
How to Cover up Anomalous Accesses to Electronic Health Records

Xiaojun Xu
UIUC

xiaojun3@illinois.edu

Qingying Hao
UIUC

qhao2@illinois.edu

Zhuolin Yang
UIUC

zhuolin5@illinois.edu

Bo Li
UIUC

lbo@illinois.edu

David Liebovitz
Northwestern University
david.liebovitz@nm.org

Gang Wang
UIUC

gangw@illinois.edu

Carl Gunter
UIUC

cgunter@illinois.edu

Abstract
Illegitimate access detection systems in hospital logs perform
post hoc detection instead of runtime access restriction to
allow widespread access in emergencies. We study the ef-
fectiveness of adversarial machine learning strategies against
such detection systems on a large-scale dataset consisting of
a year of access logs at a major hospital. We study a range of
graph-based anomaly detection systems, including heuristic-
based and Graph Neural Network (GNN)-based models. We
find that evasion attacks, in which covering accesses (that is,
accesses made to disguise a target access) are injected during
evaluation period of the target access, can successfully fool
the detection system. We also show that such evasion attacks
can transfer among different detection algorithms. On the
other hand, we find that poisoning attacks, in which adver-
saries inject covering accesses during the training phase of
the model, do not effectively mislead the trained detection
system unless the attacker is given unrealistic capabilities
such as injecting over 10,000 accesses or imposing a high
weight on the covering accesses in the training algorithm.
To examine the generalizability of the results, we also apply
our attack against a state-of-the-art detection model on the
LANL network lateral movement dataset, and observe similar
conclusions.

1 Introduction

With the development of computer technology and recent
incentives for its use in healthcare, the health records in hos-
pitals have transitioned to electronic systems [19]. The elec-
tronic health record (EHR) system provides users (e.g., physi-
cians, nurses, and pharmacists) with comprehensive chart ac-
cess to prior encounters (i.e., visits of a patient to the hospital)
and facilitates better information sharing among different de-
partments.

One major security concern of EHR systems is the inappro-
priate internal user access to patient encounter information.
For example, when famous actors visits a hospital, some users

may access their information to satisfy curiosity or even sell
information for economic gain [17]. It is not appropriate to
block such accesses beforehand, because rapid access to med-
ical information is essential in emergencies and therefore all
the users are allowed to access any record without restriction.
Therefore, the primary approach is to perform post hoc anal-
ysis to detect and penalize such anomalous accesses after they
have been made.

Considering the large number of accesses made in a hos-
pital, it is desired to automatically detect illegitimate ac-
cesses in the system. In the past, researchers have worked
on EHR anomaly detection and found that Machine learning
(ML) techniques can achieve a good performance in such
tasks [30, 37, 43]. Commerical companies (e.g. Imprivata [1])
are also known to apply ML-based techniques in EHR man-
agement. More recently, researchers also show that graph neu-
ral networks (GNN) are highly effective in detecting insider
threats and illegal accesses within a networked system [23].

Given the high-performance illegitimate access detection
system, in this paper, we focus on the robustness of the system
and ask: is the system still reliable if a knowledgeable attacker
intentionally injects accesses to bypass the detection? We as-
sume an adversary that wants to make a (malicious) target
access which, without adversarial actions, will be detected
by the system. We propose two types of adversarial attacks,
which are based on different access constraints of attackers, as
shown in Figure 1. In an evasion attack (orange arrows), the
detection model is trained on the clean training dataset with-
out interruption. The attacker will inject covering accesses to
the testing dataset so that all the injected edges look benign to
the model. In a poisoning attack (blue arrows), the attacker
tampers with the training phase by poisoning the training set
with covering accesses. The detection model trained on the
poisoned dataset will view the target access as a benign one
on the clean testing set.

We evaluate both attacks against different detection algo-
rithms on our EHR dataset. For the evasion attack, we propose
an iterative algorithm based on the detection model gradient.
We show that for 60% of randomly chosen target accesses, the

Detection Models (e.g. GNN)

Training Dataset

Testing Dataset

Target Access

User

Encounter

Access

User

Encounter

Access

Poisoning
Attacker

Evasion
Attacker

Training Phase

Testing Phase

Target Access
Existing Access

Disguised Target Access

Covering Access (Poisoning)
Covering Access (Evasion)

The target access is disguised.

The target access is disguised.

①②

③

④⑤

①

② ③

④

⑤

Figure 1: Attack Overview—The pipeline of our attacks against the illegitimate access detection system on the access log dataset. A ’user’
refers to someone working in the hospital and an ’encounter’ refers to a visit to the hospital made by a patient. The goal of the attacker is to
disguise a target access in the testing phase. The double dashed arrows refer to the steps of the pipeline. In a poisoning attack (blue steps), the
attacker will interfere with the training phase; in an evasion attack (orange steps), the attacker will interfere with the testing phase.

access can be disguised if the adversarial user makes 10 cov-
ering accesses to some encounter records in the system in a
one-week period. In addition, the attack success rate increases
to 77% with 50 covering accesses in a week. By comparison,
a heuristic-based baseline attack cannot achieve a good attack
performance.

For the poisoning attack, we propose a feature sensitivity-
based algorithm to inject covering accesses. Surprisingly, we
observe that even with strong knowledge and capability, the
attacker is not able to perform an effective attack in usual
cases. We show that the attack succeeds only under unrealis-
tic settings, e.g., the user making 10,000 accesses within one
week or changing the setting in the training process. Such a
conclusion, i.e., the evasion attack is easier than the poison-
ing attack, differs from previous studies on other intrusion
detection scenarios [36, 38]. We owe it to the reason that the
data is highly dynamic and the nodes (patients) in the evalua-
tion stage often does not appear in the training stage, so the
poisoning attack cannot work well.

To examine the generalizability of the results, we also eval-
uate our attacks on a public dataset related to network lateral
movement within an organization from the Los Alamos Na-
tional Laboratory (LANL) [21]. We apply our attack against a
state-of-the-art detection model Euler [23] which uses GNNs
and recurrent neural networks (RNNs) for illegal access detec-
tion. We observe that our evasion attack works even better on
this model: by injecting only 10 covering edges, it is sufficient
to cover each of the malicious events. In addition, we confirm
that poisoning is still more difficult than the evasion attack,
even though poisoning works slightly better than that on the
EHR dataset. Compared to the EHR graph, the LANL graph
is less dynamic, i.e., the nodes in the graph (servers) appear
in both the training and evaluation stages. The improved poi-
soning performance in turn confirms our earlier hypothesis,
that is, the highly-dynamic property of EHR system makes it

more difficult to launch poisoning attacks.
Our major contributions can be summarized as follows:

• This work proposes the first adversarial attacks against
ML models for EHR illegal access detection and takes
the stealthiness of the adversarial perturbation into con-
sideration. We will open-source our code for the detec-
tion models and attacks.

• We propose evasion attacks against the detection sys-
tem and show their effectiveness against the illegitimate
access detection system for EHR.

• We show that it is difficult to launch the poisoning attack
without unrealistic capabilities, which differs from pre-
vious conclusions on other intrusion detection systems.

• We also evaluate our attack against a state-of-the-art de-
tection model outside of the EHR context (i.e., the LANL
dataset on network lateral movement) and observe a sim-
ilar conclusion.

2 Background

Anomaly Access Detection in EHR systems. In elec-
tronic health record systems, a user is not supposed to access
arbitrary encounters for curiosity or other personal reasons.
However, in medical systems it is problematic to restrict a user
from accessing certain encounters. For example, if a pediatric
nurse has to (for any reason) access the record of a geriatric
patient in an emergency, the restriction may lead to a danger-
ous situation. Hence, the primary approach ([9, 18, 34, 43]) is
to do post hoc detection, i.e. let the users access any encounter
when needed, but audit whether these accesses are legitimate
after they are made.

Graph Neural Network. Graph Neural Networks [45] are
a class of neural networks that take attributed graph data as
input and generate a feature vector for each node. Formally
speaking, let G=(V,E,X) denote an attributed graph where V
is the node set, E ✓V⇥V is the edge set and X 2R|V |⇥d is the
node feature matrix with d representing the feature dimension
of each node. The edge features are usually not considered
since they are less important than node features in most cases.
The graph neural network f (G) 2 R|V |⇥h takes the graph as
input and calculates an h-dimensional embedding vector for
each node using the graph structure and the input features.
These node embeddings will be further processed according
to different tasks. For example, on a node classification task
one applies a linear layer over f (G) to determine the class of
each node; on a graph classification task the node features are
aggregated (e.g., by taking the average) and sent through a
linear layer to determine the class of the graph.

Adversarial Attacks on Machine Learning. In an ad-
versarial attack, an attacker aims to tamper with the machine
learning pipeline to produce some desired wrong outputs.
In general, there are two classes of adversarial attacks. In
a poisoning attack, the attacker interferes with the training
phase. For example, [39] proposes to inject malicious training
data which is similar to target input but an adversarial label
to mislead the model. In an evasion attack, the attacker will
interfere with the evaluation phase. A popular strategy [14]
is to find and add to the input some imperceptible noise that
mostly changes the model prediction via a gradient-based
optimization technique.

3 Dataset Introduction

In our study, we will use the electronic health record dataset
collected from a major hospital. The dataset consists of four
major components and their relevant information as follows:

• Patients. A patient is a person who has received care
from the hospital. The dataset includes patient informa-
tion such as patient demographics (such as age and sex),
diagnoses, and medications.

• Encounters. An encounter is a visit to the hospital made
by a patient. The dataset includes encounter information
such as its type (e.g., an inpatient), length of stay, and
start and end date.

• Users. A user is a person working in the hospital (e.g.,
physicians and pharmacists) who provides services to
the patients. The dataset includes user information such
as the role and department.

• Accesses. An access is a logged event describing one
user accessing the charts associated with one encounter.
The dataset includes access information such as the ac-
cess reason and date.

The dataset consists of access logs in the hospital over
a period of one year. There are 309,096 patients, 944,385
encounters, 11,591 users, and 26,992,636 accesses in which a
user visits the chart of a patient as part of an encounter. The
hospital staff have performed standard data pre-processing
procedures such as addressing malformed or missing entries.
We view the dataset and its pre-processing to be representative
of hospital EHR systems.

