




tecture has a query encoder EQ and a document

encoder ED, which in our work are both BERT-like

bidirectional text encoders (Devlin et al., 2019).

Compared with cross-attention models (Reimers

and Gurevych, 2019; Gao et al., 2020; MacAvaney

et al., 2020), the dual-tower architecture enables

pre-indexing and fast approximate nearest neighbor

search (to be detailed shortly), thus is popular in

production.

Dense Representation Given an input document

(query) x = {[CLS], w1, . . . , wl,[SEP]}, we

use a document (query) encoder ED (EQ) to en-

code the input sequence into hidden states h =
{v[CLS], v1, . . . , vl, v[SEP]}, where wi is the i-th

token; [CLS] and [SEP] are special tokens that

mark the start and end of a sentence, respectively.

To obtain a dense representation, we use mean pool-

ing over hidden states h as the representation hx

of the input x. Some prior works (Lee et al., 2019;

Chang et al., 2020; Karpukhin et al., 2020) use

v[CLS] as the representation for the input x, but

Huang et al. (2021) empirically find that applying

mean pooling to hidden states h outperforms taking

v[CLS] as the representation.

Similarity Function After obtaining the repre-

sentation for both the query q and the document d,

we use the cosine function as a similarity function

to measure the similarity between them:

sim(q, d) =
EQ(q) · ED(d)

‖EQ(q)‖‖ED(d)‖
(1)

Approximate Nearest Neighbor In practice, for

the dual-tower architecture, the documents are en-

coded offline and their dense representations can

be pre-indexed by a fast vector similarity search

library (e.g., FAISS, Johnson et al., 2021). The

library can utilize GPU acceleration to perform ap-

proximate nearest neighbor (ANN) search in sub-

linear time with almost no loss in recall. Thus,

compared to a cross-encoder (i.e., an encoder that

accepts the concatenation of the query and every

candidate document), a pre-indexed ANN-based

retrieval system is at least 10 times faster (to be

detailed in Section 4.2).

3.2 Constructing Positive Instances

In this section, we first introduce how we build the

positive instances with two self-supervised tasks,

namely Inverse Cloze Task (ICT) and Dropout as

Positive Instance (DaPI).

Inverse Cloze Task (ICT) First introduced in

Lee et al. (2019), ICT is an effective way to pre-

train a text retrieval model (Chang et al., 2020).

Given a passage p consisting of sentences p =
{s1, . . . , sn}, we randomly select a sentence sk
as query q and treat its context as document d =
{s1, . . . , sk−1, sk+1, . . . , sn}. ICT is designed to

mimic a text retrieval task where a short query is

used to retrieve a longer document which is se-

mantically relevant. Also, unlike some pretraining

tasks, e.g., Wiki Link Prediction or Body First Se-

lection (Chang et al., 2020), ICT is fast and does not

rely on a specific corpus format (e.g., Wikipedia)

thus can be scaled to a large multi-source corpus

(e.g., C4, Raffel et al., 2020).

Dropout as Positive Instance (DaPI) DaPI is

originally proposed in SimCSE (Gao et al., 2021c)

as a simple strategy for perturbing intermediate

representations and thus can serve as data augmen-

tation.2 A similar idea is also presented in Liu et al.

(2021). We apply a dropout rate of 0.1 to the fully-

connected layers and attention probabilities in the

Transformer encoders, as in BERT (Devlin et al.,

2019). The same input is fed to the encoder twice to

obtain two representations, of which one is used as

the positive instance of the other. Gao et al. (2021c)

conduct experiments and conclude that the dropout

strategy outperforms all commonly-used discrete

perturbation techniques including cropping, word

deletion, masked language modeling and synonym

replacement. Note that different from SimCSE, we

only calculate gradients for one of the two passes.

In our experiments, we find that the addition of

DaPI only increases the memory use by 2%, since

it mostly reuses the computational graph for the

ICT objective.

3.3 Iterative Contrastive Learning

Previous studies (Giorgi et al., 2021; Wu et al.,

2020; Gao et al., 2021b) show that the number of

negative instances is critical to the performance of

the model. Since the batch size on a single GPU

is limited, we propose Iterative Contrastive Learn-

ing (ICoL) to mitigate the insufficient memory on

a single GPU and allow more negative instances

for better performance. We illustrate LaPraDoR

training in Figure 2.

