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Abstract

The drive to create thinner, lighter, and more energy efficient
devices has resulted in modern SoCs being forced to bal-
ance a delicate tradeoff between power consumption, heat
dissipation, and execution speed (i.e., frequency). While bene-
ficial, these DVFS mechanisms have also resulted in software-
visible hybrid side-channels, which use software to probe
analog properties of computing devices. Such hybrid attacks
are an emerging threat that can bypass countermeasures for
traditional microarchitectural side-channel attacks.

Given the rise in popularity of both Arm SoCs and GPUs, in
this paper we investigate the susceptibility of these devices to
information leakage via power, temperature and frequency, as
measured via internal sensors. We demonstrate that the sensor
data observed correlates with both instructions executed and
data processed, allowing us to mount software-visible hybrid
side-channel attacks on these devices.

To demonstrate the real-world impact of this issue, we
present JavaScript-based pixel stealing and history sniffing at-
tacks on Chrome and Safari, with all side channel countermea-
sures enabled. Finally, we also show website fingerprinting
attacks, without any elevated privileges.

1 Introduction

Since their discovery about 70 years ago [3], side channel at-
tacks have traditionally been divided into two main categories:
either physical side channels (e.g., power consumption and
electromagnetic radiation) [4, 27, 42, 52, 58, 66] measured by
external equipment, or microarchitectural attacks (e.g., cache
contention and transient execution) [43, 44,48, 51, 56, 65, 73]
mounted via resident software.

Recently, however, side channel research has uncovered an
intermediate category, where attackers measure analog leak-
age using software-accessible mechanisms, instead of exter-
nal measurement devices. Indeed, recent works have demon-
strated using Intel’s RAPL interface [49] to perform software-
only power analysis, exploiting Dynamic Voltage Frequency
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Scaling (DVFS) to break constant-time code [50, 67] and even
mounting electromagnetic attacks via audio interfaces [32].
These software-based analog attacks pose a paradigm shift
in side channel research, as they allow attackers to bypass
microarchitectural-attack countermeasures previously consid-
ered sufficient to mitigate software-based side channels.

Another change brought about in the recent evolution of
computing hardware is the departure from x86-based archi-
tectures as the sole source of high performance computing.
Indeed, the past few years have seen the introduction of highly-
performant Arm-based hardware, as well as a steady growth
in the capabilities and integration of GPUs. Aiming to create
thinner, lighter, and more energy efficient devices, modern
CPUs and GPUs are forced to balance a delicate three-way
tradeoff between power consumption, heat dissipation and
execution speed (frequency). While exceptions do exist [22],
the side channel implications of the DVFS mechanism were
primarily studied on (properly cooled and powered) Intel plat-
forms [49, 50, 67], despite the increased reliance on DVFES in
GPUs and high-performance Arm SoCs.

Thus, in this paper we study the following main questions:

Are software-based physical side channels present on
GPUs and high-end Arm SoCs? What would it take to create
such attacks and what information can be extracted using it?

1.1 Our Contribution

In this paper, we show that SoCs exhibit instruction- and data-
dependent behaviors as they struggle to balance the three-way
tradeoff between frequency, power, and temperature. More-
over, we demonstrate how this behavior is present across
high-end Arm SoCs as well as GPUs, resulting in side chan-
nel leakage via two properties when the third becomes an
operational constraint. Remarkably, the ever-changing behav-
ior of these SoCs is also visible via internal measurement
sensors, allowing us to distinguish between executed instruc-
tions, and even different operands of the same instruction.
Next, as access to internal frequency, power, and temperature
sensors remains open to unprivileged users in most platforms,
we can exploit these for mounting website fingerprinting at-



tacks using native code running on the target device. Finally,
we show that the frequency throttling behavior of the SoC
is both data-dependent and observable via timing channels,
even from JavaScript code running inside browsers. Capital-
izing on this observation, we design pixel stealing and history
sniffing attacks against recent versions of Chrome and Safari,
with all side channel countermeasures enabled.

Observing Instruction and Data-Dependent CPU Behav-
ior. In Section 4 we investigate the frequency, power, and
thermal behavior of Arm SoCs as they execute different work-
loads. We find that passively cooled devices (e.g., phones
and M1-based MacBook Air laptops) are often thermally con-
strained, and thus adjust their frequency and power while
aiming not to exceed a certain temperature. In contrast, we
find that actively cooled devices (e.g., M1-based MacBook
Pro and Mac Mini) are usually frequency constrained, aim-
ing to complete the workload as fast as possible, and thus
leak information via power and temperature. For both cate-
gories of devices we show that it is possible to distinguish
between different instructions being executed, as well as be-
tween different operands to the same instruction, using data
from only internal measurement sensors. Finally, we model
CPU leakage in the Hamming distance (HD) model, show-
ing a relationship between operand HD and the CPU power,
frequency, and temperature.

Observing the Behavior of Integrated and Discrete GPUs.
Moving away from CPUs to discrete and integrated GPUs
(dGPUs and iGPUs), in Section 5 we show that GPU devices
likewise continuously adjust their power, frequency and tem-
perature aiming to meet operational restrictions. We show
that these adjustments are also visible via software-only mea-
surements, allowing us to distinguish between different in-
structions and different operands. Finally, we also analyze
leakage from GPU devices using the Hamming Distance and
Hamming Weight models.

Browser-Based Pixel Stealing Attacks. Having modeled
the leakage of both CPU and GPU devices, in Section 6
we demonstrate JavaScript-based pixel stealing attacks from
cross origin iframes. At a high level, we design an SVG filter
stack, which generates high computational load, causing throt-
tling in a way which depends on the pixel’s color. Observing
the throttling behavior via timing, we recover images from
cross origin iframes and extract the user’s browsing history
in recent versions of Chrome and Safari, with all side chan-
nel countermeasures enabled. In particular, our pixel-stealing
attacks demonstrate that constant-cycle code is insufficient
to prevent leakage from SVG filters, when the underlying
hardware exhibits color-dependent DVFES behavior.
Fingerprinting Websites Through Internal Frequency and
Power Sensors. As our final contribution, in Section 7 we
demonstrate that DVFS-based attacks are still possible even
without inducing high computational load. More specifically,
we show that websites cause frequency and power bursts on
Apple iGPUs at different times and intensity. These bursts

form a unique signature, allowing us to fingerprint websites
with high accuracy across different devices. With Apple pro-
viding access to GPU frequency and power via unprivileged
code, we show how these can be exploited to mount software-
only physical side channel attacks on Apple devices without
inducing high workloads.
Summary of Contributions. We contribute the following:
* We demonstrate instruction- and data-dependent behavior
of Arm CPUs, iGPUs and dGPUs, leaking information via
frequency, power and, temperature (Sections 4 and 5).
We present browser-based pixel stealing and history sniffing
attacks against recent versions of Chrome and Safari, with
all side channel countermeasures enabled (Section 6).
* We show website fingerprinting attacks on Apple devices
using internal power and frequency measurements from
unprivileged software (Section 7).

1.2 Responsible Disclosure

We initially disclosed our findings to the product security
teams of Apple, Nvidia, AMD, Qualcomm, and Intel and the
Chrome team at Google on March 2023. All vendors have
acknowledged the issues described in this paper. We have
further discussed mitigation to our work with the Chrome
security team (see Section 8).

2 Background
2.1 Hybrid and GPU Side Channel Attacks

We begin by surveying prior side channel techniques.
Physical Side Channels. Physical side channels leak in-
formation via physical properties of the device, such as its
power consumption [42, 52], electromagnetic emanations
(EM) [4, 27, 58], and acoustics [28]. Traditionally, phys-
ical side channel research has focused on small comput-
ing devices such as FPGAs and embedded microcontrollers.
However, more recent works also consider laptops [29, 30],
phones [9, 31], and GPUs [47, 74].

Hybrid Attacks. Hybrid attacks aim to use software to
measure physical properties. These include using built-in
power measurements for power analysis [49] and reading
CPU temperature [41]. EM and power analysis attacks can
even be conducted using internal audio interfaces [32] and
Rowhammer-induced bit flips [ 16]. Moreover, software-based
fault attacks have also been demonstrated [38, 54, 64] via the
CPU’s DVFS mechanisms.