Our study focuses on in-patient encounters (i.e., records of
patients who stay in a hospital while under treatment). Not
surprisingly, inpatient encounters received the majority of
the accesses—about 80.3% of all accesses were made to the
inpatient encounters. We simulate the real-world scenario by
extracting the data as 50 splits, where each split corresponds
to the access logs in one week. We did not use the data at
the beginning or end because less data is collected during
these periods. The exact dates can not be revealed under the
Safe Harbor policy. Within each period, if a user has accessed
the same encounter more than once, we will only consider
the access that appears for the first time. For example, if
a user accessed an encounter twice in one split, the second
access will not be included in the dataset. This is a simplifying
assumption: if a user has a right to access the encounter once,
then the user almost always has the right to access it a second
time. On average, each split has 5,309 users, 2,916 encounters
and 82,498 accesses.

We model an access log dataset as a bipartite graph where
each user or encounter represents a node and each access
is an edge connecting a user and an encounter. The patient
information will come together with the encounter. We use
G = (V,E,X) to denote the graph, where V = Vuser [Venc
denotes the user node set and encounter node set respectively,
E is the edge set where each edge (u,v) 2 E, u 2Vuser, v 2
Venc connects one user node and one encounter node. X 2
R|V |⇥dv is the node feature matrix where dv is the feature
dimension of each node.

We extract the following features for a user: (1) User’s
department (udept): Each user belongs to 1 out of 196 depart-
ments. (2) User’s role (urole): Each user belongs to 1 out of
172 roles.

We extract the following features for an encounter:
(1) Length of stay (elos). We use numerical bins with
1,2,7,14,28,56 days as split values. (2) Patient’s age (page).
We use numerical bins with 3,10,20,30,40,50, 60,70 years old
as split values. (3) Patient’s gender (pgender). The gender
is one out of ’Male’, ’Female’ and ’Unknown’. (4) Patient’s
diagnosis information (pdiag). This includes the ICD9 codes
for diagnoses, procedures, medications during the period, and
all the diagnoses of the patient in the history. There are 31,119
different types of diagnosis in total.

All these features are processed into a one-hot vector, ex-
cept for the diagnosis information where we use multi-hot
vectors because each encounter may have multiple diagnoses.
We concatenate these one/multi-hot vectors together as the

feature vector for a node. This generates a 368-dimensional
feature vector for a user and a 31,138-dimensional feature
vector for an encounter.

4 Attack Motivation & Threat Model

In this section, we will first introduce the problem setup in-
cluding current detection systems. Then we introduce the
motivation and threat model for the proposed attacks.

4.1 Problem Setup
Given that graph-structured data is widely used in different
applications such as recommendations in social networks and
intrusion detection based on access patterns, there are dif-
ferent detection models set up for detecting abnormal graph
patterns. In general, a detection model will take as input an
untrusted graph and identifies a set of abnormal edges via
different optimization strategies and prior knowledge. In par-
ticular, given a graph G = (V,E,X), the detection model will
be a function s such that given G and an edge (u,v) 2 V ,
the model produces a score on whether the edge is benign
or abnormal, i.e. s(G,u,v) 2 R. Usually, the score is calcu-
lated with the adjacency matrix in a differentiable manner. In
other words, let A denote the adjacency matrix of graph G,
then s(G,u,v) can also be written as s(A,X ,u,v) and ∂s/∂A
exists. Most popular edge classification algorithms satisfy
this setting, such as Katz index, matrix factorization or graph
auto-encoder [32]. In a special poisoning attack (which we
will introduce later), we will also assume that the model first
calculates a representation vector g(G)u for each node u, and
then calculates s(G,u,v) using simple operation (e.g. linear
combination) based on g(G)u and g(G)v. This is adopted in
most ML-based models like matrix factorization, graph auto-
encoder and Node2Vec [16]. In this work, we do not consider
any other assumptions on the detection model.

4.2 Attack Motivation
Our goal as an adversarial user can be formalized as: given
a malicious target access we would like to make, we will
find a set of covering accesses so that 1) after injecting these
accesses, the target access will seem benign to the system
and 2) none of the covering accesses will be detected by the
system. The attack is motivated by recent works [6, 14, 29]
showing that machine learning systems will be fooled by ad-
versarial attackers despite the high performance on the tasks.
Hence, we want to act as an attacker who wants to make a
malicious target access and evade the detection, and study
the vulnerability of the illegitimate access detection system
in hospitals. To fool the system, an attacker may change in-
formation about users, encounters, patients or accesses in the
system, or add/delete accesses in the system. For a user in the

hospital, the most applicable way is to make (i.e. add) extra
accesses in the system.

Difference with existing Works. Our work is different
from existing adversarial attacks against graph neural net-
works [7, 42, 47]. To evaluate the stealthiness of the attack,
previous works manually set a budget on how many edges
they can change. As long as the perturbation is within a cer-
tain budget, they view the attack as within small perturbations.
In our work, we propose the attack with semantically mean-
ingful perturbations against anomaly edge detection models -
we require that all of the injected covering accesses should
also be stealthy to the model.

As shown in Figure 1, we investigate two types of attack
scenarios - evasion attack and poisoning attack. We show in
detail how the covering accesses are injected in both attacks
as in Figure 2:

A1: Evasion attack. In an evasion attack, the training
process is already performed and the model is going to be
applied to the testing graph to detect abnormal accesses on it.
As an attacker, we would like to inject covering accesses into
the testing graph to disguise our target access on the graph. For
example, an adversary as a pediatric nurse would like to access
the encounter of an elder woman out of curiosity, which is
apparently very weird and will be easily detected as abnormal
by the model. Therefore, the pediatric nurse can first access
some pregnant women, which seems legitimate in common
sense. After several accesses, it will be less suspicious for the
adversary to access an elder woman based on her previous
access patterns to various middle-aged women.

A2: Poisoning attack. In a poisoning attack, the model
is not trained yet. The attacker will tamper with the training
process by injecting covering accesses into the training graph
so that the trained model will recognize our target access as
benign in the testing graph. For example, if an adversarial
pediatric nurse would like to access an elder woman during
test time, she will find and inject some legitimate access from
pediatric nurses to elder women in the training graph. After
the model is trained, it will learn the (wrong) access pattern
“pediatric nurses will access elder women” and view the target
access as benign.

Note that these two attacks may appear together (e.g. the
attacker injects covering edges in both training and testing
graphs) or be mixed (e.g. certain ML algorithm trains and
evaluates on the same graph) in practice. We will study the
separate effect of each attack to see which one will be the
more dangerous threat to the system.

4.3 Threat Model
We have the following assumptions about the attack:

Detection pipeline: We consider the inductive learning
setting for the detection. That is, the model trainer will collect
the data in a time period 1 and train the model. Then the

Elder Woman B

Evasion Attack Poisoning Attack

Encounters

Elder Woman BPediatric Nurse A

Pregnant Woman C

Pregnant Woman D

User

Testing

Pediatric Nurse A Elder Woman B

Training

Pediatric Nurse E Elder Woman H

Pediatric Nurse F Elder Woman I

Pediatric Nurse G Elder Woman J

Testing

Users Encounters

Detected Target Access
Covering Access

Stealthy Target Access

Time
Order

Figure 2: Examples of the attack scenarios—Black arrows refer to the covering accesses; the red arrow refers to the target accesses
detected as malicious; the shaded encounter is rejected by the system and will not exist in the dataset; green arrows refer to the target accesses
classified as benign ones. In an evasion attack, the attacker will inject covering accesses during testing time, so that the target access which may
originally be detected by the system will look benign; in a poisoning attack, the attacker will inject covering accesses during training time so
that the model trained on the data will view the target access as benign during testing time.

trainer collects the data in a time period 2 and applies the
trained model to detect abnormal accesses. The training and
evaluation data will not overlap in time. As we will show
in Sec 7.4, it achieves better performance than transductive
setting where training and evaluation data overlap.

Attacker’s capability: With a normal attacker capability,
the attacker (as the target user) is able to make access from the
target user to any encounter; with a strong attacker capability,
the attacker is able to make accesses from any user to any
encounter. Such strong capability is not realistic, and we will
only use it to illustrate the difficulty of poisoning attacks.

Attacker’s knowledge: We have two dimensions of knowl-
edge in the attack: the knowledge of the model and the knowl-
edge of the data. We assume that the attacker always has
white-box access to the model, including the structure, pa-
rameters and training algorithm. However, the attacker may
have full (white-box) knowledge or partial (gray-box) knowl-
edge of the data on which we train and evaluate the detection
model. We made these assumptions because the model-level
knowledge has been well studied [8, 28], and there are ways
to get white-box model information via only black-box ac-
cesses [31]. On the other hand, the gray-box knowledge of
data has received less attention.

5 Evasion Attack

In this section, we introduce our evasion attack algorithm. The
main idea of the evasion attack is to iteratively add edges that
can make the target edge look more “benign” to the model
while keeping the added edges stealthy.

5.1 Attack Goal
In an evasion attack, we have a trained model f with related
score function s applied to detect illegitimate access on a
test dataset G = (V,E,X). The attacker aims to make an ille-
gitimate target access (u⇤,v⇤), but the access will be easily
detected by the model if it is directly injected, i.e.,

s((V,E [{(u⇤,v⇤)},X),u⇤,v⇤)< q

Therefore, the attacker’s goal is to make a number of covering
accesses Ecov = {(uc

i ,v
c
i)}K

i=1, so that the target access will
be viewed as benign after the covering accesses are made. In
addition, we require that all the covering accesses should also
seem benign and not be detected by the model:

s((V,E [{(u⇤,v⇤)}[Ecov,X),u⇤,v⇤)> q
s((V,E [{(u⇤,v⇤)}[Ecov,X),uc

i ,v
c
i)> q 8(uc

i ,v
c
i) 2 Ecov

5.2 Attack Approach
We first assume a white-box knowledge of the data and a
strong attacker capability. Our strategy of evasion attack is
to find the covering accesses in an iterative manner, which is
similar to the approach proposed in [7] but further requires
stealthiness of covering accesses. Let Et

cov = {(uc
i ,v

c
i)}t

i=1 be
the covering accesses that we already find in the t-th step and
we would like to find the next covering edge (uc

t+1,v
c
t+1). Let

st = s((V,E [{(u⇤,v⇤)}[Et
cov,X),u,v) denote the current

score of the target access and At be the adjacency matrix of
E [{(u⇤,v⇤)}[Et

cov. Note that we assume that the score is
differentiable w.r.t. the adjacency matrix. We denote:

—t =
∂st

∂At .

