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Abstract

Models that generate extractive rationales (i.e.,

subsets of features) or natural language explana-

tions (NLEs) for their predictions are important

for explainable AI. While an extractive rationale

provides a quick view of the features most respon-

sible for a prediction, an NLE allows for a com-

prehensive description of the decision-making

process behind a prediction. However, current

models that generate the best extractive ratio-

nales or NLEs often fall behind the state-of-the-

art (SOTA) in terms of task performance. In this

work, we bridge this gap by introducing REXC,

a self-rationalizing framework that grounds its

predictions and two complementary types of ex-

planations (NLEs and extractive rationales) in

background knowledge. Our framework improves

over previous methods by: (i) reaching SOTA task

performance while also providing explanations,

(ii) providing two types of explanations, while

existing models usually provide only one type,

and (iii) beating by a large margin the previous

SOTA in terms of quality of both types of ex-

planations. Furthermore, a perturbation analysis

in REXC shows a high degree of association be-

tween explanations and predictions, a necessary

property of faithful explanations.

1. Introduction

Two approaches that currently predominate for building

self-explainable neural models are (i) selecting a subset of

input features responsible for a prediction, known as an

extractive rationale (ER) (Zaidan & Eisner, 2008; Bast-
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ings et al., 2019; Sha et al., 2021), and (ii) generating a

natural language explanation (NLE) for a prediction (Park

et al., 2018; Hendricks et al., 2016; Camburu et al., 2018;

Kayser et al., 2021). For an explanation (ER or NLE), one

is interested in two characteristics: quality (or plausibility)

and faithfulness. Quality measures the degree of matching

between the model’s explanations and some ground truth;

models with low-quality explanations would be undeploy-

able. Faithfulness measures how well the explanations re-

flect the decision-making processes behind the predictions;

unfaithful explanations would be misleading.

ERs are concise and provide quick explanations, which may

sometimes be enough for users to assess the trustworthi-

ness of the model. However, ERs may not have the means

to provide important details of the reasoning of a model

(e.g., relations between features) (Wiegreffe et al., 2021).

In such cases, NLEs can be complementary, as they allow

for detailed justification in a form that is most accessible to

humans (natural language). However, machine-generated

NLEs, like other generated text, are prone to lacking back-

ground knowledge (e.g., commonsense) (Camburu et al.,

2020; Mao et al., 2019). This could be because the NLEs

are unfaithful or the model did not use the necessary knowl-

edge in its decision-making process. Despite the comple-

mentary nature of ERs and NLEs, self-rationalizing models

usually provide only one of them, with a few exceptions

(Park et al., 2018; Wu & Mooney, 2019). Moreover, while

knowledge grounding has been done for black-box models

(Bauer et al., 2018; Chandu et al., 2021; Chen et al., 2020a),

we are not aware of any work on knowledge grounding

for self-rationalizing models. Furthermore, existing self-

rationalizing models are often outperformed by black-box

models at solving the task at hand, leading to an undesirable

performance-explainability trade-off.

To ground both decision-making and rationalization in back-

ground knowledge, as well as to reap the benefits of both

ERs and NLEs, we combine these three ingredients in a uni-

fied self-rationalization framework. Our framework, which

we call REXC (Extractive Rationales, Natural Language

Explanations, and (here) Commonsense)1, performs five

1Code is available at https://github.com/

majumderb/rexc
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Figure 2. Architecture of REXC. The knowledge module is frozen, while the rest of the modules are trained jointly with the signals

from the NLEs and outputs. Deliverables from REXC are in blue.

2.2. Knowledge about an Extractive Rationale

We hypothesize that inferred knowledge about the ERs are

the most important bits of information for the predictions

and, implicitly, for the NLEs. For example, in Fig. 1a, we

obtain relevant knowledge snippets (bicycle race requires

bikes and men are people) for the ER (“bicycle race”, “men”,

“people”), which influence both the prediction and the NLE.

