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Abstract

We present Knowledge Distillation with Meta

Learning (MetaDistil), a simple yet effective

alternative to traditional knowledge distilla-

tion (KD) methods where the teacher model

is fixed during training. We show the teacher

network can learn to better transfer knowledge

to the student network (i.e., learning to teach)

with the feedback from the performance of the

distilled student network in a meta learning

framework. Moreover, we introduce a pilot

update mechanism to improve the alignment

between the inner-learner and meta-learner in

meta learning algorithms that focus on an im-

proved inner-learner. Experiments on various

benchmarks show that MetaDistil can yield

significant improvements compared with tradi-

tional KD algorithms and is less sensitive to

the choice of different student capacity and hy-

perparameters, facilitating the use of KD on

different tasks and models.1

1 Introduction

With the prevalence of large neural networks with

millions or billions of parameters, model compres-

sion is gaining prominence for facilitating efficient,

eco-friendly deployment for machine learning ap-

plications. Among techniques for compression,

knowledge distillation (KD) (Hinton et al., 2015b)

has shown effectiveness in both Computer Vision

and Natural Language Processing tasks (Hinton

et al., 2015b; Romero et al., 2015; Zagoruyko &

Komodakis, 2017; Tung & Mori, 2019; Peng et al.,

2019; Ahn et al., 2019; Park et al., 2019; Passalis

& Tefas, 2018; Heo et al., 2019; Kim et al., 2018;

Shi et al., 2021; Sanh et al., 2019; Jiao et al., 2019;

Wang et al., 2020b). Previous works often train

a large model as the “teacher”; then they fix the

teacher and train a “student” model to mimic the

∗Equal contribution.
†To whom correspondence should be addressed.

1The code is available at https://github.com/

JetRunner/MetaDistil.

behavior of the teacher, in order to transfer the

knowledge from the teacher to the student.

However, this paradigm has the following draw-

backs: (1) The teacher is unaware of the stu-

dent’s capacity. Recent studies in pedagogy sug-

gest student-centered learning, which considers

students’ characteristics and learning capability,

has shown effectiveness improving students’ per-

formance (Cornelius-White, 2007; Wright, 2011).

However, in conventional knowledge distillation,

the student passively accepts knowledge from the

teacher, without regard for the student model’s

learning capability and performance. Recent

works (Park et al., 2021; Shi et al., 2021) intro-

duce student-aware distillation by jointly training

the teacher and the student with task-specific objec-

tives. However, there is still space for improvement

since: (2) The teacher is not optimized for dis-

tillation. In previous works, the teacher is often

trained to optimize its own inference performance.

However, the teacher is not aware of the need to

transfer its knowledge to a student and thus usu-

ally does so suboptimally. A real-world analogy is

that a PhD student may have enough knowledge to

solve problems themselves, but requires additional

teaching training to qualify as a professor.

To address these two drawbacks, we pro-

pose Knowledge Distillation with Meta Learn-

ing (MetaDistil), a new teacher-student distillation

framework using meta learning (Finn et al., 2017)

to exploit feedback about the student’s learning

progress to improve the teacher’s knowledge trans-

fer ability throughout the distillation process. On

the basis of previous formulations of bi-level op-

timization based meta learning (Finn et al., 2017),

we propose a new mechanism called pilot update

that aligns the learning of the bi-level learners (i.e.,

the teacher and the student). We illustrate the work-

flow of MetaDistil in Figure 1. The teacher in

MetaDistil is trainable, which enables the teacher to

adjust to its student network and also improves its

7037





evolving meta-teacher that can better teach the stu-

dent. Concurrently, Park et al. (2021) and Shi et al.

(2021) propose to update the teacher model jointly

with the student model with task specific objectives

(e.g., cross-entropy loss) during the KD process and

add constraints to keep student and teacher similar

to each other. Their approaches makes the teacher

model aware of the student model by constraining

the teacher model’s capacity. However, the teacher

models in their methods are still not optimized for

knowledge transfer. In addition, Zhang et al. (2018)

introduced deep mutual learning where multiple

models learn collaboratively and teach each other

throughout the training process. While it is focused

on a different setting where different models have

approximately the same capacity and are learned

from scratch, it also encourages the teacher model

to behave similarly to the student model. Differ-

ent from all aforementioned methods, MetaDistil

employs meta learning to explicitly optimize the

teacher model for better knowledge transfer ability,

and leads to improved performance of the resulting

student model.

