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Abstract
USB is the most prevalent peripheral interface in modern
computer systems and its inherent insecurities make it an
appealing attack vector. A  well-known limitation of USB is
that traffic is not encrypted. This allows on-path adversaries to
trivially perform man-in-the-middle attacks. Off-path attacks
that compromise the confidentiality of communications have
also been shown to be possible. However, so far no off-path
attacks that breach USB communications integrity have been
demonstrated.

In this work we show that the integrity of USB commu-
nications is not guaranteed even against off-path attackers.
Specifically, we design and build malicious devices that, even
when placed outside of the path between a victim device and
the host, can inject data to that path. Using our developed
injectors we can falsify the provenance of data input as inter-
preted by a host computer system. By injecting on behalf of
trusted victim devices we can circumvent any software-based
authorisation policy defences that computer systems employ
against common USB attacks. We demonstrate two concrete
attacks. The first injects keystrokes allowing an attacker to
execute commands. The second demonstrates file-contents
replacement including during system install from a USB disk.
We test the attacks on 29 USB 2.0 and USB 3.x hubs and
find 14 of them to be vulnerable.

1 Introduction

The Universal Serial Bus (USB) has become the de-facto
standard for computer-peripheral connection. Since its origi-
nal introduction in the late 90’s, USB has replaced nearly all
computer-peripheral connection standards. Simplicity, ease of
use, and enabling low-cost implementation have always been
prioritised throughout the development of the standard, pro-
pelling its popularity over the past two decades. Conversely,
security has largely been overlooked throughout the develop-
ment of USB. With the USB Implementers Forum arguing
that “consumers should only grant trusted sources with access
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Figure 1: Off-path attacks on USB communications: (left) off-
path traffic snooping by monitoring broadcasts [37] and using
crosstalk leakage [44]; (right) we show an off-path attack that
generates or manipulates the upstream traffic of other devices

to their USB devices” [54], USB’s security model relies on
restricting physical access, rather than on tried and tested tech-
niques, such as permissions, encryption, and authentication.
In particular, operating systems typically immediately trust
any USB device once connected, providing little feedback
about the device’s nature or capabilities. Given the ubiquity
of USB, it is important to understand and characterise the at-
tack surface and resultant threats presented by various usage
and configuration scenarios. This characterisation can further
enhance secure usage of USB, mitigating a wide range of
USB-based exploits.

With users often plugging untrusted USB devices into their
computers [24, 51], numerous prior works have demonstrated
attacks on the USB ecosystem via compromised devices. At-
tacks range from flash drives compromising hosts by pretend-
ing to be keyboards [31], to on-path entities such as hubs
monitoring and manipulating USB traffic [30, 43]. Beyond
on-path attacks by devices with direct data access, USB is
also vulnerable to off-path attacks, where an attacker’s device is
not located on a direct path between the victim and the USB
host. The left panel of Figure 1 summarises the state-of-the-art
for off-path attacks on USB. In USB 1.x and USB 2.0,
downstream traffic (host to devices) is broadcast on the bus
making it observable for all devices on the bus traffic [37]. Su
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et al. [44] demonstrate that off-path attacks on confidentiality
of upstream traffic are also possible, allowing devices to ob-
serve USB traffic sent by devices on adjacent USB ports due to
electrical crosstalk.

Given the feasibility of off-path attacks on the confiden-
tiality of USB data [44], in this paper we set out to investi-
gate the feasibility of off-path attacks on USB data integrity.
While this can be trivially achieved by on-path attackers
(e.g., hubs) [30], we are not aware of any past demonstrations
of an off-path attack that compromises the integrity of USB
commu-nication. Thus, in this work, we ask the following
questions:
Does the USB protocol protect the integrity of upstream com-
munication against a malicious off-path attacker? That is, can
an untrusted malicious off-path device generate USB traffic
that the host will attribute to a trusted device?

1.1 Our Contribution

In this work we show that USB does not protect the integrity of
upstream communication even against off-path attackers.
More specifically, we describe an off-path USB injection at-
tack, which allows a malicious device located off the path
between the victim device and host to send data which is ac-
cepted by the host as originating from the victim. See Figure 1
(right).
Attack Mechanism. Investigating the root cause of our at-
tack, we find that when the host probes a device, the host and
the hubs along the chain of connection fail to perform any
verification that the response comes from the probed device.
This allows a malicious off-path device to respond when the
host probes a different victim device, resulting in the trans-
mitted data being accepted by the host as having originated
from the victim. We show how this mechanism can be used to
send data to a host on behalf of devices that have been explic-
itly trusted by users through authorisation policies, thereby
bypassing common USB defence strategies.
Attack Overview. In an attack scenario, an attacker-
controlled device identifies as a benign USB device and per-
forms the expected functionality for that device type. In addi-
tion, the attacker’s device also monitors all downstream USB
traffic. When it detects that the host probes the trusted victim
device, it sends a malicious response that appears as if it were
sent by the victim device. At the same time, the victim de-
vice will also respond to the probe, creating a race condition
between the malicious and the victim devices. In the case
that the malicious device wins the race, the host accepts the
malicious response as if it were sent by the victim device.
Attack Implementation. We implement a USB 1.x mali-
cious device that identifies as a mouse but sends malicious
keyboard input when the host probes a separate victim key-
board device. We show that the attacker can consistently win
the transmission race under vulnerable configurations, allow-
ing a keystroke command injection attack. We further build
a USB 2.0 device that identifies as a serial communications

device and monitors communications of a USB flash drive,
replacing the contents of files that will reside on the host when
they are transferred from the drive. We show how this device
can compromise a Linux installation.
Bypassing Protection Policies. Where a host’s USB stack
has been instrumented with a defensive device authorisation
policy, our attack subverts this defense by falsifying prove-
nance at the link layer. This in turn allows us to exploit any
trusted device interfaces or communication channels. We
show that our malicious devices bypass all defences that re-
strict device function based on such policies. We conclude
with discussion on mitigation, recommendations for protect-
ing existing systems and considerations for future system
designs.
Summary of Contributions. In summary, in this paper we
make the following contributions:
• We identify a new attack on USB that allows off-path ma-

licious devices to inject traffic to the communications be-
tween a trusted victim device and the host. (Section 4)

• We design and build two injection platforms, one capable of
targeting USB 1.x devices and the other targeting USB 2.0
devices. (Section 5)

• We investigate 29 USB 2.0 and USB 3.x hubs and find that
14 of them (48%) are vulnerable to at least one form of
attack. (Section 6)

• We demonstrate how our attack can inject keyboard pay-
loads and mass-storage device data, specifically hijacking
data transfer to the host. (Sections 7.1 and 7.2)

• We show that the attack bypasses prior authorisation policy
defences aimed at preventing USB attacks such as device
masquerading. (Section 8)

1.2 Responsible Disclosure

Following the practice of responsible disclosure, we have
shared our findings with the USB Implementers Forum (USB-
IF), vendors of device authorisation software, vendors of vul-
nerable hubs, and the manufacturers of their internal hub chips
in order to disclose our findings. At the time of writing there
was no response from the USB-IF. A  report detailing the find-
ings was sent to those who responded. We note that the tested
systems are all compliant with USB specifications, and the
injection mechanism demonstrated in our work exploits a vul-
nerability in the protocol itself. See Table 4 in the appendix
for the responses.