Iterative Training We iteratively train the query

encoder and document encoder. To be specific, we

2To avoid confusion with the SimCSE model, we address
the dropout strategy as DaPI here.





stores previously encoded representations that can

serve as negative instances for the current step, ex-

tending an earlier study (Wu et al., 2018). Our

cache queue is implemented as first-in-first-out

(FIFO) with a maximum capacity m, which is

a hyperparameter set based on the GPU memory

size. When training with multiple GPUs, Q can be

shared across GPUs. Since the representations in

the queue are encoded with a frozen encoder and

thus do not require gradients, m can be set large

to supplement the numbers of negative instances.

When Q is full, the earliest cached representations

will be dequeued. When we switch the training

from one encoder to the other, the queue will be

cleared to ensure that all representations in Q lie

in the same hidden space and are encoded with the

currently frozen encoder.

ICoL vs. MoCo Previously, similar to our

method, MoCo (He et al., 2020) exploits a queue

for storing encoded representations. Specifically,

MoCo consists of a slow encoder and a fast encoder

to encode queries and documents, respectively. The

slow encoder is updated as a slow moving average

of the fast encoder to reduce inconsistency of en-

coded document representations between training

steps. A queue is maintained to allow the encoded

document representations to be reused in later steps

as negative instances.

However, we argue there are a two limitations

that make MoCo not ideal for training a text re-

trieval model: (1) As pointed out by Yang et al.

(2021), unlike the image matching task in the origi-

nal paper of MoCo, in text retrieval, the queries and

documents are distinct from each other thus not in-

terchangeable. Yang et al. (2021) propose xMoCo,

which incorporates two sets of slow and fast en-

coders, as a simple fix for this flaw. (2) The cached

representations are in different hidden spaces. Al-

though the fast encoders in both MoCo and xMoCo

are updated with momentum, the already-encoded

representations in the queue will never be updated.

This creates a semantic mismatch between newly

encoded and cached old representations and creates

noise during training. In ICoL, all representations

used for contrastive learning are aligned in the same

hidden space. Besides, ICoL is more flexible than

xMoCo since it does not introduce additional fast

encoders and even the weights of its query encoder

and document encoder can be shared. We con-

duct experiments to compare ICoL with MoCo and

xMoCo in Section 4.2.1.

3.4 Lexicon-Enhanced Dense Retrieval

Although dense retrieval achieves state-of-the-art

performance, its performance significantly degen-

erates on out-of-domain data (Thakur et al., 2021).

On the other hand, BM25 (Robertson and Zaragoza,

2009) demonstrates good performance without

training. Early attempts at combining lexical match

with dense retrieval often formulate it to a re-

ranking task (Nguyen et al., 2016). First, BM25 is

used to recall the top-k documents from the corpus.

Then, a cross-encoder is applied to further re-rank

candidate documents. Recently, COIL (Gao et al.,

2021a) highlights the importance of lexical match

and incorporates exact lexical matching into dense

retrieval. Different from these works, we propose a

fast and effective way, namely Lexicon-Enhanced

Dense Retrieval (LEDR) to enhance dense retrieval

with BM25. The similarity score of BM25 is de-

fined as:

BM25(q, d) =
∑

t∈q∩d

IDF(t)hq(q, t)hd(d, t)

hq(q, t) =
TFt,q (1 + k2)

TFt,q +k2

hd(d, t) =
TFt,d (1 + k1)

TFt,d+k1

(

1− b+ b
|d|

avgdl

)

(8)

where TFt,d and TFt,q refer to term frequency of

term t in document d and query q, respectively;

IDF(t) is the inverse document frequency; b, k1
and k2 are hyperparameters. For inference, we

simply multiply the BM25 score with the similarity

score for dense retrieval:

score(q, d) = sim(q, d)× BM25(q, d) (9)

In this way, we consider both lexical and seman-

tic matching. This combination makes LaPraDoR

more robust on unseen data in zero-shot learning.