Meta Learning The core idea of meta learning

is “learning to learn,” which means taking the opti-

mization process of a learning algorithm into con-

sideration when optimizing the learning algorithm

itself. Meta learning typically involves a bi-level

optimization process where the inner-learner pro-

vides feedback for optimization of the meta-learner.

Successful applications of meta learning include

learning better initialization (Finn et al., 2017), ar-

chitecture search (Liu et al., 2019), learning to op-

timize the learning rate schedule (Baydin et al.,

2018), and learning to optimize (Andrychowicz

et al., 2016). These works typically aim to ob-

tain an optimized meta-learner (i.e., the teacher

model in MetaDistil), while the optimization of the

inner-learner (i.e., the student model in MetaDis-

til), is mainly used to provide learning signal for

the meta optimization process. This is different

from the objective of knowledge distillation where

an optimized student model is the goal. Recently,

there have been a few works investigating using

this bi-level optimization framework to obtain a

better inner-learner. For example, meta pseudo

labels (Pham et al., 2020) use meta learning to

optimize a pseudo label generator for better semi-

supervised learning; meta back-translation (Pham

et al., 2021) meta-trains a back-translation model

to better train a machine translation model. These

methods adapt the same bi-level optimization pro-

cess as previous works where the goal is to obtain

an optimized meta-learner. In these approaches,

during each iteration, the meta-learner is optimized

for the original inner-learner and then applied to

the updated inner-learner in the next iteration. This

leads to a mismatch between the meta-learner and

the inner-learner, and is therefore suboptimal for

learning a good inner-learner. In this paper, we

introduce a pilot update mechanism, which is a

simple and general method for this kind of prob-

lems, for the inner-learner to mitigate this issue and

make the updated meta-learner better adapted to

the inner-learner.

Meta Knowledge Distillation Recently, some

works on KD take a meta approach. Pan et al.

(2020) proposed a framework to train a meta-

teacher across domains that can better fit new do-

mains with meta-learning. Then, traditional KD

is performed to transfer the knowledge from the

meta-teacher to the student. Liu et al. (2020) pro-

posed a self-distillation network which utilizes

meta-learning to train a label-generator as a fusion

of deep layers in the network, to generate more

compatible soft targets for shallow layers. Different

from the above, MetaDistil is a general knowledge

distillation method that exploits meta-learning to

allow the teacher to learn to teach dynamically. In-

stead of merely training a meta-teacher, our method

uses meta-learning throughout the procedure of

knowledge transfer, making the teacher model com-

patible for the student model for every training

example during each training stage.

3 Knowledge Distillation with Meta

Learning

An overview of MetaDistil is presented in Figure 1.

MetaDistil includes two major components. First,

the meta update enables the teacher model to re-

ceive the student model’s feedback on the distilla-

tion process, allowing the teacher model to “learn

to teach” and provide distillation signals that are

more suitable for the student model’s current ca-

pacity. The pilot update mechanism ensures a finer-

grained match between the student model and the

meta-updated teacher model.

3.1 Background

3.1.1 Knowledge Distillation

Knowledge distillation algorithms aim to exploit

the hidden knowledge from a large teacher network,
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denoted as T , to guide the training of a shallow

student network, denoted as S. To help transfer the

knowledge from the teacher to the student, apart

from the original task-specific objective (e.g., cross-

entropy loss), a knowledge distillation objective

which aligns the behavior of the student and the

teacher is included to train the student network.

Formally, given a labeled dataset D of N samples

D = {(x1, y1) , . . . , (xN , yN )}, we can write the

loss function of the student network as follows,

LS (D; θS ; θT ) =
1

N

N
∑

i=1

[αLT (yi, S (xi; θS))

+ (1− α)LKD (T (xi; θT ) , S (xi; θS))]

(1)

where α is a hyper-parameter to control the relative

importance of the two terms; θT and θS are the

parameters of the teacher T and student S, respec-

tively. LT refers to the task-specific loss and LKD

refers to the knowledge distillation loss which mea-

sures the similarity of the student and the teacher.