2 Background

First released in 1996, USB was designed to simplify the use
of computer peripherals while replacing the plethora of then-
common tailored interconnects with a single interface. The
primary simplification USB introduced was that it allowed
automatic self-configuration of peripherals upon plugging
in, referred to as ‘plug-and-play’. USB 1.x [10, 12] has two



Figure 2: USB transaction examples: (a) host-to-device transaction, (b) device-to-host transaction, (c) device has nothing to send to
host. The host first sends a token packet, identifying the target device within and the transfer direction. The host or the device then
transmit data packets (with DATA X  packet identifier). The handshake (or ‘status’) packet terminates the transaction.

data transfer modes which we refer to collectively as classic-
speed: 1.5 Mbps Low-Speed (LS) and 12 Mbps Full-Speed
(FS). Human Interface Devices (HIDs) and other devices
undemanding of bandwidth continue to be made as USB 1.x.
USB 2.0. Later released in 2000, USB 2.0 [11] is an extension
of the USB specification which is capable of operating at
480 Mbps in High-Speed (HS) mode. Due to its increased
data transfer speeds, USB 2.0 was able to meet the needs of
high-bandwidth applications such as imaging, data acquisition
systems and mass storage devices.
USB 3 and 4. USB 3.x [3, 17, 18], initially released in 2008, is
the latest major version of the protocol to have reached mar-ket
maturity with speeds ranging from 5 Gbps (SuperSpeed) to
20 Gbps (SuperSpeed Plus). Backward compatibility with
older device versions is built into USB 3.x host systems. Be-
cause of this and the extra cost of implementing a USB 3.x
stack, devices only support USB 3.x if they stand to benefit
from the increased bandwidth. In particular, the interface for
HID devices is defined over USB 1.x [53]. Hence, these de-
vices are unlikely to be implemented as USB 3.x. The most
recent version, USB 4 [4], released in 2019 operates at speeds
of up to 40 Gbps. As of this writing there are a few devices
marketed as this version.

2.1 USB Communications

USB systems are structured in a tree topology. At the root
is the host USB controller, which has an embedded root hub
that provides a tier of attachment points for peripheral devices.
Standard (non-root) hubs can be attached up to five in a chain
to extend the number of USB ports, supporting up to 127
devices. We simply refer to standard hubs as hubs.

USB communication is host-arbitrated and non-encrypted.
Downstream traffic originates from the host, which is broad-
cast in USB 1.x and 2.0, and unicast in later versions. Up-
stream traffic is unicast to the host in all versions of the USB
protocol. The host manages the shared bus with poll-based
Time-Division Multiplexing (TDM).

Endpoints. Endpoints are essentially data sinks and sources
through which USB devices communicate, usually imple-
mented as hardware buffers on the device side and as pipes in
host-side software. All devices must support CONTROL end-
point 0, used for enumeration and status reporting. Devices
can support up to 15 additional IN and OUT endpoints.
USB Transaction Protocol. Al l  versions of USB use the
same fundamental transaction protocol model. Data commu-
nication through USB happens in transactions, which consist
of up to three packet transmissions comprising token, data
and handshake phases. The host always initiates transactions
by sending a token downstream, containing the intended re-
cipient’s address, a packet identifier defining transaction type,
and the endpoint number. According to the USB standard,
devices must only process and respond to tokens addressed
to them while ignoring others. Data is only transferred in one
direction during a transaction, and the direction is specified
in the token packet identifier, with respect to the host. For
example, the host will send an OUT token to indicate it will
transmit data to a device during the data phase, see Figure 2(a).
Similarly, hosts use IN tokens to probe devices for input to
be provided in a data phase (c.f., Figure 2(b)). Otherwise, if
devices have no data to send, they send a ‘NAK ’  handshake
(c.f., Figure 2(c)).

We note that no portion of the data or handshake phase
packets identifies the source of the packet. Instead the source
is implicit in which device is addressed by the token phase.
USB 2.0 High Speed Extension of Transaction Protocol.
As described above, during OUT transactions the host controls
the bus for the majority of time until the handshake phase,
at which point the device either AC K s  or NAKs the received
data. This design can waste transmission time, for example
in cases where the device is not prepared for data intake and
thus NAKs the transaction. In order to mitigate this, USB
2.0 introduced an additional pre-transaction exchange before
OUT communications at HS. Here, the hosts first send a PING
token to query devices as to whether it is ready to receive data.
The device can respond with a NYET  (not yet) message or an



AC K ,  in which case the host begins the OUT transaction.
Backward Compatibility of USB 2.0 with USB 1.x. To
reap the benefits of high bandwidth, in USB 2.0 systems all
host–hub communication is delivered at HS (480Mbps), facili-
tated by Transaction Translator (TT) modules within USB 2.0
hubs. TTs perform downstream speed mode translation and
buffer transmissions from classic-speed devices for repeating
upstream at HS. Prior to transmitting L S  or FS  communica-
tions downstream at HS, a host will send a ‘SPLIT ’  packet
indicating to the hub that it must translate the next incoming
transmission to a 1.x speed mode before passing it on to the
recipient device. These SPLIT packets are sent prior to the to-
ken phase and only used in host–hub communication, making
them not visible to end devices. SPLIT packets include an in-
formation field specifying the hub to which the end recipient
device is connected, resulting in only that hub translating the
subsequent transmission.
USB Routing. The design for backward compatibility dis-
cussed above introduces a form of routing-to-hub for the trans-
lated classic-speed traffic. Downstream classic-speed traffic
is broadcast on the bus with a SPLIT  header at HS, but then
only translated at the target hub’s T T  for further broadcast at
classic-speed. On top of this, hubs can be designed as single-
TT systems (see Figure 3 top), where one T T  handles all
classic-speed traffic; or as multi-TT systems (see Figure 3 bot-
tom), where each downstream port has its own TT. This also
introduces routing to specific ports for classic-speed traffic
through multi-TT hubs.

Figure 3: Traffic flows within single-TT (top) and multi-TT
(bottom) hub with two (2.0) devices connected at HS and two
(1.x) devices connected in classic-speed modes (LS or FS)

Enumeration. USB enumeration is the process of identify-

ing a recently plugged in device and establishing a connection
between it and the host. When a device is plugged in, the host
will ask for its descriptor set containing self-reported (and not
authenticated) information based on which the host can estab-
lish a connection. The host will then set the necessary output
power to the device, its speed mode, and loading appropriate
drivers. A  newly connected device will use address 0 until the
host assigns it a unique address early during enumeration.

2.2 Generic USB Device Architecture

Figure 4 shows the generic hardware architecture of a USB de-
vice. The PHY (physical layer transceiver) manages physical
bus activity, allowing for sending and receiving the serial sig-
nal on differential data lines. The serial interface engine (SIE)
module within the USB controller implements the transac-
tion protocol, deals with time-critical operation and simplifies
the microcontroller interface. The SIE handles token address
checking before demultiplexing and facilitating information
exchanges for the various endpoints.

2.3 Attacks on USB

The widespread adoption of USB among almost all PC, IoT,
and embedded systems makes it an appealing avenue for
exploitation. Notably, USB’s lack of any access control mech-
anisms leads to simple and effective attack vectors, while
requiring costly and complicated countermeasures.

We now review several categories of USB-based attacks
and proposed protections, see [32, 33, 38, 40, 50] and refer-
ences therein for more complete descriptions.
Obtaining Access. USB-based attacks rely on physical ac-
cess to target systems and thus restriction of access to trusted
devices is often used as justification for not securing USB
systems. More specifically, the USB Implementers Forum
(USB-IF) released a Statement regarding USB security [54],
which says: “consumers should only grant trusted sources
with access to their USB devices”. However, typical USB-
based attacks have minimal hardware requirements (size-
wise) and malicious devices are often able to obscure their
real behaviour from unsuspecting users. This results in users
connecting devices from unknown origins to their systems,
either inadvertently (e.g., supply chain compromise), natu-
rally [51], or as a result of social engineering [24].
Attacks on USB Confidentiality and Integrity. USB’s lack
of any encryption and authentication mechanisms allows ad-
versaries to eavesdrop on USB traffic, by both on-path and
off-path entities. On-path or ‘in-line’ entities are those on
the chain of connection between host and the subject device.
Thus, attacks based on them require a stronger adversarial
model than off-path attacks, as off-path entities do not require
direct access to the targeted USB traffic.
On-Path Attacks. On-path entities can be passive devices
such as protocol analysers acting as wiretaps. Alternatively,



Figure 4: Generic hardware architecture of a USB device. The USB Controller IC consists of a PHY and SIE. The PHY manages the
translation between physical analogue signals and the logical data they represent, the SIE implements the link layer transaction
protocol, including address checking, and the microcontroller runs the application that transfers data via USB to/from the host.

they might also be active devices such as USB hubs which
repeat communications passing through from one side to the
other. Hardware key loggers [27, 29] are devices typically
implemented as hubs with additional capability to record all
keystroke traffic forwarded to a host, enabling capture of po-
tentially sensitive information such as passwords. BadUSB
2.0 [30] is a hub which can compromise USB communica-
tions by performing full man-in-the-middle (MITM) attacks,
including eavesdropping, modifying, replaying, fabricating,
and even exfiltrating data sent between hosts and devices.
Similarly, USBProxy [43] is an embedded system that uses
USB On-The-Go [45]1 controllers to act as a MITM.
Off-Path Attacks. As all USB 1.x and 2.0 downstream traf-
fic is broadcast on the bus, Neugschwandtner et al. [37] use a
protocol analyser connected as an off-path device to directly
monitor downstream communications to all connected de-
vices. Such transmissions could include sensitive file contents
in transit to a storage device, network adapter, or printer.