DVFS-based Attacks. Recently, [22, 50, 67] showed that
power limits on Intel CPUs can result in data-dependent
frequency throttling, demonstrating key extraction attacks
against constant-time SIKE [67] and AES-NI [50] implemen-
tations, as well as fingerprinting attacks [22]. Finally, in a
concurrent independent work, Wang et al. [68] demonstrated
the extension of [67] to additional cryptographic targets, as
well as showing how CPU throttling can be affected by data
processed during GPU computations, resulting in pixel steal-
ing attacks in the Chrome browser.



In this paper, we show that frequency throttling is part of the
three-way trade-off between power consumption, execution
speed, and heat dissipation. Moving away from x86 devices,
we show that GPUs and ARM SoCs also exhibit browser-
observable data dependent behavior, especially in the case that
one of the three variables becomes an operational constraint.
GPU Side-Channel Attacks. Recent work shows that manip-
ulating the power curve of a GPU can induce targeted misclas-
sifications in machine learning models [63]. Similarly, moni-
toring the GPU performance counter or memory traces allows
for identification of browsing activity, detecting keystroke tim-
ing, and inferring neural network structure [55]. Finally, side
channel attacks on GPUs can facilitate a Rowhammer-based
sandbox escape on Firefox’s Android application [26].

Website fingerprinting attacks exploiting GPUs have also
been demonstrated. Here, websites can be identified by mem-
ory allocation patterns [55], contention with other GPU work-
loads [72], power consumption on integrated GPUs [75], and
EM radiation from discrete GPUs [74].

2.2 Pixel Stealing and History Sniffing Attacks

The rendered image of a webpage may contain private infor-
mation that should be isolated from scripts running on the
page. Examples include embeddings of cross-domain con-
tent through the use of iframe elements, and the rendering
of hyperlinks, which indicates whether they have been vis-
ited. Over the years, many attacks that expose such private
information have been devised. As several of them exploit a
feature called SVG filters, we first describe this feature and
then proceed to describe the related attacks.

SVG Filters. SVG filters specify image transformations,
such as blurring or re-coloring, that are applied to the rendered
contents of a web page before the page is displayed [71].
Basic filters, supplied by the browser, can be parametrized
and combined to achieve customized effects.

Pixel Stealing.  Because filters have the unique ability
to compute over arbitrary pixels, Barth [8] postulated that
they may leak pixel colors. Indeed, practical pixel-stealing
attacks surfaced shortly after data-dependent branches were
discovered in SVG filters [46, 62]. Attempting to remedy
this, browsers eliminated data-dependent branches in their
SVG filter implementations [1, 11, 19]. However, Andrysco
et al. [5] showed that branchless filter code is still vulnerable
to microarchitectural side channels, designing a filter that
caused computation on white pixels to take longer than black
pixels on Intel CPUs. Three years later, follow-up work found
that all major browsers were still vulnerable to the same side
channel [45]. In turn, browser vendors have further hardened
SVG filter implementations, attempting to eliminate data-
dependent microarchitectural behavior [2, 12, 20].

History Sniffing. History sniffing attacks attempt to recover
the identity of websites a user has visited, potentially revealing
web surfing habits of users and exposing private information.
To mount the attack, the attacker’s page typically includes a

link to a website. The attacker then observes the browser’s
rendering behavior to identify previously visited websites.
The first published attack exploited caching mechanisms
by measuring the time to render the target website or to re-
solve its domain [23]. Later attacks exploited properties of
rendering the CSS visited selector [7, 15, 36] to identify
whether the link has been visited. When browsers restricted
the CSS properties of the visited selector to always report
‘not visited’ to JavaScript in the webpage, history sniffing at-
tacks shifted to exploiting SVG filters and similar transforma-
tions [35, 46, 61, 62] and deceptive user interaction [39, 69].

2.3 Dynamic Voltage Frequency Scaling

Dynamic Voltage Frequency Scaling (DVFS) is a power man-
agement technique that aims to manage the system’s energy
consumption based on available resources (e.g., power and
temperature) and workload demands. More specifically, the
system constantly adjusts the SoC’s frequency and voltage
based on its current workload, while trying to maintain its
power limits and thermal budget and frequency limitations.
These voltage-frequency pairs are known as Performance
States (P-states) or Operating Performance Points (OPPs),
and the range of attainable P-states together represents the
system’s DVFS curve. While the notations may vary across
vendors, in this paper, we denote the highest P-state as the
P-state providing maximum performance.
Power Management Hardware. While older hardware
required the operating system to manage P-states directly
through dedicated registers, modern CPUs and GPUs typi-
cally feature a separate microcontroller or co-processor to
regulate the voltage and frequency. However, the OS can still
provide the DVFES policy and limit the available P-states to
save energy or to keep the system within thermal limits, or
select the desired frequency the CPU or GPU cores should
run at. Furthermore, depending on the hardware, the main
operating system can or must provide the power management
data, including the DVFS states, when initializing the GPU.
Sources of Throttling. We distinguish between two causes
of frequency throttling in DVFS mechanisms:
* Power-Induced Throttling. Adjusts the operating fre-
quency to limit power consumption.
* Thermal-Induced Throttling.  Adjusts the operating
frequency to avoid overheating.
While the underlying causes for throttling vary, both types
reduce the operating frequency. This reduction can be ob-
served through dedicated hardware interfaces, as well as by
measuring the time it takes to complete computations.

3 Threat Model

In this paper we focus on hardware made by Apple, AMD,
Nvidia, Google, and Qualcomm.

Accessing Internal Sensors. Our experiments in Sections 4
and 5 require reading internal sensors for frequency, power,
and temperature. While frequency readings are available to



unprivileged users on all platforms, access to power and tem-
perature readings is vendor-specific. For example, Apple al-
lows unprivileged access to both, whereas Google makes
temperature readings privileged while allowing unprivileged
access to power. Finally, we note that our attacks presented in
Sections 6 and 7 do not require any elevated privileges.

Browser Versions. For our attacks, we assume that the
system has been updated to the latest browser versions at the
time of writing: Chrome 108 and Safari 16.2. We also assume
the browsers are in their default configurations, with all side
channel countermeasures enabled.

4 Frequency Side Channels on Arm CPUs

In this section, we establish the presence of power, frequency
and thermal side channels on Arm CPUs manufactured by
Apple, Qualcomm and Google which are visible using internal
sensors. Firstly, we show that executing different instructions
results in distinguishable CPU frequency, temperature and
power distributions. We then extend our results to show that
these behaviors are also data-dependent.

Next, we investigate the source of our observations showing
how some CPUs leak via power and frequency while attempt-
ing to satisfy thermal constraints, while others present vari-
able power and thermals while running at a fixed frequency.
Finally, we build and test a fine-grained leakage model for
data-dependent frequency throttling on the Apple M1.

Device Classifications. Throughout the paper, we classify
devices into three categories depending on their cooling and
power budget as below.

* Frequency Constrained. Does not throttle, but leaks
information through variations in power and temperature.

* Power Constrained. Power-induced throttling leaks in-
formation through frequency and temperature.

* Thermally Constrained. = Thermal-induced throttling
leaks information through frequency and power.

Experimental Setup. Table 1 lists our testing devices and the
frequency scaling capabilities of their CPUs. Both MacBooks
run macOS Ventura, while the other devices run Android 13.
Our experiments require measuring CPU frequency, power
consumption, and CPU core temperature over time. We can
access this data on macOS by querying IOReport, an internal
library used by the IOKit framework. We modify SocPower-
Buddy [10] to periodically query these values and write to a
file along with timestamps.

For both Android phones, we obtain the same measure-
ments from the power supply, thermal zone, and CPU fre-
quency modules of sysfs. As mobile phones have the poor-
est cooling budget due to lack of space for a fan or heatsink,
we place only the Pixel 6 Pro and OnePlus 10 Pro on a cool-
ing pad to prevent excessive thermal throttling from masking
instruction- or data-dependent behavior.

Device CPU Architecture #C Freq. (MHz) #P
MacBook Air Ml Firestorm (P) 4 600 - 3204 15
MacBook Air M2 Avalanche (P) 4 660 - 3504 17
Pixel 6 Pro Tensor Cortex-X1 (P) 2 500-2802 17
OnePlus 10 Pro  Snapdragon 8 Gen 1 Cortex-X2 (P) 1 806 -2995 21

Table 1: Test devices and CPU information. #C is the number
of performance (P) cores, and #P is the number of P-states. {:
This CPU uses an Arm Cortex-X2-based Kryo Prime core.