Algorithm 1: Evasion atk
Input: Detection model s, Test graph G = (V,E,X)

Target access (u⇤,v⇤), number of covering
edges K

Output: Ecov: a set of K covering edges.
1 Ecov [];
2 for t = 1, . . . ,K do
3 At A(V,E [Ecov);
4 st s(At ,X ,u⇤,v⇤);
5 —t ∂st

∂At ;
6 Calculate ut ,vt as in Eqn. 1;
7 Ecov Ecov[{(ut ,vt)};
8 return Ecov

Intuitively, a large value at —t
i j means that adding the pair

(i, j) will increase the prediction score of st , thus making the
edge “more benign” and should be added as the covering edge.
On the other hand, our choice is restricted so that the added
edge should not exist in the original graph, should satisfy
the bipartite graph constraint and should seem benign to the
model. Hence, the next covering edge to add (uc

t+1,v
c
t+1) is

found by:

argmax
u,v

—t
uv (1)

s.t. (u,v) /2 E [{(u⇤,v⇤)}[Et
cov,

u 2Vuser,v 2Venc

s((V,E [{(u⇤,v⇤)}[Et
cov,X),u,v)> q

We will repeat this process K times to find the covering access
set. The algorithm is shown in Alg. 1.

In an attack with only gray-box knowledge of the graph, the
attacker only knows part of the graph G0. To achieve the attack
goal, the attacker will perform the evasion attack algorithm
on G0 and add the resulting covering edges into G. In an
attack with normal attack capability, the accesses should only
start from the target user, so we always require that u = u⇤ in
Eqn. 1.

6 Poisoning Attack

In this section, we introduce our poisoning attack algorithm.
The idea of the attack is to inject the edges that are most
similar to the target edge so that the model will learn such
patterns as benign.

6.1 Attack Goal
In the poisoning attack, the attacker will interfere with the
training dataset so that the trained model is misled and pro-
duce a wrong result on the chosen target access during
evaluation, while the overall performance (on non-target

Algorithm 2: Poisoning atk
Input: Train graph G1 = (V1,E1,X1), Test graph

G2 = (V2,E2,X2), Target access (u⇤,v⇤),
number of covering edges K, maximum edge
per node N

Output: Ecov: a set of K covering edges.
1 Ecov [];
2 Train the detection model on G1 and get the encoding

model g;
3 n {};
4 foreach u 2V1 do
5 n[u] 0;
6 for t = 1, . . . ,K do
7 Ecandidate {(u 2Vuser,v 2Venc)

�� n[u]<
N^n[v]< N^ (u,v) /2 E1[Ecov};

8 ut ,vt argmin(u,v)2Ecandidate
d(u,v,G1;u⇤,v⇤,G2);

9 Ecov Ecov[{(ut ,vt)};
10 n[u] n[u]+1;
11 n[v] n[v]+1;
12 return Ecov

accesses) remains similar. Formally speaking, suppose the
model f is trained on G1 = (V1,E1,X1) and evaluated on
G2 = (V2,E2,X2). The attacker aims to make a target access
(u⇤,v⇤) but will be detected by the model, i.e.:

s((V2,E2[{(u⇤,v⇤)}),u⇤,v⇤)< q

Unlike in an evasion attack, the strategy here is to inject
some covering accesses in the training data as G01 = (V1,E1[
Ecov,X1), so that the trained model s0 wrongly classifies the
target access as benign:

s0((V2,E2[{(u⇤,v⇤)}),u⇤,v⇤)> q

Note that this setting is different from many “poisoning at-
tack” setting in other works on graph tasks, which assumes a
transductive learning setting in which the covering accesses
exist in both training and testing periods [42, 47, 48]. Our
setting is usually more difficult because the evaluation graph
remains clean and does not contain any covering accesses.

6.2 Attack Approach
We assume a strong attacker capability. Moreover, we do not
require stealthiness on the covering access and we assume
that the attacker already has full knowledge of the test data
G2 when the poisoning data is being injected in the training
data G1. These strong capabilities are clearly unrealistic —
the idea is that if the attacker fails the poisoning attack even
under such strong assumptions, there would be no need to test
normal attacker capabilities.

The idea of the poisoning attack is to inject the training
data which has the most similar representation vector with the

target victim data [39]. In our case, we want to add the cover-
ing access whose user and encounter has similarly encoded
node representations as those of the target user and encounter.
Formally speaking, consider a (trained) representation model
g(G), the attacker wants to inject covering accesses (uc

i ,v
c
i)

into G1 if the following value is small:

d(uc
i ,v

c
i ,G1;u⇤,v⇤,G2)

=||g(G1)uc
i
�g(G2)u⇤ ||22 + ||g(G1)vc

i
�g(G2)v⇤ ||22

where g(G)u represents the representation of node u calcu-
lated by model g in graph G.

Based on this intuition, our poisoning attack algorithm is
shown in Alg. 2. We will first train a model using the clean
training data G1 and use the model g to calculate representa-
tion similarity d. We hope that the node representation vector
will not change dramatically after we add the covering edges,
so we will set a limit N on the maximum number of covering
edges added to one user/encounter. We inject the covering
edges in an iterative way so that in each step we add the edge
(ut ,vt) which is valid and whose representation is the most
similar to that of the target access in the test graph.

7 Evaluation on Malicious Access Detection

In this section, we will show the performance of the illegit-
imate access detection without attacks. The attacks will be
later evaluated over these detection methods.

7.1 Abnormal Access Detection System
We evaluate a variety of anomaly edge detection algo-
rithms in our experiments, including preferential attachment
(Pref), Katz index (Katz), non-negative matrix factorization
(NMF), matrix factorization (MF), factorization machine
(FM), Node2Vec (N2V), Node2Vec with feature (N2V-F),
one-class graph neural network (OCGNN) [40] and graph
neural network (GNN) [44]. Among these approaches, we
find GNN to be the best approach for our task and we will
introduce it as below. Other approaches are introduced in
Appendix A.

Graph Neural Network-based Anomaly Edge Detection.
We will use the structure of Graph Auto-encoder [32], which
is a type of GNN designed for edge classification. The model
s(G,u,v) will take as input a graph G and a pair of nodes
(u,v), and output the score that there should be an edge be-
tween (u,v). Let A(V,E) 2 {0,1}|V |⇥|V | denote the operation
of generating the adjacency matrix from the node set V and
the edge set E. Given a graph G = (V,E,X), the model first
encodes the graph into the node embedding matrix using a
GNN-based node encoder g:

A = A(V,E) (2)

Z = g(A,X) 2 R|V |⇥h (3)

then it decodes Z into a reconstructed adjacency matrix Â:

Â = s(S) (4)
S = ZWZ| (5)

and thus f (G,u,v) = Âuv, where W 2 Rh⇥h is the trainable
parameter, s is chosen as the sigmoid function to ensure that
each element Âi j 2 (0,1). The score function s(G,u,v) =
Suv 2 R is the prediction score before the sigmoid function.

Note that this process can also be viewed as generating a
binary classification result f (G,u,v) 2 (0,1) for each edge
(u,v), where a higher value indicates a higher probability
of being benign. Following conventions, we use “positive”
to refer to the illegitimate accesses in detection (although
its ground truth is 0 in the adjacency matrix) and “negative”
to refer to the benign ones. We will have a threshold q so
that edges with s < q are considered positive and otherwise
negative. We will use a separate validation set to find this
threshold.

To train the model, we will optimize the loss function be-
tween generated adjacency matrix and the ground truth:

L = Â
u2Vuser ,v2Venc

H(Auv, Âuv) (6)

where H(x,y) = �x logy� (1� x) log(1� y) is the binary
cross entropy loss. Directly applying the loss function would
lead to the problem of an unbalanced positive/negative ratio
since the graph is usually sparse, so we will first randomly
sample a set of positive node pairs Epos with size |Epos|= |E|
which are not connected, and optimize the loss function on:

L0 = Â
(u,v)2E[Epos

H(Auv, Âuv) (7)

We will re-sample Epos every time we optimize the loss func-
tion.

Transductive Learning vs. Inductive Learning. Note
that most edge classification tasks assume a transductive
learning setting. Given an untrusted graph G, the model will
be trained on this graph despite the existence of a small propor-
tion of malicious data and applied to the graph to determine
which accesses are illegitimate. In our task, an inductive learn-
ing setting is also possible, where training and evaluation will
happen on non-overlapping datasets. We can train our model
using one graph G1 and apply it to detect the malicious edges
in another graph G2. We will consider both scenarios in the
evaluation.

7.2 Model Setting
In the experiments, we use a two-layer Graph Convolutional
Network [25] as the GNN encoder g with a hidden size 64 and
a dropout rate 0.2. The decoder is chosen as a bilinear model
as shown in Eqn. 5. Since we do not have ground truth illegit-
imate accesses, we will simulate them with the technique to

be introduced in Section 7.3. The simulation number is 10%
of the overall access number within the period. Intuitively,
with a larger number of illegitimate accesses, the detection
task will be more difficult since the data becomes noisier.
We view 10% illegitimate accesses as a large proportion in
most cases and will vary the value to see the impact. We train
the model using Adam optimizer [24] with a learning rate
0.01 and weight decay rate 5⇥10�4. The details of baseline
detection implementation are introduced in Appendix A.

As introduced in Sec. 3, we extract 50 subsets from 50
consecutive weeks from the EHR dataset. In an inductive
learning setting, we will train the model using the i-th graph
and evaluate on the (i+1)-th graph, and report the averaged
result over i 2 {1,2, . . .49}. We will randomly set aside 10%
of the edges in the training graph as the validation set. In a
transductive learning setting, the model is trained and evalu-
ated using the (i+1)-th graph, and we use the i-th graph as
the validation set. In both settings, the validation set is used to
determine the threshold for detection so that the true negative
rate on the validation set is over 0.9.

The metrics we use to evaluate detection performance are
true positive rate (TPR), true negative rate (TNR), precision
among top-1000 positive predictions (Prec@1k), and Area
Under ROC Curve (AUC). The ROC curve shows the true
positive rate and the false positive rate when varying the
threshold in binary classification.

