
eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs

Jaehong Min1, Chenxingyu Zhao1, Ming Liu2, and Arvind Krishnamurthy1

1University of Washington
2University of Wisconsin-Madison

Abstract
Emerging Zoned Namespace (ZNS) SSDs, providing the

coarse-grained zone abstraction, hold the potential to signif-

icantly enhance the cost-efficiency of future storage infras-

tructure and mitigate performance unpredictability. However,

existing ZNS SSDs have a static zoned interface, making them

in-adaptable to workload runtime behavior, unscalable to un-

derlying hardware capabilities, and interfering with co-located

zones. Applications either under-provision the zone resources

yielding unsatisfied throughput, create over-provisioned zones

and incur costs, or experience unexpected I/O latencies.

We propose eZNS, an elastic-zoned namespace interface

that exposes an adaptive zone with predictable characteristics.

eZNS comprises two major components: a zone arbiter that

manages zone allocation and active resources on the control

plane, a hierarchical I/O scheduler with read congestion con-

trol, and write admission control on the data plane. Together,

eZNS enables the transparent use of a ZNS SSD and closes

the gap between application requirements and zone interface

properties. Our evaluations over RocksDB demonstrate that

eZNS outperforms a static zoned interface by 17.7% and

80.3% in throughput and tail latency, respectively, at most.

1 Introduction

The NVMe Zoned Namespace (ZNS) is a newly-introduced

storage interface and has received significant attention from

data center and enterprise storage vendors. By dividing the

SSD physical address space into logical zones, migrating

from device-side implicit garbage collection (GC) to host-

side explicit reclaim, and eradicating random write accesses,

a ZNS SSD significantly reduces device DRAM needs, re-

solves the write amplification (WAF) issue, minimizes costly

overprovisioning, and mitigates I/O interference. However,

the performance characteristics of the ZNS interface are not

well-understood. In particular, to build efficient I/O stacks

over it, we should be cognizant of (1) how the underlying

SSD exposes the zone interface and enforces its execution

restrictions; (2) what trade-offs the device’s internal mecha-

nisms make to balance between cost and performance. For

example, the device-enforced zone placement makes the ac-

tual I/O bandwidth capacity of a zone contingent on how a

ZNS SSD allocates zone blocks across channels/dies. Further,

a zone is not a performance-isolated domain, and one could

observe considerable I/O interference for inter-zone read and

write requests. Therefore, there is a strong need to understand

its idiosyncratic features and bring enough clarity to storage

applications.

We perform a detailed performance characterization of a

commodity ZNS SSD, investigate its device-internal mech-

anisms, and analyze the benefits and pitfalls under differ-

ent I/O profiles in both standalone and co-located scenarios.

Using carefully calibrated microbenchmarks, we examine

the interaction between zones and the underlying SSD from

three perspectives: zone striping, zone allocation, and zone

interference. We also compare with conventional SSDs when

necessary to investigate the peculiarity of a ZNS SSD. Our

experiments highlight the interface’s capabilities to mitigate

the burden on I/O spatial and temporal management, identify

constraints that would cause sub-optimal performance, and

provide guidance on overcoming the limitations.

We then propose eZNS, a new interface layer, which pro-

vides a device-agnostic zoned namespace to the host system,

mitigates inter-/intra-zone interference, and improves the de-

vice bandwidth by allocating active resources based on the ap-

plication workload profile. eZNS is transparent to upper-layer

applications and storage stacks. Specifically, eZNS comprises

two components: the zone arbiter on the control plane and a

tenant-cognizant I/O scheduler on the data plane. The zone

arbiter maintains the device shadow view that manages zone

allocations and realizes a dynamic resource allocation by a

zone ballooning mechanism. It allows serving applications

to max out the device capability by enabling the maximum

device parallelism given the workload profile and rebalancing

inactive bandwidth across namespaces. The I/O scheduler of

eZNS leverages the intrinsic characteristics of ZNS, where

there are no hardware-hidden internal bookkeeping opera-

tions. Read I/Os become more predictable, and one can di-

rectly harness this property to examine inter-zone interference.
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Figure 1: The architecture of a conventional and ZNS SSD.

On the other hand, write I/Os share a performance domain

due to the write cache architecture of the SSD, causing global

congestion across all active zones. eZNS, therefore, applies

a local congestion control for reads and a global admission

control for writes. Our I/O schedulers mitigate the interfer-

ence independently but improve overall system performance

cooperatively. We demonstrate benefits in the evaluation (§5)

over micro-benchmarks and RocksDB.

2 Background and Motivation

This section reviews the basics of NAND-based SSDs, in-

troduces the ZNS SSD and its features, and discusses the

problems with the existing zoned interface.

2.1 NAND-based SSDs

A NAND-based SSD combines an array of flash memory

dies and is able to deliver a bandwidth of several GB/s. It

comprises four main architectural components (Figure 1):

(1) a host interface logic (HIL) that implements the proto-

col used to communicate with the host, such as SCSI [40]

and recent NVMe [29]; (2) an SSD controller, enclosing an

embedded processor and a flash channel controller, which is

responsible for the address translation and scheduling, as well

as flash memory management; (3) onboard DRAM, buffering

transmitted I/O data and metadata, storing the address transla-

tion table, and providing a write cache; (4) a multi-channel

subsystem that connects NAND dies via a high-bandwidth

interconnect. As shown in Figure 1, a NAND die consists of

hundreds of erase blocks, where each block contains hundreds

to thousands of pages. Each channel holds multiple dies to

increase I/O parallelism and bandwidth. Each page encloses

a fixed-sized data region and a metadata area that stores ECC

and other information. Flash memory supports three major

operations: read, program, and erase. The access granular-

ity of a read/program is a page, while the erase command is

performed in units of blocks. NAND flash memory has three

unique characteristics [1, 10, 12, 19, 26]: (1) no in-place up-

date, where the whole block must be erased before updating

any page in that block; (2) asymmetric performance between

reads and programs; (3) limited lifetime (endurance) ± each

cell has a finite number of program/erase (P/E) cycles [22].

To effectively use the NAND flash and address its limita-

tions, SSDs employ a special mapping layer called the flash

translation layer (FTL). It provides three major functionali-

ties [13, 20, 33, 52]: (1) dynamically mapping logical blocks

addresses (LBA) to physical NAND pages addresses (PPA);

(2) implementing a garbage collection (GC) mechanism to

handle the no in-place update issue and asynchronously re-

claim invalid pages; (3) applying a wear-leveling technique to

evenly balance the usage (or aging property) of all blocks and

prolong the SSD lifespan. However, FTL brings in consid-

erable overheads. First, the translation table requires a large

amount of DRAM to store the mapping entries, e.g., 1GB for

1TB NAND capacity for 4KB data unit size. Second, when

serving a user I/O, the compounding effect of GC and wear-

leveling would trigger additional SSD internal writes (i.e.,

copying valid pages to erase the block) and lead to the WAF

(Write Amplification Factor) problem. Third, the FTL does

not employ performance isolation mechanisms and incurs sig-

nificant interference issues under mixed I/O profiles [28, 32].

2.2 Zoned Namespace SSDs

ZNS SSDs, a successor to Open-Channel (OC) SSDs [6, 9],

have recently been developed to overcome the aforemen-

tioned limitations of conventional SSDs. There are several

commodity ZNS SSDs from various vendors [34, 37, 38, 50].

A ZNS SSD applies the same architecture as a conventional

one (Figure 1) but exposes the zoned namespace interface. A

namespace is a separate logical block address space, like a

traditional disk partition, but managed by the NVMe device

controller rather than the host software. The device may con-

trol the internal block allocation of namespaces to optimize

the performance based on the device-specific architecture. In

ZNS SSD, the namespace comprises multiple zones instead

of blocks in the conventional one, and each namespace owns

dedicated active resources that are used to open and write a

zone.