4 Experiments

4.1 Experimental Setting

Benchmark We use BEIR (Thakur et al., 2021),

a recently released benchmark for zero-shot evalua-

tion of information retrieval models. BEIR includes

18 heterogeneous datasets, focusing on evaluating

a retrieval system that works across different do-

mains (bio-medical, scientific, news, social media,

etc.). The benchmark uses Normalized Discounted

Cumulative Gain (nDCG) (Järvelin and Kekäläinen,

2002) as the evaluation metric, which is a measure



Model
Dense Retrieval Lexical Late Interaction Re-ranking Lexicon-Enhanced Dense

DPR ANCE GenQ TAS-B BM25† ColBERT BM25 + CE LaPraDoR† LaPraDoR FT

Encoding Qry/s (GPU/CPU) 4000/170 4000/170 4000/170 7000/350 - 4000/170 7000/350 7000/350 7000/350

Speed Doc/s (GPU/CPU) 540/30 540/30 540/30 1100/70 - 540/30 1100/70 1100/70 1100/70

Index size 3 GB 3 GB 3 GB 3 GB 0.4 GB 20 GB 0.4 GB 3.4 GB 3.4 GB

Retrieval GPU 19 ms 20 ms 14 ms 14 ms - 350 ms 450 ms 20 ms 20 ms

Latency CPU 230 ms 275 ms 125 ms 125 ms 20 ms - 6100 ms 145 ms 145 ms

MS-MARCO nDCG@10 0.177 0.388 0.408 0.408 0.228 0.401 0.413 0.262 0.366

Zero-shot

TREC-COVID 0.332 0.654 0.619 0.481 0.656 0.677 0.757 0.728 0.779

(nDCG@10)

BIOASQ 0.127 0.306 0.398 0.383 0.465 0.474 0.523 0.500 0.511

NFCorpus 0.189 0.237 0.319 0.319 0.325 0.305 0.350 0.346 0.347

NQ 0.474 0.446 0.358 0.463 0.329 0.524 0.533 0.359 0.479

HotpotQA 0.391 0.456 0.534 0.584 0.603 0.593 0.707 0.625 0.666

FiQA 0.112 0.295 0.308 0.300 0.236 0.317 0.347 0.317 0.343

Signal-1M 0.155 0.249 0.281 0.289 0.330 0.274 0.338 0.343 0.344

TREC-NEWS 0.161 0.382 0.396 0.377 0.398 0.393 0.431 0.470 0.480

Robust04 0.252 0.392 0.362 0.427 0.408 0.391 0.475 0.490 0.484

ArguAna 0.175 0.415 0.493 0.429 0.315 0.232 0.311 0.507 0.508

Touche-2020 0.131 0.240 0.182 0.162 0.367 0.202 0.271 0.322 0.333

CQADupStack 0.153 0.296 0.347 0.314 0.299 0.350 0.370 0.222 0.290

Quora 0.248 0.852 0.830 0.835 0.789 0.854 0.825 0.863 0.875

DBPedia 0.263 0.281 0.328 0.384 0.313 0.392 0.409 0.361 0.391

SCIDOCS 0.077 0.122 0.143 0.149 0.158 0.145 0.166 0.185 0.184

FEVER 0.562 0.669 0.669 0.700 0.753 0.771 0.819 0.671 0.763

Climate-FEVER 0.148 0.198 0.175 0.228 0.213 0.184 0.253 0.228 0.261

SciFact 0.318 0.507 0.644 0.643 0.665 0.671 0.688 0.697 0.687

Avg. 0.237 0.389 0.410 0.415 0.423 0.431 0.476 0.457 0.485

Table 1: Experimental results on the BEIR benchmark (Thakur et al., 2021). The estimated average retrieval

latency and index sizes are for a single query in DBPedia. The encoding speed is reported on a 8-core Intel Xeon

Platinum 8168 CPU @ 2.70GHz and a single Nvidia V100 GPU, respectively. “LaPraDoR FT” is a LaPraDoR

model fine-tuned on MS-MARCO with the official BEIR training script. †Unsupervised method.

of ranking quality and often used to measure effec-

tiveness of search algorithms or retrieval models.

Details of the BEIR benchmark and the evaluation

metric are included in Appendix A.