4.1 Instruction-Dependent Behavior

To investigate whether different instructions exhibit different
long-term system behavior, we follow the methodology of [6]
which surveyed the most commonly used instructions in appli-
cation binaries, partitioning them into different buckets. We
then selected one Arm instruction from each data-processing
bucket, testing stores (str), AES instructions (aese, aesmc),
rotate right (ror), bitwise and (and), and both integer and
floating-point addition (add, fadd) and multiplication (mul,
fmul). We run each instruction in a loop on all available P-
cores on each test device. We start with an idle device at room
temperature, and sample the power consumption, frequency,
and temperature every 10 ms.

Distinguishing Instructions on Apple Silicon. Figure |
presents the frequency (top), power consumption (middle),
and temperature (bottom) while running the workloads for
6000 seconds on an M1 CPU. We observe the time to throttle
(starting from an idle state) varies greatly between instruc-
tions, starting at about 300 seconds for stores and going up to
3000 seconds for integer multiplication. Once the M1 reaches
steady state, most instructions except the pair of (ror, add)
can be distinguished by their frequency and power.
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Figure 1: Traces of frequency (top), power (middle), and tem-
perature (bottom) from running our selected workloads on a
MacBook Air with Apple M1 CPU. The aes curve represents
the aese and aesmc instructions.

On the temperature graph, we see the M1 gradually
achieves thermal equilibrium, but the time to equilibrium
is directly proportional to the time to throttling: that is, the
instructions that throttle quickly are the fastest to converge.



Furthermore, we observe a counterintuitive result where the in-
structions that throttle quickly or more severely do not always
consume the most power. While the exact cause is uncertain,
we hypothesize that this occurs due to the varied power den-
sity across different parts of the M1 chip, which subsequently
affects heat dissipation capability. Finally, we observe similar
results on the Apple M2.

Source of Throttling. Prior work has reported identical
steady-state power consumption but different frequencies for
instruction-dependent throttling on x86 CPUs, concluding
that the behavior is caused by power limits [50, 67]. In con-
trast, our experiments show differences in both power and
frequency on the Apple M1, with the CPU maintaining a
fixed temperature of around 93 °C at steady state. As the Mac-
book Air only uses passive cooling, we conjecture that the
CPU is thermally constrained, and that it adjusts the power
and the frequency to avoid exceeding its temperature limit.
Confirming Thermally-Constrained Behavior. We now
confirm that our M1 MacBook Air indeed exhibits different
power and frequency behaviors between instructions due to
thermal limitations. To that aim, we run our workloads on
devices that use the same M1 SoC, but have different cool-
ing capacities. More specifically, we rerun the add and fadd
workloads for 2000 seconds, on a passively cooled MacBook
Air with and without a laptop cooling pad, a MacBook Pro
with fans, and a Mac Mini with even higher-capacity fans.

MacBook Air Air+Pad MacBook Pro Mac Mini

fadd add fadd add ‘ fadd add fadd add
Temp. (°C) 91.7 90.6 84.3 77.8 70.3 66.5 469 443
Freq. (GHz) 2.8 3.0 3.1 32 32 32 32 32
Power (W) 10.9 14.0 12.4 14.8 12.3 14.6 11.8 13.7

Table 2: Average temperature, frequency, and power consump-
tion of the add and fadd workloads on M1-based devices.

Observing the Effect of Cooling. In the first two columns
of Table 2, we observe a notable effect of the external cool-
ing pad on the passively cooled MacBook Air. Without the
cooling pad, the CPU operates at around 91 °C for both work-
loads, presumably due to thermal constraints. This allows us
to distinguish between instructions using power and frequency.
With the cooling pad, the MacBook Air throttles much less,
operating at a frequency of 3.1-3.2 GHz. Thus, with the cool-
ing pad, the MacBook Air is more frequency constrained
than thermal constrained, allowing us to use temperature and
power consumption to distinguish instructions.

We observe similar effects on our Mac Mini and MacBook
Pro devices (Table 2, right columns). Here, both devices main-
tain the highest P-state (3.2 GHz) for both workloads, result-
ing in no frequency difference between them. However, both
devices show instruction-dependent temperature and power
consumption. We conjecture that the onboard fans of these de-
vices cool them sufficiently to become frequency-constrained.
Temperature and Power Consumption Correlation. In-
specting the right three setups of Table 2, we note that the

fan-cooled M1 can maintain the highest frequency, albeit with
stark differences in temperature going from the coolest Mac
Mini to hottest MacBook Air with cooling pad. We also no-
tice a similar upward trend in power consumption despite
the use of identical SoCs in the three devices. We conjecture
that this can be attributed to heat-induced increase in power
consumption of CMOS circuits [13, 34, 40].

The Effects of Instruction Level Parallelism. Finally, we
note a counterintuitive observation where in Figure 1 (middle)
and Table 2, the add workload consistently consumes more
power than the fadd. We conjecture that, while individual
ALUs are less complex than FPUs, the add workload can
draw more power due to the presence of more ALU ports [37]
which allows for greater instruction-level parallelism.

Takeaway: Passively cooled CPUs are usually thermally
constrained, leaking information via power and frequency.
Actively cooled CPUs are usually frequency constrained,
leaking information via temperature and power.

4.2 Observing Instructions on Arm Cortex

Moving away from Apple devices, Figure 2 presents our re-
sults on the Cortex-X1 cores of our Google Pixel 6 Pro. On
this test target, we measure the add and fadd workloads from
our experiments on the Apple M1.
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Figure 2: Frequency (top), power (middle), and temperature
(bottom) from add and fadd workloads on Pixel 6 Pro.

Similarly to Apple CPUs, we observe the add workload
consuming more power than the fadd workload, albeit by a
much smaller margin. Both workloads start running at the
highest P-state of 2.8 GHz. However, after 643 seconds, the
add workload starts to throttle, dropping to 2.7 GHz, whereas
the fadd workload does not throttle for the entire duration of
this experiment (1000 seconds). Because the initial difference
in power consumption between add and fadd is small, we ob-
serve the power consumption of add dropping slightly below
fadd once throttling occurs.

We observe similar behavior in the Cortex-X2-based core
of the OnePlus 10 Pro’s Snapdragon SoC. Notably, in addition
to clearly discernible steady-state power consumption on the



Pixel 6 Pro, we find another indicator of throttling due to
thermal limits in the temperature graph at Figure 2 (bottom),
with the CPU throttling aggressively when it reaches 90° C.
Intractability of Throttling on Efficiency-Focused Cores.
We further experimented with executing the workload on
medium-performance cores and on E-cores of the Arm Cortex
devices. We observe that on either type of cores the work-
loads fail to generate enough heat, even when running at their
highest P-states. That is, the core temperature rarely exceeded
50 °C on the Pixel 6 Pro and OnePlus 10 Pro.

MacOS does not provide a direct method for pinning pro-
cesses to cores. Instead, it provides a quality-of-service mech-
anism where tasks can be declared as interactive or back-
ground. While setting a task as background will reliably
cause it to execute on the E-cores, we empirically observed
that this limits the E-cores’ frequency to 1 GHz on the M1.
With E-cores having a peak power consumption of about
1.4 W [59], we did not observe any instruction-dependent fre-
quency, power, or temperature changes on our Mac devices
even after one hour of execution.

To conclude, we conjecture that the cooling and power
budgets required for good performance from the P-cores on
our devices can sustain prolonged workloads on any of the
lower-performance cores without any frequency throttling.

4.3 Data-Dependent Leakage

So far, we observed that the frequency, temperature, and power
consumption traces can be used to distinguish instructions
executing on a target CPU. We now demonstrate that these
traces also have sufficient fidelity to distinguish between dif-
ferent operands of the same instruction.

Experiment 1 Experiment 2
uinto4_t val = 0; uintoed_t val = 0;
while (1) {val = val + 0;} while (1) {val = val + 1;}

Figure 3: Workloads for testing for data-dependent leakage.

Experimental Setup. Following the methodology of Sec-
tion 4.1, we run the add instruction with different operands on
our M1-based MacBook Air and Pro. More specifically, we
use two workloads (Figure 3) which repeatedly add a constant
to a variable on all P-cores. One of the workloads (Experi-
ment 1) adds the constant 0, whereas the other (Experiment 2)
adds 1. We expect that adding 1 will cause bit flips, and be-
cause the power consumed by CMOS circuits and the heat
produced correlate with the number of bit flips [14], we expect
to see distinguishable frequency and power consumption.