A ZNS SSD divides the logical address space of names-

paces into fixed-sized zones, where each one is a collection

of erase blocks and must be written sequentially and reset

explicitly. ZNS SSDs present three benefits: (1) Maintain

coarse-grained mappings between zones and flash blocks and

apply wear-leveling at the zone granularity, requiring much

smaller internal DRAM; (2) Eliminate the device-side GC and

reclaim NAND blocks via explicit zone resets by host appli-

cations, which mitigates the WAF and log-on-log [51] issues

and minimizes the over-provisioning overhead; (3) Enable the

placement of opened zones across different device channels

and dies, providing isolated I/O bandwidth and eliminating

inter-zone write interference.

A zone has six states (i.e., empty, implicitly open, explicitly

open, closed, full, read only, and offline). State transitions are

triggered by either write I/Os or zone management commands

(i.e., RESET, OPEN, CLOSE, and FINISH). A zone must be

opened before issuing writes, but it is capable of serving reads

in any state except the offline state. closed and open (both

implicit and explicit) are active states that require the device

to maintain NAND metadata for incoming user write I/Os,

limiting the maximum number of active zones. SSDs employ

the write cache in DRAM to align the wide range of user I/O

sizes to the NAND program unit and comply with the NAND-



specific requirements (timings and program order). In case of

a sudden power-off failure, the device flushes uncommitted

data in the cache using batteries or capacitors as an emergency

power source [46, 54]. Since active zones must have a buffer

backed by energy devices for at least one NAND program

unit in the cache, the maximum number of active zones is also

constrained by the size of the write cache.

A zone provides three I/O commands: read, sequential

write, and append. The append works similarly to the name-

less write [53] but improves the host I/O efficiency rather than

the internal NAND page allocation. Compared with the nor-

mal write, a zone append command does not specify the LBA

in the I/O submission request, whilst the SSD will determine

it at processing time and return the address in the response.

Thus, user applications can submit multiple outstanding op-

erations simultaneously without violating the restriction of

sequential writes. Random writes are disallowed on ZNS

SSDs, and the zone is erased as a whole (via the RESET). A

ZNS SSD delegates the FTL and GC responsibilities to user

applications, where they are performed at the zone granularity,

thus eliminating traditional SSD overheads.

2.3 Small-zone and Large-zone ZNS SSDs

Zones can be classified into two types: physical zone and

logical zone. Physical zones are the smallest unit of zone

allocation and consist of one or more erasure blocks on a

single die. They are device-backed and offer fine-grained con-

trol over storage resources. In contrast, logical zones refer to

a striped zone region consisting of multiple physical zones.

They can be implemented by either the device firmware or

application and provide higher bandwidth through striping.

Large-zone ZNS SSDs provide coarse-grained large logical

zones with a fixed striping configuration that spans multiple

dies across all internal channels but offers limited flexibil-

ity for controlling device behavior from the host software.

This simplifies zone allocation but exposes a small number of

active zones available for allocation to applications (e.g., 14

zones [50]). As a result, large-zone SSDs are more suitable for

scenarios with small numbers of tenants, where the number of

active zones required is not high. In addition, the application-

agnostic fixed striping configuration does not adapt to work-

load profiles, resulting in low bandwidth utilization. Small-

zone ZNS SSDs operate under similar hardware constraints

but expose finer-grained physical zones. Each zone is con-

tained within a single die but sufficiently large to encompass

at least one erasure block. Small-zone SSDs provide greater

flexibility and much more active resources (e.g., 256 zones

in our testbed ZNS SSD) to support more I/O streams. In

addition to increased flexibility, small-zone SSDs reduce the

need for application-level garbage collection, especially while

managing large numbers of small objects. Recent studies also

corroborate some of these points. Specifically, Bae et al. [3]

advocate a zone to be as small as possible to reduce the inter-

ference caused by high zone-reclaiming latencies. ZNS+ [16]
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Figure 2: The number of zone with actual write activity when running

the fill-random workload over the RocksDB. The storage backend is

ZenFS. The maximum number of active zones is 16 (red line).

also prefers small zones as it minimizes the latency of COPY

operations performed frequently in its F2FS implementation.

2.4 The Problem: Lack of an Elastic Interface

The ZNS SSD brings in two key benefits. First, it exposes

controllable garbage collection to host applications, eliminat-

ing obtrusive I/O behaviors precipitated by device internal

bookkeeping I/Os. This also alleviates write amplification

and reduces flash over-provisioning. Second, it only allows

sequential writes within a zone and thereby mitigates cer-

tain I/O interference observed in a conventional SSD. Both

prior studies [3, 8, 16, 45] and our characterizations (§3) be-

low demonstrate these points. However, existing ZNS SSDs

have one significant drawback: the zoned interface is static

and inflexible. After a zone is allocated and initialized, its

maximum performance is fixed regardless of the underlying

device capability, its I/O configurations cannot adapt to run-

time workload characteristics, and cross-zone I/O interference

yields unpredictable I/O executions.

First, the performance profile of a zone-sized storage par-

tition hinges on physical zone placement and stripe config-

uration, which should align with application requirements.

Despite significant benefits from the flexibility of the user-

defined logical zone, application-managed zone configuration

would sustain sub-optimal performance due to the lack of

knowledge of other tenants sharing the device. In addition, it

imposes another burden on application developers, as with

OC SSDs.

Second, it is non-trivial to develop a complete application

profile that captures every aspect of I/O execution charac-

teristics, such as read/write block size and distribution, I/O

concurrency, and command interleaving degree. The existing

zoned interface fails to adapt to the changing workload be-

havior. Users have to over-provision the zone resources when

configuring a zone based on the worst-case estimation.

In Figure 2, it is shown that the RocksDB over ZenFS [7]

actively writes to only a fraction of the zones it maintains in

the active state. This leads to inefficient utilization of valu-

able active resources in the ZNS SSD. Similarly, file systems

like BtrFS [36] and F2FS [25] support ZNS SSDs but write

user data to only one zone at a time, resulting in suboptimal

utilization of the available active resources. This issue is fur-



ther exacerbated when the device has multiple namespaces

serving different applications. In such cases, each application

only utilizes a fraction of the available bandwidth, wasting

valuable active resources in the ZNS SSD.

Third, a zone is not a completely performance-isolated

domain, and co-located zones interact with each other in a

non-deterministic fashion. Ideally, each tenant should receive

a weighted share based on the consolidation degree. Specifi-

cally, its housing application should achieve its targeted per-

formance when the SSD is under-utilized but receive a propor-

tional degradation when the SSD is over-subscribed. However,

unlike its predecessor OC SSD, ZNS SSDs manage zone al-

location and wear-leveling internally with no strong isolation

support and expose an opaque view to applications, yielding

unpredictable performance interference and I/O execution

unfairness. Such an issue could be mitigated in a conven-

tional SSD where FTL and GC blend and distribute blocks

across channels and dies uniformly regardless of the origi-

nal command flow, ensuring the attainment of the maximum

bandwidth and equal utilization of channel and die.

3 Performance Characterization of a ZNS SSD

This section characterizes a ZNS SSD with a focus on under-

standing why existing ZNS interfaces are static and inflexible.

We then discuss the possibilities of addressing the problem.

3.1 Experimental Setup

Device HW Parameters Specification

Capacity 3,816 GB

Channels # 16 Channels

NAND Dies # 128 Dies

NAND Page Size 16 KB

NAND Channel B/W ∼600 MB/s

Physical Zone Size 96 MB

Read B/W per Physical Zone ∼200 MB/s

Write B/W per Physical Zone ∼ 40 MB/s

Maximum Active Zones # 256

Table 1: The commodity ZNS SSD specification.

ZNS SSD and testbed. We use a commodity ZNS SSD for

characterization. Table 1 presents its hardware details. It has

40,704 physical zones, where each 96MB-size zone consists

of NAND erase blocks solely on a single die, and supports a

maximum of 256 open zones simultaneously. We then con-

figure various logical zones using such fine-granular units.

We also prepare a conventional SSD with an equivalent archi-

tecture for a fair comparison. Our server has two 2.50GHz

E5-2680v3 Xeon processors with 256GB DDR4 DRAM, and

both SSDs are connected to ×4 PCIe Gen3 slots directly.