We use a knowledge module K, which supports input from

an appropriate modality (e.g., text or image) for query-

ing. We query K with each contiguous element of the

ER (e.g., “bicycle race”) to obtain a large pool of asso-

ciated knowledge snippets S. We take advantage of recent

developments in generative models capable of providing

background knowledge about a given entity for the ease of

end-to-end training, such as COMET (Bosselut et al., 2019)

for NL inputs and VisualCOMET (Park et al., 2020) for

image inputs. The generative knowledge module does not

suffer from the no-hit issue that is typically encountered

in retrieval settings. However, REXC is flexible to accom-

modate a retrieval-based knowledge source when equipped

with a differential search (see Section 4.4). To facilitate end-

to-end training, we use soft representations of the elements

of the ER—which are encoded using the embedding layer

of K and subsequently selected by zri (when 1) for queries

to K. Finally, we denote the parameters of K as θk.

2.3. Knowledge Selection

While the knowledge module generates several knowledge

snippets (S), not all of them are relevant for the predic-

tion. Hence, we introduce a knowledge selection step. Fur-

thermore, the selected knowledge snippets can appear as

supporting evidence in addition to the generated NLE—an

advantage of REXC over models that only generate NLEs.

We model the selection step via another set of latent selec-

tors zki ∈ Zk, which take a value from the interval [0, 1]
and are realized by a HardKuma distribution (similarly to

Section 2.1). More than one knowledge snippet may be

relevant, however, we want the knowledge selection to be

sparse. Hence, we use L1 regularization to control the spar-

sity of the selected knowledge. The parameters predicting

the latent selectors zki are denoted as θks.

To facilitate end-to-end training, we do not decode knowl-

edge snippets into natural language. Instead, we retain

the final hidden representations of each snippet from the

knowledge module as si ∈ S. Using zki as an indicator

of selection, we obtain the vectors of selected knowledge

snippets and concatenate them as input to the NLE genera-

tor. We also concatenate the representation of the input for

the selector to be able to select the most relevant snippets

given the input. At inference time, we decode the selected

knowledge snippets into language, which could be used as

additional supporting evidence along with the NLE. We

call this variant REXC+. Human evaluation shows that

this additional evidence leads to higher quality explanations

(Section 4.1).

2.4. NLE Generation and Task Prediction

We use a natural language decoder G, which concatenates

the soft representations of the knowledge snippets and of the

instance input at the input layer and generates an NLE. After

G, we add a predictor module P , a linear layer with softmax,

which takes the final hidden representation of the NLE and

the representation of the instance input, and projects them

to the output space for the task prediction. The prediction

is thus directly conditioned on the NLE and the input, and,

implicitly, on the ER and selected snippets. We denote the

parameters of G and P as θg and θp, respectively. We use

direct supervision from the ground-truth NLEs and task

outputs.

2.5. Training

The parameters for R, G, P , and the knowledge selector can

be jointly trained end-to-end with backpropagation by sum-

ming up the negative log-likelihoods for the predictions and

NLEs. We found that updating parameters for the knowl-

edge resource K led to a minimal improvement; hence, K is

fixed for computational ease.

However, due to the presence of zri s in R, we instead
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have to optimize a lower bound E of the original log-

likelihood. We follow Bastings et al. (2019) and optimize

minθr,θg,θks,θp L1 with

L1 = −E(θr, θk, θks, θg, θp)

+λr
0

∑N

i=1
zri + λr

1

∑N−1

i=1

∣

∣zri − zri+1

∣

∣ ,
(1)

where the second term is the L1 penalty, the third term is

a fused Lasso to control the total number of transitions for

compactness (Lei et al., 2016), and λr
0 and λr

1 are hyperpa-

rameters. Similarly, we have another lower bound for the

zki variables in the knowledge selection step, for which we

optimize minθks,θg,θpL2 with

L2 = −E(θks, θg, θp) + λk
0

∑M

i=1
zki , (2)

where the second term denotes L1 regularization for sparse

knowledge selection. Finally, we combine the lower bounds

as α × L1 + (1 − α) × L2, where α ∈ [0, 1] is a hyper-

parameter. We estimate the gradient of E via Monte-Carlo

sampling from the reparameterized HardKuma variables

(Kingma & Welling, 2014). All hyperparameters are chosen

based on a greedy search over the task prediction accuracy

(more in Appendix A).