Results on Apple Silicon.  Figure 4 shows a histogram
of steady state frequency, power, and temperature on the M1
MacBook Air and MacBook Pro. Since the MacBook Air is a
temperature constrained device, we do not observe significant
temperature differences between the two experiments, see
Figure 4 (top left). However, at steady state, we observe that
the mean power consumption and frequency in Experiment 2
are 2.85 GHz and 11.7 W, lower than the 2.88 GHz and 12 W

in Experiment 1. We observe similar results on an M2-based
MacBook Air, demonstrating data-dependent leakage.
Repeating the experiment on an M1-based MacBook Pro
with an internal cooling fan in Figure 4 (bottom), we observe
little differences in frequency. However, at the steady state, the
mean temperature and power consumption for Experiment 2
are 75.2 °C and 12.86 W, higher than the 74.3 °C and 12.83 W
in Experiment 1. This aligns with our conclusions from Sec-
tion 4.1, where actively cooled devices are typically frequency
constrained, leaking through power and temperature.
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Figure 4: Histograms of temperature (left), frequency (mid-
dle), and power (right) for add with different data running on
the M1 MacBook Air (Top) and M1 MacBook Pro (Bottom).

Results on Arm Cortex. We observe different behavior
on the Cortex-X1 of the Pixel 6 Pro, where both experiments
throttle to a steady-state frequency of 2.7 GHz instead of sta-
bilizing at different P-states. However, we observe notable
differences in temperature and time to throttling, which we
show in Figure 5. On Figure 5 (Left), Experiment 2 induces
throttling after 180 seconds, while Experiment 1 needs 290
seconds. We find the cause on Figure 5 (Center), where Ex-
periment 2 reaches the CPU’s thermal limit at 90 °C first.
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Figure 5: (Left) Frequency, (Center) temperature, and (Right)
distribution of throttling start time on a Pixel 6 Pro.

To confirm the consistency of these results, we measure the
time to reach steady state for 70 runs and show a histogram
on Figure 5 (Right). We observe that throttling appears consis-
tently earlier in Experiment 2 than in Experiment 1, revealing
the operand of the add instruction. Lastly, we observe similar
behavior on the Cortex-X2-based CPU of the OnePlus 10 Pro.

Takeaway: Data dependent leakage can be observed on
Arm CPUs via the distribution of temperature, power, and
frequency measurements.




4.4 Modeling Hamming Distance Leakage

We have established that the frequency, power and tempera-
ture measurements of Arm CPUs correlate with the data they
process. In this section, we model the correlation using the
Hamming distance (HD) of instruction operands.

Modeling the Bit Shifter. As a case study, we focus on
three shift instructions of the Armv8 ISA: ror, 1s1, and 1sr.
The first cyclically shifts the value in the input register to
the right by the number of bits specified by a second (shift-
by). The latter two perform non-cyclic shifts to the left and
the right, respectively. As the M1 CPU contains six ALU
ports supporting these instructions [37], we always execute
workloads that repeatedly perform six identical instructions.
This maximizes the signal-to-noise ratio from the frequency,
temperature and power consumption traces.
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Figure 6: Our model of data flow in the bit shifter of an Apple
M1 CPU. A, B, and C denote our models of HD.

We consider three potential components of the HD model,
illustrated in Figure 6. The first (A) measures the HD between
the input and the output of the shift. The second (B) measures
the HD between successive outputs, and the third (C) mea-
sures the HD between successive inputs. In the evaluation we
combine the models, first showing that Component A shows
no correlation between the HD and the measurements. We
then combine it with Components B and C to show that these
two components show a clear correlation. Finally, we combine
all three components, showing that the effect is additive.
Testing Component A. To isolate Component A, we use
the workload in Listing 1, varying SHIFT between 0 and 16.
We note that all the inputs are identical, and that for a given
shift, all outputs are identical. Hence, Components B and C
are always 0. Component A, however, depends on the shift,
and its value is 4 - SHIFT.

1 x8 = OxFFFFO000FFFF0000
2 x9 = SHIFT

3 .Lloop0:

4 ror x19, x8, x9
5 ror %20, x8, x9
6 ror x21, x8, x9
7 ror %22, x8, x9
8 ror x23, x8, x9
9 ror %24, x8, x9
10 b .Lloop0

Listing 1: ror workload for isolating the effects of HD be-
tween inputs and outputs.

Figure 7 contrasts the HD model (left) with the average
frequency, power consumption, and temperature as a function
of the shift (right). While there are some variations in the mea-
surements, the correlation between those and Component A
is not clearly evident.
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Figure 7: HD model components vs. average measurements
for the workload in Listing 1.

Testing Component B. 'We now try to observe the effect
of Component B, HD between consecutive outputs. We note
however, that keeping identical consecutive inputs, and a fixed
HD between inputs and outputs, severely restricts the choices
of outputs. Hence, instead of isolating Component B, we vary
both Components A and B and rely on the absence of observed
correlation of the measurements with Component A.

1 x8 =0

2 x11l =

3

4 x12 = SHIFT

5 .Lloop0:

6 1sl x9, x8, x12 = x¢ X

7 1sl x10, x8, x12 x10 = x8 << x12
8 1sl x19, x8, x12 x19 = x8 x12
9 1sl x20, x8, x12 x2( K8 << X

10 1sl x21, x8, x12 x21 = x8 x12
1 1sl x22, x8, x12 X .

12

13 lsr x23, x11, x12 x23 = x X

14 lsr x24, x11, x12 x24 = x11 >> x12
15 lsr x25, x11, x12 x25 = x x12
16 lsr x26, x11, x12 x26 x11 >> x12
17 lsr x27, x11, x12 x27 = x11 x12
18 lsr x28, x11, x12 x28 X X
19 b .Lloop0

Listing 2: Workload for testing the effect of Component B on
the measurements.

For the evaluation, we use the code in Listing 2, which uses
the 1s1 and 1sr instructions. The 1s1 instructions shift the
value 0x00000000FFFFFFFF in x8. Subsequently, the 1sr instruc-
tions shift the value 0xFFrFFFFF00000000 in x11 to the right.
These values are chosen so that Component A is 2- SHIFT,
Component C is always 64, and Component B varies between
0 and 64 depending on the shift, as shown in Figure 8 (Left).
We measure the average frequency, power, and temperature
for 20 seconds after the M1 CPU reaches steady state.

Figure 8 (Right) summarizes our results. We observe that
the HD between two consecutive outputs has strong negative
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Figure 8: HD model components vs. average measurements
for the workload in Listing 2.

correlations with both power (-0.971) and frequency (-0.974).
Next, as the M1-based MacBook Air is passively cooled and
thus thermally constrained, we do not observe a correlation
between the HD of two consecutive outputs with the CPU’s
temperature, presumably as the M1 adjusts frequency and
power to maintain a fixed thermal budget.

Takeaway: Higher HD between two consecutive outputs
results in lower CPU steady-state frequency and power.

Testing Component C. When testing Component C, we
again cannot completely isolate it, so we also vary Compo-
nent A. For this test, we use the code in Listing 2 but mod-
ify Lines 1 and 2 to set x8 = 0x0000FFFFFFFF0000 >> SHIFT and
x11 = 0x0000FFFFFFFF0000 << SHIFT. This ensures that Compo-
nent B, the HD between two consecutive outputs, is constant
zero; Component C is 4- SHIFT; and Component A is 2- SHIFT.
These are illustrated in Figure 9. Finally, our measurement
setup is identical to our experiment on Component B.
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Figure 9: HD model components vs. average measurements
for measuring Component C.

We show the results in Figure 9 (Right). Observing Fig-
ure 9 (Right), we see the HD between two consecutive inputs
showing strong negative correlations with both power (-0.969)
and frequency (-0.972), similarly to our test of Component B.
Likewise, the M1 MacBook Air’s temperature does not ex-
hibit strong correlation, as the device adjusts its frequency
and power in order to maintain its thermal envelope.

Takeaway: Higher HD between two consecutive inputs
results in lower CPU steady-state frequency and power.

Combining Components. We now aim to see how mod-
ifying the HD of consecutive inputs and outputs affects the
measurements. For that, we repeat the measurement setup
from our tests of Components B and C but use the code in
Listing 3 which applies the ror instruction in-place, allow-
ing us to vary the HD between two consecutive inputs and
outputs by controlling the value of SHIFT. In this workload,

Component A is again 4- SHIFT. However, both Component B
and Component C are 4 - SHIFT, as shown in Figure 10 (Left).