Workloads and performance metrics. We use the Fio

benchmark tool [15] running on the SPDK framework [43]

to generate synthetic workloads. We report both per-IO aver-

age/tail latency as well as achieved bandwidth. We add a thin

layer to the SPDK to implement the logical zone concept and

realize different zone configurations. Given the ZNS protocol,

we regulate the write workloads to sequential accesses on a

Layer 5: SSD ch./die

Applications

Layer 4: Physical zone

Layer 3: Logical zone

Layer 2: Namespace

Layer 1: Tenant

NVMe driver

(a). Layered view (b). SW stack (c). I/O path

Host CPU

Controller CPU

Write Cache

NAND Flash

wrrd

Zone Mapping
Zoned block 

device layer

reset

Figure 3: System model, SW stack, and I/O path of a multi-tenant ZNS

SSD deployment. RD/WR=Read/Write. The write cache flushes data

to the NAND flash asynchronously. Zone resets are completed after

invalidating the mapping layer, where NAND blocks are erased lazily.

single logical zone in the following experiments, where read

workloads are issuing random I/Os unless specified.

3.2 System Model

We consider a typical system setup with a five-layered view

to facilitate the understanding of a multi-tenant ZNS SSD de-

ployment and dissect the I/O behavior (Figure 3-a). From the

top-down perspective, the first layer contains a few co-located

tenants, each running a storage application (e.g., blob store,

F2FS, and RocksDB). Next, a tenant exclusively owns one or

several namespaces based on the required capacity. A names-

pace provides independently configurable logical zones (layer

3), exposing a private logical block address space. By manip-

ulating the logical zone setup, a namespace can be configured

differently to meet the capacity and parallelism requirements.

Within a logical zone, reads happen everywhere, while writes

are only issued in an append-only manner. This is unique to a

ZNS SSD and in significant contrast to a conventional SSD,

which can be viewed as a fixed or statically configured SSD.

A logical zone comprises several physical zones (fourth

layer). The number of physical zones per logical zone is typi-

cally fixed within a namespace. The logical-to-physical zone

mapping can be arbitrary regardless of the request serving or-

der and device occupancy. However, the logical zone must not

share its physical zones with each other to conform with the

ZNS protocol. At the bottom layer, a physical zone is placed

on one channel/die following the device specification. The

zoned block device (ZBD) layer (Figure 3-b) is the central

component across the storage stack that abstracts away archi-

tectural details of a ZNS SSD. It provides three functionalities:

(1) interacting with the application on namespace/logical zone

management; (2) orchestrating the logical-to-physical zone

mapping in consideration of the application requirement; (3)

scheduling a sequence of I/O commands to maximize device

utilization and avoid head-of-line blocking. Figure 3-c shows

the IO path of read/write/reset requests. We carefully config-

ure each layer when designing characterization experiments.

3.3 Zone Striping

Since a logical zone is usually configured as an array of phys-

ical zones spatially, similar to RAID 0, one could apply the
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Stripe Size Avg. Lat(us) P99.9 Lat. (us) B/W (MB/s)

4KB 64 76 59

8KB 71 84 108

16KB 88 103 175

32KB 163 269 190

64KB 314 619 198

Table 2: Read I/O average/P99.9 latency and bandwidth varying the

stripe size on a physical zone.

striping technique to achieve higher throughput, especially for

large-sized I/Os. Zone striping segments data blocks across

multiple physical zones and access them concurrently. There

are two configuration parameters: (1) Stripe size is the small-

est data placement unit in a stripe, and (2) Stripe width defines

the number of physical zones in an active state and controls

the write bandwidth.

3.3.1 Basic Performance

When there are enough outstanding I/Os submitted to an SSD,

unsurprisingly, the optimal striping efficiency is achieved

when the stripe size matches the NAND operation unit (i.e.,

NAND page size). As shown in Table 2, the achieved per-die

bandwidth increases slowly after the 16KB stripe size. In

terms of latency, the access time reduction is non-linear for

sizes smaller than a NAND page (16KB). When the I/O size

is larger than 16KB, the average latency rises proportionally

to the I/O unit because each request has to access the die

multiple times sequentially. Next, we change the logical zone

setup and see the efficiency of different stripe sizes. We use

N-zones to refer to a logical zone configuration, where N is

the number of physical zones in a striping. As shown in Fig-

ure 4, when issuing 2MB reads (which generates enough I/O

to construct a full stripe I/O on each physical zone), for dif-

ferent zone configurations, the bandwidth over various stripe

sizes shows a similar result with the single-die performance.

On the other hand, a wider width that fully uses the stripe

size (stripe_size× stripe_width) achieves higher bandwidth.

For example, the 4KB stripe size in 8-zones achieves 37.3%

higher read bandwidth than the 8KB stripe size in 4-zones.

Note that the stripe size does not significantly affect the write

performance as one can coalesce stripes on the same physical

zone into a single device I/O and submit it at once. Instead,

the stripe width determines the maximum write bandwidth.

3.3.2 Challenge #1: Application-agnostic Striping

When deciding the optimal stripe size and width, one should

consider the application I/O profile dynamically, including

request type, size distribution, I/O size efficiency, and con-

currency. However, the existing zoned interface lacks such

support and hinges on users’ domain knowledge during con-

figuration. A large stripe may hurt performance if the size of

sequential user I/O is smaller than the size of a full stripe. On

the other hand, too small a stripe also hurts the I/O efficiency

of the device; a 4KB stripe with an 8-zone or wider width

significantly lags behind 8KB or larger stripes in Figure 4. A

wide stripe width sustains high performance per logical zone.

However, since the device has a limited amount of active re-

sources, it will instead limit the maximum number of active

logical zones and jeopardize application concurrency.

Observation: The use of logical zones with striping is

beneficial for the application, but zone striping should be an

adaptive configuration determined based on the total amount

of active zones and application profiles. A ZNS SSD has to

provide enough active logical zones to not only cope with ap-

plication concurrency but also max out the device bandwidth

by adjusting the stripe width dynamically. An ideal strip size

can be the NAND page size, but it also has to be adjusted to

the stripe width to provide a consistent full stripe size.

3.4 Zone Allocation and Placement

A ZNS SSD allocates physical zones across dies/channels,

mainly taking access parallelism and wear-leveling into con-

sideration. Upon an allocation request, the ZNS SSD traverses

the die array following a certain order, and then selects the

next available die to place each physical zone. Within a deter-

mined die, it chooses blocks with the least P/E cycles based

on opaque wear-leveling policies.

3.4.1 Basic Performance

Zone allocation should be locality-aware and parallelism-

aware. A larger-sized logical zone is expected to observe

higher read/write bandwidth because it spreads physical zones

across different channels and dies in a deterministic sequence

and achieves more I/O parallelism. The maximum perfor-

mance is obtained when I/Os access all channels and dies

without blocking. We configure the stripe size to 16KB and

increase the number of physical zones in a logical zone (N),

then measure the I/O bandwidth of a single logical zone under

four I/O profiles (Figure 5). The performance of 2MB reads

with queue depths 1 and 2 (i.e., 2MB-RD-QD1/2MB-RD-

QD2) keeps increasing until the number of physical zones

approaches 20. But they max out for different reasons. The
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QD2 case is bounded by the PCIe bandwidth (i.e., four Gen3

lanes or 3.2GB/s), whilst the QD1 scenario is simply limited

by the application as it cannot issue enough outstanding I/Os

at that queue depth. In terms of 4KB random read with 32

queue depth and 2MB sequential write, they sustain 80MB/s

read and 40MB/s program bandwidth per physical die, respec-

tively, requiring much more physical zones (∼ 40 and 80) to

utilize the channel or PCIe bandwidth fully.

3.4.2 Challenge #2: Device-agnostic Placement

An ideal allocation process should expose all of the inter-

nal I/O parallelism of a ZNS SSD to a tenant. However, the

existing mechanism is opaque to housed tenants, where the

global allocation pointer picks the next available die with-

out considering the application’s prior allocation history or

how it interacts with other tenants. This causes unbalanced

zone placement, hurts I/O parallelism, and jeopardizes perfor-

mance. We find two types of inefficient placements:

• Channel-overlapped placement: Concurrent zone allo-

cations might cause overlapped zone placements across

channels, limiting the maximum channel parallelism. Simi-

larly, synchronized allocation requests might prevent place-

ment alignment, again limiting the aggregated bandwidth.