3. Experiments

Tasks. We experiment with three tasks of natural language

and two tasks of vision-language understanding as described

in Table 1. More task details are in Appendix B.

Table 1. Our tasks: three NL and two VL.

Task Dataset Summary

Commonsense
Validation

ComVE
(Wang et al., 2019)

Choosing input sentence
that defies commonsense

Natural Language
Inference

e-SNLI
(Camburu et al., 2018)

Textual entailment between
premise and hypothesis

Commonsense
Question Answering

COSe
(Rajani et al., 2019)

Answering multi-choice
commonsense questions

Visual
Entailment

e-SNLI-VE
(Kayser et al., 2021)

Entailment between image
premise and text hypothesis

Visual Commonsense
Reasoning

VCR
(Zellers et al., 2019)

Commonsense reasoning in
visual question-answering

Implementation Details. The components of REXC for

the NL tasks are: Rationale extraction: We use the denois-

ing encoder-decoder bart-large (Lewis et al., 2020a)

with a linear layer and softmax at the end to generate the

distribution for latent selectors. Knowledge source: We

pre-train a bart-large model as a proxy for COMET

(matched with original perplexity, 11.47 vs. 11.14 as from

(Bosselut et al., 2019)) that matches the tokenization scheme

used in R. NLE and task output: We use another

bart-large model to generate the NLEs, decoded with

top-p sampling (p = 0.95) (Holtzman et al., 2020). A linear

layer followed by a softmax is used as the task predictor P .

The components of REXC for the VL tasks are: Ratio-

nale extraction: We use a transformer-based VL model,

UNITER (Chen et al., 2020b), which uses self-attention to

learn contextualized representations for image-text input

pairs. We add two MLPs on top of UNITER, which are

used to generate the distributions for the latent ER selection

from the image and text input; Knowledge source: We use

VisualCOMET (Park et al., 2020) as an image-based com-

monsense module, which is fine-tuned on ATOMIC (Sap

et al., 2019). For text ERs, we follow the same setup as

in the NL setup; NLE and task output: We use GPT-2

(Radford et al., 2019), a language decoder, for NLE gener-

ation. We adapt GPT-2 to condition on the representations

learned by UNITER for VL inputs and use nucleus sampling

(p = 0.95) for decoding the NLEs. A linear layer followed

by a softmax is used for task prediction.

Baselines. We consider existing self-explainable models

with the SOTA explanations (NLEs or ERs) as baselines.

We also compare REXC with models that are SOTA for task

performance (all until now are black-box models for our

tasks).

NL Baselines.2 The current SOTA for NLEs in all three

NL tasks was obtained by WT5 (Narang et al., 2020), a

general-purpose NLE generation model. We also compare

with works that model NLEs specifically for a dataset: WT5

for ComVE, NILE (Kumar & Talukdar, 2020) for e-SNLI,

and CAGE (Rajani et al., 2019) for COSe.

VL Baselines. We compare REXC with: PJ-X (Park

et al., 2018) and FME (Wu & Mooney, 2019), two self-

rationalizing models that provide both NLEs and ERs, and

RVT (Marasovic et al., 2020), a post-hoc explainer that uses

external knowledge as REXC. We also compare with e-UG

(Kayser et al., 2021), the current SOTA in terms of NLE

generation on VL tasks.

