on the sibling thread. They spy process is running
synchronously with the victim process.

Square-and-multiply-always RSA. To mitigate the Flush+
Reload attack of Yarom and Falkner [84], GnuPG 1.4.14 im-
plements a square-and-multiply-always exponentiation al-
gorithm. Different from the square-and-multiply algorithm,
which executes the multiplication only if the key bit is one,
the square-and-multiple-always algorithm constantly executes
a multiplication but it discards the result if the bit is zero.
The GnuPG implementation uses a conditional branch to test
whether the bit is one or not. It is this key-dependent branch
that we target. The branch is recorded in the BT B if the bit is
one. By observing the existence of the branch in the BTB, the
attacker can infer the key bit.

Tackle ASLR. Address Space Layout Randomization ran-
domizes all virtual address bits except the page offset bits,
normally bits [11:0]. The BTB is indexed with bits [12:4] or
[13:5] according to Table 2. With the deployment of ASLR,
an attacker needs to guess one or two bits of the BTB set bits
which leaves two or four possible BTB sets respectively. An
attacker only needs to always prime the same BTB set and
repeat the attack until clear signals are obtained. Statistically,
the probability of priming the correct BTB set would be 25%
or 50%, depending on the BTB index bits.

Experiment Setup. We perform the experiment on Intel
i7-6700, running Ubuntu 20.04 with Spectre-v2 mitigations.
In the experiment we assume the attacker always primes the
BTB cache set that holds the key-dependent branch.

8.3 Attack Description

The attack consists of three steps: BTB Priming, BTB Probing,
and Key Recovery.

BTB Priming. The attacker primes the BTB cache set with
eight short branches. Depending on the page offset of the
key-dependent branch, the attacker needs to pick the branch
offset carefully such that the branch address and branch target
address share all the bits except bits [9:0] according to Table 2.
To prime a BTB set and set the LRU state of the set, the
attacker executes all eight short branches and then selects a
branch to be least recently used.

BTB Probing. After priming the BTB cache set, the attacker
waits for a short period and then probes the BTB cache set.
Relying on the disclose of the BT B replacement policy, the
attacker probes one BTB slot the least recently used with
a NOP instruction. The attacker infers the existence of the
least recently used branch in the BTB with BunnyHop-Reload
technique. If the key-dependent branch is executed by the
victim, the least recently used branch will be evicted and the
instruction prefetcher will not fetch the target memory block.

Key Recovery. The attacker repeats the attack until enough
valid results that attacker primes the correct BTB cache set
are collected. Due to the adjustment of CPU frequency, the
probe results are not necessarily fall in the same Prime+Probe
slot among all repeated attacks. By analyzing multiple results,
the attacker considers the key-dependent branch is taken in
one Prime+Probe slot if the branch is taken in this slot with
over 40% possibilities among all results.

8.4 Experimental Results

In the experiment, the key-dependent branch is located at
0x56e, and thus we construct short branches with JMP 640.
Between the prime and probe procedure, we wait for 50,000
cycles. Between two Prime+Probe slots that observe the key-
dependent branch, eight Prime+Probe slots are not detecting
any key-dependent branch executions. We collect 100 samples

and consider the branch is taken in a Prime+Probe slot if the
branch is taken in this slot over 40% of the samples and we
are able to identify the first half key bits with 100% success
rate. Figure 6 shows partial results, a taken branch suggests
that the key bit is 1; otherwise it is 0 and thus the recovered
bits are 0100111011101011010111101.

Taken A

Not
taken 0 20 40 60 80 100 120 140

Figure 6: Prime+Probe result.

9 Countermeasures

In this section we explore possible countermeasures for Bun-
nyHop attacks.

BunnyHop-Reload and BunnyHop-Evict. The main cause
of both BunnyHop-Reload and BunnyHop-Evict is that the pro-
cessor allows cross-domain branch training. One approach to
prevent such cross-domain training is to associate the ID of
the security domain with the BT B entry, and allow training
only if IDs match. X86 processors already support address
space IDs (ASIDs) for the translation lookaside buffer. Ex-
tending this to the BTB s, therefore, a possible solution.

