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Abstract

We present Knowledge Distillation with Meta
Learning (MetaDistil), a simple yet effective
alternative to traditional knowledge distilla-
tion (KD) methods where the teacher model
is fixed during training. We show the teacher
network can learn to better transfer knowledge
to the student network (i.e., learning to teach)
with the feedback from the performance of the
distilled student network in a meta learning
framework. Moreover, we introduce a pilot
update mechanism to improve the alignment
between the inner-learner and meta-learner in
meta learning algorithms that focus on an im-
proved inner-learner. Experiments on various
benchmarks show that MetaDistil can yield
significant improvements compared with tradi-
tional KD algorithms and is less sensitive to
the choice of different student capacity and hy-
perparameters, facilitating the use of KD on
different tasks and models.'

1 Introduction

With the prevalence of large neural networks with
millions or billions of parameters, model compres-
sion is gaining prominence for facilitating efficient,
eco-friendly deployment for machine learning ap-
plications. Among techniques for compression,
knowledge distillation (KD) (Hinton et al., 2015b)
has shown effectiveness in both Computer Vision
and Natural Language Processing tasks (Hinton
et al., 2015b; Romero et al., 2015; Zagoruyko &
Komodakis, 2017; Tung & Mori, 2019; Peng et al.,
2019; Ahn et al., 2019; Park et al., 2019; Passalis
& Tefas, 2018; Heo et al., 2019; Kim et al., 2018;
Shi et al., 2021; Sanh et al., 2019; Jiao et al., 2019;
Wang et al., 2020b). Previous works often train
a large model as the “teacher”; then they fix the
teacher and train a “student” model to mimic the
*Equal contribution.

TTo whom correspondence should be addressed.

"The code is available at https://github.com/
JetRunner/MetaDistil.

behavior of the teacher, in order to transfer the
knowledge from the teacher to the student.

However, this paradigm has the following draw-
backs: (1) The teacher is unaware of the stu-
dent’s capacity. Recent studies in pedagogy sug-
gest student-centered learning, which considers
students’ characteristics and learning capability,
has shown effectiveness improving students’ per-
formance (Cornelius-White, 2007; Wright, 2011).
However, in conventional knowledge distillation,
the student passively accepts knowledge from the
teacher, without regard for the student model’s
learning capability and performance. Recent
works (Park et al., 2021; Shi et al., 2021) intro-
duce student-aware distillation by jointly training
the teacher and the student with task-specific objec-
tives. However, there is still space for improvement
since: (2) The teacher is not optimized for dis-
tillation. In previous works, the teacher is often
trained to optimize its own inference performance.
However, the teacher is not aware of the need to
transfer its knowledge to a student and thus usu-
ally does so suboptimally. A real-world analogy is
that a PhD student may have enough knowledge to
solve problems themselves, but requires additional
teaching training to qualify as a professor.

To address these two drawbacks, we pro-
pose Knowledge Distillation with Meta Learn-
ing (MetaDistil), a new teacher-student distillation
framework using meta learning (Finn et al., 2017)
to exploit feedback about the student’s learning
progress to improve the teacher’s knowledge trans-
fer ability throughout the distillation process. On
the basis of previous formulations of bi-level op-
timization based meta learning (Finn et al., 2017),
we propose a new mechanism called pilot update
that aligns the learning of the bi-level learners (i.e.,
the teacher and the student). We illustrate the work-
flow of MetaDistil in Figure 1. The teacher in
MetaDistil is trainable, which enables the teacher to
adjust to its student network and also improves its
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Figure 1: The workflow of MetaDistil. (1) We perform experimental knowledge distillation on a selection of
training batches. Instead of updating the student S, we make a temporary copy S’ and update S’. (2) We calculate
a Cross-Entropy loss £cg of S’ on samples from a separate quiz set. We calculate the gradients of £cg with
respect to the parameters of 7' and update T by gradient descent. (3) We discard S’ and use the updated T to

perform actual knowledge distillation and update .S.

“teaching skills.” Motivated by the idea of student-
centered learning, we allow the teacher to adjust
its output based on the performance of the student
model on a “quiz set,” which is a separate reserved
data split from the original training set. For each
training step, we first copy the student S to S’ and
update S’ by a common knowledge distillation loss.
We call this process a “teaching experiment.” In
this way, we can obtain an experimental student
S’ that can be quizzed. Then, we sample from
the quiz set, and calculate the loss of S’ on these
samples. We use this loss as a feedback signal
to meta-update the teacher by calculating second
derivatives and performing gradient descent (Finn
et al., 2017). Finally, we discard the experimental
subject S’ and use the updated teacher to distill into
the student S on the same training batches. The
use of meta learning allows the teacher model to
receive feedback from the student in a completely
differentiable way. We provide a simple and in-
tuitive approach to explicitly optimize the teacher
using the student’s quiz performance as a proxy.

To test the effectiveness of MetaDistil, we con-
duct extensive experiments on text and image clas-
sification tasks. MetaDistil outperforms knowl-
edge distillation by a large margin, verifying the
effectiveness and versatility of our method. Also,
our method achieves state-of-the-art performance
compressing BERT (Devlin et al., 2019) on the
GLUE benchmark (Wang et al., 2019) and shows
competitive results compressing ResNet (He et al.,
2016) and VGG (Simonyan & Zisserman, 2015)
on CIFAR-100 (Krizhevsky et al., 2009). Addi-
tionally, we design experiments to analyze and ex-
plain the improvement. Ablation studies show the
effectiveness of our proposed pilot update and dy-
namic distillation. Also, compared to conventional

KD, MetaDistil is more robust to different student
capacity and hyperparameters, which is probably
because of its ability to adjust the parameters of the
teacher model.