Ablations of REXC. We ablate REXC to investigate the

effects of each component: ER selector (w/o ER), knowl-

edge selector (w/o KN-Sel), and both (w/o KN & ER). We

also ablate with the NLE generator (REXC-ZS), while train-

ing just using the final answers as supervision and using the

selected knowledge snippets as NLEs. This yields a zero-

shot model for NLEs. REXC+ adds the selected knowledge

to the NLEs, hence is only used in the human evaluation.

Finally, we also investigate the advantage of the generative

knowledge module by replacing it with a retrieval-based

knowledge source: ConceptNet (Speer et al., 2017) and Vi-

sual Commonsense Graphs (Zellers et al., 2019). To make

the replacement, we use Maximum Inner Product Search as

in (Lewis et al., 2020b). We call this version REXC-RB.

2 We used the implementations from the original works.
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Table 2. Task performance (Acc.) and NLE quality for the (a) NL and (b) VL tasks. NLE Automatic metrics: METEOR (MET.),

BERTScore (BRTSc.), BLEURT (BLRT.), and NLE human evaluation metrics: e-ViL score, Yes/No %s. Bold indicates the best numbers

with statistical significance (p < 0.001). Underline indicates best task performance from a model with (any type of) explanations.

ComVE e-SNLI COSe

Model Acc. MET. BRTSc. BLRT. e-ViL Yes No Acc. MET. BRTSc. BLRT. e-ViL Yes No Acc. MET. BRTSc. BLRT. e-ViL Yes No

Gold – – – – 91.6 79.3 1.1 – – – – 98.1 94.1 2.7 – – – – 84.8 74.5 1.8

Task SOTA 97.0 – – – – – – 93.1 – – – – – – 83.7 – – – – – –

NILE – – – – – – – 91.9 11.3 75.3 41.2 84.3 80.1 9.4 – – – – – – –

CAGE – – – – – – – – – – – – – – 72.1 1.3 43.1 16.9 59.5 35.4 16.7

WT5 96.1 3.4 86.4 27.0 67.7 46.2 11.0 92.1 12.3 75.3 42.3 85.3 82.7 12.8 81.0 2.2 52.0 22.4 73.0 53.9 10.5

REXC-ZS 96.7 7.7 72.4 24.2 65.8 56.5 16.3 92.4 11.9 63.2 40.7 88.3 85.8 5.5 83.1 2.6 38.1 17.1 83.4 73.2 5.6

REXC 97.2 14.1 91.9 33.7 87.3 72.6 2.8 92.9 19.6 86.8 51.3 94.9 93.9 3.6 83.6 7.2 60.3 30.5 87.4 74.3 2.1

REXC+ 97.2 – – – 88.4 72.6 1.2 92.9 – – – 95.6 94.3 2.7 83.5 – – – 87.9 74.7 1.8

REXC-RB 96.4 3.1 89.5 26.1 62.2 43.3 15.1 92.7 13.2 77.4 45.3 87.6 81.2 13.5 82.2 3.7 55.5 23.8 79.3 63.2 9.6

w/o KN-Sel 97.1 11.3 90.2 33.6 84.4 65.3 5.1 92.8 17.9 83.4 51.2 92.8 91.7 5.8 83.2 6.4 58.4 27.9 85.0 70.2 2.5

w/o ER 96.5 5.2 86.1 28.1 67.2 43.4 7.6 92.3 13.1 77.7 43.5 83.4 83.2 15.1 81.4 2.9 52.8 23.8 66.7 45.2 14.9

w/o KN & ER 96.0 4.3 85.2 26.3 66.6 41.3 7.6 92.2 12.4 76.4 41.9 82.9 81.2 15.7 80.8 2.5 51.6 22.4 65.9 44.1 15.9