Similarly, upstream transmissions have been demonstrated
to be observable by off-path devices [44] due to a ‘crosstalk
leakage’ effect exhibited by the large majority of tested
USB 2.0 hubs. By monitoring these leaked signals from ad-
jacent USB ports, off-path devices can eavesdrop on unicast
upstream transmissions of other devices to the USB host.
Electrical Attacks. Devices such as USB Killer [56] can
permanently incapacitate host computers and other attached
devices by discharging high voltage direct current over the
USB data lines, damaging all connected circuitry. Robust
electrical design protects against such attacks. This involves
opto- or galvanic isolation of the USB port circuitry from the
connected host controller or hub.
Device Masquerading.     USB device controllers can also
be programmed to emulate the operation of certain devices,
capitalising on the lack of device authentication and USB’s
“plug-and-play” nature. These so called masquerading attacks
use seemingly innocuous USB sticks with their firmware mod-
ified to emulate HID keyboards [7, 14, 26, 31]. Being able
to feed arbitrary keystroke input enables adversaries to com-
promise computer systems in many different ways. Payloads

1Supplement to the USB specification that lets devices also assume the
role of hosts, largely used in smartphones

of keystroke sequences can also be pre-loaded on-chip [31].
Alternatively, URFUKED [14] (the Universal R F  USB Key-
board Emulation Device) incorporates R F  communication
for short range control over the keyboard emulator. Such at-
tacks have become increasingly accessible with the advent of
software-defined customisable USB devices [16, 31].

2.4 Defences

As outlined above, USB’s design has mostly overlooked secu-
rity aspects, with the USB-IF leaving the inclusion of secu-
rity measures to the discretion of system implementers [54].
This has resulted in a fragmented collection of bespoke de-
fences [50], most of which are only enacted at one given layer
within the USB stack. This is alarming, as Tian et al. [50]
present many attacks which transcend multiple layers of the
USB protocol stack, highlighting issues with non-holistic se-
curity solutions.
Policies. Device authorisation policies [1, 23, 35, 36, 39, 46,
49, 55] are a widely adopted protection against USB-based
threats. These offer users varying degrees of control over
device function. Protection policies vary from filtering com-
munications to only allow certain devices, allowing certain
interfaces within devices, and even only allowing certain inter-
faces to communicate with specific processes running on the
host [36]. These policies also tend to fingerprint devices based
on non-authenticated information that the device self-reports
during enumeration. A  survey conducted in 2019 found that
over 40% of organisations apply protection policies [5].
Proxy Devices.     Protective proxy devices [6, 15, 19, 21]
can be placed between host and device in order to filter out
unauthorised traffic. As these devices also provide physical
separation between the attacker and the system’s data lines,
proxy devices also offer incidental protection against bus
sniffing attacks. However, to be effective, proxy devices must
be implemented in conjunction with complete system retrofits
that physically disable other ports [1, 8, 28].
Cryptographic Protections. Cinch [2] introduces a crypto-
graphic overlay protocol to augment USB with (bidirectional)
encryption and authentication. While this approach protects
against off-path confidentiality breaches, it also introduces
more than 80% performance degradation due to throughput
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reduction. These types of defences incur additional burden as 4 Attack Overview
they require instrumentation of host USB stacks.

3 Threat Model

In our injection threat model there are at least two USB de-
vices connected to a common host via some USB topology of
USB hubs. We assume that one of the devices is our malicious
injection platform, which is under the attacker’s control. We
further assume that the system contains a victim device, which
is outside of the attacker’s influence. This is the device whose
communications the attacker would like to impersonate. Cru-
cially, as per the tree topology of USB systems, the injection
platform and the victim have logically separate, but physically
shared, communication paths to the host. The system might
have additional USB devices attached. These are considered
bystanders, outside of the attacker’s influence, and perform
their function with unaffected USB communications.

Other System Components. We assume that all of the sys-
tem components, except for the injection platform, are trust-
worthy. In particular, this includes the hubs on the path from
the victim to the host as well as the host’s operating system.
We also assume that there are no malicious or compromised
on-path entities which might help the injection platform to
impersonate the victim.

Hardened Hosts. While not typically implemented by de-
fault on computer systems, we allow the host to employ a
device authorisation policy in its USB software stack. Such
policies limit the types of devices that the system supports
and allows, e.g. via an authorisation list. Alternatively or ad-
ditionally, the policy may require some form of user approval
when a new device is plugged in [46]. The policy may restrict
the nature of the communication with the device, e.g. to fil-
ter out malicious communication or to ensure that traffic is
consistent with the communication protocol of the advertised
device type.

Correct Implementation of Authorisation Tools. In case
such an authorisation policy is present, we assume that these
tools are correctly implemented and deployed, fingerprinting
devices by any means at its disposal in the software stack.
We also assume that such policy is correctly configured in
that it accurately represents the user’s intentions. We assume
that the user and the policy trust the trusted victim device and
allow its communication.

Policy Assumptions for Hardened Hosts. While the above
assumes the correct functionality of authorisation tools, we
do not assume any specific USB policy with respect to the
injection platform, provided that it is physically connected
to the host. The authorisation policy may even completely
disallow communication with the injection platform, only
allowing the USB communication with specific hand-picked
trusted devices.

Figure 5: Injection arrangement and stages

Our injection platform displays two types of behaviours.
It primarily functions as an innocuous USB device in its
own right. Additionally, it inconspicuously injects upstream
communications data to the bus, aiming to impersonate the
victim. To that aim, we equip our injection platform with the
ability to monitor the host’s downstream communications for
probes addressed to the victim, which trigger injections.
Injection. Figure 5 presents an overview of our injection
attack. First, the host broadcasts a probe requesting input
from the victim 1 . The injection platform observes the host’s
probe  and responds with an upstream data transmission
which matches the format of the expected victim response.
Such behaviour is in violation of the USB specification. How-
ever, if the injection platform manages to respond before the
victim device, the hub may accept the injected transmission
and forward it upstream, while ignoring the victim’s genuine
response 4 . Finally, we note that USB data and handshake
responses do not carry address information. Thus, when a re-
sponse arrives at the host, the host cannot distinguish between
sources based on the received data, rather it attributes a re-
sponse to the most recently probed device. Overall, in the case
that the USB hub forwards the injected response upstream,
the response from our injection platform is automatically
attributed to the victim 5 .
Bypassing Policies. Our attack exploits a vulnerability in the
USB protocol brought about by a specification compliance
assumption. Using our injection technique we can circumvent



the USB authorisation policies on the host’s hardware, as the
host’s USB controller cannot verify the source of the injected
USB traffic. The crucial follow-on effect is that injection
also bypasses software-based protection policies, as these
implicitly trust the communications received from the host’s
USB controller to be correctly attributed.

Transmission Collisions on Hubs. Our attack exploits a
race between the victim and the injection platform. If the
injection platform manages to send a response before the
victim starts sending its response, the attacker clearly wins
the race and injects their response. However, injecting the
whole response before the victim starts transmitting is quite
unlikely, particularly when the attacker wishes to inject large
amounts of data. When the transmissions of the victim and
the injection platform collide, the hub needs to handle the
collision. Figure 6 depicts such a DATA – DATA collision.