2 Related Work

Knowledge Distillation Recently, many at-
tempts have been made to accelerate large neural
networks (Xu et al., 2020, 2021b; Zhou et al., 2020,
2021; Xu & McAuley, 2022). Knowledge distil-
lation is a prominent method for training compact
networks to achieve comparable performance to
a deep network. Hinton et al. (2015b) first intro-
duced the idea of knowledge distillation to exploit
the “dark knowledge” (i.e., soft label distribution)
from a large teacher model as additional supervi-
sion for training a smaller student model. Since its
introduction, several works (Romero et al., 2015;
Zagoruyko & Komodakis, 2017; Tung & Mori,
2019; Park et al., 2019; Sun et al., 2019; Jiao et al.,
2019) have investigated methods that align differ-
ent latent representations between the student and
teacher models for better knowledge transfer. In the
context of knowledge distillation, MetaDistil shares
some common ideas with the line of work that uti-
lizes a sequence of intermediate teacher models to
make the teacher network better adapt to the ca-
pacity of the student model throughout the training
process, including teacher assistant knowledge dis-
tillation (TAKD) (Mirzadeh et al., 2020) and route
constraint optimization (RCO) (Jin et al., 2019).
However, the intermediate teachers are heuristi-
cally selected independently of the training process
and the evolution of the teacher network is discrete.
In contrast, MetaDistil employs meta learning to
make the teacher model adapt to the current state
of the student model and provide a continuously
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evolving meta-teacher that can better teach the stu-
dent. Concurrently, Park et al. (2021) and Shi et al.
(2021) propose to update the teacher model jointly
with the student model with task specific objectives
(e.g., cross-entropy loss) during the KD process and
add constraints to keep student and teacher similar
to each other. Their approaches makes the teacher
model aware of the student model by constraining
the teacher model’s capacity. However, the teacher
models in their methods are still not optimized for
knowledge transfer. In addition, Zhang et al. (2018)
introduced deep mutual learning where multiple
models learn collaboratively and teach each other
throughout the training process. While it is focused
on a different setting where different models have
approximately the same capacity and are learned
from scratch, it also encourages the teacher model
to behave similarly to the student model. Differ-
ent from all aforementioned methods, MetaDistil
employs meta learning to explicitly optimize the
teacher model for better knowledge transfer ability,
and leads to improved performance of the resulting
student model.

Meta Learning The core idea of meta learning
is “learning to learn,” which means taking the opti-
mization process of a learning algorithm into con-
sideration when optimizing the learning algorithm
itself. Meta learning typically involves a bi-level
optimization process where the inner-learner pro-
vides feedback for optimization of the meta-learner.
Successful applications of meta learning include
learning better initialization (Finn et al., 2017), ar-
chitecture search (Liu et al., 2019), learning to op-
timize the learning rate schedule (Baydin et al.,
2018), and learning to optimize (Andrychowicz
et al., 2016). These works typically aim to ob-
tain an optimized meta-learner (i.e., the teacher
model in MetaDistil), while the optimization of the
inner-learner (i.e., the student model in MetaDis-
til), is mainly used to provide learning signal for
the meta optimization process. This is different
from the objective of knowledge distillation where
an optimized student model is the goal. Recently,
there have been a few works investigating using
this bi-level optimization framework to obtain a
better inner-learner. For example, meta pseudo
labels (Pham et al., 2020) use meta learning to
optimize a pseudo label generator for better semi-
supervised learning; meta back-translation (Pham
et al., 2021) meta-trains a back-translation model
to better train a machine translation model. These

methods adapt the same bi-level optimization pro-
cess as previous works where the goal is to obtain
an optimized meta-learner. In these approaches,
during each iteration, the meta-learner is optimized
for the original inner-learner and then applied to
the updated inner-learner in the next iteration. This
leads to a mismatch between the meta-learner and
the inner-learner, and is therefore suboptimal for
learning a good inner-learner. In this paper, we
introduce a pilot update mechanism, which is a
simple and general method for this kind of prob-
lems, for the inner-learner to mitigate this issue and
make the updated meta-learner better adapted to
the inner-learner.

Meta Knowledge Distillation Recently, some
works on KD take a meta approach. Pan et al.
(2020) proposed a framework to train a meta-
teacher across domains that can better fit new do-
mains with meta-learning. Then, traditional KD
is performed to transfer the knowledge from the
meta-teacher to the student. Liu et al. (2020) pro-
posed a self-distillation network which utilizes
meta-learning to train a label-generator as a fusion
of deep layers in the network, to generate more
compatible soft targets for shallow layers. Different
from the above, MetaDistil is a general knowledge
distillation method that exploits meta-learning to
allow the teacher to learn to teach dynamically. In-
stead of merely training a meta-teacher, our method
uses meta-learning throughout the procedure of
knowledge transfer, making the teacher model com-
patible for the student model for every training
example during each training stage.

3 Knowledge Distillation with Meta
Learning

An overview of MetaDistil is presented in Figure 1.
MetaDistil includes two major components. First,
the meta update enables the teacher model to re-
ceive the student model’s feedback on the distilla-
tion process, allowing the teacher model to “learn
to teach” and provide distillation signals that are
more suitable for the student model’s current ca-
pacity. The pilot update mechanism ensures a finer-
grained match between the student model and the
meta-updated teacher model.

