Checking Passwords on Leaky Computers: A Side Channel Analysis of Chrome’s
Password Leak Detection Protocol

Andrew Kwong”
UNC Chapel Hill
andrew @cs.unc.edu

Jonathan Berger
Bar Ilan University

Walter Wang
University of Michigan
walwan@umich.edu

Daniel Genkin
Georgia Tech

Jason Kim
Georgia Tech
nosajmik @ gatech.edu

Eyal Ronen
Tel Aviv University

jonathannl @walla.com genkin@gatech.edu eyal.ronen@cs.tau.ac.il
Hovan Shacham Riad Wahby Yuval Yarom'
UT Austin CMU Ruhr University Bochum

hovav@cs.utexas.edu

Abstract

The scale and frequency of password database compro-
mises has led to widespread and persistent credential stuffing
attacks, in which attackers attempt to use credentials leaked
from one service to compromise accounts with other ser-
vices. In response, browser vendors have integrated password
leakage detection tools, which automatically check the user’s
credentials against a list of compromised accounts upon each
login, warning the user to change their password if a match is
found. In particular, Google Chrome uses a centralized leak-
age detection service designed by Thomas et al. (USENIX
Security *19) that aims to both preserve the user’s privacy and
hide the server’s list of compromised credentials.

In this paper, we show that Chrome’s implementation of
this protocol is vulnerable to several microarchitectural side-
channel attacks that violate its security properties. Specifically,
we demonstrate attacks against Chrome’s use of the memory-
hard hash function scrypt, its hash-to-elliptic curve function,
and its modular inversion algorithm. While prior work dis-
cussed the theoretical possibility of side-channel attacks on
scrypt, we develop new techniques that enable this attack in
practice, allowing an attacker to recover the user’s password
with a single guess when using a dictionary attack. For modu-
lar inversion, we present a novel cryptanalysis of the Binary
Extended Euclidian Algorithm (BEEA) that extracts its in-
puts given a single, noisy trace, thereby allowing a malicious
server to learn information about a client’s password.

1 Introduction

The past few decades have witnessed a drastic increase in the
amount of usernames and passwords leaked via various data

*Work partially done while affiliated with the University of Michigan
TWork partially done while affiliated with the University of Adelaide

rwahby @andrew.cmu.edu

yuval.yarom@rub.de

breaches. This in turn led to an increase of credential stuffing
attacks, where attackers try using leaked credentials from one
service to breach accounts on other services. Prior works have
demonstrated that even post compromise, 6.9% of credentials
remain valid due to reuse, often for years [50].

However, the wide availability of datasets of breached cre-
dentials also has the potential to enable browsers and pass-
word managers to actively alert users when their specific
credentials are present in the dataset, protecting their account
from the risk of compromise. Indeed, most browsers have
launched some type of password alerting service, automati-
cally checking all credentials entered for prior vulnerabilities.

Their inclusion in a browser’s default configuration, how-
ever, raises significant privacy concerns from users, as pass-
words have to be shared with a credential checking service.
This prompted Google to incorporate a Private Set Intersec-
tion (PSI) protocol as part of Chrome’s Password Leak De-
tection mechanisms [50], removing the need to share users’
passwords or the server’s list of compromised credentials.

Another emerging threat to modern systems is the risk of
side-channel attacks. With a plethora of microarchitectural
attacks on cryptographic implementations, both from native
code [2, 6, 20, 24, 38, 39, 40, 43, 51, 52, 57], and from the
browser [3, 26, 28, 29, 37, 48, 53], it is imperative that crypto-
graphic protocols use side-channel hardened implementations
when processing sensitive information. With Google’s Pass-
word Leak Detection protocol [50] using highly customized
cryptographic implementations, in this paper we ask:

Is Chrome’s Password Leak Detection protocol vulnerable to
side-channels? If so, how can attackers exploit the Password
Leak Detection protocol to recover the users’ passwords?

1.1 Our Contribution

We analyze Google’s Password Leak Detection protocol, en-
abled by default in Chrome version 106 (latest at the time of
writing), and find that Chrome’s Password Leak Detection pro-
tocol leaks information via microarchitectural side-channels.
In particular, by monitoring the cache access patterns while
running this protocol, we are able to reduce the complexity of
brute-forcing user credentials such that the attacker often suc-
ceeds on the very first login attempt. Since Google’s Password
Leak Detection protocol is active on default in nearly all mod-
ern versions of the Chrome browser, our attack is applicable
to nearly every login attempt on the targeted machine.

In our analysis of Chrome’s Password Leak Detection ser-
vice, we found that the client side of the protocol contains
three different components that are vulnerable to side-channel
attacks, all leaking independently from one another: (i) using
scrypt on users’ input credentials (ii) using hash2curve on the
output of scrypt, and (iii) using BEEA to compute the modu-
lar inverse of the value used to blind the output of hash2curve.
The results of these three attacks are summarized in Table 1.
Attacking Memory Hard Hash Functions. In order to
prevent attackers from extracting breached credentials from
Google’s servers by repeatedly querying the Password Leak
Detection protocol, Google requires that all queries hash the
checked credentials using a memory hard hash function [44].
This has the effect of slowing down attackers interested in
extracting the server’s credential list via dictionary attacks, as
the computation of the hash digest for each dictionary entry
requires a large amount of memory.

Unfortunately, Chrome uses scrypt to hash the user’s cre-

dentials, a design that is inherently non constant time. By
observing scrypt’s input-dependent memory access patterns
using Prime+Probe, in Section 4 we demonstrate how attack-
ers can significantly reduce the cost to brute-force the target’s
credentials. While prior works have alerted to potential side
channel issues with scrypt’s design [11, 25], these approaches
fail in practice due to limitations in the bandwidth and accu-
racy of the current state-of-the-art side-channel techniques.
As such, we develop novel techniques that account for noisy
signals with a highly restricted view of the victim’s memory
access patterns, resulting in the first end-to-end cache attack
against the scrypt algorithm.
Attacking Hash2Curve. In addition to memory hard
hashing, Google’s Password Leak Detection protocol also
requires computing a Private Set Intersection (PSI) between
the client’s credentials and the server’s list of compromised
accounts. To that end, Google’s uses a hash to curve algorithm,
converting the output of scrypt into points on an elliptic curve.
Google then computes the intersection in a homomorphic
manner, avoiding the need to share user’s passwords or the
server’s list of compromised credentials.

The hash2curve algorithm, however, uses rejection sam-
pling [15], which is non-constant time and is explicitly dis-
couraged [35, Appx. A] due to side-channel concerns. In

Section 5 we empirically demonstrate the implications of
side-channel leakage due to rejection sampling by presenting
attacks on Chrome’s hash to curve implementation, using both
native and browser-based cache attacks. We also demonstrate
that browser-based cache-attacks are still possible on the latest
version of Chrome, despite multiple attempts at hardening.
Attacking Modular Inversion. As a final contribution, we
analyze Chrome’s modular inversion operation used during
the blinding of the hash digest of the client’s credentials. In
Section 6, we attack the Binary Extended Euclidian Algo-
rithm (BEEA) to show how a malicious password server can
obtain a digest of the client’s credentials using just a single
side channel trace. To accomplish this, we developed a novel
cryptanalysis of BEEA that allows an attacker to completely
recover the inputs, given only a single, noisy trace.

This directly violates the security guarantees of Chrome’s
Password Leak Detection, which aims to let clients query the
server without leaking information on their passwords. Using
our techniques, the server can recover a hash of the client’s
credentials, thereby enabling an offline dictionary attack.
Summary of Contributions: In summary, this work makes
the following contributions.

* We present the first side channel analysis of Chrome’s Pass-
word Leak Detection protocol.

* We empirically demonstrate the first end-to-end cache at-
tack against Chrome’s usage of the scrypt, allowing us to
practically brute force the client’s credentials (Section 4).

* We present an attack on Chrome’s hash2curve, using both
native code Flush+Reload and browser-based Prime+Probe
(Section 5).

* We present a novel cryptanalysis of the Binary Extended
Euclidian Algorithm (BEEA) that recovers inputs using
only a single noisy trace, and show that its usage in Chrome
leaks information about the client’s password, allowing ma-
licious servers to potentially breach the client’s credentials.
(Section 6).

1.2 Responsible Disclosure

We disclosed the vulnerabilities described in this paper to
Google through a Crbug report, and shared our paper with a
number of their engineers. We were able to contact the team
handling the backend of Chrome’s Password Leak Detection
service, and suggested and discussed potential mitigations.
Google stated that they intend to switch to a variant of Ar-
gon? hash function to mitigate our attack from Section 4, and
will use a constant-time hash2curve algorithm from [34] to
mitigate our attack from Section 5. At the moment, however,
Google’s protocol remains unchanged, as Google believes
that given the cost to mount our dictionary attack and the
scope of the threat model, the risk to users is minimal.

However, in response to our paper, Chrome mitigated our
attack on BEEA from Section 6 through computing the mod-
ular inverse by exponentiating by p — 2, thereby removing
BEEA entirely from Password Leak Detection.

Section | Component Attacker Capabilities Average Entropy Reduction (bits) | Required # of Traces
4 Scrypt Native Code 23.41 5
5 Hash-to-Curve Browser Code 0.24 5
6 BEEA Native Code + Blinded Hash Entire Hash' 1

Table 1: Summary of attacker capabilities and results. All three attacks are mutually independent, but can be combined for greater
information disclosure. The entropy reduction assumes a dictionary attack from the popular “rockyou.txt" password list, which
contains 14,341,564 passwords, or 23.77 bits of entropy. The average is calculated from the experimental outcomes weighted by
their probabilities, assuming that the attacker observes the number of login attempts indicated in the final column.

(U @) = Compute Q°
@ CreateRequest(u, p,n Verdict = QP € G?

TS

—_
Server

CreateResponse(G, Q%)

A***'

Change your password

The password you just used was found in a data breach. Google

Password Manager recommends changing this password now

© [e]

Figure 1. (Top) Overview of steps in Google’s Password
Leak Detection protocol. (Bottom) User interface displayed
by Chrome if the verdict is true.

2 Background

2.1 Chrome’s Password Leak Detection

In order to perform privacy-preserving password checking in
the Chrome browser, Google uses a custom protocol called
Password Leak Detection [50]. More specifically, Chrome’s
Password Leak Detection combines anonymity sets, memory-
hard hashing, and Private Set Intersection (PSI) [36] in order
to check if the given username and password pair is present
in a data set of compromised credentials, all while preserving
privacy against both malicious clients and malicious servers.
In this section we describe the Password Leak Detection pro-
tocol as implemented in Chrome 106, which differs slighty
from the description given in [50].