Model Settings In our preliminary experiments

on Wikipedia (see Table 2), we find that sharing

weights between the query encoder EQ and docu-

ment encoder ED has no negative effect on down-

stream performance. For weight sharing between

EQ and ED, we simply copy the weights of EQ to

ED when switching to training of ED, vice versa.

This design eliminates nearly half of the param-

eters. An additional benefit is that weight shar-

ing makes the encoder versatile to handle not only

query-document retrieval, but also query-query and

document-document retrieval.

In our preliminary experiments on Wikipedia,

we observed a diminishing return when increasing

the model size from 6 layers to 12 layers, or 24

layers. Thus, we initialize our encoder with the

6-layer DistilBERT (Sanh et al., 2019), which has

∼67M parameters. For BM25, we use the imple-

mentation and default settings of Elastic Search3.

BM25 scores after the top 1,000 retrieved text are

3https://github.com/elastic/

elasticsearch

set to 0 to save computation.

Training Details For pretraining, we optimize

the model with the AdamW optimizer with a learn-

ing rate of 2e-4. The model is trained with 16

Nvidia V100 32GB GPUs with FP16 mixed preci-

sion training. The batch size for each GPU is set

to 256. The maximum lengths set for queries and

documents are 64 and 350, respectively. Training

switches between EQ and ED every 100 steps. The

cache queue has a maximum capacity m of 100k.

The loss weight hyperparameter λ is fixed to 1. For

our main results, we train LaPraDoR on C4 (Raffel

et al., 2020) for 1M steps, which takes about 400

hours. For the ablation study, since training on C4

is very costly, we train LaPraDoR on Wikipedia4

for 100k steps. When calculating the loss, we apply

a re-scaling trick of multiplying the cosine simi-

larity score by 20 for better optimization (Thakur

et al., 2021). Our implementation of LaPraDoR is

based on Hugging Face Transformers (Wolf et al.,

2020) and Datasets (Lhoest et al., 2021).

We test LaPraDoR under two settings: (1) No su-

pervised data at all. We directly use the pretrained

model for zero-shot retrieval on BEIR. (2) Fine-

4https://huggingface.co/datasets/

wikipedia



Model
In-Batch

MoCo xMoCo ICoL
ICoL

(shared) (shared)

#Encoder 1 2 4 2 1

MS-MARCO nDCG@10 0.255 0.222 0.255 0.255 0.262

Zero-shot

TREC-COVID 0.705 0.537 0.724 0.706 0.710

(nDCG@10)

BIOASQ 0.451 0.260 0.423 0.468 0.459

NFCorpus 0.315 0.271 0.312 0.317 0.314

NQ 0.332 0.279 0.355 0.355 0.351

HotpotQA 0.599 0.552 0.584 0.598 0.610

FiQA 0.213 0.156 0.242 0.256 0.251

Signal-1M 0.329 0.307 0.323 0.327 0.335

TREC-NEWS 0.441 0.405 0.441 0.444 0.445

Robust04 0.419 0.439 0.439 0.465 0.470

ArguAna 0.477 0.465 0.491 0.496 0.503

Touche-2020 0.302 0.261 0.330 0.331 0.328

CQADupStack 0.109 0.052 0.118 0.132 0.140

Quora 0.832 0.834 0.822 0.828 0.839

DBPedia 0.349 0.318 0.359 0.374 0.364

SCIDOCS 0.173 0.154 0.170 0.173 0.178

FEVER 0.537 0.540 0.651 0.686 0.653

Climate-FEVER 0.206 0.183 0.244 0.242 0.242

SciFact 0.660 0.659 0.667 0.683 0.689

Avg. 0.414 0.371 0.428 0.438 0.438

Table 2: Comparison of different methods for con-

trastive learning. The models are trained on Wikipedia.

tuning on MS-MARCO (Nguyen et al., 2016) and

zero-shot transfer to the other datasets. This is the

original setting for BEIR. We use BEIR’s official

script5 to fine-tune LaPraDoR. The batch size is set

to 75 per GPU and the learning rate is 2e-5.