Some popular similarity measurements include the

KL divergence between the output probability dis-

tribution, the mean squared error (MSE) between

student and teacher logits, the similarity between

the student and the teacher’s attention distribution,

etc. We do not specify the detailed form of the loss

function because MetaDistil is a general framework

that can be easily applied to various kinds of KD

objectives as long as the objective is differentiable

with respect to the teacher parameters. In the ex-

periments of this paper, we use mean squared error

between the hidden states of the teacher and the

student for both our method and the KD baseline

since recent study Kim et al. (2021) finds that it

is more stable and slightly outperforms than KL

divergence.

3.1.2 Meta Learning

In meta learning algorithms that involve a bi-level

optimization problem (Finn et al., 2017), there ex-

ists an inner-learner fi and a meta-learner fm. The

inner-learner is trained to accomplish a task T or

a distribution of tasks with help from the meta-

learner. The training process of fi on T with the

help of fm is typically called inner-loop, and we

can denote f ′
i(fm) as the updated inner-learner af-

ter the inner-loop. We can express f ′
i as a function

of fm because learning fi depends on fm. In return,

the meta-learner is optimized with a meta objective,

which is generally the maximization of expected

performance of the inner-learner after the inner-

loop, i.e., f ′
i(fm). This learning process is called a

meta-loop and is often accomplished by gradient

descent with derivatives of L(f ′
i(fm)), the loss of

updated inner-leaner on some held-out support set

(i.e., the quiz set in our paper).

3.2 Methodology

3.2.1 Pilot Update

In the original formulation of meta learning (Finn

et al., 2017), the purpose is to learn a good meta-

learner fm that can generalize to different inner-

learners fi for different tasks. In their approach, the

meta-learner is optimized for the “original” inner-

learner at the beginning of each iteration and the

current batch of training data. The updated meta-

learner is then applied to the updated inner-learner

and a different batch of data in the next iteration.

This behavior is reasonable if the purpose is to opti-

mize the meta-learner. However, in MetaDistil, we

only care about the performance of the only inner-

learner, i.e., the student. In this case, this behavior

leads to a mismatch between the meta-learner and

the inner-learner, and is therefore suboptimal for

learning a good inner-learner. Therefore, we need

a way to align and synchronize the learning of the

meta- and inner-learner, in order to allow an up-

date step of the meta-learner to have an instant

effect on the inner-learner. This instant reflection

prevents the meta-learner from catastrophic forget-

ting (McCloskey & Cohen, 1989). To achieve this,

we design a pilot update mechanism. For a batch

of training data x, we first make a temporary copy

of the inner-learner fi and update both the copy f ′
i

and the meta learner fm on x. Then, we discard

f ′
i and update fi again with the updated fm on the

same data x. This mechanism can apply the im-

pact of data x to both fm and fi at the same time,

thus aligns the training process. Pilot update is a

general technique that can potentially be applied

to any meta learning application that optimizes the

inner-learner performance. We will describe how

we apply this mechanism to MetaDistil shortly and

empirically verify the effectiveness of pilot update

in Section 4.2.

3.2.2 Learning to Teach

In MetaDistil, we would like to optimize the

teacher model, which is fixed in traditional KD

frameworks. Different from previous deep mu-

tual learning (Zhang et al., 2018) methods that

switch the role between the student and teacher
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Algorithm 1 Knowledge Distillation with Meta Learning (MetaDistil)

Require: student θS , teacher θT , train set D, quiz setQ
Require: λ, µ: learning rate for the student and the teacher
1: while not done do
2: Sample batch of training data x ∼ D

3: Copy student parameter θS to student θ′S
4: Update θ′S with x and θT : θ′S ← θ′S − λ∇θ′

S
LS(x; θS ; θT )

5: Sample a batch of quiz data q ∼ Q

6: Update θT with q and θ′S : θT ← θT − µ∇θT
LT (q, θ′S(θT ))

7: Update original θS with x and the updated θT : θS ← θS − λ∇θS
LS(x; θS ; θT )

8: end while

network and train the original teacher model with

soft labels generated by the student model, or re-

cent works (Shi et al., 2021; Park et al., 2021) that

update the teacher model with a task-specific loss

during the KD process, MetaDistil explicitly op-

timizes the teacher model in a “learning to teach”

fashion, so that it can better transfer its knowledge

to the student model. Concretely, the optimization

objective of the teacher model in the MetaDistil

framework is the performance of the student model

after distilling from the teacher model. This “learn-

ing to teach” paradigm naturally fits the bi-level

optimization framework in meta learning literature.