(a)

e-SNLI-VE VCR

Model Acc. MET. BRTSc. BLRT. e-ViL Yes No Acc. MET. BRTSc. BLRT. e-ViL Yes No

Gold – – – – 90.6 79.3 1.1 – – – – 95.8 94.1 2.7

Task SOTA 79.5 – – – – – – 81.6 – – – – – –

PJ-X 69.2 14.7 79.1 35.6 70.1 55.2 14.5 39.0 16.4 78.4 43.5 73.9 58.2 10.5

FME 73.7 15.6 79.7 34.5 71.9 56.7 13.2 48.9 17.3 79.4 47.8 73.0 56.2 11.1

RVT 72.0 18.8 81.1 35.3 72.2 55.4 12.8 59.0 11.2 78.9 44.2 73.2 57.4 11.5

e-UG 79.5 19.6 81.7 37.8 75.6 57.9 9.9 69.8 11.8 79.0 45.6 75.1 59.3 10.4

REXC-ZS 78.8 12.3 78.6 35.9 79.8 60.7 10.4 79.2 15.8 78.9 41.5 78.9 65.3 10.4

REXC 80.8 22.9 87.7 39.6 81.8 64.2 6.5 79.5 20.9 86.6 53.1 80.9 67.7 7.3

REXC+ 80.8 – – – 82.1 65.4 6.3 79.5 – – – 81.8 67.2 6.2

REXC-RB 78.9 20.7 83.5 38.4 78.3 59.3 10.3 78.9 14.7 81.3 47.2 78.4 62.2 11.4

w/o KN-Sel 79.5 22.4 86.8 39.7 79.9 62.3 7.9 78.6 19.7 85.5 51.4 79.9 67.6 8.2

w/o ER 79.7 20.1 81.9 38.4 76.5 58.6 9.1 74.5 12.4 79.6 46.4 76.3 60.1 10.2

w/o KN & ER 79.4 19.5 81.7 37.7 75.5 57.9 9.8 69.8 11.9 79.0 45.8 75.1 59.4 10.5

(b)

4. Results

4.1. Evaluating the Quality of the Explanations

We evaluate the quality of the ERs and NLEs for REXC in

comparison with the baselines.

Automatic Evaluation of NLEs. Following Kayser et al.

(2021), we measure the quality of the NLEs by comparing

them with the ground truth when the predicted label is cor-

rect. Here, we report METEOR (Banerjee & Lavie, 2005),

BERTScore (Zhang et al., 2020), and BLEURT (Sellam

et al., 2020), which showed the highest correlation with

human evaluation (Kayser et al., 2021). More automatic

metrics are reported in Appendix C, Table 5.

For NL tasks, REXC achieves the best values on all three

automatic metrics (see Table 2a). We see sharp jumps

(e.g., ranging from 4.8 to 11 points in METEOR) between

REXC and models that do not use knowledge grounding,

such as REXC w/o KN & ER and WT5. This confirms

that background knowledge is a useful component for better

NLEs. The gains for REXC over REXC w/o KN-Sel. show

that knowledge selection provides a regularizing effect.

Similarly, REXC outperforms the previous SOTA models

Table 3. ER quality. Comparison of previous SOTA models (DeY-

oung et al., 2020) for rationale extraction vs. REXC for ER quality.

Best numbers are in bold.

e-SNLI COSe

System Acc. IOU Tok. Acc. IOU Tok.

SOTA 73.4 70.5 70.2 34.6 38.9 51.9

REXC 78.4 72.9 73.5 39.6 41.7 56.1

w/o KN-Sel. 77.8 72.5 73.1 38.7 40.6 55.7

for VL tasks (see Table 2b). In particular, REXC outper-

forms RVT, a competitive model providing post-hoc NLEs

also using the same commonsense resource as REXC, which

possibly indicates that joint training for predictions and

NLEs is superior over a post-hoc explainability approach.