Figure 6 presents 4KB and 128KB random read band-

width when increasing the QD for three inferior place-

ments, where 2/4/8 physical zones contend for the same

channel in a 16-zone configuration. Physical zones stay

across 16 different dies that limit the maximum bandwidth.

The 2-overlapped allocation outperforms the other two (i.e.,

4-overlapped/8-overlapped) by 1.7×/2.9× and 1.7×/2.5×
for 4KB and 128KB cases, respectively.

• Die-overlapped placement: An intra-namespace die over-

lapped placement limits the bandwidth and can be even

more detrimental because a die can only process one opera-

tion at a time. We configure such an experiment by placing

physical zones in the same die and gradually increasing

the overlapping ratio. Figure 7 reports the logical zone’s

sustained bandwidth and tail latency under two I/O profiles.

When no physical zones share the same die, it achieves

1,128MB/s and 2,051MB/s along with 317us and 284us

p99.9 tail latency for the 4KB random read and 128KB

sequential read cases, respectively. With full overlap, we

observe 47.2%/23.8% bandwidth drop and 87.1%/28.0%

tail latency increase. Such performance degradation hap-

pens even when the overlapping ratio is lower than 25%,

because both types of I/Os suffer from the head-of-line

blocking issue at the overlapped dies.

Observation: It is challenging to infer the zone’s physical

location without knowing the device’s internal specification.

One may run a profiling tool in the runtime to extract the rela-

tion among different zones [3]. However, it does not eliminate

the imprinted overlap at the allocation time. To maximize the

I/O parallelism, one could build a device abstraction layer

that (1) relies on a general allocation model of the device;

(2) maintains a shadow view of the underlying physical de-

vice; (3) profiles its placement balanced level across different

physical channels and dies.

3.5 I/O Execution under ZNS SSDs

A ZNS SSD eradicates background GC I/Os, thereby remov-

ing one form of performance non-determinism. Within a log-

ical zone, writes happen sequentially, but reads are issued

arbitrarily. When reads are congested, one would observe

latency spikes under die/channel contention. If considering

cross-zone cases, either intra or inter namespace, interfer-

ence would be more severe than a conventional SSD because

ZNS SSDs impose no physical resource partitions, and per

die/channel bandwidth is narrow.

3.5.1 Basic Performance

Irrespective of the NAND block layout of a logical zone,

its I/O access latency highly correlates with achieved band-

width because there are no device internal I/Os that consume

bandwidth and are hidden from user applications. To demon-

strate this, we prepare a conventional SSD having the same

hardware as the ZNS SSD and compare two SSDs under

the mixed read-write scenario. We configure a logical zone

for the ZNS SSD that spreads across all the channels and

dies (i.e., 128-zone configuration with 16KB stripe size) to

match the conventional one. The fragmented conventional

SSD is 70% filled and preconditioned with 128KB random

writes. Then we run eight read threads±where each issues

one 128KB read I/O to all the dies uniformly random±and

one write thread that performs sequential write at a fixed rate.

Figure 8 reports the read/write tail latency as we increase the

write bandwidth. More writes on a ZNS SSD leave less band-

width headroom for reads and cause the latency to increase.

However, for the fragmented conventional SSD, the internal

GC activities make even less bandwidth available to serve



reads due to write amplification. For example, when the write

bandwidth is 1,000MB/s, the p99.9 read and write latency of

the conventional SSD is 4.3× and 2.8× worse than the ZNS

one. In terms of the read throughput, the conventional SSD

shows 1.1× and 1.6× lower throughput than the ZNS SSD at

the 200MB/s and 1,000MB/s write bandwidth, respectively.

3.5.2 Challenge #3: Tenant-agnostic Scheduling

Existing zoned interfaces of ZNS SSDs provide little perfor-

mance isolation and fairness guarantees for the inter-zone

case, regardless of deployed workloads. One cannot overlook

the read interference on a die because (1) an arbitrary number

of zones can collide on a die, (2) the bandwidth of a single

die is poor, and hence the interference becomes severe even

under a very low load on the device, and (3) it causes a severe

head of line blocking problem and degrades the performance

of the logical zone. Since there is no internal GC in the ZNS

SSD, The I/O determinism [26] proposed for the conventional

SSD does not apply as well. Similar to conventional SSDs, the

write cache, shared among all NAND dies, is an indispensable

component of the ZNS SSD, buffering incoming writes and

flushing to the NAND dies in a batch. Host applications will

observe prompt write I/O completions when they are absorbed

by the cache but experience considerable latency spikes when

the cache overflows. This has not been an intractable issue

in conventional SSDs because the device firmware blends

all incoming write I/Os and constructs a single large flow

spanning entire NAND dies, maintaining the cache eviction

rate to the maximum device bandwidth. However, in the ZNS

SSD, a write I/O must be flushed out to the designated NAND

die with an inadequate program bandwidth, even with zone

striping. In this situation, a heavy writer exhausts the available

cache capacity and severely disturbs other short flows.

We set up two readers performing 128KB read I/O in dif-

ferent profiles: (1) queue depth 8 with a two-zone configura-

tion, and (2) queue depth 2 with an eight-zone configuration.

Figure 9 shows the interference between two readers in a die-

collision. The QD-8 reader easily obtains 97.2% of the total

bandwidth of collision dies. Note that the interference and

unfair bandwidth share also occurs in the conventional one,

but only when the device bandwidth is fully saturated [23,41].

We also demonstrate the write cache congestion in Figure 9.

We first populate 15 logical zones with a stripe width of 8, and

each physical zone is allocated to a dedicated die. The cumu-

lative write bandwidth of 15 zones maxes out the PCIe band-

width (3.2GB/s), and a single zone performs at ∼213.3MB/s.

In this case, a physical zone in the logical zone receives write

at a lower rate than the maximum bandwidth (∼26.7MB/s),

and the write cache does not overflow. Then, we add one

more writer with a narrow width of 2, which also runs on ded-

icated dies. Write I/Os towards the narrow zone are equally

fetched by the device, but it soon consumes all available cache

because of the scarce bandwidth (∼85MB/s) of underlying

physical zones. It degrades others’ bandwidth by 27.3% or
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Figure 10: eZNS System Architecture.

155MB/s, and the device even fails to max out the PCIe band-

width (∼2.4GB/s).

Observation: When using ZNS SSDs in a multi-tenant sce-

nario, one should first understand how different namespaces

and logical zones share the channels and NAND dies of the

underlying device, classify their relationships into competing

and cooperative types, and employ a congestion avoidance

scheme for the inter-zone scenario to achieve fairness. Since

there are no device bookkeeping operations, I/O latencies

represent the congestion level on colliding dies. In addition,

write cache congestion needs to be addressed globally. Thus,

a possible solution is to design (1) a global central arbiter that

decides the bandwidth share among all active zones; (2) a per-

zone I/O scheduler that orchestrates the read I/O submission

based on the congestion level.

4 eZNS: Enabling an Adaptive Zoned NS

This section describes the design and implementation of eZNS

that realizes a new and elastic zoned interface. We use the

gathered insights from our characterization experiments and

address the aforementioned issues.

4.1 eZNS Overview

eZNS stays atop the NVMe driver and provides raw block

accesses. eZNS exposes the v-zone interface that offers run-

time hardware adaptiveness, application elasticity, and tenant

awareness. We carefully design eZNS and spread its function-

alities across the control plane and data plane. As shown in

Figure 10, it mainly consists of two components. The first is

the zone arbiter that (1) maintains the device shadow view in

a hardware abstraction layer (HAL) and provides the basis

for other components, (2) performs serialized zone allocation

avoiding overlapped placement, and (3) dynamically scales

the zone hardware resources and I/O configurations via a

harvesting mechanism. The second is a tenant-cognizant I/O

scheduler, orchestrating read requests using a delay-based

congestion control mechanism and regulating writes through

a token-based admission control. In sum, eZNS addresses the

three issues discussed in §3.