3.1 Background

3.1.1 Knowledge Distillation

Knowledge distillation algorithms aim to exploit
the hidden knowledge from a large teacher network,
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denoted as 7', to guide the training of a shallow
student network, denoted as .S. To help transfer the
knowledge from the teacher to the student, apart
from the original task-specific objective (e.g., cross-
entropy loss), a knowledge distillation objective
which aligns the behavior of the student and the
teacher is included to train the student network.
Formally, given a labeled dataset D of N samples
D = {(z1,v1),...,(xN,yNn)}, we can write the
loss function of the student network as follows,

N
Ls (D;0s;0r) = %Z[aﬁT (i, S (213 0s))
=1

+ (1 —a)Lgp (T (x;;07),5 (2:;05))]

ey

where « is a hyper-parameter to control the relative
importance of the two terms; 67 and Og are the
parameters of the teacher 7" and student .S, respec-
tively. L7 refers to the task-specific loss and Lxp
refers to the knowledge distillation loss which mea-
sures the similarity of the student and the teacher.
Some popular similarity measurements include the
KL divergence between the output probability dis-
tribution, the mean squared error (MSE) between
student and teacher logits, the similarity between
the student and the teacher’s attention distribution,
etc. We do not specify the detailed form of the loss
function because MetaDistil is a general framework
that can be easily applied to various kinds of KD
objectives as long as the objective is differentiable
with respect to the teacher parameters. In the ex-
periments of this paper, we use mean squared error
between the hidden states of the teacher and the
student for both our method and the KD baseline
since recent study Kim et al. (2021) finds that it
is more stable and slightly outperforms than KL
divergence.

3.1.2 Meta Learning

In meta learning algorithms that involve a bi-level
optimization problem (Finn et al., 2017), there ex-
ists an inner-learner f; and a meta-learner f,,,. The
inner-learner is trained to accomplish a task 7 or
a distribution of tasks with help from the meta-
learner. The training process of f; on T with the
help of f,, is typically called inner-loop, and we
can denote f/( f,,) as the updated inner-learner af-
ter the inner-loop. We can express f/ as a function
of f,, because learning f; depends on f,. In return,
the meta-learner is optimized with a meta objective,
which is generally the maximization of expected

performance of the inner-learner after the inner-
loop, i.e., f!(fm). This learning process is called a
meta-loop and is often accomplished by gradient
descent with derivatives of L(f!(f)), the loss of
updated inner-leaner on some held-out support set
(i.e., the quiz set in our paper).

3.2 Methodology
3.2.1 Pilot Update

In the original formulation of meta learning (Finn
et al., 2017), the purpose is to learn a good meta-
learner f,, that can generalize to different inner-
learners f; for different tasks. In their approach, the
meta-learner is optimized for the “original” inner-
learner at the beginning of each iteration and the
current batch of training data. The updated meta-
learner is then applied to the updated inner-learner
and a different batch of data in the next iteration.
This behavior is reasonable if the purpose is to opti-
mize the meta-learner. However, in MetaDistil, we
only care about the performance of the only inner-
learner, i.e., the student. In this case, this behavior
leads to a mismatch between the meta-learner and
the inner-learner, and is therefore suboptimal for
learning a good inner-learner. Therefore, we need
a way to align and synchronize the learning of the
meta- and inner-learner, in order to allow an up-
date step of the meta-learner to have an instant
effect on the inner-learner. This instant reflection
prevents the meta-learner from catastrophic forget-
ting (McCloskey & Cohen, 1989). To achieve this,
we design a pilot update mechanism. For a batch
of training data x, we first make a temporary copy
of the inner-learner f; and update both the copy f/
and the meta learner f,, on . Then, we discard
f! and update f; again with the updated f,,, on the
same data x. This mechanism can apply the im-
pact of data x to both f,;,, and f; at the same time,
thus aligns the training process. Pilot update is a
general technique that can potentially be applied
to any meta learning application that optimizes the
inner-learner performance. We will describe how
we apply this mechanism to MetaDistil shortly and
empirically verify the effectiveness of pilot update
in Section 4.2.

3.2.2 Learning to Teach

In MetaDistil, we would like to optimize the
teacher model, which is fixed in traditional KD
frameworks. Different from previous deep mu-
tual learning (Zhang et al., 2018) methods that
switch the role between the student and teacher

7040



Algorithm 1 Knowledge Distillation with Meta Learning (MetaDistil)

Require: student fg, teacher 7, train set D, quiz set Q
Require: ), u: learning rate for the student and the teacher
while not done do
: Sample batch of training data @ ~ D
Copy student parameter 05 to student 0

Update 0% with « and 07: 0% <+ 05 — AV, Ls(x;0s;07)

Update 07 with q and 0%5: 01 < 07 — uVo,. L7 (q,05(01))
Update original 65 with = and the updated 07: 05 < 05 — AV, Ls(z;0s;67)

1:
2
3
4:
5:  Sample a batch of quiz data g ~ Q
6.
7
8:

end while

network and train the original teacher model with
soft labels generated by the student model, or re-
cent works (Shi et al., 2021; Park et al., 2021) that
update the teacher model with a task-specific loss
during the KD process, MetaDistil explicitly op-
timizes the teacher model in a “learning to teach”
fashion, so that it can better transfer its knowledge
to the student model. Concretely, the optimization
objective of the teacher model in the MetaDistil
framework is the performance of the student model
after distilling from the teacher model. This “learn-
ing to teach” paradigm naturally fits the bi-level
optimization framework in meta learning literature.