In the MetaDistil framework, the student net-

work θS is the inner-learner and the teacher net-

work θT is the meta-learner. For each training step,

we first copy the student model θS to an “experi-

mental student” θ′S . Then given a batch of training

examples x and the learning rate λ, the experimen-

tal student is updated in the same way as conven-

tional KD algorithms:

θ′S(θT ) = θS − λ∇θSLS(x; θS ; θT ). (2)

To simplify notation, we will consider one gradi-

ent update for the rest of this section, but using

multiple gradient updates is a straightforward ex-

tension. We observe that the updated experimental

student parameter θ′S , as well as the student quiz

loss lq = LT (q, θ
′
S(θT )) on a batch of quiz sam-

ples q sampled from a held-out quiz set Q, is a

function of the teacher parameter θT . Therefore,

we can optimize lq with respect to θT by a learning

rate µ:

θT ← θT − µ∇θTLT
(

q, θ′S(θT )
)

(3)

We evaluate the performance of the experimental

student on a separate quiz set to prevent overfitting

the validation set, which is preserved for model se-

lection. Note that the student is never trained on the

quiz set and the teacher only performs meta-update

on the quiz set instead of fitting it. We do not

use a dynamic quiz set strategy because otherwise

the student would have been trained on the quiz

set and the loss would not be informative. After

meta-updating the teacher model, we then update

the “real” student model in the same way as de-

scribed in Equation 2. Intuitively, optimizing the

teacher network θT with Equation 3 is maximizing

the expected performance of the student network

after being taught by the teacher with the KD objec-

tive in the inner-loop. This meta-objective allows

the teacher model to adjust its parameters to better

transfer its knowledge to the student model. We

apply the pilot update strategy described in Sec-

tion 3.2.1 to better align the learning of the teacher

and student, as shown in Algorithm 1.

4 Experiments

4.1 Experimental Setup

We evaluate MetaDistil on two commonly used

classification benchmarks for knowledge distilla-

tion in both Natural Language Processing and Com-

puter Vision (see Appendix A).

Settings For NLP, we evaluate our proposed ap-

proach on the GLUE benchmark (Wang et al.,

2019). Specifically, we test on MRPC (Dolan

& Brockett, 2005), QQP and STS-B (Conneau

& Kiela, 2018) for Paraphrase Similarity Match-

ing; SST-2 (Socher et al., 2013) for Sentiment

Classification; MNLI (Williams et al., 2018),

QNLI (Rajpurkar et al., 2016) and RTE (Wang

et al., 2019) for the Natural Language Inference;

CoLA (Warstadt et al., 2019) for Linguistic Ac-

ceptability. Following previous studies (Sun et al.,

2019; Jiao et al., 2019; Xu et al., 2020), our goal

is to distill BERT-Base (Devlin et al., 2019) into

a 6-layer BERT with the hidden size of 768. We

use MSE loss between model logits as the distilla-

tion objective. The reported results are in the same

format as on the GLUE leaderboard. For MNLI,
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Method #Param. Speed-up

GLUE (Wang et al., 2019)

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

Dev Set

BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00× 58.9 84.6/84.9 91.6/87.6 91.2 88.5/91.4 71.4 93.0 90.2/89.8

BERT-6L (student) (Turc et al., 2019) 66M 1.94× 53.5 81.1/81.7 89.2/84.4 88.6 86.9/90.4 67.9 91.1 88.1/87.9

Pretraining Distillation

TinyBERT‡ (Jiao et al., 2019) 66M 1.94× 54.0 84.5/84.5 90.6/86.3 91.1 88.0/91.1 73.4 93.0 90.1/89.6

MiniLM (Wang et al., 2020b) 66M 1.94× 49.2 84.0/ - 88.4/ - 91.0 - /91.0 71.5 92.0 -

MiniLM v2 (Wang et al., 2020a) 66M 1.94× 52.5 84.2/ - 88.9/ - 90.8 - /91.1 72.1 92.4 -

Task-specific Distillation

KD† (Hinton et al., 2015b) 66M 1.94× 54.1 82.6/83.2 89.6/85.2 89.2 87.3/90.9 67.7 91.2 88.6/88.2

PKD† (Sun et al., 2019) 66M 1.94× 54.5 82.7/83.3 89.4/84.7 89.5 87.8/90.9 67.6 91.3 88.6/88.1