Baselines For dense retrieval, we compare our

model to the dual-tower models: DPR (Karpukhin

et al., 2020), ANCE (Xiong et al., 2021), TAS-

B (Hofstätter et al., 2021) and GenQ (Thakur et al.,

2021). For lexical matching, we use the BM25 re-

sults reported in Thakur et al. (2021). We also con-

sider a late interaction baseline ColBERT (Khattab

and Zaharia, 2020). The model computes multi-

ple contextualized embeddings for each token of

queries and documents, and then maximizes a sim-

ilarity function to retrieve relevant documents. For

re-ranking, we use the BM25+CE baseline imple-

mented in Thakur et al. (2021) that uses BM25 to

retrieve top-100 documents and a cross-encoder

model to further re-rank. As shown in Table 1, the

latency for both lexical and dense retrieval is low

whereas re-ranking introduces significantly higher

latency, with late-interaction in-between. Details

of the baselines can be found in Appendix B.

4.2 Experimental Results

We list the results of LaPraDoR on the BEIR bench-

mark in Table 1. Our model achieves state-of-the-

art performance on BEIR to date (November 15,

2021). Without any supervised data, LaPraDoR

5https://github.com/UKPLab/beir/blob/

main/examples/retrieval/training/train_

msmarco_v3.py

Model
LaPraDoR LaPraDoR FT

Full w/o LEDR Full w/o LEDR w/o PT w/o LEDR & PT

TREC-COVID 0.728 0.227 0.779 0.492 0.735 0.482

BIOASQ 0.500 0.205 0.511 0.308 0.489 0.281

NFCorpus 0.346 0.311 0.347 0.335 0.323 0.267

NQ 0.359 0.181 0.479 0.473 0.454 0.443

HotpotQA 0.625 0.303 0.666 0.495 0.642 0.484

FiQA 0.317 0.203 0.343 0.314 0.308 0.245

Signal-1M 0.343 0.186 0.344 0.231 0.354 0.247

TREC-NEWS 0.470 0.345 0.480 0.374 0.449 0.350

Robust04 0.490 0.319 0.484 0.368 0.459 0.332

ArguAna 0.507 0.459 0.508 0.469 0.495 0.412

Touche-2020 0.322 0.094 0.333 0.182 0.346 0.156

CQADupStack 0.222 0.220 0.290 0.288 0.306 0.250

Quora 0.863 0.787 0.875 0.847 0.867 0.840

DBPedia 0.361 0.250 0.391 0.338 0.384 0.303

SCIDOCS 0.185 0.133 0.184 0.155 0.173 0.127

FEVER 0.671 0.368 0.763 0.646 0.750 0.664

Climate-FEVER 0.228 0.138 0.261 0.209 0.247 0.206

SciFact 0.697 0.555 0.687 0.599 0.678 0.529

Avg. 0.457 0.294 0.485 0.396 0.470 0.368

Table 3: Effect of pretraining (PT) and Lexicon-

Enhanced Dense Retrieval (LEDR). Pretraining is on

C4. The results of “w/o PT” directly use Distil-

BERT (Sanh et al., 2019) for fine-tuning, which is also

used to initialize our model.

outperforms the previous state-of-the-art for zero-

shot dense retrieval, TAS-B (Hofstätter et al., 2021),

on 13 tasks (out of 18) of BEIR with an average ad-

vantage of 0.042, though TAS-B applies additional

query clustering and knowledge distillation. When

further fine-tuned on MS-MARCO, LaPraDoR can

outperform all baselines, including late interaction

and re-ranking, whose latency on GPU is 17.5×
and 22.5× higher than our method. Compared to

dense retrieval, we only add 0.4 GB of BM25 in-

dices and almost no additional latency.

4.2.1 Effect of Iterative Contrastive Learning

We set a baseline that only uses in-batch negatives

and compare our proposed Iterative Contrastive

Learning (ICoL) to MoCo (He et al., 2020) and

xMoCo (Yang et al., 2021) for training LaPraDoR

on Wikipedia in Table 2. The aforementioned two

flaws of MoCo hinder its performance and lead to

a performance drop instead of an improvement. In

contrast, our ICoL approach outperforms the in-

batch baseline on all datasets. It also beats the com-

petitive MoCo variant for text retrieval, xMoCo,

on 15 out of 18 tasks. ICoL only uses two en-

coders (which can be further shared) which can

alleviate the GPU memory problem and thus can fit

more in-batch negatives. Meanwhile, MoCo uses

two encoders and xMoCo uses four (two sets of

MoCo’s encoders). Moreover, we observe no per-

formance drop on average if we share the encoder

between query and document (as we do when train-

ing LaPraDoR on C4). Thus, we can eliminate half

of the parameters by simply sharing the encoder.