In the MetaDistil framework, the student net-
work g is the inner-learner and the teacher net-
work 07 is the meta-learner. For each training step,
we first copy the student model fg to an “experi-
mental student” 0. Then given a batch of training
examples x and the learning rate A, the experimen-
tal student is updated in the same way as conven-
tional KD algorithms:

QIS(HT) =05 — AVy Ls(z;0s;07). (2)

To simplify notation, we will consider one gradi-
ent update for the rest of this section, but using
multiple gradient updates is a straightforward ex-
tension. We observe that the updated experimental
student parameter 0, as well as the student quiz
loss l; = L7(q,05(07)) on a batch of quiz sam-
ples g sampled from a held-out quiz set Q, is a
function of the teacher parameter 7. Therefore,
we can optimize [, with respect to 67 by a learning
rate ji:

Or < 017 — uNVo, L1 (g,05(07)) 3)

We evaluate the performance of the experimental
student on a separate quiz set to prevent overfitting
the validation set, which is preserved for model se-
lection. Note that the student is never trained on the
quiz set and the teacher only performs meta-update

on the quiz set instead of fitting it. We do not
use a dynamic quiz set strategy because otherwise
the student would have been trained on the quiz
set and the loss would not be informative. After
meta-updating the teacher model, we then update
the “real” student model in the same way as de-
scribed in Equation 2. Intuitively, optimizing the
teacher network 7 with Equation 3 is maximizing
the expected performance of the student network
after being taught by the teacher with the KD objec-
tive in the inner-loop. This meta-objective allows
the teacher model to adjust its parameters to better
transfer its knowledge to the student model. We
apply the pilot update strategy described in Sec-
tion 3.2.1 to better align the learning of the teacher
and student, as shown in Algorithm 1.

4 Experiments

4.1 Experimental Setup

We evaluate MetaDistil on two commonly used
classification benchmarks for knowledge distilla-
tion in both Natural Language Processing and Com-
puter Vision (see Appendix A).

Settings For NLP, we evaluate our proposed ap-
proach on the GLUE benchmark (Wang et al.,
2019). Specifically, we test on MRPC (Dolan
& Brockett, 2005), QQP and STS-B (Conneau
& Kiela, 2018) for Paraphrase Similarity Match-
ing; SST-2 (Socher et al., 2013) for Sentiment
Classification, MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016) and RTE (Wang
et al., 2019) for the Natural Language Inference;
CoLA (Warstadt et al., 2019) for Linguistic Ac-
ceptability. Following previous studies (Sun et al.,
2019; Jiao et al., 2019; Xu et al., 2020), our goal
is to distill BERT-Base (Devlin et al., 2019) into
a 6-layer BERT with the hidden size of 768. We
use MSE loss between model logits as the distilla-
tion objective. The reported results are in the same
format as on the GLUE leaderboard. For MNLI,
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GLUE (Wang et al., 2019)

Method #Param. Speed-up CoLA

MNLI MRPC QNLI QQP RTE SST-2 STS-B
(8.5K)  (393K) (3.7K)  (105K) (364K) (2.5K) (67K)  (5.7K)
Dev Set
BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00x 589 84.6/849 91.6/87.6 912 885914 714 93.0 90.2/89.8
BERT-6L (student) (Turc et al., 2019) 66M 1.94x 53.5 81.1/81.7 89.2/844  88.6  86.9/904 679 91.1 88.1/87.9
Pretraining Distillation
TinyBERT? (Jiao et al., 2019) 66M 1.94x 540 84.5/84.5 90.6/86.3 91.1 88.0/91.1 734 93.0 90.1/89.6
MiniLM (Wang et al., 2020b) 66M 1.94x 492 84.0/ - 88.4/ - 91.0 - 910 715 92.0 -
MiniLM v2 (Wang et al., 2020a) 66M 1.94x 525 842/ - 88.9/ - 90.8 - 911 721 92.4 -
Task-specific Distillation
KD' (Hinton et al., 2015b) 66M 1.94x 54.1 82.6/83.2 89.6/85.2 89.2  87.3/909 67.7 91.2  88.6/88.2
PKD' (Sun et al., 2019) 66M 1.94x 545 82.7/83.3 89.4/847 895 87.8/909 67.6 91.3 88.6/88.1
TinyBERT w/o DA' 66M 1.94x 524  83.6/83.8 90.5/86.5 89.8  87.6/90.6 67.7 91.9 89.2/88.7
RCOT (Jin et al., 2019) 66M 1.94x 53.6  82.4/829 89.5/85.1 89.7  87.4/90.6 67.6 91.4  88.7/88.3
TAKD' (Mirzadeh et al., 2020) 66M 1.94x 53.8 82.5/83.0 89.6/850 89.6  87.5/90.7 68.5 91.4  88.2/88.0
DML (Zhang et al., 2018) 66M 1.94x 537  82.4/829 89.6/85.1 89.6  87.4/903  68.4 91.5 88.4/88.1
ProKTT (Shi et al., 2021) 66M 1.94x 543  82.8/83.2 90.7/86.3  89.7  87.9/90.9 68.4 91.3 88.9/83.6
SFTNT (Park et al., 2021) 66M 1.94x 53.6  82.4/829 89.8/853 89.5  87.5/90.4 685 91.5  88.4/88.5
MetaDistil (ours) 66M 1.94x 58.6 83.5/83.8 91.1/86.8 904  88.1/91.0 69.4 92.3 89.4/89.1
w/o pilot update 66M 1.94x 56.3  83.0/83.4 90.6/86.6 899  88.0/88.5 67.7 92.0 89.2/89.0
Test Set
BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00x 52.1 84.6/83.4 889/84.8 90.5 71.2/89.2  66.4 935 87.1/85.8
Pretraining Distillation
DistilBERT (Sanh et al., 2019) 66M 1.94x 458 81.6/81.3 87.6/83.1 888  09.6/88.2 54.1 923  71.0/71.0
TinyBERT? (Jiao et al., 2019) 66M 1.94x 51.1 84.3/83.4 88.8/845 91.6 70.5/883 704 92.6  86.2/84.8
Task-specific Distillation
KD (Turc et al., 2019) 66M 1.94x - 82.8/82.2 86.8/81.7 889  70.4/889 653 91.8 -
PKD (Sun et al., 2019) 66M 1.94x 435 81.5/81.0 85.0/79.9 89.0 70.7/88.9  65.5 92.0 83.4/81.6
BERT-of-Theseus (Xu et al., 2020) 66M 1.94x 47.8 82.4/82.1 87.6/832 89.6  71.6/89.3 66.2 922 85.6/84.1
ProKT (Shi et al., 2021) 66M 1.94x - 82.9/822 87.0/82.3  89.7  70.9/88.9 - 93.3 -
TinyBERT? (Jiao et al., 2019) 66M 1.94x 475 83.0/82.6 87.9/82.8 89.8  70.9/88.6  66.8 93.1 85.8/84.6
DML (Zhang et al., 2018) 66M 1.94x 485  82.6/81.6 86.5/81.2 895 70.7/88.7  66.3 927 85.5/84.0
RCOT (Jin et al., 2019) 66M 1.94x 482  82.3/81.2 86.8/814 893  70.4/88.7  66.5 92.6  85.3/84.1
TAKD' (Mirzadeh et al., 2020) 66M 1.94x 484  82.4/81.77 86.5/81.3 894  70.6/88.8  66.8 929 85.4/84.1
SFTN' (Park et al., 2021) 66M 1.94x 48.1  82.1/81.3 86.5/81.2 89.6  70.2/88.4  66.3 927 85.1/84.2
MetaDistil (ours) 66M 1.94x 50.7 83.8/83.2 88.7/84.7 902 71.1/889 672 93.5 86.1/85.0
w/o pilot update 66M 1.94x 49.1  83.3/82.8 88.2/84.1 89.9  71.0/88.7  66.6 935 85.9/84.6