1 x19= x20= x21= x22= x23= x24= 0xFFFFO000FFFF0000
2 x9 = SHIFT

3 .Lloop0:

4 ror x19, x19, x9

5 ror x20, x20, x9

6 ror x21, x21, x9

7 ror x22, x22, x9

8 ror x23, x23, x9

9 ror x24, x24, x9

10 b .Lloop0

Listing 3: Workload for evaluating the combined effects of
Components B and C on the measurements.

Figure 10 (right) shows our results, where the steady-state
frequency and power both have a correlation coefficient of
-0.99 to the HD between consecutive inputs and outputs.
We note that in prior experiments, the steady-state CPU fre-
quency ranged 2.7-2.8 GHz (Figure 8) or 2.78-2.86 GHz (Fig-
ure 9). However, in this experiment the frequency range of
2.7-2.9 GHz is twice as big, showing that the effects of Com-
ponents B and C are additive.
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Figure 10: HD model components vs. average measurements
for the workload in Listing 3.

Takeaway: The effect of HD on frequency throttling be-
tween two consecutive inputs and outputs is additive.

Modeling Hamming Weight Leakage. We have also at-
tempted to model the CPU power, frequency and temperature
behavior using the Hamming weight (HW) model via the and
instruction. We did not observe a strong correlation in this
model. See Appendix A for more details.

5 Frequency Side Channels on Integrated and
Discrete GPUs

We now investigate the throttling behavior of Apple and Intel
integrated GPUs (iGPU), in addition to discrete Nvidia and
AMD GPUs. We design experiments that are analogous to our
throttling primitives on CPUs, but instead use GPU kernels
running in an infinite loop. More specifically, kernels are par-
allelizable routines that are compiled to an intermediate lan-
guage, and translated by the GPU driver to platform-specific
instructions. As a result, we demonstrate that GPUs also ex-
hibit instruction-dependent and data-dependent throttling.

C)

Temperature (°



Experimental Setup. We run our experiments on several
different GPUs, whose characteristics we summarize in Ta-
ble 3. Akin to the CPU experiments, we require the ability to
measure GPU frequency, power consumption, and tempera-
ture. On the Intel iGPU, we collect all three measurements
from the intel-gpu-tools utility [25]. For Apple iGPUs,
the SocPowerBuddy [10] tool also reports this information,
allowing us to follow the same methodology as Apple CPUs.
For discrete GPUs, we use the nvidia-smi tool [21] for the
RTX 3060, and various sysfs files in Linux populated by the
amdgpu driver [24] for the RX 6600.

All GPUs run with their latest driver versions. We use
macOS Ventura for the Apple iGPUs, and Ubuntu 22.04 LTS
for the discrete GPUs and Intel iGPU.

GPU Model #EU  Freq. (MHz) # P-states
Intel Iris Xe (i7-1280P) 96 400 - 1450 -
Apple 4th Gen. (M1) 128 396 - 1278 6
Apple 5th Gen. (M2) 320 444 - 1398 8
AMD Radeon RX 6600 1792 500 -2900 Not Discrete
Nvidia GeForce RTX 3060 3584 405 - 2100 227

Table 3: Summary of the GPUs we tested. The # EU col-
umn denotes the number of execution units. —: we could not
determine this information due to it being closed-source.

5.1 Instruction-Dependent Leakage on iGPUs

We investigate whether different instructions exhibit different
frequency, power or thermal behavior on GPUs. Accordingly,
we implement six GPU kernels in OpenCL [33], where all
kernels operate element-wise on a vector of one million num-
bers, looping for 20K iterations to amplify the signal. For
integers and floating-point numbers, our kernels perform ad-
dition (add and fadd), multiplication (mul and fmul), and
division (div and fdiv). To ensure the OpenCL compiler
does not eliminate this loop during optimization, we use the
-cl-opt-disable! flag to disable them.
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Figure 11: Traces of frequency (left), power (center), and
temperature (right) from the integrated GPU of an Apple M1,
measured on the MacBook Air.

Distinguishing Instructions on Apple iGPUs. Figure 11
presents the frequency, power and temperature traces during
the execution of our kernels on an Apple M1-based MacBook
Air for 7000 seconds. Before the M1 GPU starts throttling,
all the workloads run at the maximum GPU frequency of

'While this may add noise from redundant stores, it is negligible for our
experiment.

1.27 GHz. However, the power and temperature traces of all
the workloads, except for add and fadd, are clearly distin-
guishable. Despite div and mul initially having similar power
consumption, the mul workload throttles before div.

After throttling down to a steady state, the frequency values
for all the workloads are clearly distinguishable. However, the
temperature values for all the workloads at steady state (except
for div) are not distinguishable. This indistinguishable nature
of steady-state temperature values suggests that the M1 iGPU
is thermally constrained. Additionally, the power consumption
at steady state can also be used to distinguish some workloads.
Specifically, add consumes more power than £div, which in
turn consumes more power than frmul.

Finally, we observe similar behavior on the iGPU of an
M2-based MacBook Air. As both generations of this laptop
are thermally constrained, they allow for instruction distin-
guishability using power and frequency.

Ascertaining Thermal Throttling in iGPUs. We follow
the methodology of Table 2 and observe the behavior of the
M1 iGPU under different cooling conditions: namely a pas-
sively cooled MacBook Air with and without a cooling pad, a
MacBook Pro, and a Mac Mini, in increasing order of cooling
capacity. Table 4 summarizes our findings.

MacBook Air Air+Pad MacBook Pro Mac Mini

fdiv._ fmul | fdiv  fmul | fdiv  fmul | fdiv  fmul
Temp. (°C) 92 92 97 97 89 86 64 59
Freq. (GHz) 089  0.96 1.12 1.20 1.28 1.28 1.28 1.28
Power (W) 5.1 54 9.3 9.6 12.1 10.7 11.9 10.5

Table 4: Average GPU temperature, frequency, and power
consumption of the fdiv and fmul workloads on M1 iGPU.
Air+Pad indicates the MacBook Air with cooling pad.

Akin to our results in Table 2, the Mac Mini and MacBook
Pro exhibit sufficient thermal capacity to maintain maximal
frequency for both workloads. As these devices are only con-
strained by their highest frequency, we are able to use temper-
ature and power traces to distinguish fdiv from fmul. This
is in contrast to both MacBook Air configurations, which are
thermally constrained and thus leak via power and frequency.

Distinguishing Instructions on Intel iGPUs. In addition
to Apple iGPUs, we also investigated the behavior of an In-
tel Iris iGPU on our fdiv and fmul kernels in an i7-1280P
(Alder Lake) inside an actively cooled Thinkpad X1 Carbon.
Figure 12 summarizes our findings. As shown, despite active
cooling, the Intel iGPU fails to converge on a steady state
frequency, power, and temperature. Instead, the iGPU continu-
ously alternates between two frequencies, presumably in order
to meet its sub-100 °C thermal budget. Nonetheless, £div and
fmul can still be distinguished in spite of the iGPU’s insta-
bility, as the fdiv instruction operates at a slightly lower-end
frequency and temperature, while requiring more peak power
compared to the fmul instruction.
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Figure 12: Traces of frequency (left), power (center), and
temperature (right) of fdiv and fmul on an Intel Iris iGPU.

5.2 Distinguishing Instructions on dGPUs

Figures 13 and 14 show the results of our instruction-
distinguishing experiment on our Radeon RX 6600 and
GeForce RTX 3060 dGPUs.

Power Constrained: AMD Radeon RX 6600. Inspecting
the frequency plot of Figure 13, we notice the workloads be-
come clustered into (add, fadd, fmul) at about 2.5 GHz, fdiv
at 2.35, mul at 2.25 GHz, and div at 2.16 GHz. Furthermore,
we highlight a different throttling behavior compared to Ap-
ple iGPUs. Unlike Apple iGPUs that appear to be constrained
by their thermal budget, the RX 6600 dGPU is constrained by
its 100 W power limit. Finally, we observe we can also use
temperature to distinguish between certain workloads, such
as div, fdiv, and mul in order of decreasing temperature.
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Figure 13: Traces of frequency (left), power (center), and
temperature (right) on an AMD Radeon RX 6600 dGPU.

Frequency Constrained: Nvidia GeForce RTX 3060. Fig-
ure 14 summarizes our experiments on the Nvidia GeForce
RTX 3060 dGPU. While our RTX 3060 card has a nominal
frequency of 1.32-1.78 GHz, we notice that under full load the
dGPU actually overclocks itself to a steady state frequency
of 1.905 GHz. The card then exhibits a frequency constraint,
adjusting its power and temperature to respect the 1.905 GHz
limit. This, in turn, creates instruction-dependent power and
temperature curves. For power, fdiv and fmul are clearly
discernible. Moreover, mul and div overlap, but the latter
exhibits a greater variation in power consumption. Lastly,
add and fadd do not appear to be distinguishable. Remark-
ably, this clustering of workloads occurs exactly in the same
manner on the temperature curve.