Protocol Overview. Figure | presents a high level overview
of Google’s Password Leak Detection protocol. The protocol
consists of four steps, which we now outline:

CreateDatabase. Before the Password Leak Detection server
can handle any requests, it must first hash, blind, and partition
its database of leaked credentials. Given the set of credentials,
S = {(uo,po),(u1,p1), ..., (ug, pe) }, the server first hashes
each username:password pair and partitions the database on
the n-bit prefix of the hashes of the usernames by computing:

' = ((H (). Hur)

where H() is the same hash2curve algorithm the client
used to compute Q. Then, the server generates its own se-
cret key for blinding, b, and blinds the database by computing:

(ui, pi) € S}

§" = {(Ui[O:n]7 sz) : (Ui[O:n]vHi) € S/}‘

CreateRequest. For each request, the client hashes their
username and password pair to an elliptic curve point Q using
a hash2curve algorithm, and then blinds Q with a secret key
a by computing Q“. The client then constructs request =
(U[/O:n] ,0%), where U[/O:n] is the prefix of a hash of the username.
Finally, the client sends request to Google’s Password Leak
Detection server.
CreateResponse. The Password Leak Detection server
responds to the request by blinding Q¢ with b to generate Q.
The server then computes G, the set of blinded credentials
with username hash prefixes equal to the request’s as:
G={H} : (Ui, H}) € $" and Uijg,y) = Ujg,,; }-
The server then returns the tuple response = (0%, G).
Verdict. Upon receiving the response, the client uses Diffie-
Hellman private set intersection [36] to determine whether
its credentials have been leaked. The client calculates the
modular inverse of its secret key a, uses it to unblind the
doubly blinded hash by computing (Q*)“71 = 0", and finally
checks if Q” € G, indicating compromise.

Our focus is on analyzing the side channel leakage from the
CreateRequest phase; we now describe this phase in greater
detail. See [50] for the complete protocol details.
CreateRequest in Detail. Algorithm | outlines the Cre-
ateRequest phase. The client begins by generating a random
nonce a (Line 2), then creates the string s by canonicalizing

1: function CREATEREQUEST(u, p, n)

2 a+ RAND()

3 u' < CANONICALIZE(u)

4: U + SHA256(u')

5 H<scrypt(d,p)

6: Q < hash2curve(H)

7. Q%+« BLIND(Q,q)

8 U, < BYTESUBSTRING(U,n)
9: return (U, Q%)

Algorithm 1. CreateRequest: The client uses this function
to hash and blind the username:password pair to send to the
server. The deployed version in Chrome uses this algorithm
with the prefix length of the username set to n = 26.

the username u and appending the password p to the canoni-
calized username. More specifically, for a username password
pair (u, p) = (“user@gmail.com”, secret), the canonicalized
username and concatenated password is s = “usersecret”.
The client then passes the canonicalized tuple as input
to scrypt, a memory-hard hashing algorithm, to compute
H < scrypt(s). This digest is input to Chrome’s hash2curve
algorithm, producing a point Q < hash2curve(H) on the
NIST P-256 elliptic curve. Next, the client blinds the hashed
point by computing Q“, where we use multiplication to de-
note the elliptic curve group operation. Finally, the client com-
putes request = (SHA256(u)(o.,), Q) where SHA256(u))o.
denotes the n least significant bits of the SHA256 hash of u.
Comparison With the Original Protocol. Thomas et al.
[50] evaluated a slightly different version of this protocol,
where the client computes request = (Hjg.,}, Q%), with Hy.,
being the digest resulting from computing scrypt over both
the client’s username and password; this has the downside
that it leaks information about the user’s password. To ad-
dress this, the authors also propose a Zero-Password Leakage
Variant [50, §3.2] that is similar to Algorithm | except that it
uses a memory-hard hash function for computing both U and
H (lines 4-5, Alg. 1); the authors cite the cost of a second
memory-hard hashing step as a disadvantage. Algorithm 1
which is deployed in modern versions of Chrome, does not
use a memory-hard hash function to compute U, thus avoiding
the downside of the original Zero-Password Leakage Variant.

2.2 Cache Attacks

A large body of literature examines how two processes can
inadvertently reveal sensitive information to each other due
to them sharing the same memory cache [23, 30, 31, 43, 57].
These works show how a victim process’s memory accesses
influence the state of the cache, and that an attacking process,
called the spy process, can deduce what the victim accessed
by indirectly measuring the state of the cache. The three cache
attacks relevant to this paper are described below.

Prime+Probe [43]. This attack only requires that the spy
and victim share some level of the cache hierarchy. To carry
out this attack, the spy first builds an eviction set, which is a

set of addresses that are “congruent” (i.e. mapped to the same
cache set) with the targeted cache line.

The attacker then primes the cache set by accessing each
address in the eviction set, thereby bringing them into the
cache. To determine if the victim accessed memory that is
congruent with the targeted cache set, the spy process probes
the cache set by timing accesses to each element in the evic-
tion set; if any access takes longer than an L3 hit, the attacker
infers that the victim brought a cache line into the probed
cache set and evicted an element in the eviction set, thereby
revealing the victim’s access to the targeted cache set.
Flush+Reload [57]. This attack has stricter requirements
than Prime+Probe, as it needs the spy and the victim to share
memory (e.g., the spy and the victim access a de-duplicated
library). In this attack, the spy process prepares the cache by
flushing the targeted cache-line before the victim performs
some action, and then reloads it after the victim finishes. By
measuring the reload speed, the spy learns whether the victim
brought the targeted cache-line into the cache. Compared
to Prime+Probe, Flush+Reload samples more quickly, and
works with cache-line, rather than cache-set, granularity.
Flush+Flush [30]. This attack is similar to Flush+Reload,
with the difference that instead of reloading the targeted cache-
line, the spy simply flushes it again and measures the execu-
tion time of the clflush instruction; a longer time indicates that
the cache-line was present in the cache. While Flush+Flush
samples at a rate nearly 7 times faster [30] than Flush+Reload,
it suffers from a lower accuracy [21].

3 Threat Model

In our analysis, we uncovered three separate components
within Chrome’s Password Leak Detection that leave the
client vulnerable to three separate attacks. Each attack reveals
information about the client’s credentials, and the attacks can
all be launched independently from one another. As such,
each attack assumes a different threat model, with differing
preconditions, and extracts different amounts of information
from the victim. See Table 1.

Attack on scrypt. Following the standard threat model for
microarchitectural attacks, in Section 4 we assume that the
attacker can execute native code under the context of an un-
privileged user process on the client’s machine. Furthermore,
we assume that the victim is submitting his credentials while
logging into a website on a completely unmodified Chrome
browser. The attacker then uses side-channels to extract infor-
mation on the victim’s execution of scrypt that will reduce the
attacker’s search space when conducting a dictionary attack
on the victim’s input credentials.

Attack on hash2curve. For our attack on hash2curve (Sec-
tion 5), we again assume that the victim is submitting his
credentials to a completely unmodified Chrome browser. We
relax the assumptions on the attacker, however, and only as-
sume that the attacker has Javascript / Web Assembly code
running within the victim’s browser. This can occur when

the victim navigates to a web page controlled by the attacker.
The attacker aims to accomplish the same goal as with the
scrypt attack: extract information on the victim’s execution of
hash2curve to reduce the search space for a dictionary attack.
Attack on BEEA. The design of Chrome’s Password Leak
Detection is such that both client and server are mutually
untrusting. That is, even the server should not learn anything
about the clients’ credentials, and Password Leak Detection
is designed with a malicious server in mind.

Thus, for our attack on BEEA, we assume that the attacker
has access to the blinded output of the hash2curve, which is
true when the attacker colludes with the server. We also note
that this access to the blinded point is safeguarded only by
TLS; as such, any attacker that can compromise the connec-
tion can also access the blinded point. This could occur via
collusion with a TLS middlebox, or even a TLS Enterprise
Root CA certificate installed on the victim’s machine.

For this attack, in Section 6 we assume the attacker has
native, unprivileged code running on the victim’s machine,
and that he attempts to extract information on the victim’s
execution of BEEA in order to recover the blinding factor.

4 Attacking Scrypt

In this section, we explore how to leverage a side-channel
attack against scrypt as used in Chrome to leak information
about its inputs. We empirically demonstrate how to use a
combination of cache attacks to recover a small subset of the
accesses into scrypt’s internal memory, which in turn enables
an adversary to launch an efficient, offline dictionary attack
against the username:password pairs used as input into scrypt.

After examining how scrypt leaks to an ideal side-channel
attacker, we relax the requirements and demonstrate how we
performed the attack in practice, with a much weaker attacker.
scrypt in Chrome. Chrome’s Password Leak Detection
protocol uses scrypt in Line 5 of Algorithm 1, when the client
hashes the username and password together. In this scenario,
scrypt serves the function of preventing an adversarial client
from efficiently using the Password Leak Detection service
to confirm the validity of guessed leaked credentials.

More specifically, the scrypt algorithm [45] is a key-
derivation function (KDF) that is memory-hard [44]. In con-
trast to password hashing algorithms that rely on being com-
putationally expensive, scrypt was designed to require a large
amount of memory, thus making parallelism impractical, as-
suming it is harder to scale up memory than to scale up com-
puting power. This allows Password Leak Detection to better
resist attackers employing ASICs or FPGAs to brute force the
server’s dataset with massive parallellism.

Achieving Memory Hardness. At a high level, scrypt
achieves its memory-hard property by requiring input-
dependent random accesses into a very large array. While
this forces attackers to store large arrays in memory, it also

IThis attack recovers all 256 bits of the password hash. In reality, however,
the users’ passwords have far less than 256 bits of entropy.

1: function SCRYPT(P,S,N,r, p,dklen)

2 B[0] || B[1]]|| ... || B][p — 1] + PBKDF2(P,S, 1,128 rx p)
3: fori=0top—1do

4 Bli] = scryptROMix(r, B[i],N)

5. DK « PBKDF2(P,B[0] || B[1]| .. || B[p — 1], 1,dkLen)

Algorithm 2. Scrypt: The function first uses the PBKDF2
key-derivation function to create p blocks each of length 128
r bytes. Each block is then transformed by the scryptROMix
function. The output is the derived key DK.

means that scrypt is non—constant-time. As noted above, pre-
vious works [11, 25] have theorized that cache attacks against
scrypt are possible due to its inherently non—constant-time
nature. Our attack, however, is the first concrete, end-to-end
attack on a memory-hard hash function.

4.1 The Scrypt Algorithm

Before describing our attack on scrypt, we now outline the
relevant portions of the scrypt algorithm as it pertains to our
attack against Chrome’s Password Leak Detection. We refer
the reader to RFC7914 [45] for a more complete specification.
Notation. Following the notation of [45], the scrypt algo-
rithm takes the following parameters: P, the passphrase to be
expanded; S, the salt; N, the CPU and memory cost parameter;
r, the block size parameter; p, the parallelization parameter;
and dklen, the length of the derived key.