TinyBERT w/o DA† 66M 1.94× 52.4 83.6/83.8 90.5/86.5 89.8 87.6/90.6 67.7 91.9 89.2/88.7

RCO† (Jin et al., 2019) 66M 1.94× 53.6 82.4/82.9 89.5/85.1 89.7 87.4/90.6 67.6 91.4 88.7/88.3

TAKD† (Mirzadeh et al., 2020) 66M 1.94× 53.8 82.5/83.0 89.6/85.0 89.6 87.5/90.7 68.5 91.4 88.2/88.0

DML† (Zhang et al., 2018) 66M 1.94× 53.7 82.4/82.9 89.6/85.1 89.6 87.4/90.3 68.4 91.5 88.4/88.1

ProKT† (Shi et al., 2021) 66M 1.94× 54.3 82.8/83.2 90.7/86.3 89.7 87.9/90.9 68.4 91.3 88.9/88.6

SFTN† (Park et al., 2021) 66M 1.94× 53.6 82.4/82.9 89.8/85.3 89.5 87.5/90.4 68.5 91.5 88.4/88.5

MetaDistil (ours) 66M 1.94× 58.6 83.5/83.8 91.1/86.8 90.4 88.1/91.0 69.4 92.3 89.4/89.1

w/o pilot update 66M 1.94× 56.3 83.0/83.4 90.6/86.6 89.9 88.0/88.5 67.7 92.0 89.2/89.0

Test Set

BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00× 52.1 84.6/83.4 88.9/84.8 90.5 71.2/89.2 66.4 93.5 87.1/85.8

Pretraining Distillation

DistilBERT (Sanh et al., 2019) 66M 1.94× 45.8 81.6/81.3 87.6/83.1 88.8 69.6/88.2 54.1 92.3 71.0/71.0

TinyBERT‡ (Jiao et al., 2019) 66M 1.94× 51.1 84.3/83.4 88.8/84.5 91.6 70.5/88.3 70.4 92.6 86.2/84.8

Task-specific Distillation

KD (Turc et al., 2019) 66M 1.94× - 82.8/82.2 86.8/81.7 88.9 70.4/88.9 65.3 91.8 -

PKD (Sun et al., 2019) 66M 1.94× 43.5 81.5/81.0 85.0/79.9 89.0 70.7/88.9 65.5 92.0 83.4/81.6

BERT-of-Theseus (Xu et al., 2020) 66M 1.94× 47.8 82.4/82.1 87.6/83.2 89.6 71.6/89.3 66.2 92.2 85.6/84.1

ProKT (Shi et al., 2021) 66M 1.94× - 82.9/82.2 87.0/82.3 89.7 70.9/88.9 - 93.3 -

TinyBERT‡ (Jiao et al., 2019) 66M 1.94× 47.5 83.0/82.6 87.9/82.8 89.8 70.9/88.6 66.8 93.1 85.8/84.6

DML† (Zhang et al., 2018) 66M 1.94× 48.5 82.6/81.6 86.5/81.2 89.5 70.7/88.7 66.3 92.7 85.5/84.0

RCO† (Jin et al., 2019) 66M 1.94× 48.2 82.3/81.2 86.8/81.4 89.3 70.4/88.7 66.5 92.6 85.3/84.1

TAKD† (Mirzadeh et al., 2020) 66M 1.94× 48.4 82.4/81.7 86.5/81.3 89.4 70.6/88.8 66.8 92.9 85.4/84.1

SFTN† (Park et al., 2021) 66M 1.94× 48.1 82.1/81.3 86.5/81.2 89.6 70.2/88.4 66.3 92.7 85.1/84.2

MetaDistil (ours) 66M 1.94× 50.7 83.8/83.2 88.7/84.7 90.2 71.1/88.9 67.2 93.5 86.1/85.0

w/o pilot update 66M 1.94× 49.1 83.3/82.8 88.2/84.1 89.9 71.0/88.7 66.6 93.5 85.9/84.6

Table 1: Experimental results on the development set and the test set of GLUE. Numbers under each dataset

indicate the number of training samples. All student models have the same architecture of 66M parameters, 6

Transformer layers and 1.94× speed-up. The test results are from the official test server of GLUE. The best results

for the task-specific setting are marked with boldface. Results reported by us are average of 3 runs with different

seeds. †Results reported by us. The student is initialized with a 6-layer pretrained BERT (Turc et al., 2019) thus

has a better performance than the original implementation. ‡TinyBERT has data augmentation (DA).

we report the results on MNLI-m and MNLI-mm,

respectively. For MRPC and QQP, we report both

F1 and accuracy. For STS-B, we report Pearson

and Spearman correlation. The metric for CoLA

is Matthew’s correlation. The other tasks use accu-

racy as the metric.