4.2 Hardware Contract and HAL

We develop eZNS based on the following hardware contract,

which are met by recent ZNS SSDs with small zones: (1) a

physical zone consists of one or more erasure blocks on a

single die; (2) the maximum number of active physical zones

is a multiple of the number of dies, and all dies hold the same

number of active zones when they are fully populated (i.e.,

the ZNS SSD evenly distributes physical zones over dies);

(3) the zone allocation mechanism follows the wear-leveling

requirements, indicating that consecutive allocated zones will

not overlap on a physical die until all the dies have been tra-

versed. We need to caveat that the last contract may not always

be followed in allocations if the device firmware enforces a

specific policy other than round-robin across dies. However,

considering the large number of chips and the wear-leveling

constraint, such cases are rare. Our mechanism doesn’t require

being cognizant of the two-dimensional geometric physical

view of SSD NAND dies and channels or maintaining an

exact zone-die mapping.

eZNS maintains a shadow device view, exposing the ap-

proximate data locality for zone allocation and I/O scheduling.

Our mechanism (or HAL layer) only hinges on three hard-

ware parameters from device specifications. The first one is

the maximum number of active zones (or MAR, maximum ac-

tive resources). This is based on an observation that the MAR

is generally in proportion to or a multiple of the number of

physical dies on the SSD. One could estimate the number of

active zones that a die could hold by deliberately controlling

the zone allocation order in an offline calibration experiment

(§3.4). The second parameter required is the NAND page size

used for striping configuration. For example, 16KB is a de

facto standard for most TLC NVMe drives and is well-known

for system developers. The SSD shows the best efficiency

when the stripe size is aligned with it (§3.3), and thereby, we

choose the stripe size as a multiple or factor of the NAND

page size that is closest to avoid inefficient stripe reads for

sequential workloads. These two parameters reflect the de-

vice’s capabilities. The third one is the physical zone size,

deciding how a logical zone and strip groups are constructed.

With such information, HAL provides a shadow view having

a consistent MAR (e.g., 16) and the size of a zone (e.g., 2GB)

regardless of the underlying device.

4.3 Serial Zone Allocator

eZNS develops a simple zone allocator that provides three

guarantees: (1) it ensures that each stripe group comprises

a list of consecutive and serial opened physical zones, fol-

lowing the firmware-enforced internal order; (2) there is no

die collision within a stripe group; (3) across stripe groups,

die collision could happen for writes only if available active

physical zones are fully populated across all the dies. Given

the above device model, the number of stripe groups colliding

on a die is
Maximum # o f active zones

Die #
at most. Channel collision

would not be an issue because its bandwidth is usually higher
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than the aggregated program bandwidth across dies.

Our allocator works as follows. It has a per-device request

queue, buffering OPEN commands (including implicit ones

followed by writes) from all logical zones. Our allocator

serves each logical zone request atomically. Since the com-

pletion of a zone OPEN command does not guarantee that the

zone is actually allocated on a physical die, we implement a

zone reservation mechanism during zone opens±flushing one

data block that enforces binding a die to the zone. Writes com-

plete immediately as the write cache of the device absorbs a

single block even in high load. To expedite this process, we

proactively maintain a certain amount of reserved zones in

serial order and provision them to an upcoming stripe group.

Upon completion of the allocation, we then update the allo-

cation history and write it into a reserved persistent region

(metadata block) following the block for reservation. Hence,

we preclude interleaved allocations from concurrently opened

logical zones to prevent channel-overlapped placement and fa-

cilitate allocation reordering to mitigate die overlaps (§3.4.2).

4.4 Zone Ballooning

v-zone, a specialized logical zone, can automatically scale its

I/O striping configuration and hardware resources to match

changing application requirements in a lightweight fashion.

Figure 11 illustrates an example of a v-zone structure. Similar

to a static logical zone, a v-zone contains a fixed number

of physical zones. However, unlike a static logical zone, it

divides physical zones into one or more stripe groups. When

v-zone is first opened or reaches the end of a previous stripe

group, it allocates a new stripe group. All physical zones in the

previous stripe group must be finished when the write pointer

reaches the end of the stripe group, allowing an active v-zone

to take active resources for only one stripe group. The number

of physical zones in a stripe group is determined at the time of

allocation according to the local overdrive mechanism, which

enables flexible zone striping. To comply with the standard

zone interface, v-zone has a size that is a power of 2, and its

capacity is the sum of user-available bytes in physical zones.

Similar to the virtualization memory ballooning tech-

nique [5, 39, 47], zone ballooning allows a v-zone to (1) ex-

pand its stripe width by leasing spares from others when other

namespaces are under low active resource usage; (2) return

them when it finishes the stripe group either by writing to the

end of the stripe group or explicitly issuing FINISH/RESET

commands from the application.



4.4.1 Initial Resource Provisioning

eZNS divides all the available and opened physical zones on

the ZNS SSD into two groups: essential and spare. The essen-

tial group contains a minimal number of active physical zones

that can max out the SSD write bandwidth (Nessential), whilst

the rest belong to the spare group (Nspare). Our initial resource

allocation follows the equal bandwidth partition principle. We

choose the write I/O bandwidth as the minimum guarantee

because writing resources (or active physical zones) of a ZNS

SSD are scarce. Assuming the number of namespaces that

a ZNS SSD holds is Nns and the maximum number of ac-

tive v-zones per namespace is MARlogical . A namespace takes
Nessential

Nns
exclusive active physical zones; when a v-zone in the

namespace opens a new stripe group, it receives
Nessential

Nns×MARlogical

assured essential ones which is also the minimum stripe width.

In terms of spare zones, similarly, eZNS equally distributes

them to a namespace (
Nspare

Nns
) during initialization. Both a v-

zone and a namespace will expand/shrink their capacity to

adapt to workload demands.

4.4.2 Local Overdrive: Zone Expanding

eZNS provisions available spares from the spare group of

its namespace to boost its write I/O capability. We realize

this via an internal local overdrive operation while opening a

new stripe group. The mechanism works as follows. First, it

estimates the resource usage of the namespace by analyzing

its previously opened v-zones, quantified as the exponentially

weighted moving average over the number of active v-zones

(NActiveZoneHistory). Second, it checks the remaining spares

from the spare group (NRemainingSpare) and reaps additional

spares based on
NTotalSpare

NActiveZoneHistory
. Essentially, a v-zone will re-

ceive more (fewer) spares if it embodies writing activities but

the namespace only opens fewer (more) v-zones. Third, the

v-zone conflates the harvested spares with assured essential

ones for it to open the new stripe group, and the stripe width

is rounded down to the nearest power of two for efficient re-

source management. Note that the local overdrive operates in

a serial and best-effort fashion. Lastly, eZNS sets the baseline

stripe size to 32KB at the minimum width for the optimal I/O

efficiency of the device. It then reduces the stripe size for an

overdriven zone according to the stripe width, down to the

minimum block size of the device. For example, if the width

gets two times wider, the stripe size is reduced by half. We de-

termine the range of stripe sizes to optimize the performance

as aforementioned in §3.3. The reduced stripe size further

contributes to the I/O scheduler ensuring fairness (§4.5).

4.4.3 Global Overdrive: Namespace Expanding

Across the whole device, our zone ballooning mechanism

further reallocates spares across namespaces based on their

latest write activity. We realize this via another internal global

overdrive operation±lend spares from the spare group to each

other. Unlike local overdrive, global overdrive is triggered

based on the write intensity across the entire drive. Specifi-

cally, our arbiter monitors the past Nessential opened physical

zones across all active namespaces, computes their zone uti-

lization, and redistributes the remaining spares from inactive

namespaces to active ones. In the current design, we deter-

mine an inactive namespace as a namespace that has no allo-

cation history in the last Nessential physical zone allocations

of the device, and lent spares are equally distributed across

active namespaces. When an inactive namespace becomes

active again, eZNS marks the leased spares as recall spares

and leased namespaces release them to the global pool as soon

as they FINISH/RESET the stripe group in v-zones. eZNS

then returns them to the original namespace at the next global

overdrive operation.

