


menting with large language models.

In this work, we opt for parameter-efficient tun-

ing approaches (Houlsby et al., 2019; Li and Liang,

2021; Guo et al., 2021; Hu et al., 2022; Zaken

et al., 2022) for the efficient and accurate pre-

diction of inter-task transferability. Our key in-

sight is that task-specific parameters updated in

parameter-efficient tuning methods are likely to en-

code high density task-specific information since

they are used as a query for retrieving task-related

knowledge in a frozen pretrained language model.

Therefore, we propose to directly use task-specific

parameters learned via parameter-efficient tuning

on source/target datasets as task embeddings, as

shown in Figure 1. Compared to task embed-

dings obtained by calculating the Fisher matrix

of the fine-tuned model (Achille et al., 2019; Vu

et al., 2020), efficiently tuned parameters are of

much lower dimensionality and do not suffer from

noise from uninformative weights in the model

parameters, thus leading to more accurate trans-

ferability prediction. Also, our method only re-

quires parameter-efficient tuning on the tasks and

stores task-specific parameters, making both com-

puting and storing task embeddings more efficient.

Moreover, with the development of open-source

parameter-efficient tuning platforms like Adapter-

Hub (Pfeiffer et al., 2020), we can easily access

off-the-shelf parameters of the source and target

datasets downloaded from the model zoo and then

compute the similarity between the downloaded

parameters.

We empirically verify the effectiveness of our

approach by experimenting with 11 text classifi-

cation tasks and 11 question answering tasks, fol-

lowing Vu et al. (2020). Our results show that our

approach consistently outperforms existing inter-

task transferability prediction methods while being

simpler and more efficient. In addition, we find that

the ability of efficiently tuned parameters on trans-

ferability prediction is not strongly correlated with

their in-task performance. Therefore, task-specific

parameters tuned with a relatively small number

of steps are already highly predictive for inter-task

transferability, allowing us to further improve the

efficiency of intermediate task selection.

2 Related Work

Prior work (Phang et al., 2018) shows that posi-

tive transfer can be elicited by training a model

on intermediate source tasks before fine-tuning on

the target task. However, the choice of an appro-

priate source task is crucial for effective transfer.

Phang et al. (2018) show that the size of the source

dataset is an good prior for source task selection.

Pruksachatkun et al. (2020) propose to use task re-

quiring complex reasoning and inference as source

tasks. Besides these heuristics, a number of work

also focuses on systematic prediction of interme-

diate task transferability. Vu et al. (2020) propose

to used TASK2VEC to construct task embeddings

based on the input text or Fisher information ma-

trix of a fine-tuned model. Poth et al. (2021) fur-

ther extend similar ideas for adapter-based trans-

fer learning. More recently, Vu et al. (2021) ex-

plore prompt-based transfer and propose to use

prompt similarity as a predictor for prompt trans-

ferability to select proper soft prompts for initial-

ization. This can be viewed as a special case of

our proposed method where the parameter-efficient

tuning method is restricted to vanilla prompt tun-

ing (Lester et al., 2021) and the transfer method

is restricted to prompt transfer instead of general

intermediate-task transfer.

3 Methodology

3.1 Parameter-Efficient Tuning

Parameter-efficient tuning only updates a small

portion of parameters in a large pretrained model.

In this paper, we experiment with three types of

parameter-efficient tuning: Prompt Tuning (Liu

et al., 2021), Bias Tuning (Zaken et al., 2022), and

Low-Rank Tuning (Hu et al., 2022).

Prompt Tuning We experiment with P-Tuning

v2 (Liu et al., 2021). Specifically, P-Tuning v2

implements a prompt tuning method by introduc-

ing additional attention prefix matrices Kt =
{k1 . . .kn} and Vt = {v1 . . .vn} for each Trans-

former layer, where n is a hyperparameter control-

ling the added prefix length; k∗ and v∗ are vectors

with dimension dh; dh is the hidden size of the

Transformer model.