Following previous works (Sun et al., 2019; Turc

et al., 2019; Xu et al., 2020), we evaluate MetaDis-

til in a task-specific setting where the teacher model

is fine-tuned on a downstream task and the stu-

dent model is trained on the task with the KD loss.

We do not choose the pretraining distillation set-

ting since it requires significant computational re-

sources. We implement MetaDistil based on Hug-

ging Face Transformers (Wolf et al., 2020).

Baselines For comparison, we report the results

of vanilla KD and patient knowledge distilla-

tion (Sun et al., 2019). We also include the re-

sults of progressive module replacing (Xu et al.,

2020), a state-of-the-art task-specific compression

method for BERT which also uses a larger teacher

model to improve smaller ones like knowledge

distillation. In addition, according to Turc et al.

(2019), the reported performance of current task-

specific BERT compression methods is underesti-

mated because the student model is not appropri-

ately initialized. To ensure fair comparison, we

re-run task-specific baselines with student models
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initialized by a pretrained 6-layer BERT model

and report our results in addition to the official

numbers in the original papers. We also com-

pare against deep mutual learning (DML) (Zhang

et al., 2018), teacher assistant knowledge distilla-

tion (TAKD) (Mirzadeh et al., 2020), route con-

straint optimization (RCO) (Jin et al., 2019), proxi-

mal knowledge teaching (ProKT) (Shi et al., 2021),

and student-friendly teacher network (SFTN) (Park

et al., 2021), where the teacher network is not fixed.

For reference, we also present results of pretraining

distilled models including DistilBERT (Sanh et al.,

2019), TinyBERT (Jiao et al., 2019), MiniLM v1

and v2 (Wang et al., 2020b,a). Note that among

these baselines, PKD (Sun et al., 2019) and The-

seus (Xu et al., 2020) exploit intermediate features

while TinyBERT and the MiniLM family use both

intermediate and Transformer-specific features. In

contrast, MetaDistil uses none of these but the

vanilla KD loss (Equation 1).

Training Details For training hyperparameters,

we fix the maximum sequence length to 128 and the

temperature to 2 for all tasks. For our method and

all baselines (except those with officially reported

numbers), we perform grid search over the sets of

the student learning rate λ from {1e-5, 2e-5, 3e-5},

the teacher learning rate µ from {2e-6, 5e-6, 1e-5},

the batch size from {32, 64}, the weight of KD loss

from {0.4, 0.5, 0.6}. We randomly split the original

training set to a new training set and the quiz set

by 9 : 1. For RCO, we select four unconverged

teacher checkpoints as the intermediate training

targets. For TAKD, we use KD to train a teacher

assistant model with 10 Transformer layers.

4.2 Experimental Results

We report the experimental results on both the

development set and test set of the eight GLUE

tasks (Wang et al., 2019) in Table 1. MetaDis-

til achieves state-of-the-art performance under the

task-specific setting and outperforms all KD base-

lines. Notably, without using any intermediate

or model-specific features in the loss function,

MetaDistil outperforms methods with carefully de-

signed features, e.g., PKD and TinyBERT (without

data augmentation). Compared with other meth-

ods with a trainable teacher (Zhang et al., 2018;

Mirzadeh et al., 2020; Jin et al., 2019; Shi et al.,

2021), our method still demonstrates superior per-

formance. As we analyze, with the help of meta

learning, MetaDistil is able to directly optimize the

teacher’s teaching ability thus yielding a further

improvement in terms of student accuracy. Also,

we observe a performance drop by replacing pilot

update with a normal update. This ablation study

verifies the effectiveness of our proposed pilot up-

date mechanism. Moreover, MetaDistil achieves

very competitive results on image classification as

well, as described in Section A.2.

5 Analysis

5.1 Why Does MetaDistil Work?

We investigate the effect of meta-update for each

iteration. We inspect (1) the validation loss of S′

after the teaching experiment and that of S after

the real distillation update, and (2) the KD loss,

which describes the discrepancy between student

and teacher, before and after the teacher update.