Figure 6: Sequence diagram of injection transmission and its
collision with genuine victim transmission. Dotted lines rep-
resent transmissions that are observable by the injection plat-
form despite it not being the intended recipient. Although the
sequence diagram shows multiple arrows for DATA phases,
these are part of singular continual transmissions only shown
this way to represent the long transmission period.

Collision Resolution. In the case of a collision, the USB
specification [11] permits two behaviours: a hub can treat the
later transmissions as errors, completely ignoring them. Alter-
natively, the hub can detect the collision and send a ‘garble’
error message upstream to the host.

Hubs that exhibit the former behaviour, i.e. ignoring and
discarding the later of incoming transmissions, are vulnerable
to our injection attack. With collision-detecting hubs, injec-
tion can still effect a Denial-of-Service (DoS) against victim
devices, blocking them from providing input.

5 Injection Platform Implementation

Having outlined the general principles behind our USB injec-
tion attack, in this section we describe the implementation of
our injection platforms.
Triggering Injection. In USB 1.x and 2.0 systems, down-
stream communications are broadcast and can therefore be
monitored directly by all devices in the USB topology, includ-
ing off-path devices. Our injection platforms seek specific
patterns in downstream traffic, which upon detection prompt
them to inject traffic upstream. At a minimum, the final part
of the expected pattern will consist of an IN token addressed
to the victim device, which the host uses to probe it for input.
As detailed in Section 4, the host will attribute received data
according to whichever device was most recently probed.

Many classes of device implement their own communi-
cation protocol on top of the USB protocol, typically using
multiple transactions and multiple endpoints. For example,
hosts will request certain data from storage devices by issu-
ing commands downstream using OUT endpoint transactions.
To effect these higher level communications, our injection
platform must recognise the relevant message sequence and
subsequently trigger injections according to exchanges con-
textualised by the victim device class protocol, using packets
crafted to match the corresponding format.
Existing Device Implementations.     As described in Sec-
tion 2, the USB transaction protocol is typically implemented
by a dedicated S IE  hardware module within a device’s USB
controller. Its function includes handling address checks of
incoming tokens and the subsequent processing, i.e. when the
token matches its device’s address the S IE  will write data to
an OUT endpoint buffer or read data from an IN endpoint
buffer. An existing device implementation can be turned into
an injection platform through modification of its SIE, specifi-
cally the SIE ’s token address check function.
Target Device Type. To implement our injection platforms
we modified hardware implementations of device SIEs within
their USB controllers. This involved modifying the RT L
source of cores implementing USB devices. Working at the
hardware level offered high-fidelity control over timing which
helped us ensure that our platforms win transmission races
as required for the attack. As a possible alternative solution,
there are some general purpose microcontroller families [34]
with USB connectivity which implement the S IE  in soft-
ware/firmware and either support the USB interface directly
(up to FS) or through an external PHY. While modifying the
firmware of such an implementation could be a viable means
of achieving our objectives, we have pursued hardware-based
solutions instead because of the greater control (due to less
abstraction) they offer over the platform function. Hardware
Setup. We have built two prototype injection plat-forms using
existing implementations of USB device cores, which we
deploy on FPGAs. The platforms are based on USB 1.x
and 2.0 device implementations, one for each major



version since the versions have different electrical interfaces
and slightly different hardware behaviours. While they are
largely similar, some properties of the devices differ between
the implementations. We list these differences in Table 1.

USB 1.x USB 2.0

Original core name FPGA-USB-V2 USB2SOFT USB 2.0
project [25] device SIE [9]

Speed modes L S  (1.5Mbps) or HS (480Mbps)
FS (12Mbps)

Interface to USB Direct to USB 12-pin UTMI+ to
connector PHY Waveshare

PHY Internal USB3300
Adapted core from Open source Licensed IP
RT L  source language VHDL VHDL
FPGA target Xilinx Artix-7 Xilinx Kintex-7
Development board Digilent Basys 3 Digilent Genesys 2

Table 1: Injection platform properties

5.1 USB 1.x Injection Platform

Core. The classic-speed (1.x) injector platform we have cre-
ated is based on a modified (and debugged) core [25] written
in VHDL, which is freely available for distribution.2 The core
contains elements that perform the functions of all hardware
modules within a device controller as in Figure 4 (PHY and
SIE), however its structure is monolithic rather than parti-
tioned into those distinct modules. In conventional devices,
communication across all endpoints would be handled by the
device microcontroller. This core instead defines function-
ality for device enumeration, performed by communication
over control endpoint (0), directly in hardware. The core also
allows for communication over input/output (non-control)
endpoints to be implemented directly in hardware. The core
interfaces directly with the USB differential data lines D+ and
D- and can be set to operate as either a L S  or FS device.
Deployment. We instantiated the core on a Xilinx Artix-7
FPGA housed on a Digilent Basys 3 development board. We
directly connect the USB data lines from a spliced USB cable
to 3.3V general-purpose I/O pins on the board. The device is
shown in Figure 11 in the appendix.

To configure the device to work at LS ,  we pull up the D-
line to 3.3V across a 1.5kW resistor, this signals the speed
mode to the host and sets the associated differential signalling
polarity. To work at FS, the D+ line must be pulled up instead.

5.2 USB 2.0 Injection Platform

handling all CONTROL interactions over endpoint 0. FIFO
interfaces support IN and OUT endpoints.

The core connects to an external PHY across the low pin
count interface – UTMI+ (ULPI) [41]. This is the de facto
standard interface for SIEs interacting with USB transceivers.
We use the interface with an 8-bit wide data bus and control
signals which are clocked by the PHY with a 60MHz signal
derived from transitions on the 480Mbps HS data lines.
Deployment. We have ported the core to a Xilinx Kintex-7
FPGA housed on a Digilent Genesys 2 development board.
The board is connected through its general-purpose I/O pins,
which are capable of switching at high frequency, to the
UTMI+ pins of a Waveshare USB3300 PHY board. Figure 12
in the appendix shows this device.

5.3 S I E  Modifications

As outlined in Section 2.1, Endpoint 1 is typically the main
input (IN) endpoint used by devices and endpoint 0 is the
CONTROL endpoint used for conveying setup information
during enumeration. Since we do not wish to interfere with
our victim’s enumeration, we configure our platforms to only
inject endpoint 1 traffic.

As an example, in the USB 1.x device implementation
RT L  source we identify the following line which defines the
device’s address check behavioural logic on incoming tokens:

i f  (token_ad /= new_usb_addr) or
( p i d  /= not token_in(16 downto 13) then

where ‘/= ’  is the VHDL inequality operator. When this i f
statement evaluates as true due to an address mismatch (first
condition) or transmission error (second condition), the cur-
rently inspected token packet is no longer processed and the
device waits for the next token. We transform the device into
an injection platform by modifying this line to the following:

i f  ((token_ad /= new_usb_addr)
and (endp / =  "0001" ) )  or
( p i d  /= not token_in(16 downto 13) then

Now our device can process incoming tokens with address
mismatches if they are intended for endpoint 1. We note that
with this modification the platform would inject endpoint 1
traffic on behalf of itself and victim devices connected on
the bus in the same speed mode. We thus further alter the IN
endpoint 1 behavioural logic to only send data for probes with
address mismatches, allowing the device to ignore its own
traffic, sending NAKs to all of its own probes. We similarly
modify the USB 2.0 device implementation to the same effect.

Core. The HS injection platform is based on an adapted
licensed device core IP [9] written in VHDL. This core in-
stantiates a S IE  and implements enumeration functionality,

6 Testing USB Hubs

2The injection platform bitstream and source RT L  code are available at:
https://github.com/0xADE1A1DE/USB- Injection

In this section we evaluate the hardware setups that are vulner-
able to our injection attack. We evaluate a total of 29 hubs and

https://github.com/0xADE1A1DE/USB-Injection


find that 14 of them are vulnerable. We then investigate fea-
tures that correlate with some of these vulnerabilities. Finally,
we test the impact of bus topology on our injection attack.