For each Transformer layer, the added vectors

are concatenated with the original key and value

matrices to be K ′ = Kt ⊕ K and V ′ = Vt ⊕ V ,

where K and V are the original key and value in

each layer’s attention block. Then, the new scaled

dot-product attention is calculated by replacing the

original K and V with the new K ′ and V ′, respec-

tively.



Bias Tuning BitFit (Zaken et al., 2022) simply

updates all bias terms b in all linear layers h =
Wx+ b in each Transformer layer.

Low-Rank Tuning LoRA (Hu et al., 2022) in-

jects trainable rank decomposition matrices into

each layer of the Transformer model. For each

linear layer h = Wx where W ∈ R
d×k, the

forward pass is modified to h = Wx + BAx,

where B ∈ R
d×r, A ∈ R

r×k, and the rank

r � min(d, k).

3.2 Tuned Parameters as Task Embeddings

After parameter-efficient tuning, we concatenate all

tuned parameters in each Transformer layer and av-

erage them across all layers to obtain a vector as a

representation for a task, namely Tuned Parameters

as Task Embedding (TuPaTE). Following Vu et al.

(2020), we calculate the cosine similarity between

the embeddings of a given targeted task and the can-

didate source tasks. Then, we rank the candidate

source tasks in descending order by the similarity

scores.

4 Experiments

4.1 Datasets

Following Vu et al. (2020), we conduct experiments

with 11 tasks of text classification or regression

(CR) and 11 tasks of question answering (QA).

Note that Vu et al. (2020) also includes 11 tasks of

sequence labeling. We do not include those datasets

since most of them are not publicly available. The

list of datasets can be found in Appendix A. To

be consistent with Vu et al. (2020), we use two

metrics to evaluate the performance of the task

embeddings: (1) the average rank ρ of the source

task with the highest absolute transfer gain; (2)

Normalized Discounted Cumulative Gain (NDCG),

which is a widely used metric for evaluating the

quality of the entire ranking, instead of focusing on

the highest rank as ρ does.

4.2 Baselines

We use the following methods as baselines: (1)

DATASIZE (Vu et al., 2020) is a simple baseline

that ranks all source tasks by the number of training

examples. (2) CURVEGRAD (Bingel and Søgaard,

2017; Vu et al., 2020) is a baseline that uses the

gradients of the loss curve of BERT for each task.

It is originally proposed in Bingel and Søgaard

(2017) for predicting gains from multi-task learn-

ing and adapted by Vu et al. (2020) for predicting

Method
#Tuned Embedding

Param. Dim.

TASKEMB 110M 110M

PTUNING 184K 15.4K

LORA 300K 25.0K

BITFIT 100K 8.3K

Table 1: Numbers of tuned parameters and the dimen-

sions of the final task representation.

transferability. (3) TEXTEMB (Vu et al., 2020)

averages sentence representations over the entire

dataset. The sentence representation is obtained

by averaging the hidden states in the last layer of

BERT. (4) TASKEMB (Vu et al., 2020) represents

tasks based on the Fisher information matrix. It is

adapted from the task embedding originally pro-

posed in Achille et al. (2019) for meta-learning.

4.3 Training Details

We apply P-Tuning v2, BitFit, and LoRA on BERT-

base for fine-tuning on the aforementioned datasets.

For each method, we adopt the default hyperparam-

eters from their corresponding papers. Specifically,

for P-Tuning v2, we use a prefix length of 20 and

search the learning rate from {1e-2, 1e-3}; For

LoRA, we set LoRA’s r to 8 and α to 8, and search

a learning rate from {5e-4, 2e-4}; For BitFit, we

search a learning rate from {1e-4, 4e-4}. We train

all models with a batch size of 32 for 20 epochs

on all datasets. We use the parameters tuned for 2

epochs as “early” task embeddings and those corre-

sponding to the best validation set performance as

“late” task embeddings. We compare the number

of tunable parameters and the final task embedding

dimensions in Table 1. We can see that TuPaTE

has a significantly lower dimensionality compare to

the TASKEMB baseline. We also include an ensem-

ble of the three efficient tuning methods (denoted

as “3 ENSEMBLE”), by averaging the inter-task

similarity scores of each model.