4.4.4 Reclaim: Zone/Namespace Compaction

Generally, an overdriven v-zone after entering the FINISH

state will return spare zones. Therefore, spare zones circulate

as long as namespaces continue to write to v-zones. However,

when a namespace overdrives v-zones, which becomes inac-

tive without releasing them, the arbiter has to use a reclaim

operation to take back the spares to prevent resource leak-

age. To ensure no slowdown on the performance path, we

employ an asynchronous window-based monitoring scheme,

where the arbiter bookkeeps the status of each inactive names-

pace and continuously counts how long its status is in the

read-only state. If a namespace presents no write I/Os for

a certain amount of time, TReadOnly, the arbiter triggers the

reclaim procedure to proactively collect the spare zones. The

execution cost of reclaim depends on the configuration within

the opened stripe group. If there are committed writes on the

zone, reclaim will trigger a zone compaction and perform a

sequence of I/O reads/writes, i.e., finishing existing zones,

opening a new stripe group with shrunk width, and copying

data to the new one. Once the migration is done, the spare

zones can be returned to the global spare pool.

The zone reclaiming indeed brings GC-like overheads back

to the system. Thus, it is crucial that the system does not

trigger the operation in normal conditions. In eZNS, zone

reclaiming is only performed when namespaces have no write

activity for two cycles of global overdrive. This is likely to

happen infrequently, such as when an application undergoes a

significant change in its running state. Moreover, reclaiming

is triggered in a lazy fashion, executed in the background, and

regulated by the scheduler to limit its performance impact. As

a result, eZNS can avoid triggering zone reclaiming in normal

conditions, maintaining high performance and efficiency.

4.5 Zone I/O Scheduler

eZNS mindfully orchestrates I/O reads/writes with the goal of

providing equal read/write bandwidth shares among contend-

ing v-zones, maximizing the overall device utilization, and

mitigating superfluous head-of-line blocking when different

types of requests interleave. Our zone I/O scheduler com-



prises two components: congestion-avoiding read scheduler

and cache-aware write admission control.

4.5.1 Congestion-avoid Read Scheduler

Our design is based on the observations that (1) ZNS SSDs

have no internal housekeeping operations; (2) write I/Os are

sequential and synchronous. Hence, the read latency is stable

and low until the die becomes congested, and it is thus possi-

ble to detect congestion directly via latency measurements.

eZNS introduces a hierarchical design that performs

weighted round-robin scheduling firstly across active names-

paces and then delay-based congestion control across each

intra-namespace v-zones. By conforming to the NVMe ar-

chitecture, we create per-namespace NVMe queue pairs and

offload the round-robin scheduling to the device. Then, we

employ a Swift-like [24] congestion control mechanism to

decide the bandwidth allocation for each stripe group in the

v-zone, where the delay is the device I/O command execution

latency. As shown in Algorithm 1, during the congestion-free

phase, upon a read I/O completion, we additively increase

(AI) the congestion window until it approaches the maximum

size (line 6). Since the congestion window (cwnd) is shared

in the stripe group, when set to the stripe width, it indicates

that there is one outstanding I/O per die in the sequential

case. The SSD can max out its per-die bandwidth with a few

outstanding I/Os. Thus, when the cwnd starts with the stripe

width, it quickly ramps up to the device bandwidth capacity.

Further, we limit the maximum congestion window (cwnd)

to 4× strip_width to minimize the software overheads when

handling excess concurrent I/Os and avoid a meaningless

rapid growth of cwnd that would imperil the efficiency of the

MD phase. When congestion happens, we reduce the conges-

tion window multiplicatively (line 4), whose ratio depends on

the latency degradation degree. All the physical zones within

a stripe group share the same congestion status. It is reason-

able because sequential read bandwidth will be capped by

the most congested physical zone. Random reads usually will

not trigger frequent cwnd decrements because the minimum

window size is large enough to absorb them. Our congestion

control works cooperatively with the reduced stripe size of

the overdrive and ensures a fair share of bandwidth regardless

of the width of the stripe group.

4.5.2 Cache-aware Write Admission Control

Due to the non-linear write latency and the shared architecture,

it is inappropriate to implement a local mechanism to mitigate

the problem. Unlike the read congestion case, write conges-

tion happens globally across all zones from all namespaces

(§3.5). Therefore, eZNS monitors the global write latency

and regulates writes using a token-based admission control

scheme. We generate tokens periodically (ALG 1 lines 14±

16) and admit write I/Os in a batch for each active v-zone to

ensure overflow rarely happens. This requires a latency moni-

tor to analyze the write cache eviction activity (ALG 1 lines

8±12). Here, we profile the block admission rate (defined as

Algorithm 1 Zone I/O Scheduler

1: procedure READ COMPLETION()

2: lat_thresh← 500us

3: if io_lat > lat_thresh then

4: cwnd = max(1,cwnd× lat_threash
2×io_lat )

5: else ▷ α = additive factor

6: cwnd = min(stripe_width×4,cwnd +α× io_count
cwnd )

7: procedure WRITE LATENCY MONITOR()

8: On t every 10ms

9: total_lat = ∑active_zone per_block_lat

10: total_ios = ∑active_zone num_ios

11: avg_lat(t) = total_lat
total_ios

12: block_admission_rate =
avg_lat(t−1)+avg_lat(t)

2

13: procedure WRITE TOKEN GENERATOR()

14: On every 1ms

15: for pending write zones do

16: token += now−last_re f ill
block_admission_rate × stripe_width

the minimum delay between two consecutive write blocks)

and adjust the token generation rate based on its normalized

average latency. This is based on an empirical observation

that the latency of the write projects its capacity share in

the write cache. Hence, we equalize the latency for all write

zones and calculate available tokens using the average value.

Additionally, we update the available tokens based on the

elapsed time from the last token refill upon a write submis-

sion. By doing so, we expect that writes are self-clocked in

the congestion-less condition.

Note that (1) when read and write I/Os mix on a physical

die, the total aggregate bandwidth will drop due to the NAND

interference effect. However, our read scheduler and write

admission control require little coordination because both

modules only use the latency (gradient) as a signal to infer the

current bandwidth capacity; (2) we coalesce stripes for the

same physical zone within a user I/O and submit one write

I/O to the device in a batch, and thus, a small stripe size does

not degrade the write bandwidth.

5 Evaluation

We add a thin layer in the SPDK framework [43] to implement

eZNS and realize the v-zone concept. The primary reason for

choosing the SPDK approach was its ease of implementation

and integration into the software stack of a storage server ac-

cessible by remote clients. Moreover, the SPDK-based design

can also be used in a local system to serve virtual machines

through the SPDK vhost extension. This approach allows the

storage server to provide efficient and high-performance I/O

operations, while remaining compatible with existing soft-

ware stacks. We use the same test environment as in §3.1.

Non-SPDK applications require a standard ZNS block device

exposed via the kernel NVMe driver; thus, we set up eZNS

as a disaggregated storage device over RDMA (NVMe-over-

RDMA) and connect to it using the kernel NVMe driver.

Micro-benchmarks: We use FIO [15] to generate syn-
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Figure 15: Efficiency of eZNS on handling read-read, write-write, and read-write congestion. (CC=Congestion Control, AC=Admission Control)

thetic workloads and allocate a separate thread for each

worker when the workload writes to multiple namespaces

or zones. For read workloads, we first precondition the names-

pace by performing sequential writes for the entire range of

read I/O. Additionally, we perform a pre-calibration step to

determine the die allocations in case the evaluation requires a

die-level collision.

Ported Applications: We use RocksDB as a real-world

ZNS application, to evaluate the performance of eZNS We

run RocksDB over ZenFS [7] to enable the ZNS support. As

eZNS complies with the standard NVMe ZNS specification,

no modification is required for the application and ZenFS. We

initialize the DB instance with 500M entities of 20-byte keys

and 1,000-byte values.