6.1 Testing Methodology

Figure 7: The testing environment.

Topology.     To test for injection attacks, we configure our
injection platform to inject a unique and easily identifiable
data sequence into the USB communication stream. We then
set up an experiment in which both an injection platform and
victim device operating at the same speed mode are connected
to the host PC through the hub under test. See Figure 7. We
refer to this hub as the common hub.
Experimental Setup. Between the host and the common
hub we attach a Totalphase Beagle USB 5000 protocol anal-
yser, which observes and logs all traffic on the link between
the common hub and the host. Because both the victim device
and the injection platform are connected to the host via the
common hub, the protocol analyser also captures all traffic be-
tween the host and these devices. We repeat each experiment
three times, once for each of the operating speeds. For the LS
and FS  operating speed, we use our USB 1.x injection plat-
form from Section 5.1, with keyboards as the victim devices.
For the HS operating speed we use our USB 2.0 injection
platform from Section 5.2 with mass storage victim devices.
The specific models are listed in Table 2 in the appendix.
Communication Analysis. When our injection platforms
inject transmissions during a victim’s time slot the genuine
victim response is also sent, causing a collision at the com-
mon hub. A  vulnerable hub that enables injection continues to
forward the first incoming transmission upstream and blocks
all subsequently arriving simultaneous transmissions. In our
experiments this result is evident from observing that the pro-
tocol analyser log attributes the unique data sequence that the
injection platform transmits to the victim device’s assigned
address. Otherwise, if the hub sends a garble/error sequence
upstream when it detects a collision, the unique data sequence
does not appear in the protocol analyser’s log.

6.2 Targeting USB 2.0 Hubs

We begin our investigation with a test of 16 USB 2.0 hubs.
These include thirteen standalone hubs, which are attached

via a USB cable to a host, and three embedded hubs that
motherboard vendors embedded in their products to increase
the number of supported USB ports. Table 3 in the appendix
lists all hub models tested and their advertised IDs. Note, the
embedded hubs were tested by carrying out the end-to-end
attacks as described in Section 7.

Injection Results. We find that 13 out of the 16 tested hub
devices are vulnerable to some form of injection attack. One
device is vulnerable to both USB 1.x and USB 2.0 injection,
seven devices only to USB 1.x injection and four devices only
to USB 2.0 injection. Interestingly, all of the embedded hubs
we tested are vulnerable to injection and attacking mother-
boards that feature them is possible even without any external
USB hubs.

Anomalous Hub Behavior.     Three of the hubs we tested
exhibit specific behaviour not observed in other hubs. Two
unlabelled hubs, marked as USB 2.0 hubs, only operate at
USB 1.x speeds. We were unable to find similar hubs and do
not know if the issue affects all hubs of the same models or
only the specific ones we tested. The other hub displaying
specific behaviour is the embedded hub in the Micro-Star
PRO Z690-A motherboard (marked with (3) in Table 3). The
motherboard has only two exposed ports that seem to show an
unbalanced behaviour. Injection from one of the ports works
consistently. However injection from the other is intermittent,
with the victim device sometimes winning the race, preventing
the injection. A  possible explanation for this unique behaviour
is that the hub uses asymmetric downstream port arbitration
or switching.

DoS Results. Finally, we tested the hubs with a DoS attack, in
which the injection platform transmits a NAK in response to
every probe that the host sends to the victim. In vulnerable
hubs, the injection platform wins the race and the host accepts
the injected NAK. In non-vulnerable hubs, the hub detects
the collision and sends an error signal, effectively deleting the
victim’s response. Thus, in either case, the denial of service
attack is effective. The only exceptions are the embedded
hub described above, where in one configuration the victim
sometimes wins the race, overcoming the attack; and multi-
TT hubs against 1.x traffic injection, since the downstream
probes do not reach the injection platform.

6.3 Targeting USB 3.x Hubs

We now turn our attention to USB 3.x hubs. We tested 13
such hubs, also summarised in Table 3 in the appendix. For
backwards compatibility, USB 3.x hubs consist of two logical
hubs, one handling USB 3.x SuperSpeed traffic, while the
other handles compatibility with USB 2.0 devices. As our
injection platforms do not operate at SuperSpeed, the experi-
ments only test the internal USB 2.0 hubs. Interestingly, when
enumerated, the internal USB 2.0 hubs identify themselves as
USB 2.1 hubs. The USB specification [17] does not specify



a version 2.1. We suspect that this version number is used to
differentiate internal hubs from pure USB 2.0 hubs.

Overall, we find that USB 3.x hubs are less vulnerable to
injection attacks, with only one of the 13 we tested allowing
injection. USB 3.x hubs are still vulnerable to denial of service
attacks for USB 2.0 victims. USB 1.x victims can also be
attacked with USB 1.x denial of service, but only in the case
that the internal hub they connect to is single-TT.

Figure 8: USB 3.0 Hub Architecture [17]

6.4 Root Hubs

Our investigation so far focused on standard hubs that are used
for the internal levels of the USB network tree. Root hubs
that provide the first tier of attachment points to a host system
and are structured differently to standard USB hubs. Their ar-
chitecture and operational model is defined in the eXtensible
Host Controller Interface for USB (xHCI) specification [22],
which standardises methods for communication between USB
software and hardware. xHCI specifies mechanisms for main-
taining port association with connected devices that ultimately
routes transmissions to those devices, thus there are no broad-
casts of downstream USB 1.x and 2.0 traffic across root hub
ports.

As our injection platforms relies on broadcast traffic to
time the injection, we cannot expect the attack to work when
downstream traffic is not broadcast. Indeed, we have tested
injection using both platforms against multiple xHCI root
hubs and found none to be vulnerable because the injectors
have no visibility of probes sent to victim devices.

6.5 The Impact of Transaction Translators

Observing the results above, we note that the behaviour de-
pends on the configuration of transaction translators in the
hub. Specifically, we find that multi-TT hubs are not vulnera-
ble to USB 1.x injection, because the injection platform does
not observe the host’s probes.

When performing USB 1.x attacks against single-TT hubs
that resist the attack, we observe that the hub sends a ‘SPLIT-
ERR ’  (error) message upon attempted injection. We hypoth-
esise that the hub detects the collision and sends the error
message instead of a garbled signal.

6.6 Exploring USB Topologies

In the testing described so far the victim device and the injec-
tion platform have been connected directly to the common
hub. We now investigate the effects that introducing additional
tiers of hubs between victim and injection platform has on
injection. USB allows up to 7 hub tiers, where the root hub
is the first tier, so up to 5 chained hubs can be cascaded from
the root. In all the experiments, we use a vulnerable hub as
the common hub and safe hubs otherwise.

USB 2.0 H S  Injection. We find that is it possible to inject HS
traffic in all cases where the injection platform is connected
at a hub tier that is not further away from the host than the
victim. When the injection platform is further than the victim,
injection does not work. We believe the reason to be that
the time taken for the HS signal to propagate through a hub
repeater is significantly greater than the time by which our
injection platform undercuts the victim’s response.

USB 1.x LS/FS Injection. When the common hub is a USB
2.0 or 2.1 hub, we find that injection of USB 1.x traffic only
works when both the victim and the injection platform are
attached to it directly. This is because downstream USB 1.x
traffic is delivered at USB 2.0 HS (immediately following a
SPLIT  message) and is only translated to a USB 1.x speed
at the hub to which the receiving device is attached. Conse-
quently, if the victim device and the injection platform (oper-
ating as a USB 1.x device) are not connected to the same hub,
the injection platform cannot observe broadcasts of translated
downstream traffic sent to the victim device.