Scrypt Overview. Algorithm 2 is an overview of the scrypt
algorithm. With the exception of P, the password, all parame-
ters, including the salt, are publicly accessible values that are
fixed across all users. Thus, the password value P is the only
variable input to scrypt as used in Password Leak Detection.

In Line 2, B, an array of length p where each element is a
block 128 x r bytes in length is initialized to the output of the
PBKDF2 key derivation algorithm. Then, the loop on Line 3
iterates over each block and replaces it with the value obtained
by calling the function scryptROMix(r, B[i],N). Finally, the
password P and the blocks B, along with the desired output
length dklen, are passed to PBKDF2 to produce the derived
key DK. Most relevant to our attack is Line 4 of Algorithm 2,
as scrypt’s scryptROMix is highly non constant-time.
scryptROMix. The scryptROMix function (Algorithm 3) is
responsible for both scrypt’s memory hardness and its non—
constant-time-ness. X is first set to the input block B. Then, the
For-loop at Line 3 initializes V, an array of size N, by setting
V[i] at each iteration to be equal to scryptBlockMix'(X). We
will refer to this first For-loop as the Initialization Phase. The
scryptBlockMix function takes an input array of a given size,
mixes the bytes, and returns an array of equal size.

The second For-loop, beginning at Line 6, iterates N times
and makes a non—constant-time, input-dependent memory
access (IDMA) each time. We call this second For-loop the
Access Phase. The IDMA occurs at Line 8, where j was com-
puted by the previous line as j = Integerify(X) mod N. In

1: function SCRYPTROMIX(r,B,N)
2 X<+B
3 fori=0toN—1do > Initialization Phase
4 V]« X
5: X = scryptBlockMix(X)
6 fori=0toN—1do > Access Phase
7 J = Integerify(X) mod N
8 T=X & V][] > Input-Dependent Memory Access
9 X = scryptBlockMix(T")
10: return X

Algorithm 3. scryptROMix: The Initialization Phase sets
each V[i] to scryptBlockMix'(X). The Access Phase uses j,
a function of the input to scrypt, as an index into V, thereby
making scrypt non constant-time.

turn, Integerify(X) simply returns the final 4 bytes of X, inter-
preted as a little-endian unsigned integer. Since X comes from
the output of PBKDF2 via B, which is dependent upon the in-
put to scrypt, j is also a function of scrypt’s input. Thus, when
Jj is used as the index into V in Line 8, Algorithm 3 makes
an IDMA that is dependent upon the password P, making the
entire hashing operation non constant-time.

4.2 Idealized Side Channel Analysis of Scrypt

In this section we perform a side channel analysis of the scrypt
hashing algorithm assuming an all powerful attacker that can
perfectly observe every single memory access into V.
Memory Layout Mapping. scrypt’s leakage stems from the
IDMA. As the victim executes the For-loop of the Initializa-
tion Phase, it accesses each memory location in V sequentially
(Line 4), with a call to scryptBlockMix in between each access
(Line 5). These sequential accesses result in the diagonal line
of hits comprising the left part of Figure 2. As the elements
of V are accessed sequentially, an attacker that observes the
memory accesses in the Initialization Phase can learn which
elements of V correspond to which memory locations.
Obtaining an Input Dependent Access Pattern. The second
half of the accesses in Figure 2 comprises the IDMAs. These
accesses are governed by the values of j, which in turn depend
on scrypt’s secret input P, the password. The attacker learned
which memory locations correspond to which indexes and
can thus correlate these accesses to the Initialization accesses.
This allows the recovery of the values of j at each iteration of
the loop in the Access Phase. We refer to the sequence of j
indexes (jo, j1,--.,jn—1) into V as the V-Access-Pattern.
Observing Line 5 of Algorithm 1, the V-Access-Pattern is
dependent upon the client’s canonicalized user name »’ and
password p. For a specific user name « and password p we
denote by VAP(u, p) the access pattern to V resulting from
the invocation of Password Leak Detection on u and p.
Leakage Quantification. The precise amount of leakage
(in bits) available from VAP(u, p) depends strongly on the
concrete parameter choices used by Chrome’s Password Leak
Detection protocol. First, we note that Chrome sets N = 4096

® Ideal Observation m Actual Observation

°

8 ® ®

°

3o | |
= ° °
g 4 ®)
£ °

2 | |

° °

0
Target - - ! | B
Cache ¢ 5 10 15
Line Round #

Figure 2. While an idealized attacker can observe each mem-
ory access indicated by the blue dots, a realistic attack can
only observe memory accesses into a single cache set (yellow
boxes) projected onto a single-dimensional trace, represented
by the red dots.

when invoking scryptROMix (Algorithm 3). Thus, the leakage
available via a perfect observation of VAP(u, p) is theoreti-
cally upper bounded by log>(4096*°%) = 49152 bits. How-
ever, this theoretical limit is further bounded by the size of
the input space into scrypt’s scryptROMix function. Analyz-
ing the parameter choices for Algorithm 2, we observe that
Chrome sets p = 1 and r = 8. Thus, the call to the PBKDF2
routine in Line 2 of Algorithm 2 produces a total of 128 -8
bytes of output, mapping passwords to a digest space of size
28192 Finally, given that [50] estimate roughly 23.4-31.2 bil-
lion unique credential pairs, we expect each username and
password pair (u, p) to create its own distinct VAP(u, p).
Credential Recovery via Dictionary Attacks. As each
username and password pair (u,p) creates it own distinct
VAP(u,p), an attacker can recover u and p from their
VAP(u,p) by mounting a dictionary attack. That is, given
a plain-text file F' of compromised usernames and passwords,
an attacker can pre-compute the dictionary

DICT (F) := {(u",p* VAP(u",p")) : W(u,p") € F}. (1)

Next, during the online phase, in case the attacker ob-
tains some V-Access-pattern VAP(u,p) corresponding to
an attacker-unknown credential (u,p), it is possible to re-
cover (u, p) with high probability by performing a search of
VAP(u, p) in F. Finally, we note that this attack violates the
requirement that the Password Leak Detection server acts as
an inefficient oracle, as only lookup operations over DICT (F')
are used during the online phase, while the pre-computation
of DICT (F) from a list of compromised credentials F can be
done entirely offline via Equation (1).

4.3 The Reality of Cache Attacks

The previous subsection analyzed scrypt through the lens of
a perfect microarchitectural adversary, capable of completely

reconstructing scrypt’s memory access patterns. While similar
approaches were proposed in prior works [11, 25], in this
section we outline the challenges in empirically realizing
this theoretical attack. As we show, these challenges result
in an extremely limited view into the V-Access-pattern for
any given scrypt execution, necessitating a different approach.
In the following subsections, we outline our solutions and
demonstrate the first end-to-end attack on scrypt.

Challenge 1: Memory Coverage. The theoretical attack
described in Section 4.2 assumes that the attacker can probe
all cache sets in between every iteration of both the For-loops
in Algorithm 3. This would be required to ensure that no
memory access into V' is missed, especially during the IDMA
where the value of j cannot be predicted by the attacker ahead
of time. In practice however, the loop in the Access Phase
executes in less time than it takes to Prime+Probe a set, so
an attacker must somehow slow the victim in order to have
a chance to probe even a single cache set at each iteration of
the loops. From a signal analysis perspective, this results in
the attacker’s view of Figure 2 being limited to accesses to a
single cache set, i.e. the yellow boxes.

Challenge 2: Congruent Cache Lines. There are two yellow
boxes, indicating that the attacker views multiple indexes
into V, because the array V is large enough to span multiple
congruent cache lines. Congruent cache lines are lines that
map to the same cache set, thereby preventing a Prime+Probe
attacker from distinguishing between accesses to addresses
that map to congruent cache lines.

As Chrome parameterizes scrypt with N = 4096, r = 8, and
p =1, this results in V being an array of 4096 elements with
each element 1024 bytes in length, spanning 4MiB total. Next,
as the typical L3 cache on Intel machine uses 0.5 MiB ways,
we expect that on average any given element of V will be share
the same cache set with (4096 % 1024) /(0.5 1024 % 1024) =
8 other elements. Thus, rather than observing a single hit
during scrypt’s Initialization Phase followed by a single hit
during the Access Phase, the attacker should expect to see
8 hits during the Initialization Phase and an average of 8
corresponding hits during the Access Phase.

Empirically demonstrating this issue, we executed an in-
strumented version of Chrome’s scrypt code while monitoring
the accesses to a single cache set. The top graph in Figure 3
illustrates the access times, where we added the results of
150 scrypt traces corresponding to the same cache set. The y-
axis measures the number of times a cache-hit was observed,
while the x-axis indicates which round it was recorded in. In
this example, there are roughly 9 peaks for the Initialization
Phase followed by another 9 for the Access Phase, which is
close to what is expected.

Challenge 3: Noise. Further complicating the attack is the
presence of noise, which prevents us from perfectly learning
which n indices are accessed at which rounds in the Access
Phase. This can be seen in the Figure 3(bottom), which shows
a single trace containing 80 hits, though only 16 are expected.

Initialization Phase Access Phase

]
:: 100 l. — 1T 1
5 1.

o 50 . .
£ L L Y -
St zi NBL) bk

Cache

Hit

0 2500 5000 7500

Iteration of scryptBlockMix

Figure 3. On top is what is obtained from averaging across
150 samples of a custom scrypt victim that used the same
memory locations for V each time. In reality, we have to use
a single-trace, as seen below in red, because Chrome uses
different memory locations for V every run.

A natural approach to mitigating this issue is averaging the
access time across multiple experiments, as was done in the
top graph of Figure 3. However, this is not possible in the
case of attacks on unmodified versions of Chrome because
Chrome’s implementation of scrypt allocates a different set
of physical memory locations to store V each time. Thus, we
developed techniques to overcome the noise and analyze each
experiment in isolation, as opposed to combining the results
across multiple experiments.

4.4 Attacking Scrypt in Chrome

Having outlined the issues with the theoretical attacks on
scrypt considered in prior works, we now demonstrate how
to attack the scrypt implementation used in an unmodified
Chrome browser’s Password Leak Detection protocol.

Step 1: Observing Control Flow. In order to observe the
memory access patterns into the V array during every iteration
of both the For-loops in Algorithm 3, we first need to establish
a ticker, or a marker that indicates the beginning of a new
round in either of the For-loops. Since the scryptBlockMix
function is called once per iteration, we created our ticker
by repeatedly using the Flush+Reload attack on a memory
addresses holding the code of this function. We will use this
ticker as an indicator of start every iteration of the For-loops
in Algorithm 3, allowing us to assign every subsequent side
channel observation to its corresponding loop iteration.