Takeaway: The frequency, power, and temperature of inte-
grated and discrete GPUs are instruction-dependent.

5.3 Modeling Hamming Distance Leakage

Having demonstrated that frequency, power and temperature
can be used to distinguish instructions on integrated and dis-
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Figure 14: Traces of frequency (left), power (center), and
temperature (right) on an Nvidia GeForce RTX 3060 dGPU.

crete GPUs, we now show that GPUs exhibit data-dependent
leakage in the Hamming Distance (HD) model.
Constructing a HD-dependent Workload. To investigate
the effect of HD on the GPU’s behavior, we implement a
kernel that performs bitwise shift left and shift right operations
on each element of a 32-bit unsigned integer vector, as shown
in Listing 4. The kernel starts by shifting the value 0x0000FFFF
to the left by SHIFT bits, followed by shifting the result to
the right by SHIFT bits to reinstate the original value. The
combined Hamming Distance (HD) between the inputs and
outputs of the two instructions is 4 - SHIFT. We run the kernel
on four vectors in a loop for 100K iterations. Finally, akin to
our experimental setup in Section 4.4, we measure average
frequency, power, and temperature for 20 seconds once the
GPU is at steady state, and report correlation coefficients.

1

2 10= vall= val2= val3=

3 uint reps = 100000;

4 while (reps—-) {

5 val0 = val0 << left; val0 = val0 >> right;

6 vall = vall << left; vall = vall >> right;
val2 = val2 << left; val2 = val2 >> right;

8 val3 = val3 << left; val3 = val3 >> right;

Listing 4: Our bit-shifting workload to analyze the effect of
HD on GPU frequency and power consumption.

HD-Dependent Frequency on Apple iGPUs. Figure 15
(Left) shows our results on the M1 MacBook Air. Here, we
note an inverse correlation for the HD between the inputs
and outputs of our shift instructions and the iGPU’s power (-
0.971) and frequency (-0.951). With prior work [14] showing
that heat dissipation in a CMOS circuit scales directly with
HD, we conjecture that our thermally constrained MacBook
Air is forced to reduce its power and frequency as the HD
increases to maintain its thermal budget. Finally, we observe
similar behavior on the iGPU of an M2-based MacBook Air.
HD-Dependent Frequency Throttling on Discrete GPUs.
Figure 15 (Center) presents the result of the same experiment
repeated on our AMD Radeon RX 6600 dGPU. Here, we
observe a direct correlation between the HD and steady-state
power (0.663) and temperature (0.798), coupled with an in-
verse correlation between the HD and frequency (-0.994).
Finally, Figure 15 (Right) presents our results on an Nvidia
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Figure 15: Traces of frequency, power consumption and tem-
perature on the M1-based MacBook Air (Left), AMD Radeon
RX 6600 (Center), and Nvidia GeForce RTX 3060 (Right)
resulting from our HD-dependent workload in Listing 4.

GeForce RTX 3060 dGPU. Here, we see that the GPU is
frequency constrained, maintaining the same 1.92 GHz fre-
quency across all HDs. However, as typical with frequency
constrained devices, we also note a direct correlation between
the workload’s HD and the device’s temperature (0.914) and
power consumption (0.964).

Takeaway: The frequency, power, and temperature of dis-
crete and integrated GPUs are dependent on HD.

5.4 Modeling Data-dependent Throttling via
Hamming Weight

Augmenting different data on the same kernel operation being
distinguishable by HD, we now demonstrate data-dependent
GPU behavior in the Hamming Weight (HW) model.
Constructing a HW-dependent Workload. = To model
the dependence of the GPU’s frequency, temperature, and
power consumption on the HW of instruction operands, we
implement a kernel performing element-wise and operations
on a vector, shown in Listing 5. To maximize the signal, we
run the and operations in a loop of 10K iterations. Finally,
we increment the vector’s elements across 33 different HW
from O (no bits set) to 32 (all bits set). We disable OpenCL’s
compiler optimizations similarly to Section 5.1, and repeat
the experimental setup in Section 4.4 and Section 5.3.

1
2 uint reps = 10000;

3 while (reps—-) {

4 value = left & right; value = left & right;
5 value = left & right; value = left & right;
6 value = left & right; value = left & right;
7 value = left & right; value = left & right;
8 }

Listing 5: Our bitwise-and workload to analyze the affect of
HW on GPU frequency and power consumption.

HW-dependent Frequency Throttling on Apple iGPUs.
We present the results from the M1 MacBook Air in Figure 16
(Left). We observe that as the HW increases, the steady-state
frequency and power consumption both decrease consistently,
with correlation coefficients of (-0.961) and (-0.963) respec-
tively. Given that our M1 iGPU is thermally constrained, we

attribute this phenomenon to the higher HW workloads gen-
erating more heat, and therefore undergoing more throttling.
Our measurements on the M2 MacBook Air show similar
trends, with its iGPU also throttling due to thermal limits.
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Figure 16: Traces of frequency, power consumption and, tem-
perature on the Apple M1 iGPU (Left), AMD Radeon RX
6600 (Center), and Nvidia GeForce RTX 3060 (Right) result-
ing from our HW-dependent workload in Listing 5.

HW-dependent Frequency Throttling on Discrete GPUs.
We repeat the HW experiment on both discrete GPUs, and
show the results for the AMD Radeon RX 6600 in Figure 16
(Center). Here, we see a negative correlation (-0.982) between
HW and steady-state GPU frequency. As this device is power
constrained to a power budget of about 100W, we conjecture
that the dGPU throttles down based on HW in order to main-
tain this power budget. Next, focusing within the dGPU’s
power consumption, we see a range of 97.5 to 98.1 W, which
is directly correlated (0.985) to the workload’s HW. Finally,
as the same circuit given more power generally tends to run
hotter, we see likewise an average difference of 0.3 °C directly
proportional to HW (0.740).

Figure 16 (Right) presents our results on an Nvidia GeForce
RTX 3060 dGPU. As in prior experiments, we observe that
this device is frequency constrained, maintaining a frequency
of 1.91 GHz regardless of HW. Finally, we also observe a di-
rect correlation between the workload’s HW and the device’s
power consumption (0.878) and temperature (0.716).

Takeaway: The frequency, power, and temperature of dis-
crete and integrated GPUs are dependent on HW.

6 Attacking DVFS on Intensive Workloads

Having demonstrated instruction- and data-dependent behav-
ior of CPUs and GPUs during intensive workloads in terms
of power consumption, frequency, and temperature, in this
section we proceed to demonstrate browser-based pixel steal-
ing attacks using such workloads. More specifically, we aim
to constrain devices on power or temperature such that they
will exhibit differences in frequency based on the color of
targeted pixels. This in turn leads to timing differences that
are observable by JavaScript-based attackers, allowing them
to deduce the pixels’ color.

6.1 Observing Data-dependent Frequency and
Timing From the Web Browser

The basis for our attacks stems from applying SVG filters
on pixels the attacker cannot read. Because the Hamming



weights of white and black pixels are 24 and 0 in the RGB
space respectively, we expect computation on white pixels
to result in lower frequencies and longer runtime compared
to black pixels. We note that at the time of writing, Chrome
renders SVG filters using the GPU while Safari uses the CPU.

let last_render_ts = 0.0;

const tick = now => {
render_time = now - last_render_ts;
last_render_ts = now;

= WY S S SR C R

element.style.filter = "url (#£0)";
10 window.requestAnimationFrame (tick);
11 i
12 window.requestAnimationFrame (tick);

Listing 6: Our function that repeatedly applies SVG filters
and measures the elapsed time for each render.

Inducing Data-dependent Behavior with SVG Filters. We
create a stack of several feColorMatrix and feGaussian-
Blur filters. More specifically, feColorMat rix multiplies a
transformation matrix of floating-point numbers to the RGB
values of each pixel, changing its color. Moreover, feGaus—
sianBlur applies a two-dimensional Gaussian function per
pixel, requiring several floating point exponentiations. This
filter stack has the effect of performing computations on the
Hamming weight of the target pixel repeatedly to an extent
that constrains the system’s power or temperature budget. As
a result, the stack causes the system to throttle its frequency
differently depending on pixel color.