Broader Impact

Ethical Concerns LaPraDoR is trained with

web-crawled data, which may contain inappro-

priate content. However, due to the nature of

text retrieval, our retriever has lower ethical risk

compared to a generative auto-regressive language

model (Bender et al., 2021). Meanwhile, our unsu-

pervised retrieval model enables high-performance

text retrieval for low-resource languages where

there is no supervised query-document dataset.

This contributes to equality and diversity of lan-

guage technology.

Carbon Footprint To conduct all experiments

in this paper, we estimate to have consumed 3,840

kWh of electricity and emitted 1,420.8 kg (3,132.3

lbs) of CO2. All emitted carbon dioxide has already

been offset by the cloud service provider.
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A The BEIR Benchmark

Datasets We list the statistics of the BEIR bench-

mark in Table 5. The 18 English zero-shot evalua-

tion datasets come from 9 heterogeneous retrieval

tasks, including bio-medical information retrieval,

question answering, tweet retrieval, news retrieval,

argument retrieval, duplicate question retrieval, ci-

tation prediction, and fact checking.

Metric To measure effectiveness of search algo-

rithms or retrieval models, the benchmark uses

Normalized Discounted Cumulative Gain (nDCG)

(Järvelin and Kekäläinen, 2002) as the evaluation

metric. We will give the definition of the metric in

the following.

Given top k retrieved documents {d1, d2, .., dk}
with their relevance {r1, r2, .., rk} for a query, the

traditional formula of discounted cumulative gain

(DCG) accumulated at a particular rank position k

is defined in Equation 10, where ri is 1 if di is the

ground truth otherwise 0.

DCG@K =

K
∑

i=1

ri

log2(i+ 1)
(10)

Since the length of ground truth list depends on

the query, using DCG to compare the performance

of retrieval models from one query to the next can-

not be consistently achieved. Therefore, the dis-

counted cumulative gain is normalized (nDCG) as:

nDCG@K =
DCG@K

IDCG@K
(11)

where IDCG@K is the DCG@K score for the list

of relevant documents (ordered by their relevance)

in the corpus up to position k. Since IDCG@K pro-

ducs the maximum possible DCG through position

k, the value of nDCG@K is in the range 0 to 1.

B Baselines

We use the baselines from the current BEIR leader-

board (Thakur et al., 2021). These baselines can

be divided into four groups: dense retrieval, lexical

retrieval, late interaction and re-ranking.

Dense Retrieval For dense retrieval, the base-

lines are the same dual-tower model as ours.

We consider DPR (Karpukhin et al., 2020),

ANCE (Xiong et al., 2021), TAS-B (Hofstätter

et al., 2021) and GenQ (Thakur et al., 2021) in

this paper.

• DPR uses a single BM25 retrieval example

and in-batch examples as hard negative ex-

amples to train the model. Following Thakur

et al. (2021), we use Multi-DPR as the base-

line. The model is a BERT-base model

and is trained on four QA datasets, includ-

ing NQ (Kwiatkowski et al., 2019), Trivi-

aQA (Joshi et al., 2017), WebQuestions (Be-

rant et al., 2013) and CuratedTREC (Baudis

and Sedivý, 2015).

• ANCE constructs hard negative examples

from an ANN index of the corpus. The hard

negative training instances are updated in par-

allel during fine-tuning of the model. The

model is a RoBERTa (Liu et al., 2019) model

trained on MS-MARCO for 600k steps.

• TAS-B is trained with Balanced Topic Aware

Sampling using dual supervision from a cross-

encoder and a ColBERT model (Khattab and

Zaharia, 2020). The model is trained with a

combination of a pairwise Margin-MSE (Hof-

stätter et al., 2021) loss and an in-batch nega-

tive loss function.