7.3 Illegitimate Access

Hospitals generally do not share data on illegitimate accesses
for evaluating the model performance. Therefore, simulating
illegitimate accesses based on domain knowledge (i.e., known
undesired behaviors) is a commonly used evaluation method-
ology in prior studies on EHR access logs [9, 30, 37, 43].
We use four different types of illegitimate access to evaluate
model performance: (1) Sample a set of users based on their
access frequency and let each of them access one randomly
chosen encounter. Different sampled users access different
encounters. (2) Sample a set of users based on their access
frequency and let each of them access the most frequently
accessed encounter (e.g. some curious accesses to a VIP pa-
tient who is taken care of by many users). (3) Sample a set
of users based on their access frequency and let each of them
access the least frequently accessed encounter. (4) Randomly
choose one user and let this user access a variety of different
encounters.

We show the evaluation with the first simulation in the
following and put other simulation results in Appendix C.
Later in Section 10, we will also show that the attack works
similarly on a public dataset where ground-truth attacks are
available.

Approach AUC Prec@1k TPR TNR
GNN-trans 0.9041 0.9479 0.7597 0.9193

GNN-ind,noisy 0.9058 0.9579 0.7706 0.9024
GNN-ind,clean 0.9073 0.9629 0.7751 0.8991

pref 0.6808 0.2903 0.3356 0.8987
katz 0.8413 0.4674 0.5613 0.8989

NMF 0.8504 0.4802 0.5697 0.8997
MF 0.8736 0.8944 0.7016 0.8944

FactM 0.8690 0.9046 0.6969 0.9001
N2V 0.7320 0.5226 0.4466 0.9000

N2V+nodef 0.7523 0.7198 0.5085 0.9000
OCGNN 0.5759 0.3265 0.3188 0.8167

Table 1: Detection Performance—Detection performance for
different approaches. ‘trans’ refers to the transductive learning set-
ting and ‘ind’ refers to the inductive learning setting on noisy or
clean training set. We emphasize that the TNR metric should not be
compared because we manually tune the threshold in the validation
set to achieve around 0.9 TNR.

7.4 Detection Performance
The detection performance of our model is shown in Table 1.
We first consider three scenarios for our GNN pipeline: a
transductive learning setting (GNN-trans) where the model
is trained and evaluated on the same graph which contains
the malicious edges; an inductive learning setting with noisy
training set (GNN-ind,noise) where the model is trained on a
graph with the malicious edges and evaluated on another one;
an inductive learning setting with clean training set (GNN-
ind,clean) where the model is trained on a clean graph without
malicious edges and evaluated on an untrusted one. We ob-
serve that the inductive learning leads to a better detection
performance. This matches our intuition because in transduc-
tive learning, the same illegitimate accesses will appear in
the training and evaluation so that the model will learn to
recognize these accesses as benign during training. On the
other hand, the inductive model trained with noisy data can
achieve similar performance compared with that trained with
clean data. This shows that our pipeline is resilient to the
existence of potential malicious accesses in the training set.
In later discussions, we will use GNN-ind,clean as our setting
if not specified.

We also compare our approach with baseline approaches
in Table 1. We can see that our GNN-based approach out-
performs all other detection algorithms. The Katz index and
matrix factorization-based approaches achieve good detection
performance, while other methods are relatively bad for our
task. In addition, the OCGNN trained with a one-class op-
timization goal has poor performance in the detection. This
shows the importance of having positive data in the training
process. We have also examined the detection performance by
varying the training and evaluation periods (see Appendix B).
We observe that the time difference has little impact.

We emphasize that the goal of this section is to find well-

performing models against which we can evaluate our attacks,
but not to propose a state-of-the-art detection model for the
EHR system. In the following sections, we will mainly use the
GNN-based model as the detection model and also consider
other models that achieve good performance, such as katz
index and matrix factorization-based approaches.

8 Evaluation on Evasion Attacks

In this section, we will evaluate our evasion attack algorithm
under different scenarios and show that evasion attack is effec-
tive against various detection models. Apart from the results
here, we also perform experiments on public datasets in Sec-
tion 10, in which we observe a similar conclusion to the results
to be presented in this section.

8.1 Attack Setting
We perform our evasion attack experiment as discussed in
Section 5 over the detection models trained in Section 7. Fol-
lowing the previous setting, we will apply the model trained
on the i-th graph and perform the evasion attack on the data
of the (i+ 1)-th graph, and report the averaged result over
i 2 {1,2, . . . ,49}. Unless specified, we assume that the at-
tacker has white-box knowledge of the graph; the scenario
of gray-box knowledge of the graph will be discussed in Sec-
tion 8.5.

For each time period, we randomly choose 100 target ac-
cesses in the graph. We show the distribution of prediction
scores of the chosen target accesses in Appendix C. For
each target access, we will perform the evasion attack with
K 2 {2,5,10,20,50} covering edges. Let Gatk denote the
graph after injecting the covering accesses and target access.
We will report the following metrics for the attacks:

• rtgt : the average evasion rate of the target accesses, i.e.
(s(Gatk,u⇤,v⇤)> 0).

• rcov: the average evasion rate of the covering accesses,
i.e. (s(Gatk,uc

i ,v
c
i)> 0).

• ratk: the average success rate of the attack. An attack is
successful only if its target access and all the covering
accesses evade the detection, i.e.:

(s(Gatk,u⇤,v⇤)> 0^ s(Gatk,uc
i ,v

c
i)> 0 8i 2 [K]).

8.2 Baseline Attacks
No previous researches focus on the evasion attack that con-
siders the stealthiness of covering accesses. In order to com-
pare the performance with attacks that also consider covering
access stealthiness, we also propose a heuristic-based attack
for normal attacker capability. Our baseline is based on the
intuition that in order to find stealthy covering accesses to

Baseline Our attack
K rtgt rcov ratk rtgt rcov ratk
0 25.49% - 25.49% 25.49% - 25.49%
2 48.89% 19.80% 11.77% 40.16% 100% 40.16%
5 65.96% 33.40% 12.58% 50.55% 100% 50.55%
10 78.12% 47.25% 13.50% 60.33% 100% 60.33%
20 89.00% 60.20% 12.37% 69.80% 100% 69.80%
50 96.33% 72.43% 8.54% 77.45% 100% 77.45%

Table 2: Evasion attack performance.

disguise the target access, we hope that the accessed encoun-
ters are 1) similar to the target encounter (so that they can
disguise the target access) and 2) similar with the encounters
accessed by the target user (so that they are stealthy). There-
fore, Given the target access (u⇤,v⇤), we calculate a score for
each encounter v in the graph as:

M(v) = (1�a) · sim(v,v⇤)+a · 1
|N (u)| Â

vi2N (u)
sim(v,vi)

where sim(·, ·) is a similarity metric between two nodes and a
is a parameter balancing the tradeoff between covering access
stealthiness and the ability to disguise. In practice, we use the
Jaccard index as the similarity metric sim(u,v) = N (u)\N (v)

N (u)[N (v)
and a = 0.75. The target user will access the encounters with
top-K score as the covering accesses.

8.3 Evasion Attack Performance
We report the attack performance in Table 2. If no attack is
performed, the evasion rate of a target access is around 25%,
which is the false negative rate of our system. We observe that
the attack performance is good. 60% of the target accesses
can successfully evade the system when disguised with 10
covering edges. With 50 covering edges, the evasion rate
further improved to around 77%. In addition, with the full
knowledge of the graph, the attacker will always add covering
edges that are not detected by the model, hence achieving
a 100% evasion rate on the covering edges. By comparison,
the baseline attack only considers the evasion rate of target
access. So the injected covering accesses are easy to detect
and the attack success rate is low. These results show the
viability of our strategy for attacking the access detection
model based on graph structure. We show a case study of
the evasion attack in Appendix E. We can observe that the
attacker will gradually make accesses that both look plausible
and can disguise the target access. Such behaviour is coherent
with our attack intuition.

8.4 Attack against Different Detectors
We show the results of the evasion attack against different
approaches in Figure 3. The detailed numbers are provided
in Table 11 in Appendix D. In the upper part, we show the

*11 .DW] 10) 0)
����

����

����

����

����
(Y
DV
LR
Q�
5D
WH

*11�EDVHG�$WWDFN

*11 .DW] 10) 0)
����

����

����

����

����

(Y
DV
LR
Q�
5D
WH

+HXULVWLF�$WWDFN

UWJW�#�. �
UWJW�#�. ��
UWJW�#�. ��

UDWN�#�. ��
UDWN�#�. ��

Figure 3: Evasion Attack Performance—The evasion attack
performance of our GNN-based attack and the heuristic-based attack
against different detection algorithms. rtgt refers to the evasion rate
of the target access while ratk refers to the attack success rate (i.e.
the rate of attacks where target access and all the covering accesses
evade the system). Note that ratk does not necessarily increase with
larger K, since a larger number of covering access will increase the
risk of being detected.

performance of GNN-based attacks against other detection
approaches. Specifically, we will 1) generate the covering
accesses w.r.t. the target access and the GNN system using
previous algorithms, 2) inject the covering accesses into the
graph and 3) evaluate the graph using other detection ap-
proaches. We only evaluate Katz, NMF and MF since pref
and N2V-based approaches do not have a good detection per-
formance and FactM takes too much time. We observe that
our generated accesses, although generated specifically for
attacking the GNN model, can also fool other algorithms to
some extent. With K = 50 covering accesses, around 60% of
the target accesses can be disguised for all other approaches.
The main problem is that the attack cannot guarantee the
stealthiness of the covering accesses. Therefore, the attack
success rate is only around 10% to 20%.