Automatic Evaluation of ERs. To evaluate the quality

of ERs, we directly compare them with gold ERs using

ERASER (DeYoung et al., 2020). ERASER uses accuracy

(Acc.) and overlap-based metrics such as F1 at Intersection-

Over-Union spans (IOU) and token (Tok.) overlap. In Ta-

ble 3, we show results for e-SNLI and COSe, the only ones

from our list that have gold ERs available. We observe that

REXC leads to significantly superior-quality ERs compared
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predictions (Marasovic et al., 2020; Brahman et al., 2021;

Atanasova et al., 2020), which raises questions about their

faithfulness. In some cases, they were even produced as

a task in isolation (without predictions) (Ji et al., 2020).

Moreover, the majority of the existing models only produce

NLEs, with few exceptions that produce both NLEs and

ERs (Park et al., 2018; Wu & Mooney, 2019), as our model

does. Furthermore, an analysis on the faithfulness of NLEs

is usually missing from the large majority of these works. To

our knowledge, only one work recently introduced general

necessary conditions for faithfulness in NLEs (Wiegreffe

et al., 2021), while few other works attempted architecture-

specific faithfulness measures (Kumar & Talukdar, 2020;

Wu & Mooney, 2019).

ERs. An early work (Zaidan & Eisner, 2008) investigated

rationale extraction from inputs and later was successfully

followed by works for both NL (DeYoung et al., 2020; Lei

et al., 2016; Bastings et al., 2019; Sha et al., 2021) and VL

(Strout et al., 2019) tasks. We model both ERs and NLEs

jointly in a novel framework that improves the quality of

both types of explanations.

Knowledge Grounding. Free-text generation tasks heav-

ily rely on background knowledge (e.g., commonsense).

Several tasks such as dialog generation (Majumder et al.,

2020), creative text generation (Chakrabarty et al., 2020;

Mao et al., 2019), and counterfactual generation (Bhagavat-

ula et al., 2020) used commonsense for grounding. Recently,

Marasovic et al. (2020); Brahman et al. (2021) showed that

external knowledge can be useful in separately justifying

predictions using NLEs. In this work, we establish that

knowledge grounding can be useful in a self-rationalizing

framework benefiting both predictions and explanations.

7. Summary and Outlook

In this work, we proposed REXC, a self-rationalizing frame-

work that incorporates background knowledge resources and

provides two complementary types of explanations: ERs

and NLEs. Using five tasks, from natural language and

vision-language domains, we show that REXC obtains a

new SOTA performance for both NLEs and ERs. We also

close the important gap between task performance and ex-

plainability for the five tasks that we experimented with,

and obtained a new SOTA for e-SNLI-VE. While we used

commonsense resources, future work could look into adding

other types of knowledge resources, including more special-

ized ones, such as legal and medical. Additionally, while we

showed that REXC opens up a promising direction for zero-

shot NLE generation, further investigation could reap more

benefits from the principals behind REXC for zero-shot and

few-shot setups.
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A. Implementation Details

Training. We trained each model for maximum 5 epochs,

and training was stopped using an early stopping criteria

based on perplexity on the validation sets. For NL tasks,

each model is trained with batch size of 4 on two 2080 Ti

GPUs. Each REXC variant took 35 hours on ComVE, 45

hours on e-SNLI, and 25 hours on COSe. For VL tasks,

each model is trained with batch size of 32 on two 2080 Ti

GPUs. Each REXC variant took 85 hours on e-SNLI-VE

and 105 hours on VCR.

Hyperparameters. For the rationale extraction step, we

set both λr
0 and λr

1 to 1.0. This value turned out to be best

for both NL and VL tasks. For the knowledge selection step,

we set λ
g
0 to 0.9, based on validation performance. The α

for mixing rationale extraction and NLE generation loss is

set to 0.4. We use the AdamW optimizer (Loshchilov &

Hutter, 2017) for training each model, and the learning rate

was set to 6.25e− 5, with a linear decay of step size 10−1

per epoch. We use BART,4 UNITER,5 and GPT-2,6 with all

three being released under the MIT license.

Baselines. We used the official code base for NILE.7 For

WT5, we fine-tuned a pretrained T5 model.8 For all VL

baselines (PJ-X, FME, RVT, and e-UG), we followed the

implementations details from (Kayser et al., 2021).