However, we note that when injecting against a USB 1.x
victim, a USB 2.0 injection platform can target the hub the
device connects to instead of targeting the device itself. We
verified that, by injecting HS traffic with our USB 2.0 injec-
tion platform on behalf of the hub, the injection platform can
spoof the hub’s translated USB 1.x traffic, thereby confusing
the host to accept the injected traffic as if it originated at the
USB 1.x victim device. Therefore, we can inject USB 1.x
traffic from the same hub tier only when connected via USB
1.x on the same hub, or we can inject translated HS traffic
with a USB 2.0 injection platform connected at a closer hub
tier than the victim. Note that this includes placing the injec-
tion platform at the same tier as the hub the victim connects
through.

The result is different when using a USB 1.x hub operating
at LS/FS speeds as the common hub. In this case, all hubs
connected on the downstream of the common hub revert to
operating as USB 1.x hubs. Consequently, no traffic transla-
tion occurs, and the attack works irrespective of the number
of intermediate hubs between the common hub and the victim
device or the injection platform.



7 Injection Attacks

In previous sections we demonstrated injection of USB traf-
fic. We now investigate the security impact of such injection.
Specifically, we demonstrate two attacks, one injecting com-
mands through keystroke data and the other compromising
system security by injecting file system contents.

7.1 Keystroke Command Injection

Keyboard USB Stack. HID Keyboards typically operate at
L S  and use endpoint 1 as their main and only input endpoint.
They are simple devices which report character key press and
release events. As such, beyond the USB transaction proto-
col there is no higher-level protocol used by hosts to elicit
data. Thus, we have directly adapted our USB 1.x injector
to demonstrate injection of keystroke commands to the host,
like what might be sent in a protocol masquerading attack.
Attack Payload. In our ad hoc microprocessor application
implementation we program a payload of data packets into the
platform core directly in hardware and tie their provision to
press events for buttons on the board. The payload sequence
opens a Command Prompt on a Windows system.
DoS-Switch. We further instrument the platform with a ‘DoS-
switch’ enabling selective injection of NAKs on behalf of the
victim to block its inputs from being forwarded. Blocking
can be useful under circumstances where the adversary per-
forming injection wants to inject an uninterrupted payload
sequence of packets. The NAKs are sent only when the injec-
tor is not providing DATA packets of its own.
Experimental Setup. We configure our injector to identify
as a HID mouse operating at LS. We connect both the victim
and our injection platform to a host through a common hub
(one previously found to be vulnerable), again placing the
protocol analyser on the hub’s upstream connection.
Results. We successfully perform keystroke injection attacks
against keyboard victims. We open a Windows Command
Prompt, and using the protocol analyser we observe that the
injected traffic is attributed to the victim keyboard’s assigned
address. Unplugging the keyboard and pressing the same
buttons on our connected injection platform results in no key
presses, further confirming that injections have taken place
and it has not somehow mistakenly fed keystrokes as a mouse.
We verify the function of our DoS-switch by pressing keys on
the victim observing that with the attack enabled, keystrokes
do not pass through.
Latency. Being able to inject successfully means our attack
platform can undercut the victim keyboard probe responses.
We confirmed this by inspecting the respective devices’ packet
timings in the protocol analyser traffic capture. We do not
expect other keyboards from different manufacturers to have
response times fast enough to pose a concern. The platform
should consistently win transmission races and no further
modification is needed to speed up response times.

Attacking Gaming Keyboards at FS. We alter the USB 1.x
injector to work at FS  and find that it can also successfully
inject against a low latency gaming keyboard at FS  with a
1 kHz poll rate. This is because gaming keyboard latency is
bounded by the high polling rate and not outright hardware
response times.

7.2 Hijacking File Transfers

For our second use case we adapted the USB 2.0 injection
platform for compromising the communications of HS flash
drive victims. Using it we can hijack device-to-host file trans-
fers. The platform listens for data requests sent to a flash drive
victim, which stimulates it to inject data that ultimately alters
the contents of files that end up resident on the host.

We further demonstrate this capability in a use case where
we compromise a Kali Linux OS image in a boot from USB.
Mass Storage Device Stack. Here we describe aspects of
the mass storage device (MSD) class relevant to the use case.

Endpoint 1 is typically the main data input endpoint for
MSDs. This means we can retain the modifications that made
the original HS injection platform. However, injection has in-
creased complexity in this use case because MSDs implement a
Command/Data/Status transport protocol across multiple
USB transactions and over multiple endpoints. Its operation
is largely analogous to USB’s transaction protocol. This pro-
tocol uses the Small Computer System Interface (SCSI) [42]
command format. For our purposes we are not interested in
the information transfers that establish a link between the host
and MSD file systems, rather we are only specifically inter-
ested in the exchanges that take place during a file transfer on
established links. Once a link has been established, the host
periodically sends the SCSI Test Unit Ready (TUR) Com-
mand which essentially acts as a keep-alive message. This is
followed up by the device sending a Status message to the
host indicating that it is ready for another command.

Figure 9: Command/Data/Status sequence in a device-to-
host mass storage file transfer. Each arrow in the diagram is
representative of an entire 3-stage USB transaction.

When the host wants to initiate a device-to-host file transfer



it will issue a SCSI  read(10) Command requesting transfer
by communicating through OUT endpoint 2, illustrated in
Figure 9. Among the fields within this Command message
are the read(10) opcode [0x28 0x0a], the requested data
address offset, the transfer size, and a unique tag. The file con-
tents are then provided in subsequent Data block(s) through
one or multiple (depending on size) IN endpoint 1 transac-
tions. The device indicates transfer completion Status through a
subsequent IN endpoint 1 transaction. The Status message
must include the same unique tag issued in the Command
message.

At HS, the maximum transfer size for a data block is 512
bytes. When amounts of data in excess of this are requested it is
all transmitted over multiple successive IN transactions. For
brevity, any mentions of IN or OUT communications hereon
refer to those over endpoints 1 and 2, respectively.
Further Modifications to the Injection Platform. Oper-
ating with awareness of the extra communication protocol
layer of MSD victims requires some higher-level control func-
tionality on the part of our platform. Directly in the platform
hardware we configure ad hoc microcontroller application
function to monitor downstream OUT messages to the vic-
tim and trigger an internal signal upon detection of the SCSI
read(10) command. We also make it store the transmission
size requested and the unique message tag.

We program it to construct injection packets consisting
of the g character (0x67) (arbitrarily chosen), with the final
packet being zero-padded to 512 bytes in length. It determines
how many g characters to put in the injected packet(s) from
the size field in the triggering read(10) command packet.

Some additional injections after the data is sent are required
to fulfil exchanges that complete the file transfer. We make our
platform inject a Status transmission (with the registered mes-
saged tag) in response to the IN token following the last Data
transmission. We program the platform to then acknowledge
the subsequent OUT TUR messages (initial AC K  response to
the PING token then to OUT message) sent to the victim.
Experimental Setup. We configure this injection platform
to present itself as a serial communications device operating
at HS. It monitors HS OUT communications to other con-
nected devices and once triggered, injects in response to the
subsequent IN tokens addressed to the victim. The injection
platform and victim flash drive attach to a common hub (pre-
viously found vulnerable) which connects to a Windows host
through our protocol analyser. We prepare a text file in the
victim file system consisting of several different characters.
Results. The attack is consistently successful since our injec-
tor consistently undercuts the MSD responses, and the host
terminates the transfer leaving our injected packet contents
on the host machine. We confirm the result with the analyser
capture. Figure 10 shows bus communications during our file
transfer hijack. After an A C K  is injected in response to the
TUR command, the driver concludes the file transfer. A  key
takeaway is that a malicious actor may need to characterise

Figure 10: File transfer hijack communications. Each com-
plete arrow represents a completed 3-stage USB transaction.
The dotted line arrow represents a transaction that is merely
observed by the injection platform.

the behaviour of target host system drivers to perform attacks
against victims communicating with higher level protocols.
Operating System Image Compromise in USB Boot. We
apply our file transfer hijacker to compromising a Kali Linux
OS image transferred when a host boots from USB. Our attack
changes the partition selection option labels that appear in the
boot menu, switching the ‘encrypted persistence’ option with
the ‘persistence’ option.