Observing Data-dependent Behavior via Time. Having in-
duced data-dependent execution frequency on the machine’s
GPU or CPU, we now observe this behavior by timing the
filter’s execution. For this, we use JavaScript’s requestAni-
mationFrame function (rAF) as shown in line 12 of Listing 6.
rAF invokes a user-provided callback function tick (lines
2-11), which receives a timestamp now (line 2) of when it was
called. First, we measure the elapsed time (line 3) between
filter applications as a proxy variable for frequency. Next, we
render the filter in line 9 by setting the CSS filter style. We
recursively call rAF on line 10, repeating this procedure.
Leakage Source. Next, we verify that the source of the tim-
ing difference is data-dependent frequency throttling. To that
aim, we compare the difference in rendering times between
black and white pixels in two settings: the device’s default
configuration and when the device frequency is constant. Fig-
ure 17 summarizes our findings for GPUs, and we show our
experimental setup and CPU results in Appendix B.

More specifically, the left two plots show the Apple M1’s
iGPU and the right two plots show the RX 6600, both running
Chrome. In each pair of plots, the default configuration is
shown to the left, and the constant-frequency setting is on
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Figure 17: Filter rendering times on M1 (left two plots) and
RX 6600 (right two plots) GPUs for white and black pixels
on Chrome. In each pair: left plot is from the default configu-
ration, while the right plot is when the frequency is constant.

the right. Here, we observe the timing difference disappears
when the frequency is made constant, and therefore conclude
the difference originates from frequency.

6.2 Stealing Pixels in Chrome

Using our filter stack and requestAnimationFrame callback
function for filter application and timing, we now steal pixels
from an unaffiliated target site from Chrome. We put the target
site as an iframe element in our attacker page. We assume
the target visits our page, and that the iframe renders sensi-
tive information about them. We cannot inspect the iframe’s
contents from JavaScript, but can compute an SVG filter on
top of it, laying ground to our attack.

targetsite.com

000 attacker.com QOO
&
_—

<iframe src="targetsite.com”>

Css transform: scale

B&W Conversion

Figure 18: An overview of our technique for stealing pixels.

Experimental Setup. Our attacks begin with a calibration
phase, wherein we apply and time our filter stack on known
pixels to set a ground-truth timing threshold. Subsequently,
we start the stealing phase, where we apply and time our
filter stack on a target pixel from an iframe element whose
contents we cannot access for pixel stealing (see Figure 18).
More specifically, we pick a pixel from the target page
and use CSS to convert the pixel value to black or white,
maximizing the difference in HW. We then use the scale
CSS transform to propagate the target pixel across the entire
browser window. Next, we use Listing 6 to repeatedly apply
the filter stack, measuring about 200-400 filter renders to
overcome JavaScript’s coarse timer resolution. Finally, we
classify the color of the target pixel using the timing threshold
we obtained during calibration.
Empirical Results. Figure 19 (top) presents the results of
our end-to-end pixel stealing attack, recovering a picture of
the Chrome logo via the GPUs of M1 and M2 MacBook Airs,
RTX 3060, RX 6600, OnePlus 10 Pro, Google Pixel 6 Pro,
and Intel Iris. Furthermore, we report the pixel recovery rate



and average accuracy of all test devices in Figure 19 (bottom).
As can be seen, an accuracy of 70% to 90% is practically
sufficient to recover the image, particularly more so for edges
in the image (where the pixel color transitions) than textures.
That is, while almost all of the pixels corresponding to an
edge in the original image must be misclassified for that edge
to ‘disappear’ in our recovered image, only a couple noisy
pixels can make it difficult to determine whether a texture in
the original image is smooth or grainy.

OTZOOS

W

Accuracy (%)

Device Time/Pixel (s)

Apple MacBook Air (M1) 224 60.0
Apple MacBook Air (M2) 20.8 67.0
Google Pixel 6 Pro 9.6 81.8
OnePlus 10 Pro 18.9 70.0
Nvidia GeForce RTX 3060 8.7 75.4
AMD Radeon RX 6600 8.1 94.0
Intel Iris Xe (i7-1280P) 22.6 77.0

Figure 19: Chrome pixel stealing results (from left to right):
Original Image, M1 MacBook Air, M2 MacBook Air, Pixel 6
Pro, OnePlus 10 Pro, Nvidia RTX 3060, AMD RX 6600, Intel
Iris Xe. The table summarizes recovery rates and accuracies.

Comparing Accuracy with Throughput. Next, we measure
the tradeoff between accuracy and leak rate on the RX 6600
in Figure 20. The second-from-left Chrome logo was recon-
structed by measuring for 8 seconds per pixel, similarly to the
8.1 seconds per pixel on the RX 6600 leading to the second-
from-right Chrome logo in Figure 19. We consider this logo’s
accuracy and throughput as our baseline. In the leftmost logo
of Figure 20, we increase the sampling period to more than
double, at 17 seconds per pixel. Conversely, the right three
logos of Figure 20 are reconstructed from decreased sampling
periods, namely 5, 3, and 1.6 seconds per pixel.

The benefits of sampling for 17 seconds generally do not
seem to outweigh the cost in throughput, with a 2% increase
in accuracy over the baseline for less than half the leak rate.
Meanwhile, the right three logos show improved throughput
at notable costs in accuracy, with 2%, 5%, and 9% drops
in accuracy over the baseline when sampling for 5, 3, and
1.6 seconds respectively. Visually, the edges remain partially
intact and discernible akin to our comments on Figure 19, but
we observe a sharp decrease in the accuracy of textures for
all sampling periods lower than our baseline.

6.3 Sniffing History on Safari

As a countermeasure against pixel stealing, Safari does not
send cookies for iframe elements unless they are from the
same origin as the attacker’s parent page. This fundamen-
tally eliminates pixel stealing attacks, as the iframe will not
contain any non-public user-specific information.

History Sniffing. However, an attacker can still recover

Time/Pixel (s) 17 8 5 3 1.6
Accuracy (%) 96 94 92 89 85

Figure 20: Results for pixel stealing on AMD RX 6600, with
varying amounts of sampling period per pixel. The baseline
period of 8 seconds is highlighted.

the target’s history by placing links to sensitive pages on the
attacker’s own site. As links are often displayed in different
colors after the user has visited them, querying the value of
the visited CSS selector once trivially revealed if a user had
accessed a specific hyperlink [17]. With modern browsers
always reporting the visited CSS selector as ‘not accessed’,
we now mount history sniffing attacks using SVG filters.
Attack Setup. Accordingly, we use the visited selector
to set the color of hyperlinks to black for unvisited and white
for visited links, and subsequently apply our filter stack to
apply stress on the CPU.? In contrast to pixel stealing, since
the hyperlink’s pixels are all identical, it suffices to perform
the attack on just a single pixel per hyperlink. We perform our
attack on 50 of the top Alexa websites, where we manually
visit half of them at random and leave the other half unvisited.
We report their pixel recovery rates and accuracies in Ta-
ble 5. We note the CPU, in comparison to the GPU, takes
much longer to arrive at a frequency difference that we can
observe via timing. We conjecture that this is due to signal-to-
noise ratio, as the CPU executes significantly more unrelated
processes than the GPU. Nonetheless, once the difference
does become clear-cut, we observe higher accuracies overall,
including near-perfect accuracy on the iPhone devices.

Device RR(s) Acc.(%) FPR(%) FNR (%)
MacBook Air (M1) 270 88.8 8.9 15.1
MacBook Air (M2) 187 94.8 59 33
iPhone 12 211 99.0 1.2 0.0
iPhone 13 183 99.3 0.0 2.5

Table 5: Recovery rate (RR), accuracy, false positive rate
(FPR), and false negative rate (FNR) of our history-sniffing
attack on Safari across our test devices.

7 Attacking DVFS on Light Workloads

Moving away from attacks that recover pixels via heavy work-
loads, in this section we consider lighter attacks that finger-
print websites based on frequency adjustments performed by
the DVFS mechanism. More specifically, we show that in-
dividual websites cause bursts of computation on the GPU
at different times and of varying intensity. Measuring these

ZRecall that Safari uses CPU rendering for SVG filters.



bursts results in a pattern that is unique to a website, allowing
unprivileged code to profile the target’s web activity.
Experimental Setup. Following the methodology of [18],
we filter sites from the Alexa Top 500 whose content is of-
fensive, login-protected (e.g., where the main page is only a
login window), or near-identical to another site because it only
differs in locale. After this filtering step, we visit a list of the
top 100 remaining websites. We use the Selenium [57] library
to automate loading each website with Chrome 108. We let
each website load for 15 seconds, and collect 150 traces of the
power consumption and frequency of the iGPU integrated in
a M1-based Mac Mini machine. To collect the measurements
we use SocPowerBuddy [10], which can access both sensor
data without the need of any elevated privileges.