4.4 Experimental Results

We present the main results in Table 2. We find that

TuPaTE with different parameter-efficient tuning

methods consistently outperforms prior works in-

cluding TEXTEMB and TASKEMB. Interestingly,

the performance improvement is larger in FULL →
LIMITED and LIMITED → LIMITED settings. We

conjecture that this is because in limited resource



Task Type Method

FULL → FULL FULL → LIMITED LIMITED → LIMITED

in-class (10) all-class (21) in-class (10) all-class (21) in-class (10) all-class (21)

ρ ↓ NDCG↑ ρ ↓ NDCG↑ ρ ↓ NDCG↑ ρ ↓ NDCG↑ ρ ↓ NDCG↑ ρ ↓ NDCG↑

Classification/

DATASIZE 3.6 80.4 7.8 75.2 3.8 62.9 8.9 57.2 - - - -

Regression (CR)

CURVEGRAD 5.5 68.6 - - 6.4 45.2 - - 5.9 50.8 - -

TEXTEMB 5.2 76.4 9.8 74.7 3.5 60.3 7.5 55.6 4.8 61.4 11.4 46.2

TASKEMB 2.8 82.3 5.4 78.3 3.4 68.2 7.1 63.5 4.2 62.6 9.7 47.7

TUPATE

+PTUNING 2.5 83.7 4.5 81.0 3.1 71.3 6.4 65.1 3.9 64.6 8.1 51.3

+LORA 2.7 83.0 5.0 79.6 3.3 70.5 6.8 63.7 4.0 64.2 9.0 49.3

+BITFIT 2.5 83.5 4.3 81.6 3.2 71.1 6.5 64.6 3.8 64.9 8.3 50.9

3 ENSEMBLE 2.3 83.9 4.2 81.8 3.1 71.5 6.2 65.3 3.8 65.1 8.0 51.5

Question

DATASIZE 3.2 84.4 11.4 65.8 2.3 77.0 11.2 43.5 - - - -

Answering (QA)

CURVEGRAD 8.3 64.8 - - 8.2 49.1 - - 6.8 53.4 - -

TEXTEMB 4.1 81.1 5.8 82.0 2.7 77.6 3.8 80.5 4.1 65.6 7.3 69.1

TASKEMB 3.2 84.5 5.4 82.8 2.5 78.0 3.6 81.6 3.6 67.1 7.1 69.5

TUPATE

+PTUNING 3.0 85.7 4.8 83.3 2.2 80.9 3.1 83.5 3.2 68.3 6.3 72.4

+LORA 3.1 85.3 5.2 83.0 2.3 79.8 3.3 82.5 3.4 67.5 6.7 70.8

+BITFIT 3.0 85.5 4.9 83.1 2.1 81.4 3.1 83.4 3.3 68.0 6.5 72.0

3 ENSEMBLE 2.9 85.9 4.8 83.5 2.0 81.7 2.9 83.7 3.2 68.2 6.3 72.4

Table 2: To evaluate TuPaTE, we measure the average rank (ρ) assigned to the best source task (i.e., the one

that results in the largest transfer gain) across target tasks, as well as the average NDCG measure of the overall

ranking’s quality. Parentheses denote the number of source tasks in each setting. Some results of CURVEGRAD

are missing (marked with “-”) since its code is not available. The other results of CURVEGRAD are taken from Vu

et al. (2020).

Method ∆ρ ∆NDCG
NCDG-Perf.