In the lower part of Figure 3, we show the performance of
heuristic-based baseline attacks on different algorithms. We
have two observations from the results. First, the heuristic
attack achieves a better performance on baseline detection
algorithms. This shows that our intuition makes sense and the
heuristic attack can indeed fool some detection systems. Sec-
ond, the heuristic attack does not work well against our GNN
system. We owe it to the fact that GNN-based system is more
complicated than others so the simple heuristic cannot fool the
system easily. This shows the superiority of GNN-based sys-
tem compared with other ones - only our specifically designed

������� ���������� ��������� ��������� ���������
*UDSK�.QRZOHGJH��ͅ� ͆�

���

���

���

���

���

���

(Y
DV
LR
Q�
5D
WH

UWJW�#�. �
UWJW�#�. ��
UWJW�#�. ��

UDWN�#�. ��
UDWN�#�. ��

Figure 4: Gray-box Evasion Results—The gray-box evasion
attack performance with different knowledge of the graph. The ratio
of edges known by the attacker, r, are 0.10/0.12/0.13/0.30/0.30
for the five settings respectively. rtgt refers to the evasion rate of the
target access while ratk refers to the attack success rate (i.e. the rate
of attacks where target access and all the covering accesses evade
the system). Note that ratk does not necessarily increase with larger
K, since a larger number of covering access will increase the risk of
being detected.

algorithm can achieve a good evasion attack performance.
Note that our evasion attack can be applied specifically to

attack other models. We show an example of attacking Katz
in Appendix D and can observe that it also works.

8.5 Gray-box Attack
In the previous analysis, we focus on the attack with white-box
knowledge of the testing graph and observe that the attacker
is able to achieve a good attack performance. However, in
practice the attacker may have limited knowledge of the ac-
cesses made by other users. In this section, we consider this
scenario where the attacker only knows part of the graph. We
assume that the attacker knows all the nodes in the original
graph but only part of the edges. That is, the attacker wants
to perform the attack on the graph G = (V,E,X) but he/she
only has access to the graph G0 = (V,E 0,X), where E 0 ⇢ E.
We let r = |E 0|/|E| denote the ratio of edges known by the
attacker. To achieve the attack, the attacker will perform the
evasion attack algorithm on G0 and add the resulting covering
edges into G.

We first introduce the way to simulate gray-box knowledge
of the graph. Intuitively, the attacker has two ways to know
the accesses on the graph: those related to the attacker’s job,
or those learned from usual patterns. To model these two
types of partial knowledge, we propose an (a,b)-subgraph
by sampling the edges of the original graph. For the first way,
we model it by calculating the distance between the user and
an arbitrary edge. An edge with distance d to the user has
a probability of ad to be known by the user. For the second
way, we model it by a uniform sampling over the graph so

that each edge has a probability of b to be known by the user.
The result is shown in Figure 4. We can see that the less

knowledge the attacker has on the testing graph, the more
difficult it will be to achieve a successful evasion attack. The
evasion rate of target access dropped to around 70% with
30% knowledge of the graph and 50 covering edges added
(compared with 77% in Table 2). Moreover, the attacker can-
not guarantee a 100% evasion rate on the covering edges in
this case. With 10% knowledge of the graph, the attack suc-
cess rate is almost never better than doing nothing (which
is around 25% according to Table 2). With more knowledge
of the graph, injecting around 10 covering access will help
with the attack. The detailed table of the results is shown in
Appendix F.

9 Evaluation on Poisoning Attack

In this section, we evaluate the poisoning attack algorithm
under different scenarios and show that the poisoning attack
is difficult to succeed against the detection model even with
very strong attack capability.

9.1 Attack Setting
We perform the poisoning attack experiment as introduced
in Section 6. We will inject poisoning data on the i-th graph
and evaluate the corrupted model on the data of the (i+1)-th
graph, and report the averaged result over i 2 {1,2, . . . ,49}.
The target accesses are chosen as the same ones as in an
evasion attack. Let G1 denote the poisoned training graph and
G2 denote the testing graph with target access. We will report
the following metric for the attacks:

• stgt : the average score of the target accesses, i.e.
s(G2,u⇤,v⇤).

• rtgt : the average evasion rate of the target accesses, i.e.
(f (G2,u⇤,v⇤)> 0).

• dcov: the average difference between the embed-
ding vectors of covering access and target access, i.e.
d(uc

i ,v
c
i ,G1;u⇤,v⇤,G2).

• AUC: the detection AUC of the model on G2 after trained
on the poisoned dataset.

9.2 Poisoning Attack Performance
We report the attack performance in Table 3. We observe that
the poisoning attack is much more difficult compared with the
previous evasion attack scenario. The attacker almost never
succeeds even with 100 covering edges injected into the train-
ing set. Even with 10,000 covering edges injected, which is
more than 10% of the edges in the original data, the attack
success rate is still not high. The failure of the poisoning at-
tack can be explained by our observation in Section 7.4 that

K stgt rtgt dcov AUC
0 -1.583 26.32% - 0.9073
10 -1.579 26.32% 2.435 0.9073

100 -1.503 26.54% 2.586 0.9073
1000 -1.183 29.25% 2.656 0.9073
10000 -0.308 40.57% 2.716 0.9049

Table 3: Poisoning attack performance.

l K stgt rtgt dcov AUC

100

10 -0.7791 36.23% 2.4201 0.9068
20 -0.5927 36.54% 2.4513 0.9065
50 -0.4716 40.54% 2.5075 0.9057

100 -0.4166 42.08% 2.5364 0.9044

1000

10 -0.5727 40.92% 2.4110 0.9039
20 -0.4880 45.00% 2.4589 0.9023
50 -0.4595 50.54% 2.5059 0.8991

100 -0.4163 59.15% 2.5501 0.8930

Table 4: Poisoning attack with a larger weight l on the in-
jected covering accesses during training.

the model is able to learn a good pattern even with 10% of
noisy data in the training process. Hence, it achieves “self-
correction” and ignores those poisoning covering accesses.
We empirically find that most covering accesses are still clas-
sified as malicious even if we label them as benign accesses
during the training process. Therefore, we conclude that the
poisoning attack is difficult to succeed. We provide a case
study of a poisoning attack in Appendix G and observe that
the injected edges are indeed similar to the target edge.

Note that our observation is very different from those of
prior studies on network intrusion detection systems (IDS)—
prior studies commonly suggest that poisoning attack is highly
effective against IDS [36,38]. We suspect one of the contribu-
tors is the high dynamism of the EHR systems. Note that most
patients only stay in the hospital for a short period of time
(e.g., less than a week). Therefore, the patient nodes in consec-
utive graphs (i.e., weekly snapshots) can be highly different.
In addition, poisoning edges can only exist in the training
process but not in the evaluation process. Such dynamics (on
nodes and edges) could make poisoning challenging.

9.3 Large Training Weight on Covering Edges
As we discussed above, the failure of the poisoning attack may
be also due to the model does self-correction and automati-
cally ignoring the poisoning edges during the training process.
To validate the speculation, we evaluate an unrealistic sce-
nario where the model is trained to focus more on the injected
covering edges. In particular, we put a weight l > 1 on the
loss terms of covering edges during the training process of
the model. The results are shown in Table 4. We can observe
that when we apply a large weight on these covering accesses,
the attack is able to achieve a higher attack performance. In

particular, when we use l = 1000 and add K = 100 covering
accesses, the attack success rate is around 60%. This confirms
our previous assumption that the covering accesses are similar
to the target access and can indeed lead the model to learn
the desired pattern under certain circumstances, but only with
unrealistic conditions.

10 Beyond EHR: Attack against LANL
To examine the generalizability of our results, we apply our
attacks to a public dataset that is outside of the context of EHR
but is within the broad context of illegal access detection.

10.1 LANL Dataset and Detection Model
We evaluate our attack methodology using the dataset from
Los Alamos National Labs (LANL) [21]. LANL contains
58 consecutive days of log files collected using their lab’s
internal computer network with over 12,000 users and 17,000
computers. The dataset contains APT-style attacks that com-
promise internal hosts and perform lateral movement within
the network. We focus on the authentication logs which
contain ground-truth labels for benign and malicious au-
thentication events. Out of 45M events, 518 are labeled
as anomalous/malicious. The dataset has been used as a
ground-truth dataset for anomalous event detection by prior
works [4, 23, 27].

To build a good intrusion detection model for LANL, we
use a state-of-the-art model EULER [23]. EULER stacks a
model agnostic GNN upon a recurrent neural network (RNN)
and builds a temporal graph for link prediction (i.e., link in
this context represents an “access” to a server). EULER con-
structs the graph using the authentication logs by taking the
source and destination servers as the nodes. The edges are
created between the source and destination servers for all au-
thentication records within a time window of 1,800 seconds.
It uses an encoder-decoder framework to generate the embed-
ding and reconstruction for the temporal graph and learns a
probability function to predict the likelihood of an edge ap-
pearing based on previous temporal states. It assumes that an
anomalous edge (non-edge) will occur with a low probability
in the future. EULER outperforms prior works such as [15,33]
in dynamic link prediction.

We take the same approach as EULER and construct a tem-
poral graph using authentication logs from LANL dataset
with their source code1. In order to launch the attack, we
transform the decentralized model trained by the model into
a centralized model; the performance is still the same after
the transformation: both models achieve a detection AUC of
0.997.

10.2 Evasion attack
For the evasion attack, we use the malicious events in the
ground truth as our target edges. We can adopt the same

1https://github.com/iHeartGraph/Euler

K rtgt rcov ratk
0 13.2% - 13.2%
2 48.5% 100% 48.5%
5 99.8% 100% 99.8%

10 100% 100% 100%
20 100% 100% 100%
50 100% 100% 100%

Table 5: Evasion attack performance on the LANL dataset.

K rtgt rcov ratk
0 55.9% - 55.9%
2 63.0% 90.4% 59.5%
5 74.8% 95.6% 64.7%
10 83.0% 92.2% 47.1%
20 94.5% 91.4% 37.6%
50 97.9% 97.6% 67.6%

Table 6: Evasion attack performance on the LANL dataset
when transferring from EULER to Katz.

attack approach as against the EHR system, since the overall
detection model is also differentiable. We show the results of
the evasion attack in Table 5, where the metrics are defined in
the same way as in EHR datasets. We observe that the evasion
attack performance is even better here. We can disguise each
of the malicious events with at most 10 covering accesses and
ensure that the covering accesses are also stealthy.

We also study the transferability of our evasion attack as
shown in Table 6. Similar to the setting in the EHR dataset,
we first launch the attack against the EULER system and then
apply the covering edges to other detection models to see
whether they can disguise the target edge. We only evaluate
Katz here, since the number of nodes is large and MF-based
methods cannot be executed efficiently. We observe a simi-
lar observation as before — the covering edges can indeed
transfer to disguise the target accesses, but their stealthiness
cannot be guaranteed, so that the attack success rate may not
always improve with more covering edges.