Table 1: Experimental results on the development set and the test set of GLUE. Numbers under each dataset
indicate the number of training samples. All student models have the same architecture of 66M parameters, 6
Transformer layers and 1.94 x speed-up. The test results are from the official test server of GLUE. The best results
for the task-specific setting are marked with boldface. Results reported by us are average of 3 runs with different
seeds. TResults reported by us. The student is initialized with a 6-layer pretrained BERT (Turc et al., 2019) thus
has a better performance than the original implementation. *TinyBERT has data augmentation (DA).

we report the results on MNLI-m and MNLI-mm,
respectively. For MRPC and QQP, we report both
F1 and accuracy. For STS-B, we report Pearson
and Spearman correlation. The metric for CoLA
is Matthew’s correlation. The other tasks use accu-
racy as the metric.

Following previous works (Sun et al., 2019; Turc
et al., 2019; Xu et al., 2020), we evaluate MetaDis-
til in a task-specific setting where the teacher model
is fine-tuned on a downstream task and the stu-
dent model is trained on the task with the KD loss.
We do not choose the pretraining distillation set-
ting since it requires significant computational re-
sources. We implement MetaDistil based on Hug-

ging Face Transformers (Wolf et al., 2020).

Baselines For comparison, we report the results
of vanilla KD and patient knowledge distilla-
tion (Sun et al., 2019). We also include the re-
sults of progressive module replacing (Xu et al.,
2020), a state-of-the-art task-specific compression
method for BERT which also uses a larger teacher
model to improve smaller ones like knowledge
distillation. In addition, according to Turc et al.
(2019), the reported performance of current task-
specific BERT compression methods is underesti-
mated because the student model is not appropri-
ately initialized. To ensure fair comparison, we
re-run task-specific baselines with student models
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initialized by a pretrained 6-layer BERT model
and report our results in addition to the official
numbers in the original papers. We also com-
pare against deep mutual learning (DML) (Zhang
et al., 2018), teacher assistant knowledge distilla-
tion (TAKD) (Mirzadeh et al., 2020), route con-
straint optimization (RCO) (Jin et al., 2019), proxi-
mal knowledge teaching (ProKT) (Shi et al., 2021),
and student-friendly teacher network (SFTN) (Park
et al., 2021), where the teacher network is not fixed.
For reference, we also present results of pretraining
distilled models including DistilBERT (Sanh et al.,
2019), TinyBERT (Jiao et al., 2019), MiniLM vl
and v2 (Wang et al., 2020b,a). Note that among
these baselines, PKD (Sun et al., 2019) and The-
seus (Xu et al., 2020) exploit intermediate features
while TinyBERT and the MiniLM family use both
intermediate and Transformer-specific features. In
contrast, MetaDistil uses none of these but the
vanilla KD loss (Equation 1).

Training Details For training hyperparameters,
we fix the maximum sequence length to 128 and the
temperature to 2 for all tasks. For our method and
all baselines (except those with officially reported
numbers), we perform grid search over the sets of
the student learning rate A from {1e-5, 2e-5, 3e-5},
the teacher learning rate p from {2e-6, Se-6, le-5},
the batch size from {32, 64}, the weight of KD loss
from {0.4,0.5,0.6}. We randomly split the original
training set to a new training set and the quiz set
by 9 : 1. For RCO, we select four unconverged
teacher checkpoints as the intermediate training
targets. For TAKD, we use KD to train a teacher
assistant model with 10 Transformer layers.