Step 2: Performance Degradation. Next, as the iterations
of the For-loops in Algorithm 3 are so short in duration, we
also had to slow the execution of the scryptBlockMix function
using a performance degradation attack [8]. To that aim, we
repeatedly used the clflush instruction in order to flush a code
region corresponding to the Salsa 20 Core function, which is
repeatedly called inside scryptBlockMix.

Step 3: Prime+Probe. With the ticker and performance-
degradation established, we choose a random cache set and
mount a Prime+Probe attack on it after each occurrence of
the ticker. As outlined in Section 4.3, the memory layout of V
inside the CPU’s cache implies that mounting a Prime+Probe
attack on a given cache set discloses when an access is per-

formed to any of the roughly 8 congruent elements of V, with-
out the ability to further distinguish between the elements.

4.5 Handling Noise

As outlined in Section 4.3, a further issue that complicates our
attack is the presence of noise, which takes the the form of off-
sets in the ticker and additions or deletions in the Prime+Probe
cache hits. As noted above, we cannot simply average out
the noise over multiple traces, since Chrome’s scrypt imple-
mentation ends up using a different set of physical memory
locations to store V each time. Thus, rather than combining
several measurements into a clean trace, we instead overcome
the noise while analyzing each trace in isolation.
Prime+Probe Noise. When we conduct the Prime+Probe
attack on a cache set, we see a large amount of false positive
noise, where we record cache hits during rounds where there
should not be. In addition, we observed a minimal amount of
false negative noise, where cache hits are missing.

To overcome this, we implement a scoring system for our
dictionary attack, where we assign points to candidate pass-
words based off how well they “fit" the results from a trace.
Given an index jo that is accessed during the Initialization
phase, the attacker can pre-compute at which rounds during
the Access Phase V[j] will be accessed in case the password
candidate is correct. For each of those rounds in the Access
Phase which the Prime+Probe trace contains a memory ac-
cess, the candidate password’s score is incremented by 1.

We repeat the above approach for each index,

J0sJ1y--+s ju—1, for which accesses are detected during
Initialization Phase, in order to compute the candidate’s final
score. Finally, after applying this approach on all password
candidates in the dictionary, we rank the highest scoring
candidates as the most likely passwords.
Ticker Noise. While the above approach is useful for han-
dling noise present in the accesses to V obtained using the
Prime+Probe channel, we must adapt this algorithm to also
account for noise that is present in our Flush+Reload ticker.

We begin by recalling that we use the ticker to determine
at which round the accesses into V are made, during both
Initialization and Access phases. Due to both false negatives
and false positives, the round corresponding to the memory
access is unfortunately rarely correct.

Denoising the Ticker During Initialization. We observe
that ticker noise is most damaging during the Initialization
Phase. If the ticker is off, then our algorithm ends up assign-
ing points for the trace fitting the wrong V-Access-Pattern.
Fortunately for the attacker, however, the accesses to V during
the Initialization Phase occur deterministically, with elements
of V accessed sequentially (see Line 4 of Algorithm 3). Thus,
the attacker learns some of the low bits of the index due to
the elements of V being smaller than one page. In particu-
lar, each element of V is 1024 bytes, meaning that 4 fit into
each page, and for each j; accessed during the Initialization
Phase, the attacker learns j;(mod 4). With this optimization,

we empirically found it optimal to expanding our scoring al-
gorithm to also consider the indexes that match in the low 2
bits immediately above and below where the hit occurred.
Determining the Transition Point. Next, after denoising the
ticker during the Initialization Phase of Algorithm 3, we must
locate the “halfway point": the point in Line 6 in Algorithm 3,
just before the second For-loop starts. This allows us to realign
the trace after drifting for 4096 rounds in the Initialization
Phase. We do so by exploiting the fact that one iteration of
the loop in the Initialization Phase (Line 3) executes more
quickly than one iteration in the Access Phase (Line 0) due
to the additional code at Lines 7 and 8. Thus, by looking
for a point where the time between ticker hits consistently
increases, we are able to identify the halfway point, allowing
us to identify the ticker’s transition to the Access Phase.
Denoising the Ticker During Accesses. Ticker noise during
the Access Phase has a more straightforward solution. When
searching for the hits in the Access Phase that correspond to
the indices found during the Initialization Phase, the attacker
simply expands her search for any hit within 10 rounds of
the expected location. We empirically found 10 to be a good
compromise between being too small to overcome the noise,
and being so large as to generate too many false positives.
Avoiding Averaging. Overall, we were able to combine
the above denoising and scoring techniques into an algorithm
to identify candidate passwords based on how well they fit
the limited, noisy information the attacker gained on the V-
Access-Pattern. This improves on prior theoretical attacks on
scrypt [11, 25], which assumed the attacker has a noiseless
and perfect access to the V-Access-Pattern.

4.6 Empirical Evaluation

We now evaluate the effectiveness of our attack on Chrome’s
Password Leak Detection protocol.

Experimental setup. We conducted our attack against an
unmodified Chrome binary running on an Acer Aspire E 15
laptop, equipped with 8GiB of DDR4 memory and an Intel
15-8250U CPU. The i5-8250U features 4 cores and § threads
and is equipped with a 6MiB 12-way set associative L3 cache.
Our machine was running Ubuntu 20.04.3 with Linux kernel
version 5.8.0-44.

Attack Scenario. Assuming an attacker with native un-
privileged code execution on the target machine, we imple-
mented the attack described in this section using the Mastik
toolkit [56]. We ran our attacker against an unmodified ver-
sion of the Chrome browser, and evaluated our attack against
10 randomly chosen passwords from the “rockyou.txt" dic-
tionary. For each password, the victim browser submitted the
username:password pair of (“z", pw) into a website 5 times,
where pw was the randomly chosen password from “rock-
you.txt". This resulted in our side-channel attacker obtaining
5 traces for each password the victim submitted, where each
trace is the result of using side-channels to leak information
about the victim’s V-access-pattern.

A Dictionary Attack. With the collected traces in hand, we
applied the approach described in Section 4.5 and conducted
an offline dictionary attack. We follow the precedent of pre-
vious works and benchmark our attack on the “rockyou.txt"
password file, which contains 14,341,564 plaintext passwords
stolen during the 2009 RockYou data breach.

We computed the V-access-pattern for every entry in the
entire “rockyou.txt" file and scored them against the 10 sets of
traces corresponding to the 10 passwords the victim submit-
ted. We ran this computation on an Intel Xeon server machine,
featuring a Platinum 8352Y CPU, 128 cores, and 1.8TB of
memory. It took about 8400 core hours of offline computa-
tion to complete the dictionary attack, or about 3 days when
parallelized across all 128 cores.

The results of our end-to-end attack are displayed in Fig-
ure 4. The correct password ended up scoring higher than
all other passwords in the dictionary 80% of the time. Thus,
if the attacker were to attempt to log in with the candidate
passwords in descending order, the attacker would success-
fully log into the victim’s account on the very first try, 80%
of the time. In the worst case, the attacker would succeed on
the 6th try. Finally, we note that with such a low number of
attempts required for success, no reasonable amount of rate
limiting on password attempts can prevent our attacker from
compromising the target’s account.

Frequency
ON MO O®

[-
1 2 3 4 5 6

Number of login attempts until success

Figure 4. Histogram of the results from our attack on scrypt in
an unmodified Chrome browser. 80% of the time, the attacker
guesses the correct password on the very first attempt.

5 Attacking Hash2Curve

Moving away from attack Password Leak Detection scrypt im-
plementation, in this Section we will examine how Chrome’s
hash2curve usage reveals bits of the user’s credentials. Before
demonstrating end-to-end attacks from both native code and
the Chrome browser on this part of the Password Leak Detec-
tion protocol, we now proceed to review Google’s hash2curve
construction and implementation. We used the unmodified
Chrome version 106, the latest at the time of writing, for all
analyses and experiments in this section.

5.1 Hash2Curve Overview

The hash2curve algorithm takes an arbitrary length input
string and deterministically outputs a point on a specified

: function hash2curve(m)

Px < RandomOracleSHA256 (m)

while !OnCurve(py) do > Input-Dependent Loop
px + RandomOracleSHA256(p,)

return (py, py)

Algorithm 4. Google’s hash2curve implementation.

PR

elliptic curve. Such a primitive is useful for a number of
cryptographic applications; in the case of Password Leak
Detection, Chrome’s hash2curve algorithm serves the purpose
of mapping the output of scrypt to a point on an elliptic curve
to prepare it for use with Diffie-Hellman PSI [36]. This can
be seen in Line 6 of Algorithm 1.

Chrome’s Hash2Curve Implementation. We describe the
hash2curve algorithm used in Password Leak Detection in
Algorithm 4. The variable p, is first computed by passing
the string m as input to the function RandomOracleSHA256,
which repeatedly uses SHA-256 and modular addition to
approximate a pseudo-random function (PRF). The output
px 1s then repeatedly updated by being assigned the value
RandomOracleSHA256(py) until p, is a valid x coordinate
of a point P = (py, py) on the NIST P-256 curve (Line 3). The
algorithm then outputs P = (py, py) (Line 5). About half of
the possible values of x correspond to points on the curve,
so the while-loop in Line 3 of Algorithm 4 terminates with
probability 1/2 in each iteration.

Side Channel Vulnerability of Hash2Curve. While
constant-time hash2curve algorithms do exist [54], we note
that the hash2curve algorithm used by Chrome’s Password
Leak Detection is inherently not constant-time. More specifi-
cally, Algorithm 4 uses a rejection sampling method, repeat-
edly iterating over candidate p, values until a suitable value
is found. While this design pattern was originally proposed
by [15], such an implementation is explicitly discouraged by
[35, Appendix A] due to side channel considerations.

A Dictionary Attack on Hash2Curve. An attacker can
exploit the rejection sampling design of Algorithm 4 for
mounting dictionary attacks similar to those mounted in Sec-
tion 4. Given a credential dataset D, an attacker can apply the
hash2curve algorithm to every entry of D, obtaining the corre-
sponding number of iterations taken by Line 3 of Algorithm 4,
since it is an input-dependent loop (hereinafter IDL). Next, by
using a side-channel attack to obtain the number of iterations
taken by the IDL on the target’s credentials, the attacker can
eliminate candidates of D that do not induce the same number
of iterations, thereby reducing the attack’s search space.