10.3 Poisoning attack
For each poisoning attack, one access randomly selected from
the ground truth malicious events is used as the target access to
evaluate whether the attack is successful or not. The evaluate
is repeated for 100 random malicious events from the ground
truth. The results are shown in Table 7. We can observe
that although the poisoning attack is still more difficult to
launch compared with the evasion attack, it is more applicable
here than in the EHR case. This is because the nodes here
are static — nodes in the testing set have already appeared
in the training set. Therefore, the poisoning attack can be
launched by injecting the edges during the training stage that
are connected to the target edge. This confirms our previous
hypothesis that the highly-dynamic property of EHR system

K rtgt AUC
0 12% 0.997
10 17% 0.996

100 56% 0.988
1000 64% 0.979
10000 75% 0.977

Table 7: Poisoning attack performance on the LANL dataset.

makes it more difficult to launch poisoning attacks.

11 Related Work

Graph Edge Classification. In practice, many real-world
applications are related to the edge classification task on
graphs. The link prediction problem has been investigated
in many areas such as social networks and citation net-
works [3, 44]. The recommendation system can be viewed
as a bipartite graph between users and items, and people can
apply GNNs to recommend items to users [13]. The fraud
detection task on graphs [2, 20] also focuses on detecting
abnormal edges in graphs.

Malicious Medical Records Access Identification. Sev-
eral supervised learning approaches such as logistic regres-
sion have been applied to detect malicious access for med-
ical records [5, 22]. Considering the privacy concerns and
domain knowledge required for the labeling information,
later several unsupervised learning strategies have been stud-
ied [11,12]. However, these approaches do not take accessing
graph-structured information into account explicitly. In this
paper we for the first time leverage graph neural networks to
model the EMR accessing patterns with deep networks.

Adversarial Attacks on GNNs and Edge Classification
Models. Various researches have been conducted on at-
tacking graph neural networks for node classification or graph
classification. From the perspective of attack goal, [10, 47]
perform targeted attack which aims to fool the model on cer-
tain inputs; [42, 48] perform untargeted attack and the goal
is simply to degrade model performance. From the perspec-
tive of attack setting, [10, 41] perform evasion attack where
the adversarial perturbation is only applied at the evaluation
phase; [42, 47, 48] perform transductive attack where model
training, evaluation and attack happen on the same graph. Our
attack is working on the targeted attack.

Several works also focus on the attack against edge de-
tection models. [35] proposes an optimization-based attack
on knowledge graphs. [46] proposes a game theory-based
attack against similarity-based link prediction. The most sim-
ilar works are [7] and [26] which also attack against GNN-
based models. [7] proposes a gradient-based evasion attack
while [26] proposes a searching-based evasion attack. In both
works, however, the perturbation budget is manually chosen

and the attack will not consider the stealthiness of injected
covering accesses. In addition, their link prediction task fo-
cuses on non-existing node pairs, while our access detection
task focuses on existing edges. For all the works mentioned
here, the model is trained in a transductive setting, while our
work focuses on the inductive setting where the model is
trained and evaluated on different graphs.

12 Conclusion

In this paper, we propose adversarial attacks against abnormal
access detection systems for EHR data. We show that despite
the good performance of detection systems on normal data,
an attacker with knowledge of the system can disguise his
illegitimate access with covering accesses in the system. In
addition, injecting covering accesses during the evaluation
phase will be much more effective than in the training phase.
Such a conclusion helps with further investigation in robust
EHR systems as well as in other intrusion detection tasks.

Ethics Concerns
The EHR dataset is de-identified using HIPAA Safe Har-
bor rules and our study is conducted with Institutional Re-
view Board (IRB) approval. Both users and patients are de-
identified in the dataset. We believe that we have demon-
strated significant adversarial threats to advanced methods for
detecting illegitimate access to medical records. However, we
further believe that revealing these threats in this publication
does not create an immediate concern for currently-deployed
EHR systems. Our investigation is similar to other research
on adversarial machine learning in many ways [6, 10, 26]. In
particular, we aim to provide foundations for understanding
risks and providing mitigation in a timely manner. For ex-
ample, our findings suggest that adversarial techniques will
be less effective if hospitals do not reveal the periods over
which learning and prediction are carried out. This provides
a simple countermeasure that can be used immediately to
bolster defenses. Also, the deployment of advanced detection
techniques is nascent, so there is time to continue studying
mitigation techniques without risking widespread compro-
mises in the wild.

Acknowledgements
This project would not have been possible without the gen-
erous support from Northwestern Memorial Hospital and
the Northwestern Medicine Enterprise Data Warehouse. Our
research was supported by NSF CNS grants 09-64392, 19-
10100, 20-46726, and 20-55233. It was also supported by
HHS grant 90TR0003-01 and a grant from C3 AI. Views
expressed in the paper are those of the authors only.

References
[1] What’s ahead for ai and machine learning in

healthcare?, https://www.imprivata.com/blog/
whats-ahead-ai-and-machine-learning-healthcare.

[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based
anomaly detection and description: a survey. Data mining and knowl-
edge discovery, 29(3):626–688, 2015.

[3] Mohammad Al Hasan and Mohammed J Zaki. A survey of link pre-
diction in social networks. In Social network data analytics, pages
243–275. Springer, 2011.

[4] Benjamin Bowman, Craig Laprade, Yuede Ji, and H. Howie Huang.
Detecting lateral movement in enterprise computer networks with un-
supervised graph ai. In RAID, 2020.

[5] Aziz A Boxwala, Jihoon Kim, Janice M Grillo, and Lucila Ohno-
Machado. Using statistical and machine learning to help institutions
detect suspicious access to electronic health records. Journal of the
American Medical Informatics Association, 18(4):498–505, 2011.

[6] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy
(sp), pages 39–57. IEEE, 2017.

[7] Jinyin Chen, Ziqiang Shi, Yangyang Wu, Xuanheng Xu, and Haibin
Zheng. Link prediction adversarial attack. arXiv preprint
arXiv:1810.01110, 2018.

[8] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh.
Zoo: Zeroth order optimization based black-box attacks to deep neural
networks without training substitute models. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, pages 15–26,
2017.

[9] You Chen, Steve Nyemba, and Bradley Malin. Detecting anomalous
insiders in collaborative information systems. IEEE transactions on
dependable and secure computing, 9(3):332–344, 2012.

[10] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and
Le Song. Adversarial attack on graph structured data. In International
conference on machine learning, pages 1115–1124. PMLR, 2018.

[11] Daniel Fabbri and Kristen LeFevre. Explanation-based auditing. Pro-
ceedings of the VLDB Endowment, 5(1):1–12, 2011.

[12] Daniel Fabbri, Kristen LeFevre, and David A Hanauer. Explaining
accesses to electronic health records. In Proceedings of the 2011
workshop on Data mining for medicine and healthcare, pages 10–17,
2011.

[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and
Dawei Yin. Graph neural networks for social recommendation. In The
World Wide Web Conference, pages 417–426, 2019.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[15] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyn-
graph2vec: Capturing network dynamics using dynamic graph repre-
sentation learning. Knowledge-Based Systems, 2020.

[16] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[17] Ash har Quraishi. At least 50 northwestern hospital employees
fired for accessing smollett’s profile, records: Sources, https:
//www.nbcchicago.com/news/national-international/
northwestern-memorial-hospital-employees-fired-jussie-smsollett-records/
2383/.

[18] Monica Hedda, Bradley A Malin, Chao Yan, and Daniel Fabbri. Eval-
uating the effectiveness of auditing rules for electronic health record
systems. In AMIA Annual Symposium Proceedings, volume 2017, page
866. American Medical Informatics Association, 2017.

[19] Ashish K Jha, Catherine M DesRoches, Eric G Campbell, Karen
Donelan, Sowmya R Rao, Timothy G Ferris, Alexandra Shields, Sara
Rosenbaum, and David Blumenthal. Use of electronic health records in
us hospitals. New England Journal of Medicine, 360(16):1628–1638,
2009.

[20] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang
Yang. Catchsync: catching synchronized behavior in large directed
graphs. In Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 941–950,
2014.

[21] Alexander D. Kent. Cybersecurity Data Sources for Dynamic Network
Research. In Dynamic Networks in Cybersecurity. Imperial College
Press, June 2015.

[22] Jihoon Kim, Janice M Grillo, Aziz A Boxwala, Xiaoqian Jiang, Rose B
Mandelbaum, Bhakti A Patel, Debra Mikels, Staal A Vinterbo, and
Lucila Ohno-Machado. Anomaly and signature filtering improve clas-
sifier performance for detection of suspicious access to ehrs. In AMIA
Annual Symposium Proceedings, volume 2011, page 723. American
Medical Informatics Association, 2011.

[23] Isaiah J. King and H. Howie Huang. Euler: Detecting network lateral
movement via scalable temporal graph link prediction. In Proc. of
NDSS, 2022.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

[25] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In ICLR (Poster), 2017.

[26] Wanyu Lin, Shengxiang Ji, and Baochun Li. Adversarial attacks on link
prediction algorithms based on graph neural networks. In Proceedings
of the 15th ACM Asia Conference on Computer and Communications
Security, pages 370–380, 2020.

[27] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and
Dan Meng. Log2vec: A heterogeneous graph embedding based ap-
proach for detecting cyber threats within enterprise. In Proc. of CCS,
2019.

[28] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into
transferable adversarial examples and black-box attacks. arXiv preprint
arXiv:1611.02770, 2016.

[29] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learning Repre-
sentations, 2018.

[30] Robert Mitchell and Ray Chen. Behavior rule specification-based
intrusion detection for safety critical medical cyber physical systems.
IEEE Transactions on Dependable and Secure Computing, 12(1):16–
30, 2014.

[31] Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards reverse-
engineering black-box neural networks. In Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning, pages 121–144. Springer,
2019.

[32] S Pan, R Hu, G Long, J Jiang, L Yao, and C Zhang. Adversarially regu-
larized graph autoencoder for graph embedding. In IJCAI International
Joint Conference on Artificial Intelligence, 2018.

[33] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro
Suzumura, Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles
Leiserson. Evolvegcn: Evolving graph convolutional networks for
dynamic graphs. In Proc. of AAAI, 2020.