Alternatively, wiping the BTB state during a context switch
can also protect against the attack. For example, the operating
system can use IBPB during context switches or when switch-
ing between user and kernel space. However, this approach
does not protect against the SGX attack we show in Section 5,
because the operating system is not trusted. Instead, the SGX
interface can be changed to clear the BT B state on enclave
entry and exit.

BunnyHop-Probe The cause of BunnyHop-Probe is resource
contention within the set. One approach to prevent contention
across hyperthreads is to statically partition the BTB rather
than competitively sharing the BTB. Static partitioning only
protects against attacks between hyperthreads. Therefore this
mitigation would need to be deployed in combination with a
time-sharing mitigation such as clearing the BTB between
context switches.

Randomization has been proposed to protect against cache-
based attacks [48, 60, 80]. Zhao et al. [92] propose a
randomization-based approach for protecting the branch pre-
dictor.

Cryptography. Constant-time programming is a program-
ming style that prohibits differences in observable program
behavior based on program secrets [9, 13, 42]. Past works
have demonstrated that relaxing constant-time requirements
is risky [52, 63, 85]. Our BunnyHop-Evict attack demonstrates
this once again.

10 Conclusion

In this work we explore the instruction prefetcher of Intel Core
processors. We show that the prefetcher is directed by the
branch predictor, enabling the BunnyHop technique, which
transfers branch predictor state to cache state.

Our reverse engineering efforts show new structures in the
Intel microarchitecture that allow us to perform new attacks
that improve on existing work and overcome proposed de-
fenses.

Acknowledgments

We thank the Intel technical team for the feedback on parts of
this work.

This project has been supported by the Air Force Of-
fice of Scientific Research (AFOSR) under award number
FA9550-20-1-0425; an ARC Discovery Early Career Re-
searcher Award DE200101577; an ARC Discovery Project
number DP210102670; CSIRO’s Data61; the National Sci-
ence Foundation under grant CNS-1954712; and gifts by
AMD, Google, Intel, and Qualcomm;

Parts of this work were undertaken while Yuval Yarom was
affiliated with Data61, CSIRO.

References

[1] OxAdelalde. AssemblyLine, 2022. URL https://github.com/
OxAdelalde/AssemblylLine.

[2] Andreas Abel and Jan Reineke. Measurement-based modeling
of the cache replacement policy. In RTAS, pages 65-74, 2013.
doi: 10.1109/RTAS.2013.6531080.

[3] Onur Aciigmez. Yet another microarchitectural attack: ex-
ploiting I-cache. In CSAW, pages 11-18. ACM, 2007.doi:
10.1145/1314466.1314469.

[4] Onur Aciigmez and Cetin Kaya Kog. Microarchitectural attacks and
countermeasures. In Cryptographic Engineering, pages 475-504.
Springer, 2009.

[S] Onur Aciigmez, Getin Kaya Kog, and Jean-Pierre Seifert. On the
power of simple branch prediction analysis. Cryptology ePrint Archive,
Report 2006/351, 2006. URL http://eprint.iacr.org/2006/351.

[6] Onur Aciigmez, Cetin Kaya Kog, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In CT-RSA, pages 225-242, 2007.
doi: 10.1007/11967668_15.

[7]1 Onur Aciigmez, Billy Bob Brumley, and Philipp Grabher. New re-
sults on instruction cache attacks. In CHES, pages 110-124, 2010.
doi: 10.1007/978-3-642-15031-9_8.

https://github.com/0xAde1a1de/AssemblyLine
https://github.com/0xAde1a1de/AssemblyLine
https://doi.org/10.1109/RTAS.2013.6531080
https://doi.org/10.1145/1314466.1314469
http://eprint.iacr.org/2006/351
https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/978-3-642-15031-9_8

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida Garcia, and Nicola Tuveri. Port contention for fun and profit.
In IEEE SP, pages 870-887, 2019. doi: 10.1109/SP.2019.00066.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Frangois Du-
pressoir, and Michael Emmi. Verifying constant-time implementations.
In USENIX Security, pages 53-70, 2016.