B. Tasks

Commonsense Validation. We use ComVE (Wang

et al., 2019), a dataset for the task of commonsense val-

idation, where from a pair of sentences, a model needs to

choose the sentence that defies commonsense (see Fig. 3).

The dataset also comes with NLEs. ComVE consists of

10000/1000/1000 samples in the train/validation/test splits.

We use the BART tokenizer9 to tokenize input strings. The

maximum input length was set to 512. The dataset is dis-

tributed under the CC BY-SA 4.0 license.

Natural Language Inference. SNLI (Bowman et al.,

2015) is a dataset for the task of recognizing textual en-

tailment, where given a pair of sentences (premise and

hypothesis), a model must classify their relation as either

entailment, contradiction, or neutral. We use the e-SNLI

4https://huggingface.co/transformers/

model_doc/bart.html
5https://github.com/ChenRocks/UNITER
6https://huggingface.co/transformers/

model_doc/gpt2.html
7https://github.com/SawanKumar28/nile
8https://huggingface.co/transformers/

model_doc/t5.html
9https://huggingface.co/transformers/

model_doc/bart.html#barttokenizer

(Camburu et al., 2018) dataset that contains NLEs for SNLI

(see Fig. 3). e-SNLI consists of 550K/10K/10K samples

in the train/validation/test splits. We again use the BART

tokenizer for the input strings. The maximum input length

was set to 512. The dataset is distributed under the MIT

license.

Commonsense QA. CQA (Talmor et al., 2019) is a

multiple-choice commonsense question-answering (QA)

dataset. COSe (Rajani et al., 2019) is an extension of CQA

that provides an NLE for each correct answer. We treat

QA as a multi-class classification task along with gener-

ating NLEs for the answer prediction. COSe consists of

9741/1221 samples in the train/validation splits. We use the

version 1.11 of the dataset. We use the BART tokenizer to

tokenize input strings. The maximum input length was set

to 1024. The dataset is distributed under the BSD 3-Clause

“New” or “Revised” license.

Visual Entailment. SNLI-VE (Xie et al., 2019) is a vi-

sion dataset analog to the SNLI dataset (Bowman et al.,

2015). SNLI-VE considers an image as a premise (in-

stead of text as in SNLI) and text as a hypothesis, with

the same three labels of entailment, neutral, and contradic-

tion. e-SNLI-VE (Kayser et al., 2021) extends SNLI-VE

with NLEs. e-SNLI-VE consists of 401K/14K/14K samples

in train/validation/test splits. We use the BERT tokenization

scheme10 to tokenize text input following UNITER (Chen

et al., 2020b). The maximum input length was set to 512.

No specific license is associated with the dataset release,

and the dataset is freely available.

Visual Commonsense Reasoning. VCR (Zellers et al.,

2019) is a dataset for commonsense reasoning in a visual-

question-answering setup. We generate the NLEs for each

answer prediction from scratch (instead of choosing an NLE

from a pool of choices, as the dataset was introduced). VCR

consists of 212K/26K/26K samples in train/validation/test

splits. Similar to e-SNLI-VE, we use the BERT tokeniza-

tion scheme to tokenize the input text. The maximum in-

put length was set to 512. The license of this dataset is

mentioned at https://visualcommonsense.com/

license/.

C. Automatic Metrics

Following (Kayser et al., 2021), we experiment with a suite

of metrics popularly used in language generation to capture

how closely the generated NLEs follow the ground truth.

We provide additional metrics that were reported in (Kayser

et al., 2021), i.e., BLEU-4 (Papineni et al., 2002), ROUGE-L

(Lin & Och, 2004), SPICE (Anderson et al., 2016), CIDER

(Vedantam et al., 2015) in Table 5.

10https://huggingface.co/transformers/

model_doc/bert.html#berttokenizer