Pearson

PTUNING 0.0 +0.1 0.25

LORA 0.0 −0.1 0.17

BITFIT +0.1 +0.2 0.20

Table 3: Analysis on the correlation between task-

specific performance (e.g., accuracy) and transferabil-

ity prediction results (i.e., ρ and NDCG) for different

parameter-efficient tuning methods. ∆ρ and ∆NDCG

denote the difference of ρ and NDCG between the pa-

rameters with the highest and lowest task-specific per-

formance.

settings, parameter-efficient tuning methods gen-

erally perform much better than full fine-tuning,

which is used in the TASKEMB method. More-

over, we find that PTUNING and BITFIT outper-

form LORA in all settings. We suspect this is be-

cause the amount of tunable parameters in LORA

is much larger than PTUNING and BITFIT. Also,

the ensemble of three methods achieve even better

performance than only using one approach.

4.5 Analysis

We conduct additional experiments in the in-class

setting on classification/regression tasks to bet-

ter understand how TuPaTE works. We first an-

Method
Early Best

ρ NDCG ρ NDCG

PTUNING 2.5 83.5 2.5 83.7

LORA 2.8 82.6 2.7 83.0

BITFIT 2.5 83.2 2.5 83.5

Table 4: Transferability prediction results with early

checkpoints (checkpoints after 2 epochs) and the best

checkpoints (checkpoints corresponding to the best val-

idation performance).

alyze the correlation between the in-task perfor-

mance (e.g., accuracy) and transferability predic-

tion ability of efficiently tuned parameters. We

train TuPaTE with 5 random combinations between

searchable hyperparameters and random seeds, and

present the correlation in Table 3. We observe that

there is only a weak correlation between in-task

performance and transferability prediction results,

indicating that the ability of efficiently tuned pa-

rameters to encode task-related information is dis-

entangled with their final in-task performance. This

also shows the robustness of TuPaTE with respect

to hyperparameters.

The fact that in-task performance only corre-

lates weakly with transferability prediction moti-

vates us to explore whether early checkpoints of



efficiently tuned parameters can be used for trans-

ferability prediction. From Table 4, we find that

early checkpoints are also effective task embed-

dings. This allows us to reduce the computation

cost by around 90% while substantially outperform-

ing the TASKEMB baseline.

5 Conclusion

In this paper, we show that efficiently tuned parame-

ters are highly predictive for inter-task transferabil-

ity and thus can be used as off-the-shelf task em-

beddings for source task selection in intermediate-

task transfer learning. Our empirical investigation

with three parameter-efficient tuning methods on

22 NLP tasks demonstrates that our approach out-

performs prior works on inter-task transferability

prediction despite being more efficient.

Limitations

We select three representative works for three types

of parameter-efficient tuning. However, there are

other parameter-efficient tuning methods that we

have not investigated. Although we believe our

conclusion can generalize to other methods, we

will conduct more experiments to confirm for future

work.
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A List of Datasets

Task |Train|

Text classification / Regression (CR)

SNLI (Bowman et al., 2015) 570k

MNLI (Williams et al., 2018) 393k

QQP (Iyer et al., 2017) 364k

QNLI (Wang et al., 2019) 105k

SST-2 (Socher et al., 2013) 67k

SciTail (Khot et al., 2018) 27k

CoLA (Warstadt et al., 2019) 8.5k

STS-B (Cer et al., 2017) 7k

MRPC (Dolan and Brockett, 2005) 3.7k

RTE (Dagan et al., 2005) 2.5k

WNLI (Levesque, 2011) 634

Question Answering (QA)

SQuAD-2 (Rajpurkar et al., 2018) 162k

NewsQA (Trischler et al., 2017) 120k

HotpotQA (Yang et al., 2018) 113k

SQuAD-1 (Rajpurkar et al., 2016) 108k

DuoRC-p (Saha et al., 2018) 100k

DuoRC-s (Saha et al., 2018) 86k

DROP (Dua et al., 2019) 77k

WikiHop (Welbl et al., 2018) 51k

BoolQ (Clark et al., 2019) 16k

ComQA (Abujabal et al., 2019) 11k

CQ (Bao et al., 2016) 2k

Table 5: The datasets used in our experiments and their

training set size (Vu et al., 2020).