Default v-zone Configuration: By default, eZNS creates

four namespaces (NS1±4), each of which is allocated 32 essen-

tial and 32 spare resources. Since each namespace provides a

maximum of 16 active zones, the minimum stripe width for

v-zone is 2 with a stripe size of 32KB. However, eZNS can

overdrive the width up to 16 with a stripe size of 4KB. For a

fair comparison, we prepare a static logical zone configured

with stripe width and size of 4 and 16KB, respectively; hence,

it also accesses full device capability when the application

populates enough active logical zones. Both a v-zone and

a static logical zone comprise 16 physical zones. Different

configurations are used for single-tenant evaluation (single

namespace) as specified in Section 5.3.

5.1 Zone Ballooning

We demonstrate the efficiency of zone ballooning when han-

dling large writes (i.e., 512KB I/O with a queue depth of one).

First, within a namespace, we compare the performance be-

tween a v-zone and a static logical zone, where the number

of writers is configured to 4, 8, and 16, respectively. Each

writer submits a write I/O to different zones. Our local over-

drive operation can reap more spare zones and lead to better

throughput. As shown in Figure 12, the v-zone outperforms

the static one by 2.0× under the 4-writer case as 4 static

logical zones enable only 16 physical zones while 4 v-zone

overdrive the width to 8 and expand to 32 physical zones. In

the 8-writer and 16-writer cases, v-zone reduces the overdrive

width accordingly and utilizes the same number of physical

zones (32 and 64, respectively) with the static logical zone.

To evaluate eZNS’s adaptiveness under dynamic workloads,

we set up overdriven zones from different namespaces. The

first three namespaces (NS1, NS2, and NS3) run two writers,

while the fourth namespace (NS4) runs eight. NS1, NS2, and

NS3 stop issuing writes at t=30s and resume the writing activ-

ity at t=80s. We measure the throughput and spare zone usage

of four zones for a 100s profiling window (Figures 13 and

14). When the other three zones become idle, the v-zone from

NS4 takes up to 3× more spare zones from other namespaces

using the global overdrive primitive and maxes out its write

bandwidth (∼2.3GB/s). It can then quickly release the harvest

zones when other zones start issuing writes again.

5.2 Zone I/O Fairness

We evaluate our I/O scheduler in various synthetic congestion

scenarios by placing competing zones in the same physical

die group. We compare the performance of all co-located

zones when enabling and disabling our mechanism. The zone

ballooning mechanism is turned off for all cases. We report

per-thread bandwidth in Figure 15.

Read-Read Fairness. We run a sequential read of 128KB
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(2 overwrite, 2 randomread) on different names-

paces over eZNS and static zone.

I/O size at two types of zones on co-located dies. To equally

load the physical dies, we populate more threads for lower-

width zones. For example, a zone with a width of 2 runs four

threads on each stripe group, while a zone with a width 8

has only one thread. As shown in Figure 15-a, in scenario

1, when disabling our congestion control mechanism, Zone

A (configured with stripe width 2 and stripe size 32KB, QD-

1) and Zone B (configured with stripe width 8 and stripe

size 8KB, QD-32), even holding the same sized full stripe,

achieve 76MB/s and 1287MB/s, respectively. This is because

the zone with the higher QD dominates on the competing

die. Our scheme effectively controls the per-zone window

size and ensures that each zone submits the same amount of

outstanding bytes. Hence, both Zone A and Zone B sustain

290MB/s. In scenarios 2 and 3, we change the Zone A stripe

configuration to <stripe width 4, stripe size 16KB, QD-1>

and <stripe width 8, stripe size 8KB, QD-1), and observe

similar behavior when turning off the read congestion logic.

In scenario 3, the congestion level on the die gets lowered as

Zone A only submits one 128KB I/O (which was 4 and 2 in

scenarios 1 and 2, respectively). Hence the read latency also

becomes below the threshold, and the I/O scheduler chooses

to max out the bandwidth.

Write-Write Fairness. We carefully create different write

congestion scenarios and see how our admission control oper-

ates. The workload used is a sequential write of 512KB size.

In the first scenario, we co-locate 16 regular write zones (Zone

A, where each has a striping width of 8 with 8KB stripe size

and submits write I/Os at 5ms intervals, sustaining 95MB/s

maximum throughput) with a busy writer (Zone B, that has

width 2 and 32KB stripe size, submits I/O without interval

delays, achieving 85MB/s at most). Figure 15-b reports the

bandwidth utilization of one regular zone (Zone A) and the

busy writer (Zone B). Our admission control mechanism lim-

its the write issuing rate of Zone B and gives more room at

the write cache to the regular zone (Zone A), leading to 35.7%

bandwidth improvement per thread. Next, we set up a highly-

congested case by changing 16 regular zones to busy writers

(scenario 2). As described in §4.5.2, our scheme equally dis-

tributes the write bandwidth share across competing zones,

and Zone B receives 56.8% of the total bandwidth of 2 physi-

cal zones. The last scenario is a collision-less one at the die

level where we eliminate the overlapping region among all the

write zones by populating active physical zones lesser than

the number of dies. Similarly, when enabling the admission

control, the bandwidth allocated for Zone B slightly decreases

(∼7.2%) to avoid cache congestion, and the overall device

bandwidth is increased by 24.7%.

Read-Write Fairness. We examine how our congestion

control mechanism coordinates with the admission control

when handling read/write mixed workloads. In this experi-

ment, we set up three types of zones: (1) ×16 regular readers

(Zone A), where each has a striping width of 2 and 32KB

stripe size, performing 128KB random read at queue depth

32, across all physical dies; (2) 1 busy writer (Zone B), whose

striping width is 2 with 32KB stripe size; (3) ×16 regular

writers (Zone C), which has a striping width of 8 and 32KB

stripe size each, submitting I/Os under 5ms interval. Both

B and C issue 512KB large writes. Figure 15-c reports their

per-thread bandwidth. When disabling our scheduler, each

reader achieves 199.6MB/s but writes are jeopardized signifi-

cantly, where Zone B and Zone C can only achieve 19.3% and

27.3% of their maximum bandwidth. As we gradually turn on

our mechanisms, the congestion control shrinks the window

size such that more bandwidth is allocated to the writes. Fur-

ther, the admission control then equally partitions bandwidth

among competing writing zones. As shown in the CC+AC

case, zone A, B, and C can sustain 71.6%, 57.5%, and 70.1%

of their maximum bandwidth capacity, respectively.

5.3 Application: RocksDB

To evaluate eZNS in a real-world scenario, we use RocksDB

[35] over the ZenFS storage backend. In addition to the built-

in utility in the RocksDB db_bench tool, we port YCSB work-

load generators [4] for the mixed workload evaluation.

Single-tenant performance. First, we evaluate the perfor-

mance of a single tenant using the readwhilewriting profile

of the db_bench, which runs one writer and multiple read-

ers. This workload profile demonstrates a read/write mixed

scenario. In the case of a single-tenant configuration, eZNS

creates a single namespace on the device and allocates 128

essential and 128 spare resources to it. Since only two stripe

widths, 8 and 16, are possible in this configuration, eZNS

sets the stripe size to 16KB for the width of 8 to avoid the

namespace running only on large stripe sizes. We compare

the performance of eZNS over two static configurations, both
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for 4KB I/Os at various depths between the host-

managed zone access and eZNS.

with a stripe width of 16, but with different stripe sizes of 4KB

and 16KB. Since there is only one namespace on the device,

eZNS always overdrives v-zones to the width of 16, which is

identical to the static configurations. Therefore, both the static

namespace and eZNS can exploit all available bandwidth on

the device. However, the I/O scheduler of eZNS helps mitigate

interferences between zones and improves overall application

performance. Figure 16 shows that eZNS improves the P99.9

and P99.99 read latency by 28.7% and 11.3% over the static

configurations with a stripe size of 16KB and 4KB, respec-

tively. Additionally, eZNS also improves the throughput by

11.5% and 2.5% with a stripe size of 4KB and 16KB.

Multi-tenant Performance. Next, we set up instances of

db_bench on four namespaces (A, B, C, and D), each with

a different workload profile. A and B perform the overwrite

profile, while C and D execute randomread concurrently. We

run the benchmark for 1,800sec and report the latency and

the throughput. Figure 17 shows that our I/O scheduler sig-

nificantly reduces P99.9 and P99.99 read (C/D) latency by

71.1% and 20.5%, respectively. In terms of throughput, eZNS

improves write (A/B) and read (C/D) throughput by 7.5%

and 17.7%, respectively. Furthermore, while the read latency

and throughput are improved, the write latency is either main-

tained at the same level or decreased compared to the static

configuration because eZNS moves the spare bandwidth from

read-only namespaces (C/D) to write-heavy ones (A/B).