Indirect Branch Control Extension. AMD Technology, October 2018.

Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cris-
tiano Giuffrida. Branch history injection: On the effectiveness of
hardware mitigations against cross-privilege Spectre-v2 attacks. In
USENIX Security, pages 971-988, 2022. URL https://www.usenix.
org/conference/usenixsecurity22/presentation/barberis.

Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval
Yarom. “ooh aah... just a little bit” : A small amount of side
channel can go a long way. In CHES, pages 75-92, 2014.
doi: 10.1007/978-3-662-44709-3_5.

Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security
impact of a new cryptographic library. In Latincrypt, pages 159-176,
2012.

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and
Anil Kurmus. SMoTherSpectre: Exploiting speculative execu-
tion through port contention. In CCS, pages 785-800, 2019.
doi: 10.1145/3319535.3363194.

Robert Brotzman, Danfeng Zhang, Mahmut Taylan Kandemir, and
Gang Tan. SpecSafe: detecting cache side channels in a specula-
tive world. Proc. ACM Program. Lang., 5(O0OPSLA):1-28, 2021.
doi: 10.1145/3485506.

Brad Calder and Dirk Grunwald. Next cache line and set prediction. In
ISCA, pages 287-296, 1995.

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A systematic evaluation of tran-
sient execution attacks and defenses. In USENIX Security, pages
249-266, 2019. URL https://www.usenix.org/conference/
usenixsecurityl9/presentation/canella.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang, Zhigiang
Lin, and Ten-Hwang Lai. SgxPectre: Stealing Intel secrets from SGX
enclaves via speculative execution. In EuroS&P, pages 142-157, 2019.

Wei Cheng, Jean-Luc Danger, Sylvain Guilley, Amina Bel Korchi,
and Olivier Rioul. Cache-timing attack on the SEAL homomorphic
encryption library. In PROOFS, Leuven, Belgium, 2022. URL https:
//hal.telecom-paris.fr/hal-03780506/document.

Chitchanok Chuengsatiansup, Daniel Genkin, Yuval Yarom, and
Zhiyuan Zhang. Side-channeling the Kalyna key expansion. In CT-RSA,
pages 272-296, 2022. doi: 10.1007/978-3-030-95312-6_12.

Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills, and Burzin A.
Patel. Optimization of instruction fetch mechanisms for high issue rates.
In ISCA, pages 333-344, 1995.

Intel Corp. Guidelines for mitigating timing side channels against cryp-
tographic implementations. https://www.intel.com/content/
www/us/en/developer/articles/technical/software-
security-guidance/secure-coding/mitigate-timing-side-
channel-crypto-implementation.html, 2022.

Shuwen Deng, Bowen Huang, and Jakub Szefer. Leaky frontends:
Security vulnerabilities in processor frontends. In HPCA, pages 53-66,
2022. doi: 10.1109/HPCA53966.2022.00013.

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

(34]

[35]

(36]

[37]

[38]

[39]

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In MICRO,
pages 1-13, 2016. doi: 10.1109/MICR0O.2016.7783743.

Dmitry Evtyushkin, Ryan Riley, Nael B. Abu-Ghazaleh, and Dmitry
Ponomarev. BranchScope: A new side-channel attack on di-
rectional branch predictor. In ASPLOS, pages 693-707, 2018.
doi: 10.1145/3173162.3173204.

Shugin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL
implementation of ECDSA with a few signatures. In CCS, pages
1505-1515, 2016. doi: 10.1145/2976749.2978400.

Michael Ferdman, Cansu Kaynak, and Babak Falsafi. Proactive instruc-
tion fetch. In MICRO, pages 152-162, 2011.

Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A
survey of microarchitectural timing attacks and countermeasures
on contemporary hardware. J. Cryptogr. Eng., 8(1):1-27, 2018.
doi: 10.1007/s13389-016-0141-6.

Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be
with you: A microarchitectural side channel attack on several real-
world applications of Curve25519. In CCS, pages 845-858, 2017.
doi: 10.1145/3133956.3134029.

Google. Retpoline: a software construct for preventing branch-
target-injection, 2018. URL https://support.google.com/faqs/
answer/7625886.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation leak-aside buffer: Defeating cache side-channel pro-
tections with TLB attacks. In USENIX Security, pages
955-972, 2018. URL https://www.usenix.org/conference/
usenixsecurityl8/presentation/gras.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache
template attacks: Automating attacks on inclusive last-level
caches. In USENIX Security, pages 897-912, 2015. URL https:
//www.usenix.org/conference/usenixsecurityl5/technical-
sessions/presentation/gruss.

David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games -
bringing access-based cache attacks on AES to practice. In IEEE SP,
pages 490-505, 2011. doi: 10.1109/SP.2011.22.

Berk Giilmezoglu, Andreas Zankl, M. Caner Tol, Saad Islam, Thomas
Eisenbarth, and Berk Sunar. Undermining user privacy on mo-
bile devices using Al. In AsiaCCS, pages 214-227, 2019.
doi: 10.1145/3321705.3329804.

Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. Adversar-
ial prefetch: New cross-core cache side channel attacks. In IEEE SP,
pages 1458-1473, 2022. doi: 10.1109/SP46214.2022.9833692.

Norman Hardy. The confused deputy (or why capabilities might have
been invented). ACM SIGOPS Oper. Syst. Rev., 22(4):36-38, 1988.
doi: 10.1145/54289.871709.

Jan Hoogerbrugge. Cost-efficient branch target buffers. In Euro-Par,
pages 950-959, 2000. doi: 10.1007/3-540-44520-X_134.

Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei
Zhao, Jian Zhai, and Mingshu Li. Bluethunder: A 2-level di-
rectional predictor based side-channel attack against SGX. IACR
Trans. Cryptogr. Hardw. Embed. Syst.,, 2020(1):321-347, 2020.
doi: 10.13154/tches.v2020.i1.321-347.

Intel. Deep dive: Retpoline: A branch target injection mitigation., 2018.

https://doi.org/10.1109/SP.2019.00066
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/3485506
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://hal.telecom-paris.fr/hal-03780506/document
https://hal.telecom-paris.fr/hal-03780506/document
https://doi.org/10.1007/978-3-030-95312-6_12
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://doi.org/10.1109/HPCA53966.2022.00013
https://doi.org/10.1109/MICRO.2016.7783743
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/2976749.2978400
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1145/3133956.3134029
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1145/3321705.3329804
https://doi.org/10.1109/SP46214.2022.9833692
https://doi.org/10.1145/54289.871709
https://doi.org/10.1007/3-540-44520-X_134
https://doi.org/10.13154/tches.v2020.i1.321-347

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Intel Corporation. Speculative execution side channel mit-
igations. https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-
guidance/technical-documentation/speculative-
execution-side-channel-mitigations.html, May 2018.

Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel
Corporation, February 2022.

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt,
Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar.
“they’re not that hard to mitigate”: What cryptographic library
develop-ers think about timing attacks. In IEEE SP, pages 632—649,
2022.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In |IEEE SP, pages 1-19, 2019.
doi: 10.1109/SP.2019.00002.

Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan.
Boomerang: A metadata-free architecture for control flow delivery. In
HPCA, pages 493-504, 2017.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In USENIX Security, pages 557-574,
2017.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading kernel memory from user space. In USENIX
Security, 2018. URL https://www.usenix.org/conference/
usenixsecurityl8/presentation/lipp.

Moritz Lipp, Andreas Kogler, David F. Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS:
software-based power side-channel attacks on x86. In IEEE SP, pages
355-371, 2021. doi: 10.1109/SP40001.2021.00063.

Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In
MICRO, pages 203-215, 2014. doi: 10.1109/MICR0.2014.28.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE SP, pages
605-622, 2015. doi: 10.1109/SP.2015.43.

Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yingian Zhang. A
survey of microarchitectural side-channel vulnerabilities, attacks, and
defenses in cryptography. ACM Comput. Surv., 54(6):122:1-122:37,
2021. doi: 10.1145/3456629.

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks. In
CHES, pages 69-90, 2017. doi: 10.1007/978-3-319-66787-4_4.

Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. Mem-
Jam: A false dependency attack against constant-time crypto
implementations in SGX. In CT-RSA, pages 21-44, 2018.
doi: 10.1007/978-3-319-76953-0_2.

Michael Neve and Jean-Pierre Seifert. Advances on access-
driven cache attacks on AES. In SAC, pages 147-162, 2006.
doi: 10.1007/978-3-540-74462-7_11.

José Luiz Negreira Castro de Oliviera and Diego Leonel Cadette
Dutra. Reverse branch target buffer poisoning. Relatério
Technico ES-783/22, Universidade Federal do Rio de Janeiro,
September 2022. URL https://cos.ufrj.br/index.php/pt-BR/
publicacoes-pesquisa/details/15/3061.

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1-20, 2006.
doi: 10.1007/11605805_1.

Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher.
Lord of the ring(s): Side channel attacks on the CPU on-chip ring
interconnect are practical. In USENIX Security Symposium, pages
645-662, 2021. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/paccagnella.

Colin Percival. Cache missing for fun and profit. In BSDCon 2005,
Ottawa, CA, 2005. URL https://www.daemonology.net/papers/
htt.pdf.

Jop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more.
In CT-RSA, pages 3-21, 2015. doi: 10.1007/978-3-319-16715-2_1.

Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. Frontal
attack: Leaking control-flow in SGX via the CPU frontend. In USENIX
Security, pages 663-680, 2021. URL https://www.usenix.org/
conference/usenixsecurity21/presentation/puddu.

Moinuddin K. Qureshi. New attacks and defense for
encrypted-address cache. In ISCA, pages 360-371, 2019. doi:
10.1145/3307650.3322246.

Glenn Reinman, Brad Calder, and Austin. Fetch directed

instruction prefetching. In
doi: 10.1109/MICR0O.1999.809439.

MICRO, pages 16-27, 1999.

Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan,
Dean M. Tullsen, and Ashish Venkat. | see dead pops: Leaking se-
crets via Intel/AMD micro-op caches. In ISCA, pages 361-374, 2021.
doi: 10.1109/ISCA52012.2021.00036.

Eyal Ronen, Kenneth G. Paterson, and Adi Shamir. Pseudo constant
time implementations of TLS are only pseudo secure. In CCS, pages
1397-1414, 2018.

Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong,
and Yuval Yarom. The 9 lives of Bleichenbacher’s cat: New cache
attacks on TLS implementations. In IEEE SP, pages 435-452, 2019.
doi: 10.1109/SP.2019.00062.

Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled.
Database reconstruction from noisy volumes: A cache side-
channel attack on SQlLite. In USENIX Security, pages 1019-
1035, 2021. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/shahverdi.

Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting
cache-based side-channel in multi-tenant cloud using dynamic page
coloring. In DSN Workshops, pages 194-199, 2011.

Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust website fin-
gerprinting through the cache occupancy channel. In USENIX Se-
curity, pages 639-656, 2019. URL https://www.usenix.org/
conference/usenixsecurity19/presentation/shusterman.

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcom-
ing browser-based side-channel defenses. In USENIX Security, pages
2863-2880, 2021. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/shusterman.