4.2 Experimental Results

We report the experimental results on both the
development set and test set of the eight GLUE
tasks (Wang et al., 2019) in Table 1. MetaDis-
til achieves state-of-the-art performance under the
task-specific setting and outperforms all KD base-
lines. Notably, without using any intermediate
or model-specific features in the loss function,
MetaDistil outperforms methods with carefully de-
signed features, e.g., PKD and TinyBERT (without
data augmentation). Compared with other meth-
ods with a trainable teacher (Zhang et al., 2018;
Mirzadeh et al., 2020; Jin et al., 2019; Shi et al.,
2021), our method still demonstrates superior per-
formance. As we analyze, with the help of meta
learning, MetaDistil is able to directly optimize the

teacher’s teaching ability thus yielding a further
improvement in terms of student accuracy. Also,
we observe a performance drop by replacing pilot
update with a normal update. This ablation study
verifies the effectiveness of our proposed pilot up-
date mechanism. Moreover, MetaDistil achieves
very competitive results on image classification as
well, as described in Section A.2.

S Analysis
5.1 Why Does MetaDistil Work?

We investigate the effect of meta-update for each
iteration. We inspect (1) the validation loss of S’
after the teaching experiment and that of S after
the real distillation update, and (2) the KD loss,
which describes the discrepancy between student
and teacher, before and after the teacher update.

We find that for 87% of updates, the student
model’s validation loss after real update (Line 7 in
Algorithm 1) is smaller than that after the teaching
experiment (Line 4 in Algorithm 1), which would
be the update to the student S in the variant without
pilot update. This confirms the effectiveness of the
pilot update mechanism on better matching the
student and teacher model.

Moreover, we find that in 91% of the first half
of the updates, the teacher becomes more similar
(in terms of logits distributions) to the student after
the meta-update, which indicates that the teacher is
learning to adapt to a low-performance student (like
an elementary school teacher). However, in the
second half of MetaDistil, this percentage drops to
63%. We suspect this is because in the later training
stages, the teacher needs to actively evolve itself
beyond the student to guide the student towards
further improvement (like a university professor).

Finally, we try to apply a meta-learned teacher to
a conventional static distillation and also to an un-
familiar student. We describe the results in details
in Section A.3.

5.2 Hyper-parameter Sensitivity

A motivation of MetaDistil is to enable the teacher
to dynamically adjust its knowledge transfer in an
optimal way. Similar to Adam (Kingma & Ba,
2015) vs. SGD (Sinha & Griscik, 1971; Kiefer
et al., 1952) for optimization, with the ability of
dynamic adjusting, it is natural to expect MetaDistil
to be more insensitive and robust to changes of the
settings. Here, we evaluate the performance of
MetaDistil with students of various capability, and
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Figure 2: Results with different

student architectures. weight a.

a wide variety of hyperparameters, including loss
weight and temperature.

Student Capability To investigate the perfor-
mance of MetaDistil under different student ca-
pacity, we experiment to distill BERT-Base into
BERT-6L, Medium, Small, Mini and Tiny (Turc
et al., 2019) with conventional KD and MetaDis-
til. We plot the performance with the student’s
parameter number in Figure 2. Additionally, we
show results for different compression ratio in Ap-
pendix B.

Loss Weight In KD, tuning the loss weight is non-
trivial and often requires hyperparameter search.
To test the robustness of MetaDistil under different
loss weights, we run experiments with different
(Equation 1). As shown in Figure 3, MetaDistil
consistently outperforms conventional KD and is
less sensitive to different a.

Temperature Temperature is a re-scaling trick in-
troduced in Hinton et al. (2015b). We try different
temperatures and illustrate the performance of KD
and MetaDistil in Figure 4. MetaDistil shows better
performance and robustness compared to KD.

5.3 Limitation

Like all meta learning algorithms, MetaDistil in-
evitably requires two rounds of updates involv-
ing both first and second order derivatives. Thus,
MetaDistil requires additional computational time
and memory than a normal KD method, which can
be a limitation of our method. We compare the

Figure 3: Results with different loss

Figure 4: Results with different tem-
perature.

Method PKD (2019) ProKT (2021) MetaDistil (ours)
Training Time (Best) 13 min. 25 min. 31 min.

Training Time (Match) 13 min. 18 min. 16 min.

Memory Cost 42 GB 6.8 GB 11.4 GB

Best Acc/F1 89.4/84.7 90.7/86.3 91.1/86.8

Table 2: Comparison of training time and memory
cost of MetaDistil with the baselines. “Training Time
(Best)” denotes the training time for each method to
achieve its own best performance on the development
set. “Training Time (Match)” denotes the training time
for each method to match the best performance of PKD
on the development set. The batch size is 4. All experi-
ments are conducted on a single Nvidia V100 GPU.

computational overheads of MetaDistil with other
methods in Table 2. Although our approach takes
more time to achieve its own peak performance, it
can match up the performance of PKD (Sun et al.,
2019) with a similar time cost. The memory use
of our method is higher than PKD and ProKT (Shi
et al., 2021). However, this one-off investment can
lead to a better student model for inference, thus
can be worthy.