Trace Collection. In the preparation phase, we repeat trace
collection on the Mac Mini for 10 folds. We use 9 folds as
the training data, and exclude one fold to use as the validation
data. 8 hours later, we begin the attack phase by collecting
traces for test data on an M1 MacBook Air. We separate
the devices for training and test data collection and leave
a time gap to demonstrate that the model’s learned decision
boundary can generalize robustly to different form factors and
thermal budgets for the M1, as well as frequently updating
webpages (e.g., social media). Finally, we use the model of
[60], consisting of a small CNN and LSTM neural network.
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Figure 21: Apple M1 GPU traces on Mac Mini. The top plot
shows GPU frequency, while the bottom plot shows GPU
power consumption.

Observing Website Distinguishability. First, we show a
motivating example of how websites can be fingerprinted via
GPU frequency and power. Figure 21 shows traces for Google
(left), Amazon (center), and the New York Times (right), with
GPU frequency on top and power on the bottom. We observe
that while GPU frequency mostly fluctuates at either 0 or 700
MHz, the frequency spikes over time cause the websites to
be distinguishable. GPU power varies likewise over time, and
even more over range at anywhere in between 0 and 120 mW.
Website Classification Results. We show our model’s top-1,
top-2, and top-5 classification accuracies for the validation
and test data in Table 6. On the validation data, the classifier
guesses the correct website in its top-5 guesses with an accu-
racy of 0.76. On the test data, the accuracy decreases to 0.49,
owing to the changes in website content and the different
power and thermal capacity of the passively cooled MacBook

Air compared to the actively cooled Mini. Nonetheless, we
show the classifier maintains an order-of-magnitude improve-
ment over the baseline accuracy, despite changes in machines
and cooling methods.

Device Data Topl Top2 Top5 Baseline
Mac Mini Validation 0.51 0.62 0.76 0.01
MacBook Air  Testing 0.27 0.37 0.49 0.01

Table 6: Classification accuracies of our model. The baseline
accuracy is the probability that a random guess is correct.

8 Limitations and Mitigations

Limitations of Thermally Constrained Devices. Our pixel
stealing and history sniffing attacks require the target ma-
chine to reach steady state, which is achieved almost instantly
for power-constrained devices. However, for thermally con-
strained devices, it takes a considerable amount of time to
attain steady state, depending on how quickly the machine can
reach thermal equilibrium. Furthermore, as the variations in
frequency and power consumption are small, our experiments
require longer sampling durations to observe discernible tim-
ing differences. This limits our leakage rate to about 0.1 bits
per second. Thus, while our work serves as a leakage rate
lower bound, we leave the task of developing faster DVFS
attacks to future work.

Hardware-based Mitigations. We discuss hardware mit-
igations primarily for secret-dependent frequency behavior,
as unlike frequency that can be measured via the passing
of time, access to temperature and power consumption sen-
sors can be blocked via API changes. First, observing from
Sections 4.1, 4.3 and 5.1 that the Apple M1 SoC does not
exhibit instruction- or data-dependent frequency when it is
actively cooled, we foresee that active cooling for thermally
constrained devices will mitigate our attacks.

Moving away from cooling, we note that our attacks stem
from data-dependent behavior of DVFS algorithms under
stress. Thus, a practical compromise is to run the system
well below its power or thermal budgets, such that it can
accommodate for the difference in power and heat for different
instructions or data without having to throttle the frequency.

Software-based Mitigations.  One mitigation for pixel-
stealing attacks is to isolate cookies from cross-origin iframes,
enforcing all content displayed in iframes not to contain se-
crets. Such mitigation is already deployed in Safari [70], and
is currently under consideration by Chrome developers. More
systematically, although it requires a specification change
to the HTML standard, prohibiting SVG filters from being
applied to iframes or hyperlinks would mitigate both pixel
stealing and history sniffing attacks. Finally, our website fin-
gerprinting attack can be mitigated by OS vendors removing
unprivileged access to sensor readings.



9 Conclusion

In this paper, we discover that operational constraints cause
information about instructions or data to leak via differences
in frequency, power consumption, or temperature, depending
on the design of each device. We show this phenomenon is
pervasive, demonstrating leakage from software-accessible
sensor readings on CPUs and both integrated and discrete
GPUs, across several vendors and form factors. Finally, we
demonstrate the privacy risk when the sensor readings are
accessible or inferrable with pixel stealing, history sniffing,
and website fingerprinting attacks.

As DVFS is widely used in heavyweight chips and also is a
crucial component for them to balance performance with en-
ergy efficiency, it is possible that the currently known affected
devices and attacks are the tip of the iceberg. Since disabling
DVFEFS entails severe practical drawbacks, DVFS-based at-
tacks may persist for the years to come. As such, we leave the
task of understanding the true power of DVFS-based leakage,
beyond cryptography and SVG filters, to future work.
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A  Modeling Hamming Weight Leakage

To understand the effect of Hamming weight (HW) on power
consumption, temperature and frequency, we conduct an ex-
periment where we execute the and instruction in a loop on
data with varying HW. We run this instruction with both
operands set to the same value to eliminate variations in HD.
The Arm assembly for this workload is shown in Listing 7.
We run the workload in an infinite loop, with a total of 65
different inputs ranging from HW =0 to HW = 64 (setting bits
from least significant to most significant). We terminate the
infinite loop by signaling once the traces have been collected.
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1 x8 = x9 = INPUT

2 .Lloop0:

3 and x19, x8, x9
4 and x20, x8, x9
5 and x21, x8, x9
6 and x22, x8, x9
7 and %23, x8, x9
8 and x24, x8, x9
9 b .Lloop0

Listing 7: Our workload to analyze the effect of HW on the
frequency and power consumption of the Apple M1 CPU.

We show the results of this experiment in Figure 22. We did
not observe any correlation between power consumption and
frequency to the HW of the operand. Hence, we are unable to
conclusively model the frequency and power consumption as
a function of operand HW.

This behavior can be explained using our takeaways from
Section 4.4: we conjecture that the difference in power con-
sumption of the ALU is insufficient to cause a discernible
difference in steady state frequency that depends on the value
of the input and output operands. That is, the difference in
frequency throttling can only be observed from the bit flips in
the internal input and output buffers.
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Figure 22: HW for each input (left), frequency, power con-
sumption, and temperature (right) resulting from Listing 7
after averaging the values between 400 and 800 seconds.

B Ascertaining Frequency as the Primary
Source of Timing Differences

Here, we describe our experimental setup and additional re-
sults for ensuring that frequency causes the timing difference
between black and white pixels.

Experimental Setup. We define the baseline difference
as the timing difference between rendering filters on black
pixels and white pixels when each device is in its default
configuration. Next, we compare the baseline with the tim-
ing difference when we clamp the frequency such that it is
constant, and define this as the experimental difference.

We perform our analysis on the Nvidia RTX 3060, AMD
RX 6600, and Apple M1. On the RTX 3060 and RX 6600, we
clamp the frequency to several P-states below the peak P-state
to avoid power- or temperature-induced behavior. We achieve
this with the nvidia-smi utility [21] on the RTX 3060, and
the radeon-profile utility [53] for the RX 6600.

In contrast, Apple does not provide an interface to clamp
the frequency of the M1 CPU or GPU. Observing from our

previous experiments that the M1 Mac Mini has sufficient
power and thermal budgets to always maintain its highest
CPU and GPU P-states, we use the Mac Mini to measure the
experimental difference. We then use the M1 MacBook Air to
measure the baseline, knowing that it exhibits data-dependent
behavior on frequency.

‘We measure the rendering time for a fixed number of iter-
ations of requestAnimationFrame. We time 100 iterations
on the M1 GPU, 250 iterations on the M1 CPU for Safari,
and 250 iterations on the RX 6600. Noticing the coarse timer
resolution in both Chrome and Safari, we patch the browsers
to supply high-resolution timestamps of at least microsecond
granularity, without rounding. Finally, we show our results
for History Sniffing on Safari in Figure 23.
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Figure 23: Filter rendering times on M1 CPU for white and
black pixels for History Sniffing on Safari. The left plot is
from the default configuration, while the right plot is when
the frequency is constant.
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