We find that for 87% of updates, the student

model’s validation loss after real update (Line 7 in

Algorithm 1) is smaller than that after the teaching

experiment (Line 4 in Algorithm 1), which would

be the update to the student S in the variant without

pilot update. This confirms the effectiveness of the

pilot update mechanism on better matching the

student and teacher model.

Moreover, we find that in 91% of the first half

of the updates, the teacher becomes more similar

(in terms of logits distributions) to the student after

the meta-update, which indicates that the teacher is

learning to adapt to a low-performance student (like

an elementary school teacher). However, in the

second half of MetaDistil, this percentage drops to

63%. We suspect this is because in the later training

stages, the teacher needs to actively evolve itself

beyond the student to guide the student towards

further improvement (like a university professor).

Finally, we try to apply a meta-learned teacher to

a conventional static distillation and also to an un-

familiar student. We describe the results in details

in Section A.3.

5.2 Hyper-parameter Sensitivity

A motivation of MetaDistil is to enable the teacher

to dynamically adjust its knowledge transfer in an

optimal way. Similar to Adam (Kingma & Ba,

2015) vs. SGD (Sinha & Griscik, 1971; Kiefer

et al., 1952) for optimization, with the ability of

dynamic adjusting, it is natural to expect MetaDistil

to be more insensitive and robust to changes of the

settings. Here, we evaluate the performance of

MetaDistil with students of various capability, and
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Ethical Consideration

MetaDistil focuses on improving the performance

of knowledge distillation and does not introduce ex-

tra ethical concerns compared to vanilla KD meth-

ods. Nevertheless, we would like to point out that

as suggested by Hooker et al. (2020), model com-

pression may lead to biases. However, this is not

an outstanding problem of our method but a com-

mon risk in model compression, which needs to be

addressed in the future.
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A MetaDistil for Image Classification

In addition to BERT compression, we also provide

results on image classification. Also, we conduct

experiments of static teaching and cross teaching,

to further verify the effectiveness of MetaDistil of

adapting to different students.

A.1 Experimental Settings

For CV, following the settings in Tian et al. (2020),

we experiment with the image classification task on

CIFAR-100 (Krizhevsky et al., 2009) with student-

teacher combinations of different capacity and ar-

chitectures, including ResNet (He et al., 2016) and

VGG (Simonyan & Zisserman, 2015). Addition-

ally, we run a distillation experiment between dif-

ferent architectures (a ResNet teacher to a VGG

student). We report the top-1 test accuracy of the

compressed student networks. We inherit all hy-

perparameters from Tian et al. (2020) except for

the teacher learning rate, which is grid searched

from {1e-4, 2e-4, 3e-4}. We randomly split the

original training set to a new training set and the

quiz set by 9 : 1. We use the KL loss in Hinton

et al. (2015a) as the distillation objective. We com-

pare our results with a state-of-the-art distillation

method, CRD (Tian et al., 2020) and other com-

monly used knowledge distillation methods (Hin-

ton et al., 2015b; Romero et al., 2015; Zagoruyko

Teacher ResNet-56 ResNet-110 ResNet-110 VGG-13 ResNet-50∗

Student ResNet-20 ResNet-20 ResNet-32 VGG-8 VGG-8

Teacher 72.34 74.31 74.31 74.64 79.34

Student 69.06 69.06 71.14 70.36 70.36

KD (2015b) 70.66 70.67 73.08 72.98 73.81

FitNet (2015) 69.21 68.99 71.06 71.02 70.69

AT (2017) 70.55 70.22 72.31 71.43 71.84

SP (2019) 69.67 70.04 72.69 72.68 73.34

CC (2019) 69.63 69.48 71.48 70.71 70.25

VID (2019) 70.38 70.16 72.61 71.23 70.30

RKD (2019) 69.61 69.25 71.82 71.48 71.50

PKT (2018) 70.34 70.25 72.61 72.88 73.01

AB (2019) 69.47 69.53 70.98 70.94 70.65

FT (2018) 69.84 70.22 72.37 70.58 70.29

ProKT (2021) 70.98 70.74 72.95 73.03 73.90

CRD (2020) 71.16 71.46 73.48 73.94 74.30

MetaDistil 71.25 71.40 73.35 73.65 74.42

w/o pilot update 71.02 70.96 73.31 73.48 74.05

Table 3: Experimental results on the test set of CIFAR-

100. The best and second best results are marked with

boldface and underline, respectively. All baseline re-

sults except ProKT are reported in Tian et al. (2020).
∗ResNet for ImageNet. Other ResNets are ResNet for

CIFAR (He et al., 2016).