Florian Sieck, Sebastian Berndt, Jan Wichelmann, and Thomas Eisen-
barth. Util:Lookup: Exploiting key decoding in cryptographic libraries.
In CCS, pages 2456-2473, 2021. doi: 10.1145/3460120.3484783.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/3456629
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-76953-0_2
https://doi.org/10.1007/978-3-540-74462-7_11
https://cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/3061
https://cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/3061
https://doi.org/10.1007/11605805_1
https://www.usenix.org/conference/usenixsecurity21/presentation/paccagnella
https://www.usenix.org/conference/usenixsecurity21/presentation/paccagnella
https://www.daemonology.net/papers/htt.pdf
https://www.daemonology.net/papers/htt.pdf
https://doi.org/10.1007/978-3-319-16715-2_1
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://doi.org/10.1145/3307650.3322246
https://doi.org/10.1109/MICRO.1999.809439
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1109/SP.2019.00062
https://www.usenix.org/conference/usenixsecurity21/presentation/shahverdi
https://www.usenix.org/conference/usenixsecurity21/presentation/shahverdi
https://www.usenix.org/conference/usenixsecurity19/presentation/shusterman
https://www.usenix.org/conference/usenixsecurity19/presentation/shusterman
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman
https://doi.org/10.1145/3460120.3484783

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Viji Srinivasan, Edward S. Davidson, Gary S. Tyson, Mark J. Charney,
and Thomas R. Puzak. Branch history guided instruction prefetching.
In HPCA, pages 291-300, 2001.

Jakub Szefer. Survey of microarchitectural side and covert channels,
attacks, and defenses. J. Hardw. Syst. Secur., 3(3):219-234, 2019.
doi: 10.1007/s41635-018-0046-1.

Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen.
SecSMT: Securing SMT processors against contention-based covert
channels. In USENIX Security, 2022.

Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Meltdown-
Prime and SpectrePrime: Automatically-synthesized attacks exploiting
invalidation-based coherence protocols. CORR arXiv 1802.03802
http://arxiv.org/abs/1802.03802, 2018.

Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi
Hiyauchi. Cryptanalysis of block ciphers implemented on computers
with cache. In International Symposium on Information Theory and Its
Applications, pages 803—806, 2002.

Vladimir Uzelac and Aleksandar Milenkovic. Experiment
flows and microbenchmarks for reverse engineering of
branch predictor structures. In ISPASS, pages 207-217, 2009.
doi: 10.1109/I1SPASS.2009.4919652.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A practi-
cal attack framework for precise enclave execution control. In SysTEX,
pages 6-11, 2017.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
microarchitectural timing leaks in rudimentary CPU interrupt logic. In
CCS, pages 178-195, 2018. doi: 10.1145/3243734.3243822.

Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. LVI: hijacking transient execution through mi-
croarchitectural load value injection. In IEEE SP, pages 54—72, 2020.
doi: 10.1109/SP40000.2020.00089.

Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella,
Grant Garrett-Grossman, Adam Morrison, Christopher W. Fletcher,
and David Kohlbrenner. Augury: Using data memory-dependent
prefetchers to leak data at rest. In IEEE SP, pages 1491-1505, 2022.
doi: 10.1109/SP46214.2022.9833570.

Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. ScatterCache: Thwarting cache
attacks via cache set randomization. In USENIX Security, pages
675-692, 2019. URL https://www.usenix.org/conference/
usenixsecurityl9/presentation/werner.

Johannes Wikner and Kaveh Razavi. RETBLEED: arbitrary speculative
code execution with return instructions. In USENIX, pages 3825-3842,
2022.

Wenjie Xiong and Jakub Szefer. Survey of transient execution attacks
and their mitigations. ACM Comput. Surv., 54(3):54:1-54:36, 2021.
doi: 10.1145/3442479.

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.
Fletcher, Roy H. Campbell, and Josep Torrellas. Attack directories, not
caches: Side channel attacks in a non-inclusive world. In IEEE SP,
pages 888-904, 2019. doi: 10.1109/SP.2019.00004.

Yuval Yarom and Katrina Falkner. Flush+Reload: a high
resolution, low noise, L3 cache side-channel attack. In
USENIX Security, pages 719-732, 2014. URL https:

//www.usenix.org/conference/usenixsecurityl4/technical-
sessions/presentation/yarom.