5.2 Native Attack on Hash2Curve

In this section we describe a Flush+Reload based attack on
Chrome’s hash2curve algorithm, executed from unprivileged
native code running in the target’s machine. Here, we empir-
ically found the strongest results when using Flush+Reload
on a string that is touched by Chrome’s GetPointByHashing-

3 95
g 90
; 89.8] 38.6
" =
84.8]
80 52 6}
0 1 2 3 4 5 6 7 8 9 10

Hash2Curve Loop Iterations

Figure 5. Flush+Reload attack accuracy as a function of the
number of hash2curve loop iterations.

ToCurvelnternal function, which corresponds to the OnCurve
test within the IDL.
Attack Outline. To mount a Flush+Reload attack, we exe-
cute an unprivileged attacker process monitoring Chrome’s
GetPointByHashingToCurvelnternal function on the target ma-
chine. We then open an exemplary login page and complete
the login process with a set of user credentials. This triggers
Chrome’s Password Leak Detection protocol, allowing us to
monitor the exact number of iterations made by the IDL.
Attack Evaluation. In order to measure the accuracy of our
Flush+Reload attack, we gathered 5500 pairs of username and
password, where every 500 pairs generate the same number
of iterations of the IDL between 0 and 10 (inclusive). We then
executed the attack on each credential pair, noting the amount
of detected iterations compared to the ground truth.

Analyzing the results, our Flush+Reload attack was able
to correctly identify the number of loop iterations for 4960
credentials, resulting in a total accuracy rate of 90.18%. Next,
in Figure 5 we outline the accuracy of our attack as a function
of the actual loop iterations performed by the IDL.

Finally, as the IDL exists with probability 1/2 for each loop
iteration, we can use the data depicted in Figure 5 to compute
our weighted success probability as

WISR] = 1%1/240.954% 1 /44 ---+0.826% 1 /2"

which is roughly equal to 97%.

A Dictionary Attack. By recovering the number of
iterations with 97% accuracy, the attacker is able to conduct
a dictionary attack and filter out candidate passwords that
don’t have the same number of iterations. As the IDL exists
with probability 1/2 for each loop iteration, the attacker
essentially learns an additional bit about the password with
each iteration; this means that in the ideal case where the
attacker can perfectly recover the number of hash2curve
loop iterations, the expected number of bits by which the
password’s entropy is reduced is:

1

1 1 i
E[B]:1*§+2*Z+3*8:i;l/2 =2.

5.3 Attacking Hash2Curve Within Chrome

Having established the vulnerability of Chrome’s hash2curve
algorithm to Flush+Reload attacks from native code, in this
section we present a browser-based attack on Chrome’s
hash2curve implementation. More specifically, we attack
hash2curve from within an unmodified Chrome browser, us-
ing an attacker webpage that executes malicious JavaScript
and WebAssembly code.

This is a weaker assumption on the attacker’s capabiltiies
than in Section 5.2, as it is usually easier for an attacker to
trick a victim into visiting the attacker’s web page. As such,
modern browser versions recognize the danger of browser-
based side-channels, and employ a heavily sandboxed envi-
ronment for code execution compared to a native scenario.
Accordingly, browser-based adversaries face additional tech-
nical challenges, which we now describe.

Flushing Data in the Cache. The Flush+Reload tech-
nique used in Section 5.2 requires the clflush instruction and
shared memory between attacker and target. However, neither
is available in a browser environment.

Instead, we use Prime+Probe to observe the activity of
Chrome’s hash2curve algorithm, using the work of Vila et
al. [53] in order to efficiently generate eviction sets.

High-Precision Timing Source. Measuring the cache access
patterns of the hash2curve algorithm requires the attacker to
distinguish cache hits from misses, necessitating a timer with
a precision of tens of nanoseconds. However, modern Chrome
versions deliberately limit the timer resolution to 5 us, aiming
to foil side channel attacks [55].

We sidestep this issue by using the SharedArrayBuffer
JavaScript API, which provides a primitive for a precise count-
ing thread on the order of nanoseconds [47]. While SharedAr-
rayBuffer was previously disabled by Chrome in an attempt
to mitigate speculative execution attacks, recent versions of
Chrome re-enabled this primitive due to the presence of dedi-
cated Spectre countermeasures [12, 46].

Just-In-Time Compilation. In contrast to attacks that are
mounted using native code, which have near-complete control
over the attack code executed by the target machine, browser-
based adversaries are limited to code emitted by Chrome’s
JavaScript and WebAssembly execution engines [13, 49].
This introduces measurement noise, making traces obtained
through side-channels unreliable and nondeterministic.

To overcome this issue, we observe that it is possible
to introduce a warmup stage into our attack code, causing
Chrome to always run its optimizing compiler over our high-
level Prime+Probe implementation. Furthermore, we initial-
ize our code in a way that Chrome’s optimizing compiler
will cache its output [17], allowing us to consistently use
Prime+Probe across many attack runs. With both measures in
place, we achieve a greater probing frequency compared to
naive Prime+Probe implementations, allowing us to reliably
monitor the execution of the IDL.

Automatically Selecting the Correct Eviction Set. Having
generated eviction sets using Vila et al. [53], we must now
determine the eviction set corresponding to the IDL. To that
aim, our attacker page renders an attacker-controlled login
page inside an iframe, populating it with dummy credentials
known to the attacker. This triggers the execution of Chrome’s
Password Leak Detection protocol, eventually resulting in
invocations of the IDL.

For each eviction set generated by Vila et al. [53], we exe-
cute a Prime+Probe attack on our dummy credentials using
the above procedure, locating the eviction set that recorded the
correct amount of cache misses corresponding to the execu-
tion of the IDL. With the correct eviction set in hand, we can
now mount Prime+Probe attacks on the target’s credentials.

Attack Evaluation. Our goal is to determine whether
browser-based attacks on Chrome’s hash2curve algorithm
are capable of mirroring the performance of native attacks
outlined in Section 5.2. With this in mind, we mount a
Prime+Probe attack on a targeted username and password
pair, using the eviction set found earlier.

Figure 6 presents a time series of Prime+Probe attack iter-
ations; the y-axis plots the number of counting thread ticks
elapsed while accessing the eviction set in each iteration. We
note the 15 spikes of probes that have at least 500 ticks (in red),
which corresponds to 15 iterations of the IDL when Chrome’s
Password Leak Detection is invoked on our credential. We
can distinguish the spikes resulting from the target string be-
ing accessed from system noise, since the latter only results
in access times no longer than 200 ticks. Finally, Figure 7
shows how many times out of 30 we were able to observe
the correct number of spikes when running our attack during
1, 5, and 10 login attempts. While we could not distinguish
targeted credentials inducing less than 5 IDL iterations, we
observe that 5 logins suffice for the attack to succeed in at
least half the trials. This results in our browser-based attack
with 5 traces reducing the password’s entropy by an expected:
E[B] = 5% 5025 + 6% 505 + ... + 10 35207 = 0.24 bits.

While this may seem like a trivially small amount of leak-
age in the average case, we contend that only examining
the average case and neglecting to account for the danger to
passwords with higher numbers of IDL iterations belies the
severity of our attack. Instead, we emphasize that our results
concretely demonstrate the risk of a significant amount of
leakage for a non-trivial number of cases; as shown in Fig-
ure 7, when there were 10 IDL iterations and 5 login attempts
were observed, the attack succeeded in 20 of 30 trials. This
means that for these passwords, the attack reduced the entropy
of the password by 10 bits, 2 out of 3 times.

Since 1 out of 1024 credentials result in 10 IDL iterations,
and the attack succeeded 2 out 3 times, this means 1 out of
1536 passwords will leak 10 bits. Given the scale at which a
browser-based attack can be launched, that fact that our attack
can leak 10 bits from 1 in 1536 passwords is concerning, even
if the average password leaks very little.

® Input-Dependent Loop ©® Noise
" 800 o
S ¢ ¢
~ 600
E ‘ o ® %00ce o o0
= 400
=
e 0o |
£ 200
t Wmm
3 o
© 0 25 50 75 100

Probe Round #

Figure 6. Elapsed counting thread ticks over Prime+Probe
iterations, with the 15 spikes corresponding to the 15 IDL
iterations highlighted in red.

B 1x Login [5x Login 10x Login

30

)

Hash2Curve Loop Iterations

Successes (30 Trials)

Figure 7. Effect of increasing the login attempts on the num-
ber of successes for each number of IDL iterations.

6 Attacking Blinded Hashes

We now examine how Chrome blinds the client’s credentials
before sending them to the server. In particular, we found
that Chrome uses the Binary Extended Euclidian Algorithm
(BEEA) to compute the modular inverse of its secret key for
blinding, which is susceptible to side-channel attacks.

To investigate the extent to which this compromises Pass-
word Leak Detection’s security guarantees, we developed a
novel cryptanalysis technique that can recover BEEA’s in-
puts after observing only a single, noisy trace obtained via a
cache side-channel. We then used our technique to success-
fully demonstrate the first ever microarchitectural single-trace
attack on the BEEA algorithm, improving on prior work that
required a controlled execution environment (e.g. SGX [41])
or constraints only present during RSA key generation [7].
Blinding Chrome’s Password Leak Detection Protocol.
In the Password Leak Detection algorithm, after the client
hashes the user’s credentials to the point on the curve Q, the
client must blind the hash before including it in the request
to the server. This takes place on Line 7 of Algorithm 1.
Specifically, the client blinds the hash by computing Q¢ on
the elliptic curve, where a is the secret key. This blinding
serves the purpose of concealing all bits of the client’s hashed
credentials from the Password Leak Detection server.

This step is in fact critical, as the Password Leak Detection
protocol was designed to preserve privacy in both directions,

meaning that the server should learn nothing about the client’s
credentials. If the server learns the hash of the client’s creden-
tials, the server can then launch a dictionary attack to brute
force the client’s plaintext password.

Computing Modular Inverses using BEEA. To unblind
the response received from the server, the client also needs to
compute a~ ! mod p, where p is the prime modulus used for
the NIST P-256 elliptic curve. The value of a~' mod p is then
used to unblind the response received from the server in order
to complete the Diffie-Hellman PSI [36]. Next, to perform
the computation of a~! mod p, Chrome uses the BEEA algo-
rithm, as implemented by BoringSSL’s BN_mod_inverse func-
tion, which in turn calls BoringSSL’s BN_mod_inverse_odd
to take advantage of an optimization for odd moduli.
Threat Model. Similarly to Section 4’s threat model, we
also assume a side-channel adversary that is able to run un-
privileged native code on the victim’s machine. Moreover,
in this section we assume that the attacker has access to the
blinded hash, and wants to obtain the value of the unblinded
hash. Access to the blinded hash could occur in practice if the
server participating in the Password Leak Detection protocol
colludes with the attacker; unblinding the hash would allow
the server to brute force the client’s credentials via a dictio-
nary attack, a scenario Chrome’s Password Leak Detection
protocol was specifically designed to protect against.