Teacher Student Acc@1

KD (ResNet-110)
ResNet-32 (static) 73.08

ResNet-20 (static) 70.67

MetaDistil
ResNet-32 (dynamic) 73.35

(ResNet-110→ResNet-32)
ResNet-32 (static) 73.16

ResNet-20 (static, cross) 70.82

MetaDistil
ResNet-20 (dynamic) 71.40

(ResNet-110→ResNet-20)
ResNet-20 (static) 70.94

ResNet-32 (static, cross) 72.89

Table 4: Experimental results of static teaching and

cross teaching.

& Komodakis, 2017; Tung & Mori, 2019; Peng

et al., 2019; Ahn et al., 2019; Park et al., 2019;

Passalis & Tefas, 2018; Heo et al., 2019; Kim et al.,

2018) including ProKT (Shi et al., 2021) which has

a trainable teacher.

A.2 Image Recognition Results

We show the experimental results of MetaDistil

distilling ResNet (He et al., 2016) and VGG (Si-

monyan & Zisserman, 2015) with five different

teacher-student pairs. MetaDistil achieves com-

parable performance to CRD (Tian et al., 2020),

the current state-of-the-art distillation method on

image classification while outperforming all other

baselines with complex features and loss functions.

Notably, CRD introduces additional negative sam-

pling and contrastive training while our method

achieves comparable performance without using

these tricks. Additionally, we observe a substan-

tial performance drop without pilot update, again

verifying the importance of this mechanism.
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Method #Param. Speed-up
CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00× 58.9 84.6/84.9 91.6/87.6 91.2 88.5/91.4 71.4 93.0 90.2/89.8

BERT4-KD† (Hinton et al., 2015b) 55M 2.90× 32.5 80.5/80.9 87.2/83.1 87.5 86.6/90.4 65.2 90.2 84.5/84.2

BERT4-PKD† (Sun et al., 2019) 55M 2.90× 34.2 80.9/81.3 87.0/82.9 87.7 86.8/90.5 66.1 90.5 84.3/84.0

BERT4-ProKT† (Shi et al., 2021) 55M 2.90× 36.6 81.4/81.9 87.6/83.5 88.0 87.1/90.5 66.8 90.7 85.2/85.1

MetaDistil 4 (ours) 55M 2.90× 40.3 82.4/82.7 88.4/84.2 88.6 87.8/90.8 67.8 91.8 86.3/86.0

Table 5: Experimental results on the development set of GLUE in the setting of distilling BERT-base in to BERT4.
†Results reported by us. All results reported by us are average performance of 3 runs with different random seeds.

Method #Param. Speed-up
CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

BERT-Large (teacher) (Devlin et al., 2019) 345M 1.00× 71.5 86.5/86.7 92.5/88.7 92.5 89.6/91.8 73.4 94.5 91.2/90.6

BERT6-KD† (Hinton et al., 2015b) 66M 3.88× 58.8 82.8/83.0 89.6/85.0 89.5 87.5/91.0 68.0 91.1 88.5/88.4

BERT6-PKD† (Sun et al., 2019) 66M 3.88× 59.2 82.9/83.1 89.9/85.4 89.8 87.9/91.1 67.9 91.5 88.2/88.0

BERT6-ProKT† (Shi et al., 2021) 66M 3.88× 59.8 83.2/83.4 91.0/86.5 90.0 88.2/91.0 68.8 91.6 88.7/88.5

MetaDistil 6 (ours) 66M 3.88× 63.5 83.9/84.3 91.5/87.3 90.8 88.7/91.3 70.8 92.9 89.6/89.4

Table 6: Experimental results on the development set of GLUE in the setting of distilling BERT-large in to BERT6.
†Results reported by us. All results reported by us are average performance of 3 runs with different random seeds.

the loss (cross entropy) of the original teacher and

the teacher updated by MetaDistil. We find the loss

is substantially reduced by MetaDistil. In contrast,

the overall loss of teacher on the development set

does not decrease. This suggests that MetaDistil

can help the teacher concentrate on hard examples

that the student struggles in the quiz set and learn

to perform better on these examples, thus facilitate

student learning.
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