To do this, we performed a boot from the victim and
recorded all traffic. In the capture we identify the grub.cfg
file contents which happen to be transferred at the 17th IN
transaction (and in plaintext) following a request for data at
a certain address. We store the requested address in our plat-
form and alter the injection trigger signal. The trigger signal is
set after our platform has observed 16 IN tokens following a
read(10) Command requesting the stored address. We inject
a modified version of the genuine packet.

The compromise is successful. This case is different to the
previous file transfer hijack since we are injecting in response
to an IN token which is known to be met with a victim DATA
packet instead of a NAK. Our injected data transmission ar-
rives at the host earlier than the victim’s and the host later
AC K s  the victim for the injected transmission, so the victim
does not think it needs to resend the data.

Compromise in exactly this manner demands a strong at-
tacker model since it requires knowledge of the victim data
transfers that achieve a USB boot, and of course the content
transferred. Nonetheless, it demonstrates that using our injec-
tion exploit we can compromise the boot image. In a more
realistic attack scenario, an injection platform could be con-
figured with the complete capability of a flash drive (while
still presenting a benign device) and use injection to take over
a victim connection entirely to force its own image onto the
host. This is akin to how we previously continued to inject



in subsequent communications to terminate a hijacked file
transfer.

8 Circumventing Authorisation Policies

Due to the trust-by-default nature of USB, attack-capable
devices only need access to typical, unprotected computer
systems to feed keystroke commands or transfer malicious
files. Attacks of this kind can usually be performed with-
out injections. However as previously mentioned, injection is
useful against protective measures that can govern the autho-
risations afforded to connected devices, since these policies
are enacted at higher level communication layers than that
where injection occurs. Authorisation policies trust and pro-
cess messages that arrive from the host USB controller which,
as we have shown, can be wrongly attributed. Such policies
are widely adopted protections according to a survey carried
out in 2019 [5] which found over 40% of organisations to use
such policies.
Testing USB Authorisation Policies. We test our platforms
against various authorisation policies to confirm that they
can be circumvented by injection. Depending on how the
policies can be set, for testing we either explicitly allow only a
trusted victim to provide input while implicitly blocking all
other devices, or we explicitly block our injection platform,
allowing all else. In cases where it is possible to both explicitly
allow and block certain devices we do so. With the policy in
operation, we then attempt injection. The tested policy
solutions and the policies are:
U S B F I LT E R .  U S B F I LT E R  [47, 49] is a packet-level access
control system which can be linked to the Linux kernel.
Through its use, packet filtering rules can be applied to the
level of allowing or blocking certain device interfaces, also
enabling restriction of interaction between device interfaces
with certain applications/processes running on the host. In
testing USBFI LT ER, we allow the trusted devices and block all
interaction with our injection platforms.
GoodUSB. GoodUSB [46, 48] instruments the USB stack
to let users moderate which drivers can be loaded for a device
based on what functionality they expect, using a popup menu
that appears when they plug it in. We only allow the victims
normal use of their expected drivers in testing. Injection can
exploit those victim interfaces both when the attack platforms
have been allowed as their other benign device types and
when they are not authorised for use.
USBGuard. USBGuard [55] is a device access control pack-
age. This software gives users options to ‘allow’, ‘block’, and
‘reject’ communication with certain devices. We allow our
victims and perform testing where we block and where we
reject the injection platforms.
Oracle VirtualBox. the Oracle VM VirtualBox extension
pack [39] supports the use of USB devices in a virtual ma-
chine’s guest OS. The extension lets users maintain a list

of devices to be allowed or blocked for use in the VM. We
explicitly allow the trusted device and block the injection
platform.
USB-Lock-RP. USB-Lock-RP [1] allows users to selectively
allow only certain devices to work on a host. We allow only
our trusted victim flash drive/keyboard to operate when test-
ing. We tested both the free version and a licensed version
that Advanced Systems International provided us.
Experimental Results. We successfully bypass all tested
policies. We believe it is reasonable to claim that injection
can be used to bypass all authorisation policies implemented
anywhere in the USB software stack.
Device Fingerprinting Invariant. Device authorisation pro-
tections can be bypassed irrespective of the fingerprinting
mechanisms they use to identify devices. Fingerprinting is
most commonly based on VendorID (VID) and ProductID
(PID) identifiers [52] supplied by devices during enumera-
tion, however some mechanisms leverage other information
like packet timings [13] or device electromagnetic emana-
tions [20]. As we have demonstrated with selective injection,
we can allow victim devices to operate as normal during such
fingerprinting processes so that they are correctly identified.

9 Limitations, Future Work and Countermea-
sures.

Targeting Additional Devices. In its current form, our attack
is limited to targeting communications of USB 2.0 and 1.x
victim devices. This is due to our threat model’s dependence
on monitoring downstream communications, which are only
broadcast in these protocol versions, to stimulate injection
responses. However, devices using these protocol versions
continue to be highly relevant, as keyboards and other HIDs
will continue to be manufactured to the 1.x standard.

The injection platforms created in this work have been
made to demonstrate specific use cases attacking keyboard
and mass storage device communications. Our file hijacker for
example used specific knowledge of the mass storage device
class protocol to achieve desired effects. We leave the task of
implementing attacks against other device types and classes
to future work.
Attacking USB 3.x Traffic. USB 3.x systems use point-to-
point routing which prevents direct off-path communications
monitoring, albeit inadvertently since this was introduced as
a power saving measure to reduce unnecessary signal trans-
mission in hubs and token address processing at devices. We
do note however, that since USB 3.x hubs incorporate side-
by-side SuperSpeed and 2.0 hubs for device backward com-
patibility [17], the 2.0 (or 2.1) hub within is attacked by our
injection exploit, making these 3.x hubs susceptible.

It may yet be possible to inject USB 3.x traffic by transmit-
ting in response to probes that an attacker indirectly monitors,
perhaps from signal crosstalk leakages. Future work can try



to target USB 3.x victims with a similar attack model and in-
vestigate mechanisms for off-path monitoring of downstream
traffic in 3.x hubs.
Mitigations. A  straightforward countermeasure is to use
hubs that block transmission when a collision is detected.
This is explicitly mentioned as a design option in the USB
2.0 specification however our results show the majority of
USB 2.0 hubs do not implement this option. Conversely, the
majority of USB 2.1 hubs (i.e. USB 2.0 hubs within 3.x hubs)
do. Although collision detection prevents our attack, it does
not address the core vulnerability as it relies on the trusted
device causing a collision. Nonetheless, collision detection
should be effective so long as the trusted device does not
malfunction or have a malfunction induced by other means.

Further, adding capability to interpret the garbles sent up-
stream indicating collision detection in a host’s software stack
would mean the system user can be alerted that either an
injec-tion or malfunction is potentially occurring. Host
controller chips must be designed to pass on collision
information to the USB software stack for user alerts to work.

For vulnerable hubs, physical separation of devices from
USB port lines through proxies and/or port blocking add-ons
can be used to prevent injection and bus sniffing attacks.

10 Conclusions

In this paper we present an off-path transmission injection
attack on the integrity of USB communications, the first of its
kind. This provides us with a complete picture of the threat
off-path devices can pose. We find the majority of USB 2.0
hubs to be vulnerable as they enable injection, and we discov-
ered that a small proportion of USB 3.x hubs are vulnerable.
By using our injection technique, an attacker can circumvent
device authorisation policies enforced in a computer’s soft-
ware stack to exploit any communication channels that are
trusted according to the user-configured policies. We circum-
vent all policies tested. We further demonstrate two attack
scenarios: keystroke command injection and hijacking file
transfers. The former allows us to inject malicious commands,
and the latter allows us to compromise an OS image when
booting from a trusted USB flash drive.