We note that the attacker can access the blinded hash
in other ways, besides colluding with the server; if the at-
tacker could somehow compromise the TLS connection (e.g.
through a TLS Enterprise Root CA certificate, or a TLS mid-
dlebox), the attacker would gain access to the blinded hash.

6.1 Prior Attacks on the BEEA Algorithm

The BEEA Algorithm has been studied extensively from
a side-channel perspective due to the widespread need for
computing modular inversions in cryptographic systems (e.g.
RSA, ECDSA). While prior side-channel attacks against
BEEA are well known, the specific manner in which Google
uses BEEA in Chrome’s Password Leak Detection proto-
col prevents the application of prior attack techniques. More
specifically, the theoretical analysis of BEEA done in [1] as-
sumes that the attacker can obtain perfect, noiseless traces
of the BEEA’s execution, which is not possible with current
attack techniques. Furthermore, Chrome generates a new ran-
dom blinding factor a upon each generation of a request,
thereby precluding combining information across traces via
either averaging or lattice attacks [5, 27].

Thus, in order to attack BEEA as it is used in Chrome, a
side-channel attacker must operate with only a single, noisy
trace of the BEEA execution. In prior works, this has only
ever been accomplished by either placing the victim inside
of an SGX enclave [41] or by exploiting the redundancy and
relations between various known parameters when BEEA
is used during RSA key generation [7]. As neither of these
scenarios apply to Chrome’s Password Leak Detection, in this

function BN_MOD_INVERSE_ODD(a,n)

1:

2 A<nB+—a, X+ 1,Y+0

3 while B # 0 do

4 while even(B) do

5: B+ B/2

6: if odd(X) then > Branch 1
7 X+—X+n > Branch 5
8 X+ X/2

9: while even(A) do

10: A+ AJ2

11: if odd(Y) then > Branch 2
12: Y«<Y+n > Branch 5
13: Y«Y/2

14: if B > A then

15: X+—X+Y > Branch 3
16: B+ B—-A

17: else

18: Y+~Y+X > Branch 4
19: A+ A—-B
20: return Y

Algorithm 5. Binary Extended Euclidian Algorithm: Pseu-
docode for Chrome’s BEEA implementation, which is opti-
mized for the odd modulus 7 used in NIST P-256. We make
the observation that the conditional add, labeled as Branch 5,
allows for error correction in a noisy trace.

section we develop a novel noise-tolerant single-trace attack
on the BEEA algorithm that enables extraction of modular
inverses computed by BEEA.

6.2 Attacking BEEA

At a high level, our attack uses cache-attacks to determine the
control flow of the BEEA, which in turn allows for the recov-
ery of the inputs to BEEA. In this case, the inputs to BEEA
are a, the client’s blinding key, and n, the prime modulus for
the elliptic curve NIST P-256.

Chrome’s BEEA Algorithm. Algorithm 5 is a pseudocode
of the BEEA algorithm. Borrowing notation from [1], we
use SHIFTS]Ji] to denote how many times the branch at Line
4 or Line 9 was taken at the ith iteration of the outer while-
loop at Line 3 (only one branch or the other will be taken
during any given iteration, as one of A and B will be even
and the other odd at the beginning of each iteration). We
let SUBSJi] denote the outcome of the comparison at Line
14, such that SUBS][i] = 3 if branch 3 is taken, and 4 if if
branch 4 is taken at the ith iteration. We note that for any
iteration i, if SUBS[i — 1] = 3, then the SHIFTS[i] must all
take place in Branch 1 due to the subtraction at Line 16
in Algorithm 5. Likewise, if SUBS[i — 1] = 4, then the next
iteration’s SHIF T S[i] take place in Branch 2.

Perfect Trace Requirement. Aciicmez et al. [1] previ-
ously showed that if an attacker can perfectly recover the
SUBS]] and SHIFTS]] for all iterations, they can reconstruct
both inputs to BEEA in polynomial time. The downfall of

1: function BRANCH AND PRUNE(Array Trace)
2 pq < PriorityQueue()
3 pq.push(100, 0, Key([]))
4: while notEmpty(pq) do
5: (score, i, curKey) < pq.pop()
6: if i == len(T) then
7 Out put (curKey)
8 Continue
9: curBranch < Traceli|
10: newKey + curKey.append(curBranch)
11: if correctXY (newKey) then
12: if curBranch == 5 then
13: score +— score +20
14: pq.push(score, i+ 1, newKey)
15: if LastSub(curKey) == 3 then
16: newKey < curKey.append (1)
17: X « CalculateX (newKey)
18: if isOdd(X) then
19: Continue
20: pq.push(score — 20, i, newKey)
21: else
22: newKey «+ curKey.append(2)
23: Y < CalculateY (newKey)
24: if isOdd(Y) then
25: Continue
26: pq.push(score — 20, i, newKey)

Algorithm 6. Branch and Prune: Pseudo-code for our
branch and prune algorithm that recovers the complete in-
put to BEEA, given a single noisy trace.

this analysis of BEEA is that a single error in either SUBSJ[]
or SHIFTS][] completely foils the recovery of the inputs. More-
over, the attacker cannot determine if there were any errors,
and thus whether or not the result is correct.

Prior work [41] that utilized the analysis of [1] was able to
extract BEEA’s inputs via perfect side channel traces, care-
fully controlling its execution within an SGX enclave. For at-
tacking Chrome, however, the traces obtained via Flush+Flush
contain a substantial number of errors over the course of
BEEA’s roughly 700 branches on its randomized inputs, pre-
venting us from applying the analysis of [1]. Thus, we over-
come the perfect trace requirement by presenting the first
analysis of BEEA input recovery for the case of noisy traces.

6.3 Cryptanalysis of a Noisy Trace

To correct the errors present in a noisy BEEA trace, we draw
inspiration from prior works on partial key recovery [32, 33]
and develop a branch-and-prune style algorithm for BEEA.
At a high level, this involves searching for the correct key,
where a key is a sequence of branches that could have been
taken by the execution of BEEA. Our algorithm repeatedly
branches towards the most probable keys, as determined by
how closely they align with the trace. We then exploit the
relationship between different segments of the keys to prune
key candidates, until the correct key is found.

Probing the BEEA Algorithm. While prior works [1, 7,
27, 41] only probed Branches 1, 2, 3, and 4 via cache attacks,
we make the observation that detecting the conditional add in
Branch 5 can be used to prune potential keys during our search
algorithm. This is because the values X and Y are completely
determined by all the previous branches taken. Furthermore,
since X and Y start off initialized to 1 and O respectively, and
the value 7 is known to be the prime modulus of NIST P-256,
then if we know all the prior branches, we can determine if
branch 5 can possibly be taken at the current iteration. We
will now cover in detail exactly how our branch-and-prune
algorithm works in Algorithm 6.

Algorithm Description. In Line 1, our algorithm takes
Trace, an array of branches corresponding to the sequence of
branches taken by BEEA, as input obtained through a side-
channel attack. The branches are simply numbers from 1
through 5, corresponding to the labeled branches in Algo-
rithm 5. We make the assumption that Trace only contains
deletion errors, and only deletions of 1s and 2s occur; further-
more, 1s and 2s are never deleted when they are immediately
preceding a 5. In Section 6.4 we explain why this was the case
for when we used cache-attacks to obtain traces on BEEA.

The data structure that we use to process our candidate keys

is the priority queue on Line 2, which is sorted by the score of
each candidate key. A key’s score is a measure of how close
to the real key we believe the candidate key to be. In Line 3,
we populate pg with with a key with score equal to 100, an
iterator i equal to zero, and an array of branches equal to 0.
The iterator is used to track how far along the trace the key has
progressed through. The key’s array of branches represents the
sequence of branches taken by the BEEA algorithm. As the
algorithm progresses, we will incrementally build up longer
keys that get progressively closer to the real key.
Finding New Keys. At each iteration of the loop on Line
4, we process the highest scoring key, corresponding to the
key that we currently believe to be the closest to the true key,
and push additional keys onto the priority queue with one
additional branch added at a time.

To generate these additional keys, our algorithm branches
at each iteration of the outer while loop to create 2 additional
keys. The first new key is formed by branching towards the
Trace by appending the next branch within Trace to the cur-
rent key, as seen on Lines 9 and 10. This candidate key is then
pruned on Line 11 if it fails to satisfy correctXY ().

Pruning on X and Y. The correctXY () function inspects
the newKey’s array of branches. Assuming an execution of
BEEA that follows those branches, correctXY () then deter-
mines if it is possible for all occurrences of Branch 5 to be at
the locations that they are. That is, after every occurence of
Branch 1 and Branch 2, it checks to see that X or Y, respec-
tively, at that point are odd if and only if a Branch 5 occurs on
the subsequent branch. If not, then correctXY () returns false,
and the key is pruned. On the other hand, if the key is not
pruned, then newKey’s score is incremented by 20 on Line

13, its position in Trace is incremented by 1, and the key is
pushed onto pg on Line 14.

We note that in actuality, only the most recent branch and
the resulting X and Y need to be checked in this manner.
Any inconsistencies between X and Y and the sequence of
branches earlier in the key would have resulted in that key
already having been pruned.

False Positives. While it is possible for correctXY () to
return true for keys that do in fact have errors in them, as
the distance from the errors grows, the chance of continual
false positives is equal to 1/2", where n is the number of 1
branches and 2 branches since the error. This is because X
and Y are modified with each occurrence of branches 1 and
2, effectively randomizing whether or not they are odd at any
given point. Furthermore, the subtractions in branches 3 and
4 ensure that errors in X propagate to errors in Y, and vice
versa. As n grows, the probability of continuing to follow an
incorrect key becomes vanishingly small, and the incorrect
key values are pruned back to where the error occurred.

Inserting Branches. After branching towards the Trace,
the second additional key is found by inserting a potential
branch into curKey. This is how keys that contain the branches
deleted by the noisy trace are discovered and added to pq.
Since the Trace obtained in Section 6.4 only contains dele-
tions of 1 Branches and 2 Branches, the LastSub() function at
Line 15 only needs to determine whether to insert a 1 Branch
or a 2 Branch, which depends on whether the most recent
branch is 3 or 4 respectively.

After inserting the potential branch at Line 16, Line 17 uses
the function CalculateX () to determine the value of X within
BEEA after executing the branches in newKey. If this X is odd,
this would induce a Branch 5 to follow. However, since there
are no deletions of Branch 5 or the immediately preceding
branch 1s and 2s in Trace, inserting an additional branch 5
automatically renders the key incorrect; as such, we prune the
key at Line 19 if X is odd. Otherwise, we push the newKey
onto the priority queue at Line 20. To prioritize keys that
align more closely with Trace, we decrement the newKey’s
score by 20, since for most branches the Trace is correct and
does not require an insertion. We leave i untouched because
we only inserted an additional branch, and did not progress
through Trace. Lines 22 through 26 serve the same purpose,
only for when LastSub == 4.