Mixed YCSB Workloads. YCSB [14] is widely used to

benchmark realistic workloads. In our experiments, we run

YCSB workload profiles A, B, C, and F on each of the six

namespaces. We exclude YCSB workload profiles D and E be-

cause they increase the number of entities in the DB instance

during the benchmark. As YCSB-C (read-only) does not

submit any write I/Os during the benchmark, eZNS triggers

global overdrive and rebalances the bandwidth to the write-

most namespaces (A and F). Figure 19 shows that he I/O

scheduler improves the P99.9 read latency of read-intensive

workloads (YCSB B and C) and also the read-modify-write

one (YCSB F) by 79.1%, 80.3%, and 76.8%, respectively.

The throughput improvement from global overdrive is up to

10.9% for the write-most workload A in Figure 20.

5.4 Overhead analysis

End-to-end read latency overhead. Since eZNS serves as

an orchestration layer between the physical ZNS device and

the NVMe-over-Fabrics target, there may be some overhead

when the I/O load is very low. To measure this overhead, we

conducted a quantitative analysis using 4KB random read

I/Os and compared it with host-managed zone access, where

the host directly accesses the physical device without eZNS.

Figure 21 demonstrates that eZNS does not add a noticeable

latency overhead for I/O depths up to 8. As the I/O depth

goes over 16, up to 14.0% overhead is observed due to the I/O

scheduler delaying the I/O submission. However, the sched-

uler provides significant advantages in real-world scenarios

as shown in previous experiments.

Memory footprint. eZNS relies on in-memory data struc-

tures for managing v-zone metadata, including the logical-

to-physical mapping and scheduling statistics. Additionally,

it maintains a copy of the physical zone information to re-

duce unnecessary queries to the device, enabling faster zone

allocation and deallocation. In our current implementation,

the size of v-zone metadata is less than 1KB, and the size of

physical zone information is smaller than 64 bytes. For our

testbed SSD with four namespaces, each with 1TB of capac-

ity, v-zone metadata and physical zone information require

2MB and 2.5MB of memory, respectively. Compared to the

memory requirements of the page-mapping in conventional

SSDs, the memory usage of eZNS is negligible.

6 Related Work

Early ZNS Exploration. Researchers have made initial ef-

forts to understand the ZNS interface and integrate it into

the host storage stack. Theano Stavrinos et al. [44] argue

for a shift in research to the zone interface and discuss fu-

ture directions (e.g., applying application-level information

for zone management and I/O scheduling). Hojin Shin et

al. [42] develop a performance analysis tool for a ZNS SSD

and profile its parallelism, isolation, and predictability prop-

erties. Compared with our study, they didn’t investigate the

underlying device’s internal mechanisms when realizing the

zoned namespace interface and, thereby, are unable to corre-

late the observed performance with the ZNS SSD character-

istics. ZNS+ [16] enhances the existing interface with two



new architectural primitives to optimize LFS file systems.

With such support, the authors then propose copy-back-aware

block allocation and hybrid segment recycling techniques.

Hanyeoreum Bae et al. [3] prioritize I/O requests for less

congested zones using an interference map, whilst updates

incur significant overheads. Although revising the ZNS in-

terface and exposing the physical allocation of zones could

potentially eliminate this overhead, it may not be feasible for

existing devices due to vendors’ resistance to disclosing inter-

nal architecture and policies. eZNS uses a delay to determine

congestion and doesn’t require an allocation map. Further-

more, eZNS addresses such as read and write differences,

zone striping, and bandwidth provisioning issues that were

not discussed in their work. Minwoo Im et al. [18] improved

ZenFS on small-zone SSDs by introducing read/write paral-

lelism with a multi-threaded I/O engine and lifetime-based

zone management at the application level. However, it re-

quires adjusting the RocksDB parameters to match the device

capability instead of the workload-optimized parameters. This

can increase the complexity of parameter configuration, result-

ing in sub-optimal settings for the workload. eZNS maximizes

parallelism within the thin layer, regardless of the underly-

ing device and the application profile. It exploits the device’s

parallel I/O processing capability that can be executed on a

single thread.

Addressing Inefficiencies of Conventional SSDs. Early

SSD researches [2, 11, 17, 31] focused on internal parallelism

and tradeoffs between concurrency, locality, bandwidth, ca-

pacity, performance, and lifetime. Modern SSDs handle ran-

dom write patterns with page mapping FTL, write-cache,

and superblock concepts [49] that group blocks together. It

benefits from high parallelism that transforms writes into se-

quential NAND programming. However, multi-tenancy work-

loads cause interference and high write amplification factor

(WAF). ZNS SSDs eliminate garbage collection and fix WAF

to one, but require careful parallelism management across

zones to avoid degraded device utilization. In addition, future

QLC-based ZNS SSDs may have fewer active zones due to

a multi-pass programming algorithm [21]. eZNS addresses

these challenges by adjusting the parallelism of each logical

zone based on the number of namespace flows, providing

fully dynamic parallelism and maximizing device capability

while presenting an identical logical view to applications.

IODA [26] is an I/O deterministic flash array that uses the

I/O determinism feature and exploits data redundancy for a

strong latency predictability contract. SSDs can fail an I/O to

allow predictable I/Os through proactive data reconstruction.

We target the ZNS SSD, where there are no random I/Os,

and GCs are user-controlled. This opens up a different design

space. Although techniques addressing GC-related interfer-

ence are not beneficial to GC-free ZNS SSDs, others such as

Engurance Group(EG) and NVM Set can be useful to ensure

physically-isolated zone allocation. eZNS can take advantage

of the geometry hints via EG (or even finer-grained NVM

Sets). Unfortunately, there is no currently-available SSD that

supports both ZNS and EG, but it will be an interesting direc-

tion for future work.

Open-Channel SSDs. These drives have no mapping layer in

the controller and directly expose a set of physically contigu-

ous blocks to applications, and leave the data placement/wear-

leveling responsibilities to the host. Researchers have built

several domain-specific solutions using them. For example,

SDF [30] employs a hardware-software co-designed approach

that exposes flash channel details and delegates I/O control-

plane and data-plane tasks to host applications. LOCS [48]

further improves the throughput of an LSM-tree-based KV

store by optimizing the scheduling and dispatching policies,

considering the characteristics of access patterns of the Lev-

elDB. RAIL [27] designs a horizontal hot-cold separation

mechanism and divides dies into two groups, where user and

GC writes are scheduled to different dies, and the hot/cold

ratio is dynamically adjusted based on runtime monitoring.

By having full control over the device, one can implement a

deterministic v-zone using eZNS. Despite the potential archi-

tecture, it imposes too many responsibilities on the software

handling tasks that are offloadable to the device with no cost,

for example, wear-leveling, physical zone-to-die mapping, etc.

Another challenge arises when the system consists of hetero-

geneous devices resulting in the overhead of managing dif-

ferent H/W architectures (NAND chip capacity, channel/die

configuration, etc.).

eZNS as a firmware. One may implement eZNS solely in

the SSD using the controller and firmware. This approach

can exploit internal knowledge such as NAND specification,

Channel/Die structure, queue length on a die, etc. Thus, it may

control the interference better and outperform the software-

based implementation. However, completing eZNS in one

device is not future-proof, given the disaggregated systems

architecture in data centers. The software-based solution can

build an eZNS-based system spanning multiple devices en-

abling elastic capacity scaling, load-aware allocation, high

availability, and more.

7 Conclusion
This paper presents an in-depth study on understanding the

characteristics of a commodity ZNS SSD. Then, we propose

eZNS, realizing an elastic zoned view via v-zone, providing

a flexible zone scaling interface transparent to the applica-

tion that maxes out the device capability, and ensuring a fair

bandwidth share between zones. We demonstrate significant

performance and fairness improvements using eZNS over

various scenarios.
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