6 Discussion

In this paper, we present MetaDistil, a knowledge
distillation algorithm powered by meta learning
that explicitly optimizes the teacher network to
better transfer its knowledge to the student network.
The extensive experiments verify the effectiveness
and robustness of MetaDistil.
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Ethical Consideration

MetaDistil focuses on improving the performance
of knowledge distillation and does not introduce ex-
tra ethical concerns compared to vanilla KD meth-
ods. Nevertheless, we would like to point out that
as suggested by Hooker et al. (2020), model com-
pression may lead to biases. However, this is not
an outstanding problem of our method but a com-
mon risk in model compression, which needs to be
addressed in the future.
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A MetaDistil for Image Classification

In addition to BERT compression, we also provide
results on image classification. Also, we conduct
experiments of static teaching and cross teaching,
to further verify the effectiveness of MetaDistil of
adapting to different students.

A.1 Experimental Settings

For CV, following the settings in Tian et al. (2020),
we experiment with the image classification task on
CIFAR-100 (Krizhevsky et al., 2009) with student-
teacher combinations of different capacity and ar-
chitectures, including ResNet (He et al., 2016) and
VGG (Simonyan & Zisserman, 2015). Addition-
ally, we run a distillation experiment between dif-
ferent architectures (a ResNet teacher to a VGG
student). We report the top-1 test accuracy of the
compressed student networks. We inherit all hy-
perparameters from Tian et al. (2020) except for
the teacher learning rate, which is grid searched
from {1le-4, 2e-4, 3e-4}. We randomly split the
original training set to a new training set and the
quiz set by 9 : 1. We use the KL loss in Hinton
et al. (2015a) as the distillation objective. We com-
pare our results with a state-of-the-art distillation
method, CRD (Tian et al., 2020) and other com-
monly used knowledge distillation methods (Hin-
ton et al., 2015b; Romero et al., 2015; Zagoruyko

Teacher ResNet-56 ResNet-110  ResNet-110  VGG-13  ResNet-50*

Student ResNet-20  ResNet-20  ResNet-32  VGG-8  VGG-8
Teacher 72.34 7431 7431 74.64 79.34
Student 69.06 69.06 71.14 70.36 70.36
KD (2015b) 70.66 70.67 73.08 72.98 73.81
FitNet (2015) 69.21 68.99 71.06 71.02 70.69
AT (2017) 70.55 70.22 7231 71.43 71.84
SP (2019) 69.67 70.04 72.69 72.68 73.34
CC (2019) 69.63 69.48 71.48 70.71 70.25
VID (2019) 70.38 70.16 72.61 71.23 70.30
RKD (2019) 69.61 69.25 71.82 71.48 71.50
PKT (2018) 70.34 70.25 72.61 72.88 73.01
AB (2019) 69.47 69.53 70.98 70.94 70.65
FT (2018) 69.84 70.22 7237 70.58 70.29
ProKT (2021) 70.98 70.74 72.95 73.03 73.90
CRD (2020) 7116 7146 7348 73.94 74.30
MetaDistil 71.25 71.40 7335 73.65 74.42
wlo pilot update  71.02 70.96 7331 73.48 74.05

Table 3: Experimental results on the test set of CIFAR-
100. The best and second best results are marked with
boldface and underline, respectively. All baseline re-
sults except ProKT are reported in Tian et al. (2020).
*ResNet for ImageNet. Other ResNets are ResNet for
CIFAR (He et al., 2016).

Teacher Student Acc@1
ResNet-32 (static) 73.08
KD (Reshet-110) ResNet-20 (static) 70.67
el
(ResNet-110—ResNet-32) ResNet-20 (static, cross)  70.82
T e e
(ResNet-110-ResNet-20) ResNet-32 (static, cross)  72.89

Table 4: Experimental results of static teaching and
cross teaching.

& Komodakis, 2017; Tung & Mori, 2019; Peng
et al., 2019; Ahn et al., 2019; Park et al., 2019;
Passalis & Tefas, 2018; Heo et al., 2019; Kim et al.,
2018) including ProKT (Shi et al., 2021) which has
a trainable teacher.

A.2 Image Recognition Results

We show the experimental results of MetaDistil
distilling ResNet (He et al., 2016) and VGG (Si-
monyan & Zisserman, 2015) with five different
teacher-student pairs. MetaDistil achieves com-
parable performance to CRD (Tian et al., 2020),
the current state-of-the-art distillation method on
image classification while outperforming all other
baselines with complex features and loss functions.
Notably, CRD introduces additional negative sam-
pling and contrastive training while our method
achieves comparable performance without using
these tricks. Additionally, we observe a substan-
tial performance drop without pilot update, again
verifying the importance of this mechanism.
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A.3 Static Teaching and Cross Teaching

In MetaDistil, the student is trained in a dynamic
manner. To investigate the effect of such a dynamic
distillation process, we attempt to use the teacher
at the end of MetaDistil training to perform a static
conventional KD, to verify the effectiveness of our
dynamic distillation strategy. As shown in Table 4,
on both experiments, dynamic MetaDistil outper-
forms conventional KD and static distillation with
the teacher at the end of MetaDistil training.

As mentioned in Section 3.2, a meta teacher is
optimized to transfer its knowledge to a specific
student network. To justify this motivation, we
conduct experiments using a teacher optimized for
the ResNet-32 student to statically distill to the
ResNet-20 student, and also in reverse. As shown
in Table 4, the cross-taught students underperform
the static students taught by their own teachers
by 0.27 and 0.12 for ResNet-32 and ResNet-20,
respectively. This confirms our motivation that
the meta teacher in MetaDistil can adjust itself
according to its student.