Termination. Once i iterates through the entirety of the
Trace, the candidate key is output, along with its score. The
algorithm can continue to run indefinitely, continuously out-
putting more complete keys as it explores them. The higher
the score of a key, the more likely it is to be the correct one.
Intuitively, the true key is the one that aligns most closely
with Trace, with the insertions in the correct places that result
in X and Y being odd whenever dictated by the occurrences
of branch 5 in the Trace.

6.4 Implementing the Attack

In this section we describe how we implemented our cache
attack to obtain a trace against BEEA, and how our branch-
and-prune algorithm recovered its inputs.

Software Setup. Chrome is statically linked against Bor-
ingSSL, and as such the Password Leak Detection logic
calls BoringSSL’s BN_mod_inverse function to compute
the modular inverse of the blinding factor. To benchmark
our attack, we developed a test harness that calls Bor-
ingSSL’s BN_mod_inverse, compiled with gcc version 9.4.0
using an -00 flag. Mirroring Chrome, we call BoringSSL’s
BN_mod_inverse(a, n) with random 256-bit values of a, where
n set as NIST P-256’s prime modulus.

This is in contrast to the prior two attacks on scrypt and
hash2curve, where we conducted our attacks against unmod-
ified versions of Chrome. We did this because BEEA sees
widespread deployment across numerous commonly imple-
mented cryptosystems, and we believe that our novel crypt-
analysis has implications on these as well. Thus, there are
broader impacts in analyzing how BEEA leaks using our
attack technique. By benchmarking our attack against Bor-
ingSSL directly, we demonstrate that our attack applies to
a wider variety of BEEA usages (any binary that uses Bor-
ingSSL’s implementation, such as Chrome), and does not rely
on nuances specific to Chrome.

Finally, we run experiments on a laptop featuring a Quad
Core Intel i5-8250U CPU, and 4 GB of RAM.

Flush+Flush Probing Locations. In order to generate a trace
that attempts to reconstruct the control flow of the the victim’s
BEEA execution, we used the Flush+Flush attack [30] in order
to monitor the 5 branches marked in Algorithm 5. We note
that doing so requires a total of 4 Flush+Flush probes, as the
same probe can be used to monitor both Branch 1 and Branch
2 since these share the same call to BN_rshift1 on Lines 8 and
13. Similarly, a single probe monitors Branch 5 on both Line
7 and Line 12 as they make the same call to BN_uadd. We use
the remaining two probes to detect branches 3 and 4, which
in turn allows us to discern between branch 1 and branch 2,
as described in Section 6.2.

Signal Amplification via Core Assignment. As our
i5-8250U processor has 4 physical cores, we run each
Flush+Flush probe on a separate core, while having the probe
for Branch 5 running on the sibling virtual core to the process
executing the BEEA algorithm. As the BEEA process now
shares its caches with the probe for branch 5, due to [4] this re-
sults in the signal for branch 5 becoming unmistakably strong.
This is important, as it virtually eliminates false positives or
negatives for branch 5, allowing us to prune keys aggressively
by error correcting with the occurrences of Branch 5. Further-
more, this also results in a trace where branch 1s and branch
2s immediately preceding branch 5s are not deleted in the
trace, as branch 5 can only ever take place after a 1 or 2.
Gathering Traces. We then allow the BN_mod_inverse func-
tion to run while the probing processes monitor the branches.

We parse the resulting data from the Flush+Flush probes form
the trace, which is the sequence of branches within BEEA ob-
served by the attacker. We find that this results in no insertions
or deletions of branches 3, 4, and 5. However, it is common
for there to be insertions or deletions in the number of branch
s and branch 2s in each round of the while-loop in Line 3
of Algorithm 5. This is because a series of 1 branches or 2
branches can execute in very quick succession when branch 5
is not taken inbetween them.

To make sure that the trace only contains deletions, we
calibrate our parser to be extremely conservative with adding
1s and 2s to the trace, only adding them to the trace when the
signal is extremely clear. This ensures that only deletions, and
not additions, appear in the trace.

Attack Results. After collecting a trace with only dele-
tions in branches 1 and 2, we passed the noisy trace to the
branch-and-prune algorithm. Within just 34 ms, the algorithm
found the correct key, with 18 branches inserted, and with all
703 branches correctly recovered. This key was also the first
one output by the program, and after continuing to run the
branch-and-prune program for 10 minutes, this key had the
largest score, making it clear that it was the correct key. Hav-
ing recovered all SUBS(i] and SHIFT S]], we then used the
method described by [1] to trivially recover BEEA’s inputs.

Implications for Chrome’s Password Leak Detection Pro-
tocol. A malicious server that successfully launches this
attack can recover the client’s secret, a which was used in
Line 7 of Algorithm 1 to blind the hash of its credentials as
Q°. After Q“ is sent to the Password Leak Detection server
as part of its request, the server can easily compute a~! and

use it to unblind the client’s hash as (Q“)’fl = Q, where Q is
the unblinded hash of the client’s credentials.

This completely violates the security guarantees of
Chrome’s Password Leak Detection protocol, as it was de-
signed to allow client’s to safely query the Password Leak
Detection service without having to place any trust in the
server. In this case however, the client is essentially sending
a hash digest of their credentials to the server, allowing the
server to run offline dictionary attacks using lists of compro-
mised credentials aiming to breach the client’s account.

7 Mitigations

The defacto standard for mitigating cache side-channel attacks
in software is to make use of the constant-time programming
paradigm. In this style of programming, the control flow of
the program must not depend in any way upon the program’s
input; moreover, no accessed memory address can depend
upon the input [42]; in other words, the execution of the
program must be completely oblivious to its input.
Mitigating against the three vulnerabilities described in this
paper, however, is not as easy as simply replacing vulnera-
ble components with constant time implementations. This is
because Chrome’s usage of scrypt as a memory-hard hash
function poses a difficult problem, with complex trade offs.

Scrypt. Chrome uses scrypt as its hash algorithm for Pass-
word Leak Detection due to its memory-hardness properties.
A memory-hard hash function is one where the cost of eval-
uating the hash function is primarily dominated by the cost
of memory, as opposed to the cost of compute power. While
attackers can employ ASICS and FPGAs to gain a computing
advantage of up to 100,000x [16] over general purpose com-
puters, the cost of memory remains the same for both general
purpose machines and ASICS/FPGAs. This makes it difficult
for attackers to compute the memory-hard hash function at a
significantly lower cost than honest users, who must compute
the hash with general purpose computers. For this exact rea-
son, scrypt is an attractive option for hashing passwords, as
[10] proved that scrypt is maximally memory-hard under the
parallel random oracle model.

This memory-hardness property of scrypt comes at a price,
however. Namely, [9] show that no function can be both max-
imally memory-hard and input oblivious; as a consequence,
scrypt is inherently vulnerable to cache side-channel attacks,
and in order to mitigate our attack, a compromise is required
between input obliviousness and memory-hardness.

As such, we recommend replacing scrypt with an alterna-
tive option, such as one of the side-channel resistant variants
of Argon?2 [14], the winner of the 2015 Password Hashing
Competition. Argon2i is a variant of Argon2 that is com-
pletely constant-time; however, it offers the weakest memory-
hardness of the Argon?2 variants. This may be unappealing for
Password Leak Detection, where resistance against parallel
GPU cracking attacks is highly desirable.

A compromising solution is Argon2id, which aims to strike
a balance between memory-hardness and side-channel resis-
tance. This is accomplished by making the first pass over
the input oblivious, while the second half is input dependent,
thereby reducing the amount that can be learned by a side-
channel attacker. This, however, means that Argon2id is not
completely constant-time, and still leaks some amount of
information to side-channel attackers. We caution against per-
mitting any side-channel leakage at all; as we demonstrated
with our attack against scrypt, even an extremely limited view
of the victim’s memory accesses can potentially lead to a
complete breach of security.

Hash-to-Curve. In contrast, protecting the hash2curve por-
tion of Password Leak Detection is comparatively simple; it
does, however, require a slight change in protocol, due to the
current hash2curve algorithm’s usage of a rejection sampling
method, which is inherently non constant-time. Instead, us-
ing one of the constant-time hash-to-curve implementations
described in [34] is sufficient to mitigate our attack against
the hash2curve portion of Password Leak Detection.
Modular Inversion. Similarly, the BEEA algorithm used for
modular inversion by Chrome is inherently non constant-time;
however, there are known alternatives for modular inversion
that are indeed constant-time, and exchanging BEEA for one
of these does not require any protocol change.

A potential solution is to make use of Fermat’s Little The-
orem and to compute the inverse of a as a~! = a”~?(mod p)
where the exponentation is performed in constant-time. We
can compute this exponentiation both performantly and in
constant-time by taking advantage of the fact that the modu-
lus for Curve P-256 is fixed; by pre-computing an optimally
short addition chain for the modulus, we can use the addition
chain to exponentiate in constant time, with fewer multiplica-
tions than other methods [22].

8 Future Work

Other Browsers. Following Chrome’s lead, both Microsoft
Edge and Mozilla Firefox have implemented their own pass-
word leak detection functionality. At the moment, Firefox sim-
ply queries the HavelBeenPwned database; Edge, on the other
hand, developed their own novel cryptographic PSI system
based off of homomorphic encryption [18, 19]. Investigating
their novel cryptosystem’s susceptibility to side-channels and
other attacks could reveal new insights into how password
leak detection systems must consider security and privacy.

Hashing Scheme Tradeoffs. Given our attacks on scrypt
and Chrome’s hash2curve, it is natural to wonder if there are
any existing hash algorithms would be more suitable with
regards to trade offs between performance, memory-hardness,
and input-obliviousness. It could be interesting to augment
existing hash algorithms, or perhaps even design new ones,
that are more desirable for Password Leak Detection.

BEEA Partial Key Recovery. Due to the numerous existing
attacks against BEEA, it is easy to imagine how our partial
key recovery algorithm can prove useful to that direction of
research. However, our key recovery algorithm is specifically
tailored to account for the type of noise that we encountered
within our traces; it is likely possible to expand upon our al-
gorithms capabilities such that it can handle a broader variety
of noisy traces.

Acknowledgments

This research was partially supported by the Air Force Office
of Scientific Research (AFOSR) under award number FA9550-
20-1-0425, an ARC Discovery Early Career Researcher
Award DE200101577, an ARC Discovery Project number
DP210102670, the Defense Advanced Research Projects
Agency (DARPA) under Award number HR00112390029,
the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972, the National Science Founda-
tion under grant CNS-1954712, and gifts from Cisco, Google,
Mozilla, and Qualcomm.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the U.S. Government.