[85] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A
timing attack on OpenSSL constant time RSA. In CHES, pages 346—
367, 2016. doi: 10.1007/978-3-662-53140-2_17.

[86] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS: A
dynamic cache partitioning system using page coloring. In PACT,
pages 381-392, 2014.

[87] Rui Zhang, Michael D. Bond, and Yingian Zhang. Cape: compiler-
aided program transformation for HTM-based cache side-channel de-
fense. In CC, pages 181-193, 2022. doi: 10.1145/3497776.3517778.

[88] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring
branch predictors for constructing transient execution Trojans. In
ASPLOS, pages 667-682, 2020. doi: 10.1145/3373376.3378526.

[89] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical
page coloring-based multicore cache management. In EuroSys, pages
89-102, 2009.

[90] Yi Zhang, Steve Haga, and Rajeev Barua. Execution history guided
instruction prefetching. In ICS, pages 199-208, 2002.

[91] Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In CCS,
pages 305-316, 2012. doi: 10.1145/2382196.2382230.

[92] Lutan Zhao, Peinan Li, Rui Hou, Michael C. Huang, Xuehai Qian,
Lixin Zhang, and Dan Meng. HyBP: Hybrid isolation-randomization
secure branch predictor. In HPCA, pages 346—359, 2022.

A Compare BunnyHop with Phantom JMPs

Wikner and Razavi [81] reports that on some AMD proces-
sors an arbitrary instruction can trigger speculative execution,
which is called Phantom JMP. To force the misprediction
of an arbitrary instruction, the branch history of the instruc-
tion needs to match the branch history of an indirect branch.
Unlike other spectre-BTB attacks [11, 43], the speculative
window of Phantom JMP is very short which allows only one
instruction to be speculatively executed. The root cause of
Phantom JMP is suspected to be the instruction prefetcher on
AMD processors.

In this paper, we reverse engineer the instruction prefetcher
on modern Intel processors in Section 3 and we show that
arbitrary instruction can be mispredicted to prefetch memory
blocks from the branch target. To compare with Phantom JMP,
we conduct experiments in Section 3 on AMD Ryzen 9 5950X
running Ubuntu 22.04 TLS with micro-code 0x0a201016. We
firstly verify that the prefetch depth is 15 memory blocks fol-
lowing the RET instruction. Then we repeat the experiment in
Section 3.5 to investigate the prefetching depth with temporal
restrictions. The result is shown in Figure 7. On the tested
AMD machine, we find that the prefetch depth is not affected
by the BTB content which is contrary to the behavior in Fig-
ure 2. Furthermore, we observe that when the hyperthread is
active, the sibling thread constantly prefetches five memory
blocks ahead.

Figure 7 shows that the instruction prefetcher is not af-
fected by the BTB content. Note that Phantom JMP requires

https://doi.org/10.1007/s41635-018-0046-1
http://arxiv.org/abs/1802.03802
https://doi.org/10.1109/ISPASS.2009.4919652
https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1145/3497776.3517778
https://doi.org/10.1145/3373376.3378526
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1109/SP46214.2022.9833570
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://doi.org/10.1145/3442479
https://doi.org/10.1109/SP.2019.00004
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

21

— |dle
18 A Busy '_'_'_’_
15

12 1

9.

Prefetch depth

6.

0 10 20 30 40 50
Number of NOP instructions

Figure 7: The temporal restriction does not affect the prefetch-
ing depth on AMD Ryzen 9 5950X.

matching the branch history of an arbitrary instruction and an
indirect branch. We hypothesize that the prediction of instruc-
tion prefetcher of AMD processor has multiple modes. Firstly,
if the fetched instruction matches the branch history of an
indirect branch, the instruction prefetcher starts prefetching
at the target address. At the same time, the back-end engine
starts speculative execution. In the scenario that there is no
match in the branch history buffer, the instruction prefetcher
simply prefetches 15 memory blocks ahead. We leave the task
to investigate the instruction prefetcher on AMD machine as
an future work.