B Results of Different Compression
Ratios

In this section, we present additional experimen-
tal results in settings with different compression
ratios to further demonstrate the effectiveness of
MetaDistil on bridging the gap between the student
and teacher capacity. Specifically, we conduct ex-
periments in the following two settings: (1) distill-
ing BERT-base into a 4-layer BERT (110M—52M)
and (2) distilling BERT-large into a 6-layer BERT
(345M—66M). The results are shown in Table 4
and Table 35, respectively. We can see that MetaDis-
til consistently outperforms PKD and ProKT in
both settings. This confirms the effectiveness of
MetaDistil and also show its ability to adapt the
teacher model to the student model, since the gap
between teacher and student is even larger in these
settings.

C Distillation Dynamics

We also investigate why MetaDistil works by con-
ducting experiments on the development sets of
MNLLI, SST, and MRPC, which are important tasks
in GLUE that have a large, medium, and small
training set, respectively.

We illustrate the validation accuracy curves of
the meta teacher and student models with training
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Figure 5: Learning dynamics of the student and teacher
in MetaDistil on the development set of MNLI.

steps in Figure 5, and compare them to the stu-
dent performance in conventional KD. We can see
that the meta teacher maintains high accuracy in
the first 5,000 steps and then begins to slowly de-
grade. Starting from step 8,000, the teacher model
underperforms the student while the student’s accu-
racy keeps increasing. This verifies our assumption
that a model with the best accuracy is not neces-
sarily the optimal teacher. Also, MetaDistil is not
naively optimizing the teacher’s accuracy but its
“teaching skills.” This phenomenon suggests that
beyond high accuracy, there could be more im-
portant properties of a good teacher that warrant
further investigation.

D Improvement Analysis

While MetaDistil achieves improved student accu-
racy on the GLUE benchmark, it is still not very
clear where the performance improvement comes
from. There are two possibilities: (1) the student
better mimics the teacher, and (2) the changes of
teacher helps student perform better on hard ex-
amples that would be incorrectly classified by the
student with vanilla KD. We conduct a series of
analysis on the MRPC dataset.

For the first assumption, we compute the pre-
diction loyalty (Xu et al., 2021a) of the student
model distilled with PKD and MetaDistil, respec-
tively. For MetaDistil, we measure the loyalty with
respect to both the original teacher and the final
teacher. We find that there is no significant differ-
ence between between PKD and MetaDistil. This
suggests that the improvement does not come from
student better mimicking the teacher.

For the second assumption, we first identify the
examples in the quiz set for which our model gives
correct predictions while the student distilled by
PKD makes a wrong prediction. We then compute
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CoLA  MNLI MRPC  QNLI QQpP RTE SST-2 STS-B
(8.5K)  (393K) (3.7K)  (105K) (364K) (2.5K) (67K)  (5.7K)

BERT—Base(teacher)(Devlinetal.,2019)‘ 110M 1.00x ‘ 589 84.6/849 91.6/87.6 912 8850914 714 93.0  90.2/89.8
BERT,-KD' (Hinton et al., 2015b) 55M 2.90x 325  80.5/80.9 87.2/83.1 87.5 86.6/904 652 90.2  84.5/84.2

Method #Param. Speed-up

BERT,-PKD' (Sun et al., 2019) 55M 2.90x 342 80.9/81.3 87.0/829 877 86.8/90.5 66.1 90.5 84.3/84.0
BERT,-ProKT' (Shi et al., 2021) 55M 2.90x 36.6  81.4/81.9 87.6/83.5 83.0 87.1/90.5 66.8 90.7  85.2/85.1
MetaDistil 4 (ours) 55M 2.90x 40.3 82.4/82.7 88.4/84.2 88.6 87.8/90.8 67.8 91.8  86.3/86.0

Table 5: Experimental results on the development set of GLUE in the setting of distilling BERT-base in to BERT}.
TResults reported by us. All results reported by us are average performance of 3 runs with different random seeds.

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(85K) (393K)  (3.7K) (105K) (364K) (2.5K) (67K)  (5.7K)

345M 1.00x ‘71.5 86.5/86.7 92.5/88.7 925 89.6/91.8 734 94.5  91.2/90.6

Method #Param. Speed-up

BERT-Large (teacher) (Devlin et al., 2019)

BERT-KD' (Hinton et al., 2015b) 66M 3.88x 58.8  82.8/83.0 89.6/85.0 89.5 87.5/91.0 68.0 91.1  88.5/88.4
BERT-PKD! (Sun et al., 2019) 66M 3.88x 592 829/83.1 89.9/854 898 87.9/91.1 679 91.5 88.2/88.0
BERT(-ProKT' (Shi et al., 2021) 66M 3.88x 59.8  83.2/83.4 91.0/86.5 90.0 88.2/91.0 68.8 91.6  88.7/88.5
MetaDistil ¢ (ours) 66M 3.88% 63.5 83.9/84.3 91.5/87.3 90.8 88.7/91.3 70.8 929  89.6/89.4

Table 6: Experimental results on the development set of GLUE in the setting of distilling BERT-large in to BERTj.
TResults reported by us. All results reported by us are average performance of 3 runs with different random seeds.

the loss (cross entropy) of the original teacher and  can help the teacher concentrate on hard examples
the teacher updated by MetaDistil. We find the loss  that the student struggles in the quiz set and learn
is substantially reduced by MetaDistil. In contrast,  to perform better on these examples, thus facilitate
the overall loss of teacher on the development set  student learning.

does not decrease. This suggests that MetaDistil
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