References

[1] O. Aciigcmez, S. Gueron, and J.-P. Seifert, “New branch
prediction vulnerabilities in OpenSSL and necessary
software countermeasures,” in IMA International Con-
ference on Cryptography and Coding, 2007, pp. 185—
203.

[2] O. Aciigmez, C. K. Kog, and J.-P. Seifert, “Predicting
secret keys via branch prediction,” in CT-RSA, 2007, pp.
225-242.

[3] A. Agarwal, S. O’Connell, J. Kim, S. Yehezkel,
D. Genkin, E. Ronen, and Y. Yarom, “Spook.js: Attack-
ing chrome strict site isolation via speculative execution,”
in I[EEE SP, 2022.

[4] A.C. Aldaya and B. B. Brumley, “HyperDegrade: From
GHz to MHz effective CPU frequencies,” pp. 2801-
2818, 2022.

[5] A. C. Aldaya, A. J. C. Sarmiento, and S. Sanchez-
Solano, “SPA vulnerabilities of the binary extended Eu-
clidean algorithm,” Journal of Cryptographic Engineer-
ing, vol. 7, no. 4, pp. 273-285, 2017.

[6] A.C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcia,
and N. Tuveri, “Port contention for fun and profit,” in
IEEE SP. 1EEE, 2019, pp. 870-887.

[7]1 A. C. Aldaya, C. P. Garcia, L. M. A. Tapia, and B. B.
Brumley, “Cache-timing attacks on RSA key generation,”
TCHES, vol. 2019, no. 4, pp. 213-242, 2019.

[8] T. Allan, B. B. Brumley, K. Falkner, J. Van de Pol, and
Y. Yarom, “Amplifying side channels through perfor-
mance degradation,” in ACSAC, 2016, pp. 422-435.

[9] J. Alwen and J. Blocki, “Efficiently computing data-
independent memory-hard functions,” in CRYPTO,
2016, pp. 241-271.

[10] J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tes-
saro, “Scrypt is maximally memory-hard,” in EURO-
CRYPT, 2017, pp. 33-62.

[11] M. M. Anderson, “Attacking scrypt via cache timing
side-channel,” https://crypto.stanford.edu/cs359¢/17sp/
projects/MarkAnderson.pdf, 2017.

[12] J. Archibald and E. Kitamura, “SharedArrayBuffer
updates in Android Chrome 88 and desktop Chrome 92,”
https://developer.chrome.com/blog/enabling-shared-
array-buffer/, 2021.

[13] C. Backes, “Liftoff: a new baseline compiler for we-
bassembly in v8,” https://v8.dev/blog/liftoff, 2018.

[14] A. Biryukov, D. Dinu, D. Khovratovich, and
S. Josefsson, “Argon2 memory-hard function for
password hashing and proof-of-work applica-
tions,” RFC 9106, Sep. 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9106

[15] D. Boneh, B. Lynn, and H. Shacham, “Short signatures
from the Weil pairing,” in ASIACRYPT, 2001, pp. 514—
532.

[16] D. Boneh, H. Corrigan-Gibbs, and S. Schechter, “Bal-
loon hashing: A memory-hard function providing prov-
able protection against sequential attacks,” in ASI-
ACRYPT, 2016, pp. 220-248.

[17] B.Budge, “Code caching for WebAssembly developers,”
https://v8.dev/blog/wasm-code-caching, 2019.

[18] H. Chen, K. Laine, and P. Rindal, “Fast private set
intersection from homomorphic encryption,” in CCS,
2017, pp. 1243-1255. [Online]. Available: https:
/Iwww.microsoft.com/en-us/research/publication/fast-
private-set-intersection-homomorphic-encryption/

[19] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled
PSI from fully homomorphic encryption with malicious
security,” in CCS, 2018, pp. 1223-1237. [Online].
Available: https://www.microsoft.com/en-us/research/
publication/labeled-psi-from-fully-homomorphic-
encryption-with-malicious-security/

[20] S. Cohney, A. Kwong, S. Paz, D. Genkin, N. Heninger,
E. Ronen, and Y. Yarom, “Pseudorandom black swans:
Cache attacks on CTR_DRBG,” in IEEE SP, 2020, pp.
1241-1258.

[21] G. Didier and C. Maurice, “Calibration done right:
Noiseless Flush+Flush attacks,” in DIMVA, 2021, pp.
278-298.

[22] Y. Ding, H. Guo, Y. Guan, H. Song, X. Zhang, and J. Liu,
“Some new methods to generate short addition chains,”
TCHES, vol. 2023, pp. 270-285, 03 2023.

[23] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+Abort: A timer-free high-precision L3 cache
attack using Intel TSX,” in USENIX Security, 2017, pp.
51-67.

[24] M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger,
D. Dachman-Soled, D. Genkin, A. Nelson, R. Perlner,
A. Yerukhimovich, and D. Apon, “When Frodo flips:
End-to-end key recovery on FrodoKEM via Rowham-
mer,” in CCS, 2022, pp. 979-993.

[25] C.Forler, S. Lucks, and J. Wenzel, “Memory-demanding
password scrambling,” in ASTACRYPT, 2014, pp. 289—
305.

[26] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand
pwning unit: Accelerating microarchitectural attacks
with the GPU,” in IEEE SP, 2018, pp. 195-210.

[27] C.P. Garcia and B. B. Brumley, “Constant-time callees
with variable-time callers,” in USENIX Security, 2017,
pp- 83-98.

[28] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom,
“Drive-by key-extraction cache attacks from portable
code,” in ACNS, 2018, pp. 83-102.

[29] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:

A remote software-induced fault attack in JavaScript,”
in DIMVA, 2016, pp. 300-321.

[30] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: a fast and stealthy cache attack,” in
DIMVA, 2016, pp. 279-299.

[31] Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang, “Adversarial
prefetch: New cross-core cache side channel attacks,” in
IEEE SP, 2022, pp. 1458-1473.

[32] W. Henecka, A. May, and A. Meurer, “Correcting errors
in RSA private keys,” in CRYPTO, 2010, pp. 351-369.

[33] N. Heninger and H. Shacham, “Reconstructing RSA
private keys from random key bits,” in CRYPTO, Aug.
2009, pp. 1-17.

[34] A.Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. A.
Wood, “Hashing to elliptic curves,” Internet Engineering
Task Force, Internet-Draft draft-irtf-cfrg-hash-to-curve-
03, 2019.

[35] ——, “Hashing to elliptic curves,” https:
//datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-
curve-12, 2022.

[36] B. A. Huberman, M. Franklin, and T. Hogg, “Enhancing
privacy and trust in electronic communities,” in ACM
conference on Electronic commerce, 1999, pp. 78-86.

[37] S.Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulme-
zoglu, T. Eisenbarth, and B. Sunar, “SPOILER: Specula-
tive load hazards boost Rowhammer and cache attacks,”
in USENIX Security, 2019, pp. 621-637.

[38] P. C. Kocher, “Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems,” in
CRYPTO, 1996, pp. 104-113.

[39] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAM-
Bleed: Reading bits in memory without accessing them,”
in I[EEE SP, 2020.

[40] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz,
“Medusa: Microarchitectural data leakage via automated
attack synthesis,” in USENIX Security, 2020. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/moghimi-medusa

[41] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and
B. Sunar, “CopyCat: Controlled instruction-level attacks
on enclaves,” in USENIX Security, 2020, pp. 469—486.

[42] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner,
“The program counter security model: Automatic detec-
tion and removal of control-flow side channel attacks,”’
in ICISC, 2006, pp. 156-168.

[43] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: the case of AES,” in CT-RSA,
2006.

[44] C. Percival, “Stronger key derivation via sequential
memory-hard functions,” 2009.

[45] C. "Percival, “The scrypt password-based key derivation
function,” Internet Requests for Comments, RFC
7914, August 2016. [Online]. Available: https://
datatracker.ietf.org/doc/html/rfc7914

[46] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation:
Process separation for web sites within the browser,” in
USENIX Security, 2019, pp. 1661-1678.

[47] M. Schwarz, C. Maurice, D. Gruss, and S. Man-
gard, “Fantastic timers and where to find them: High-
resolution microarchitectural attacks in JavaScript,” in
FC, 2017, pp. 247-267.

[48] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin,
Y. Oren, and Y. Yarom, “Prime+Probe 1, JavaScript O:
Overcoming browser-based side-channel defenses,” in
USENIX Security, 2021, pp. 2863-2880.

[49] L. Swirski, “Sparkplug — a non-optimizing javascript
compiler,” https://v8.dev/blog/sparkplug, 2021.

[50] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G.
Kelley, L. Invernizzi, B. Benko, T. Pietraszek, S. Patel,
D. Boneh et al., “Protecting accounts from credential
stuffing with password breach alerting,” in USENIX Se-
curity, 2019, pp. 1556-1571.

[51] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom,
“SGAxe: How SGX fails in practice,” https://sgaxe.com/,
2020.

[52] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom, “CacheOut: Leaking data on Intel CPUs via
cache evictions,” in I[EEE SP, May 2021.

[53] P. Vila, B. Kopf, and J. F. Morales, “Theory and practice
of finding eviction sets,” in IEEE SP, 2019, pp. 39-54.

[54] R. S. Wahby and D. Boneh, “Fast and simple constant-
time hashing to the BLS12-381 elliptic curve,” TCHES,
vol. 2019, no. 4, pp. 154-179, 2019.

[55] Y. Weiss and E. Kitamura, “Aligning timers
with cross origin isolation restrictions,” https:
/ldeveloper.chrome.com/blog/cross-origin-isolated-hr-
timers/, 2021.

[56] Y. Yarom, “Mastik: A micro-architectural side-channel
toolkit,” 2016.

[57] Y. Yarom and K. Falkner, “Flush+Reload: A high res-
olution, low noise, L3 cache side-channel attack,” in
USENIX Security, 2014.

	Introduction
	Our Contribution
	Responsible Disclosure

	Background
	Chrome's Password Leak Detection
	Cache Attacks

	Threat Model
	Attacking Scrypt
	The Scrypt Algorithm
	Idealized Side Channel Analysis of Scrypt
	The Reality of Cache Attacks
	Attacking Scrypt in Chrome
	Handling Noise
	Empirical Evaluation

	Attacking Hash2Curve
	Hash2Curve Overview
	Native Attack on Hash2Curve
	Attacking Hash2Curve Within Chrome

	Attacking Blinded Hashes
	Prior Attacks on the BEEA Algorithm
	Attacking BEEA
	Cryptanalysis of a Noisy Trace
	Implementing the Attack

	Mitigations
	Future Work