While our attacks do require a malicious device connected
to the target system, we argue that these attacks do pose a non-
trivial threat in some scenarios, especially for high-security
USB applications. As current generation of USB hardware
cannot be updated to prevent command injection, we leave
the task of designing and deploying USB usage policies for
preventing injection attacks to future work.
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Appendix

In this appendix we provide further tables and figures that
augment and complete the information in the paper.
Victim Devices Used in Testing. Table 2 lists the devices
we used as the victim devices for injection tests. Overall, we
used six victim devices. For the USB 1.x experiments we used
two keyboards, one operating at L S  and the other at FS. For
the USB 2.0 experiments we used four different USB disks.
Hubs Tested. Table 3 lists all hubs we tested. The model
describes the packaging of the hub. Type indicates whether
the hub is a standalone device (S) or embedded within a host
system (E), for example embedded within a motherboard. The
ticks in the columns labelled by speed mode (1.x – LS/FS
and 2.0 – HS) indicate hubs that were found vulnerable to
injection in that speed mode. VendorID (VID), ProductID
(PID), and bcdDevice (bcdDev – device version) are descrip-
tors provided by the hub during enumeration with a host. T T
indicates whether the hub is a multi-TT (M) or single-TT (S)
system. Also note that for the 3.0 hubs, we refer to the internal
2.0 hub chip descriptors.

In some cases duplicate chips are listed, for instance the 2.0
hub chip within the vulnerable Alogic 3.0 hub has the same
IDs as a chip from a non-vulnerable model - the Sabrent 3.0
hub. Despite the identical IDs we found these two chips to
present slightly different descriptor sets which indicates they
may have undergone different configuration when ported into
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Table 2: USB victim devices used to test injection
Device

Dell Quietkey Keyboard
Corsair K55 RGB PRO Gaming Keyboard
Emtec USB DISK 2.0
Silicon Motion, Inc. USB Flash Disk
SanDisk U3 Cruzer Micro Flash Drive
SanDisk Cruzer Blade Flash Drive

VendorID

0x413C
0x1B1C
0x6557
0x090C
0x0781
0x0781

ProductID

0x2106
0x1BA4
0x0121
0x1000
0x5406
0x5567

bcdDevice Speed

0x0101 L S
0x0101 FS
0x0100 HS
0x1100 HS
0x0200 HS
0x0100 HS

Table 3: USB hub models tested. Version indicates USB version. Type indicates standalone device (S) or embedded (E) within a
host system, e.g. motherboard. VendorID (VID), ProductID (PID), and bcdDevice (device version) are hub-provided descriptors.
T T  indicates single- (S) or multi-TT (M). Ticks under 1.x or 2.0 indicates vulnerability to injection in those modes.

USB Hub Model

1PortUSB Network with 3Port
D-Link DUB-H7 7-Port
D-Link DUB-H7 7-Port
Dell EMC
Gigabyte B550 AORUS E L I T E  V2 Motherboard
Gigabyte H470 HD3 Motherboard
J. Burrows High-Speed
Micro-Star PRO Z690-A Motherboard
Speedlink Barras Supreme Hub and Sound Card
Startech Industrial 4 Port Mountable
Targus
Tripp Lite
Unlabelled operating at LS/FS
Unlabelled ‘Slim’ hub operating at LS/FS
Unlabelled
Unlabelled
Alogic USB-C Fusion SWIFT 4-in-1
Asmedia ASM107x
Belkin F4U090
Bonelk 4 Port
Channel+
HP
Plugable
Sabrent
Satechi
Smart Sync & Charge
Targus
Ugreen
Wavlink

Version

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0

Type 2.0 Chip Vendor (VID) PID bcdDev

S           Terminus Technology Inc. (0x1A40)                0x0101         0x0100
S           Terminus Technology Inc. (0x1A40)                0x0101         0x0111
S           D-Link Corp. (0x2001)                                       0xF103         0X0100
S           AMECO Technologies (0x214B)                      0x7000         0x0100
E            Genesys Logic Inc. (0x05E3)                            0x0608         0x8536
E            Genesys Logic Inc. (0x05E3)                            0x0608         0x8536
S           Terminus Technology Inc. (0x1A40)                0x0101         0x0111
E            Genesys Logic Inc. (0x05E3)                            0x0608         0x6070
S           Genesys Logic Inc. (0x05E3)                            0x0608         0x8536
S           NEC Corp. (0x0409)                                           0x005A        0x0100
S           Genesys Logic Inc. (0x05E3)                            0x0608         0x8537
S           Terminus Technology Inc. (0x1A40)                0x0101         0x0111
S           Genesys Logic Inc. (0x05E3)                            0x0606         0x0702
S           Genesys Logic Inc. (0x05E3)                            0x0606         0x0702
S           MOAI Electronics Corp. (0x14CD)                  0x8601         0x0000
S           Terminus Technology Inc. (0x1A40)                0x0101         0x0111
S           Genesys Logic Inc. (0x05E3)                            0x0610         0x0655
S           QNAP System Inc. (0x1C04)                            0x2074         0x0100
S           Belkin International, Inc. (0x050D)                  0x090B        0x5102
S           Realtek Semiconductor Corp. (0x0BDA)        0x5411         0x0101
S           V I A  Labs Inc. (0x2109)                                      0x2813         0x0221
S           HP Inc. (0x03F0)                                                 0x444A        0x0125
S           V I A  Labs Inc. (0x2109)                                      0x2813         0x9011
S           Genesys Logic Inc. (0x05E3)                            0x0610         0x0655
S           V I A  Labs Inc. (0x2109)                                      0x2817         0x0383
S           Genesys Logic Inc. (0x05E3)                            0x0610         0x9226
S           V I A  Labs Inc. (0x2109)                                      0x2813         0x9011
S           V I A  Labs Inc. (0x2109)                                      0x2817         0x9013
S           V I A  Labs Inc. (0x2109)                                      0x2815         0x0704

T T 1.x 2.0

S
M 3
S           3 3
S
S           3
S           3
M 3
S          (3)
S 3
S 3
S 3
M 3
S           3           N/A
S           3           N/A
S
M 3
S           3
M
M
M
S
M
S
S
M
M
S
M
M

Table 4: USB product vendors and manufacturers contacted for disclosure
Company

Alogic
D-Link

Genesys Logic Inc.
Gigabyte Technology
J. Burrows (Officeworks)
Oracle (VM Virtual Box)
NEC Corporation
Speedlink
Startech
Targus
Terminus Technology Inc.
Tripp Lite
USB-Lock-RP

Type

Hub vendor
Hub vendor and manufacturer

Hub manufacturer
Hub vendor
Hub vendor
Software vendor
Hub manufacturer
Hub vendor
Hub vendor
Hub vendor
Hub manufacturer
Hub vendor
Software vendor

Report Sent

3
3

3

3
3
3
3
3
3

Most recent response to Report

Technical team assessing report findings
Asserted their products are specification compliant,
technical team assessing report findings
No response to initial contact
Technical team assessing report findings
No response to initial contact
No response to initial contact
No response to initial contact
Not concerned because the product has been discontinued
Technical team assessing report findings
Escalated with senior management
Not concerned, they say it is irrelevant with their hubs
Not concerned because their product is not a network device
Acknowledged findings

their USB 3.0 hub. For this reason we have retained all cases
of duplicate chips among different hub products.

Responsible Disclosure. Table 4 lists the vendors we noti-

fied and summarises their responses. To ensure that disclosure
is coordinated, the initial contact did not include a bug report.
Instead, it sought an agreement not to disclose until a mutu-



ally agreed disclosure date. Of the 13 vendors we approached,
four failed to respond to the initial contact, despite repeated
attempts. The other nine agreed to the terms and received the
report. Only four of the vendors responded to the contents of
the report, three of which claim not to be concerned, whereas
one vendor acknowledged the finding.
Injection Platform Hardware. Last, we include images of
the target hardware to which we ported our injection platform
implementations. Figure 11 shows the 1.x injector hardware
described in Section 5.1. This includes additional external
circuitry required to interface directly to the USB lines. Fig-
ure 12 shows the 2.0 injector hardware described in Sec-
tion 5.2. The hardware comprises a target FPGA configured
with the USB device core, and an external dedicated PHY
module connected by wires over UTMI+.

Figure 11: USB 1.x target hardware

Figure 12: USB 2.0 target hardware