[34] Jordan J Pellett, Olufemi Omitaomu, Mohammed M Olama, Ozgur
Ozmen, Hilda Klasky, Laura Pullum, Teja Kuruganti, Merry Ward,
Angela Laurio, Jeanie Scott, et al. Detection of anomalous events
in electronic health records. Technical report, Oak Ridge National
Lab.(ORNL), Oak Ridge, TN (United States), 2020.

https://www.imprivata.com/blog/whats-ahead-ai-and-machine-learning-healthcare
https://www.imprivata.com/blog/whats-ahead-ai-and-machine-learning-healthcare
https://www.nbcchicago.com/news/national-international/northwestern-memorial-hospital-employees-fired-jussie-smsollett-records/2383/
https://www.nbcchicago.com/news/national-international/northwestern-memorial-hospital-employees-fired-jussie-smsollett-records/2383/
https://www.nbcchicago.com/news/national-international/northwestern-memorial-hospital-employees-fired-jussie-smsollett-records/2383/
https://www.nbcchicago.com/news/national-international/northwestern-memorial-hospital-employees-fired-jussie-smsollett-records/2383/

[35] Pouya Pezeshkpour, Yifan Tian, and Sameer Singh. Investigating ro-
bustness and interpretability of link prediction via adversarial modifi-
cations. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages
3336–3347, 2019.

[36] Ya-guan QIAN, Hong-bo LU, Shou-ling JI, Wu-jie ZHOU, Shu-hui
WU, Jing-sheng LEI, and Xiang-xing TAO. A poisoning attack on
intrusion detection system based on svm. ACTA ELECTONICA SINICA,
47(1):59, 2019.

[37] Soumi Ray, Dustin S McEvoy, Skye Aaron, Thu-Trang Hickman, and
Adam Wright. Using statistical anomaly detection models to find clini-
cal decision support malfunctions. Journal of the American Medical
Informatics Association, 25(7):862–871, 2018.

[38] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D
Joseph, Shing-hon Lau, Satish Rao, Nina Taft, and J Doug Tygar. An-
tidote: understanding and defending against poisoning of anomaly
detectors. In Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement, pages 1–14, 2009.

[39] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs!
targeted clean-label poisoning attacks on neural networks. In Advances
in Neural Information Processing Systems, pages 6103–6113, 2018.

[40] Xuhong Wang, Baihong Jin, Ying Du, Ping Cui, Yingshui Tan, and
Yupu Yang. One-class graph neural networks for anomaly detection in
attributed networks. Neural Computing and Applications, pages 1–13,
2021.

[41] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu,
and Liming Zhu. Adversarial examples on graph data: Deep insights
into attack and defense. In IJCAI International Joint Conference on
Artificial Intelligence, 2019.

[42] Kaidi Xu, Hongge Chen, Sijia Liu, Pin Yu Chen, Tsui Wei Weng,
Mingyi Hong, and Xue Lin. Topology attack and defense for graph
neural networks: An optimization perspective. In 28th International
Joint Conference on Artificial Intelligence, IJCAI 2019, pages 3961–
3967. International Joint Conferences on Artificial Intelligence, 2019.

[43] Prosper K Yeng, Muhammad Ali Fauzi, and Bian Yang. Workflow-
based anomaly detection using machine learning on electronic health
records’ logs: A comparative study. In 2020 International Conference
on Computational Science and Computational Intelligence (CSCI),
pages 753–760. IEEE, 2020.

[44] Muhan Zhang and Yixin Chen. Link prediction based on graph neural
networks. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 5171–5181, 2018.

[45] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open,
1:57–81, 2020.

[46] Kai Zhou, Tomasz P Michalak, and Yevgeniy Vorobeychik. Adver-
sarial robustness of similarity-based link prediction. In 2019 IEEE
International Conference on Data Mining (ICDM), pages 926–935.
IEEE Computer Society, 2019.

[47] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversar-
ial attacks on neural networks for graph data. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 2847–2856, 2018.

[48] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph
neural networks via meta learning. In International Conference on
Learning Representations, 2018.

A Other Detection Models

A.1 Model Details
We compare our GNN-based detection system with other pop-
ular anomaly edge detection algorithms introduced in [44],
including preferential attachment (Pref), Katz index (Katz),
non-negative matrix factorization (NMF), matrix factoriza-
tion (MF), factorization machine (FM), Node2Vec (N2V),
Node2Vec with feature (N2V-F) and one-class graph neural
network (OCGNN). All these approaches except for OCGNN
are designed in the transductive learning setting and we run
these algorithms in the same setting as our transductive set-
ting for GNN. We run OCGNN in the inductive setting. Pref:
This is a heuristic score for linkage probability calculated by
|N (u)| · |N (v)| where N (u) denotes the neighborhood of u.
A higher score indicates a larger probability of linkage.

Katz: This is also a heuristic score for linkage probability
calculated by ÂLmax

l=1 bl |walks<l>(u,v)|, where walks<l>(u,v) is
the set of length-l walks between u and v. A higher score
indicates a larger probability of linkage. We use b = 0.001
and Lmax in practice.

NMF: Given the adjacency matrix A 2 R|V |⇥|V |, NMF
will look for two nonnegative matrix U,V 2 (R+)|V |⇥h to
minimize ||A�UV |||F . Then we use the recovered adjacency
matrix UV | to determine which edges are illegitimate. We
use the scikit-learn toolkit for solving the problem and use
the default parameters, except that we set h = 100 for better
detection performance.

MF: This algorithm is mostly the same with NMF except
that we no longer require U,V to have only non-negative
values. We use the fastFM package for solving the problem
and use the default ALS solver.

FM: In the factorization machine, the information of each
edge is processed into a vector x, including the one-hot repre-
sentation of the two nodes and the feature vectors of the two
nodes. Then the model will fit a prediction model of linkage
score y(x) by:

y(x) = w0 +Â
i

wixi +Â
i< j

< vi,v j > xix j

where w and v are the trainable parameters. We use the fastFM
package for solving the problem and use the default ALS
solver.

N2V: Node2Vec proposes to generate an embedding vector
for each node in a graph via random walk. After the node em-
bedding vector is generated, we will concatenate the vectors
for the node pairs in an edge to get the edge embedding vector
and fit a logistic regression model to predict linkage. We use
the node2vec package for embedding vector generation.

N2V-F: This algorithm is mostly the same with N2V
except that we concatenate the node feature vectors in addition

Figure 5: Detection AUC of the pipeline when trained on the
data of one period and evaluated on the data of another period.
We can see that the detection performance is usually good
even when the model is trained and evaluated on different
time periods.

to the generated node embedding to get the edge embedding
vector.

OCGNN: This approach uses the same graph neural net-
work structure as in our main text. The key difference is that
the training process involves only benign data and the model
is trained with a one-class optimization goal. We follow the
same optimization process and parameters as in [40], except
that we use the concatenation of both node vectors as the rep-
resentation vector of the edge (in their paper they are working
on node classification, so no edge vector is needed).

B Detection Performance Over Time

We show the model detection performance on different time
periods as shown in Figure 5. We can observe that the de-
tection AUCs on the diagonal are usually the highest (with
the lightest color). This matches the intuition that a model
trained on the period should also have the best evaluation
performance on the same period. On the other hand, we also
observe that the transferability of models is good. In most
cases the model achieves over 0.88 detection AUC.

C Addition Detection Results

Varied Ratio of Illegitimate Accesses. In previous detec-
tion experiments we assume a 10% of illegitimate accesses
during evaluation. We will evaluate how the detection perfor-
mance changes with a different proportion. In Table 8, we
show the result when we vary the proportion. We observe
that the detection performance (AUC, TPR) indeed improves
by a small margin with fewer illegitimate accesses. This is
expect-able since more illegitimate accesses will yield to more
confusion for detection. The Prec@1k metric drops because

Approach AUC Prec@1k TPR TNR
GNN-ind,clean-10% 0.9073 0.9629 0.7751 0.8991
GNN-ind,clean-5% 0.9121 0.9069 0.8104 0.8757
GNN-ind,clean-2% 0.9135 0.6524 0.8146 0.8747
GNN-ind,clean-1% 0.9155 0.4004 0.8178 0.8747

Table 8: Detection performance with different proportion of
illegitimate accesses injected.

Model Type AUC Prec@1k TPR TNR
GNN 0.9073 0.9629 0.7751 0.8991
DNN 0.7897 0.7580 0.5659 0.8815
GNN (none) 0.7554 0.8280 0.4670 0.9035
GNN (udep) 0.8214 0.7640 0.6225 0.9066
GNN (urole) 0.8584 0.8574 0.6683 0.9130
GNN (elos) 0.8220 0.7481 0.5957 0.9071
GNN (page) 0.8505 0.8576 0.6776 0.9093
GNN (pgender) 0.8114 0.7353 0.5804 0.9026
GNN (pdiag) 0.8743 0.8621 0.7376 0.8693
GNN (-udep) 0.9015 0.9576 0.7756 0.8843
GNN (-urole) 0.8997 0.9233 0.7684 0.8955
GNN (-elos) 0.9057 0.9589 0.7754 0.8956
GNN (-page) 0.9050 0.9603 0.7771 0.8987
GNN (-pgender) 0.9055 0.9613 0.7699 0.9010
GNN (-pdiag) 0.8915 0.9603 0.7395 0.9049

Table 9: Detection performance of our pipeline. (none) repre-
sents the model without any node information; (*) represents
the model only with that feature; (-*) represents the model
with all node features except the specified one. The feature
name abbreviations were introduced in Section 3.

it is a metric related to the number of injected accesses - the
more injected, the metric will be higher. On the other hand,
the difference in the metric is indeed small. Therefore, we
will use 10% in the overall experiments.

Detection Performance with Different Feature Sets. In
Table 9, we compare the model with a 2-layer neural network
(DNN) which does not consider graph structure, as well as
GNN models without any node features (denoted by none),
with one type of feature (denoted by feature name) and with
all but one type of feature (denoted by ‘- feature name’).
The feature names were introduced in Section 3. We observe
that if we only consider either node features (DNN) or graph
structures (GNN (none)), the performance will not be good.
This indicates the importance of combining node information
and graph structure in the system. We observe that all features
help with the detection performance. The patient diagnosis
information is the most important feature in the detection,
as removing it will lead to the largest performance drop and
we can use only the diagnosis information to build a good
detection model.

Different Anomaly Simulations. We introduced four sim-
ulations of illegitimate accesses in Section 7.3. Here we show
the evaluation results under these different simulations as in
Table 10. For simulations 2-4, we inject 100 illegitimate ac-
cesses instead of 10% of the overall access number, as too
many accesses to the same encounter/from the same user

Simulation AUC TPR TNR
Sim1 0.9073 0.7751 0.8991
Sim2 0.7276 0.4694 0.8739
Sim3 0.9197 0.8041 0.8738
Sim4 0.9204 0.8020 0.8738

Table 10: Detection performance using different simulations.

Table 11: The evasion attack performance of our GNN-based
attack and the heuristic-based baseline attack against different
detection algorithms.

Model GNN Katz NMF MF
Init rtgt 25.49% 17.38% 24.23% 35.23%

rtgt @ K = 10 60.33% 32.92% 36.62% 57.77%
rcov @ K = 10 100.0% 36.00% 48.70% 76.82%

GNN ratk @ K = 10 60.33% 10.08% 8.46% 14.69%
Attack rtgt @ K = 50 77.45% 59.38% 62.62% 71.00%

rcov @ K = 50 100.0% 66.59% 70.50% 82.06%
ratk @ K = 50 77.45% 25.69% 13.85% 8.08%
rtgt @ K = 10 46.69% 48.92% 67.08% 58.31%
rcov @ K = 10 76.45% 72.14% 87.30% 84.23%

Heuristic ratk @ K = 10 31.57% 40.46% 59.08% 35.54%
Attack rtgt @ K = 50 53.77% 87.15% 95.15% 65.92%

rcov @ K = 50 77.59% 94.26% 98.44% 86.98%
ratk @ K = 50 14.31% 67.00% 90.62% 10.15%

is not acceptable. We can observe that the model performs
consistently except for the second simulation, i.e. from dif-
ferent users to the most frequently accessed encounter. This
is intuitively understandable - since a wide variety of users
have accessed the counter, it is rather difficult to detect one
illegitimate access out of them. This also suggests a weak
point in the automatic detection of illegitimate access.

D Evasion Attack

Evasion Attack against Different Approaches. We show
the detailed number of evasion attacks against different ap-
proaches in Table 11.

K rtgt rcov ratk
0 17.38% - -
2 20.29% 100% 20.29%
5 25.29% 100% 25.29%
20 38.57% 100% 38.57%
50 58.65% 100% 58.65%

Table 12: Designed evasion attack for Katz.

Specific Evasion Attack for Katz. In our evasion attack,
we repeatedly pick covering accesses based on the gradient of
prediction score w.r.t. the adjacency matrix. This idea can be
generalized to attack other algorithms as long as the prediction
score is calculated by the adjacency matrix in a differentiable
way. Hence, we can apply the same idea to attack the Katz
index-based system. The calculation of Katz function can be

Patient Care Nurse Male, >70yr old, anemia & kidney disease & fever

User

Encounters

Female, infant, flatulence

Male, infant, newborn & vaccination

Male, infant, newborn & viral hepatitis

Female, infant, no diagnosis

Female, infant, under observation

Female, infant, ferrous sulfate used

Female, 30-40yr old, delivery & abnormal lung field

Female, 30-40yr old, delivery

Female, 10-20yr old, abnormal lung field & UTI

Female, 60-70yr old, UTI & hypertension

Female, 50-60yr old, hypertension & anemia

Male, >70yr old, hypertension & anemia

Male, 60-70yr old, hypertension & kidney disease

Male, >70yr old, anemia & kidney disease & fever

······

······

······

······

Time Order

Figure 6: An Example of Evasion Attack—An example of
the evasion attack. The encounter in red color is the target encounter
to access. The black dashed arrows are the benign accesses that
originally exist; the red arrow is the target access that will be detected
and the shaded encounter is a rejected one which will not exist in
the dataset; the black solid arrows are the injected covering accesses
which seem benign to the model; the green arrow is the target access
which seems benign to the model after the injection of covering
accesses.

formalized as:
Lmax

Â
l=1

bl |walks<l>(u,v)|

=
Lmax

Â
l=1

bl(Al)uv

which is a differentiable function w.r.t. the adjacency matrix
A. Therefore, we can apply the same evasion attack algorithm
as in Alg. 1 to generate covering accesses against Katz. The
result is shown in Table 12. We can observe that our gradient-
based approach also applies to attack Katz-based detection
systems. With K = 50 edges injected the evasion rate achieves
around 60% and all the covering accesses are stealthy to the
system.

E Case Study of Evasion Attack

We provide an example of the evasion attack in Figure 6.
We omit some encounter details in the figure and only keep
the most important ones. We do not include a LIME-based
explanation here because our attack does not change the node
features, so only the structural prior will significantly change
in the interpretation.

a,b r K stgt rtgt rcov ratk

0.0,0.1 0.10

2 -1.167 37.38% 81.27% 26.54%
5 -0.795 44.46% 84.41% 23.46%
10 -0.517 49.31% 86.68% 20.77%
20 -0.300 53.31% 89.06% 16.00%
50 -0.157 55.69% 90.85% 10.31%

0.4,0.05 0.12

2 -1.085 38.00% 81.77% 26.85%
5 -0.673 47.23% 84.30% 24.15%
10 -0.349 53.15% 86.72% 20.69%
20 -0.099 57.69% 88.64% 16.15%
50 0.067 61.38% 93.00% 11.54%

0.5,0.0 0.13

2 -1.070 39.08% 81.85% 28.31%
5 -0.649 47.69% 84.50% 26.46%
10 -0.322 54.23% 86.01% 21.31%
20 -0.065 58.46% 88.08% 16.08%
50 0.116 63.31% 90.27% 11.77%

0.0,0.3 0.30

2 -0.959 41.15% 90.38% 33.92%
5 -0.466 50.69% 91.71% 36.08%
10 -0.081 57.92% 92.85% 35.00%
20 0.240 64.46% 93.97% 29.85%
50 0.461 69.54% 95.21% 23.46%

0.5,0.2 0.30

2 -0.930 41.08% 90.46% 34.00%
5 -0.423 51.62% 91.54% 36.08%
10 -0.023 59.38% 92.06% 32.46%
20 0.299 65.38% 93.98% 30.00%
50 0.530 70.38% 94.84% 23.69%

Table 13: The performance of gray-box evasion attack with
different knowledge of the graph. The attacker’s knowledge
is measured by r (the ratio of edges in the graph known by
the attacker). The edge sampling is controlled by a and b.

In this example, the attacker is a patient care nurse who
wants to access a male elderly (marked as the red encounter)
who suffers from anemia, kidney disease and fever. However,
the earlier accesses made by the attacker are all related with
the encounters of infants (the black dashed arrows). Therefore,
the model easily recognizes the target access as malicious with
a high score: s⇡�6.98 (the red arrow).

In order to disguise the target access, the attacker needs to
inject some covering accesses (the black solid arrows). The
first several accesses go to encounters of pregnant women
since it is natural for a nurse who works with infants to also
access the charts of the mothers of the infants. After that,
the attacker will access some females with other diagnoses,
usually generic and not gender-specific. Gradually, the model
will view it as benign for this user to access the elders with a
generic diagnosis regardless of gender. After injecting 20 cov-
ering accesses, the attacker succeeds in accessing the target
encounter (the green arrow) without raising an alert.

F Gray-box Attack

We show the detailed number of gray-box evasion attacks in
Table 13.

Users Encounters

Female, infant, no diagnosis

······

Pharmacist

Researcher Female, 30-40yr old, breast

Female, infant, bradycardiaDietary

Patient Care Nurse Female, >70yr old, anemia

Male, infant, vaccinationDietary

Patient Care Nurse Male, 50-60yr old, hypoxemia

Male, infant, no diagnosisRespiratory

Patient Care Nurse Male, >70yr old, anemia

Male, infant, respiratory distressPharmacy Admin

Patient Care Nurse Female, >70yr old, anemia

Training

Testing

Figure 7: An Example of Poisoning Attack—The users and
encounters in blue color represent the most frequently appeared fea-
tures in the users accessing a related encounter or in the encounters
accessed by a related user. The black dashed arrows are the benign
accesses that originally exist; the black solid arrows are the injected
covering accesses in the training data; the green arrow is the target
access in the testing data.

G Case Study of Poisoning Attack

We show an example of the poisoning attack in Figure 7. We
omit some encounter details and only keep the most important
ones. The accesses actually being injected are shown in solid
arrows and with users and encounters in black color. We also
provide information of the most frequently appeared features
in the users accessing an encounter/encounters accessed by a
user in blue color and by dashed arrows. The four covering
accesses at the top are injected into the training data; the target
access at the bottom is performed during the testing phase.

In this example, the adversary aims to make an access from
a pharmacy admin to a male infant. However, we observe
that most of the previous accesses go to elder people, so this
access will look weird. To disguise the target access, the
adversary will inject several covering accesses during the
training process. We observe that most covering accesses are
from users that used to access encounters of the elder man
and go to encounters of infants. These users and encounters
are similar to the ones in the target access and the adversary
hopes that the model will be trained to recognize such access
patterns as benign. However, such an attack is weaker than
the evasion attack and it cannot succeed unless a larger weight
is put on the injected covering accesses during training.

	Introduction
	Background
	Dataset Introduction
	Attack Motivation & Threat Model
	Problem Setup
	Attack Motivation
	Threat Model

	Evasion Attack
	Attack Goal
	Attack Approach

	Poisoning Attack
	Attack Goal
	Attack Approach

	Evaluation on Malicious Access Detection
	Abnormal Access Detection System
	Model Setting
	Illegitimate Access
	Detection Performance

	Evaluation on Evasion Attacks
	Attack Setting
	Baseline Attacks
	Evasion Attack Performance
	Attack against Different Detectors
	Gray-box Attack

	Evaluation on Poisoning Attack
	Attack Setting
	Poisoning Attack Performance
	Large Training Weight on Covering Edges

	Beyond EHR: Attack against LANL
	LANL Dataset and Detection Model
	Evasion attack
	Poisoning attack

	Related Work
	Conclusion
	Other Detection Models
	Model Details

	Detection Performance Over Time
	Addition Detection Results
	Evasion Attack
	Case Study of Evasion Attack
	Gray-box Attack
	Case Study of Poisoning Attack

