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ABSTRACT

Deep neural networks can learn powerful prior probability models for images,
as evidenced by the high-quality generations obtained with recent score-based
diffusion methods. But the means by which these networks capture complex global
statistical structure, apparently without suffering from the curse of dimension-
ality, remain a mystery. To study this, we incorporate diffusion methods into a
multi-scale decomposition, reducing dimensionality by assuming a stationary local
Markov model for wavelet coefficients conditioned on coarser-scale coefficients.
We instantiate this model using convolutional neural networks (CNNs) with local
receptive fields, which enforce both the stationarity and Markov properties. Global
structures are captured using a CNN with receptive fields covering the entire (but
small) low-pass image. We test this model on a dataset of face images, which
are highly non-stationary and contain large-scale geometric structures. Remark-
ably, denoising, super-resolution, and image synthesis results all demonstrate that
these structures can be captured with significantly smaller conditioning neighbor-
hoods than required by a Markov model implemented in the pixel domain. Our
results show that score estimation for large complex images can be reduced to
low-dimensional Markov conditional models across scales, alleviating the curse of
dimensionality.

Deep neural networks (DNNs) have produced dramatic advances in synthesizing complex images
and solving inverse problems, all of which rely (at least implicitly) on prior probability models.
Of particular note is the recent development of “diffusion methods” (Sohl-Dickstein et al., 2015),
in which a network trained for image denoising is incorporated into an iterative algorithm to draw
samples from the prior (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021), or to solve inverse
problems by sampling from the posterior (Kadkhodaie & Simoncelli, 2020; Cohen et al., 2021; Kawar
et al., 2021; Daras et al., 2022). The prior in these procedures is implicitly defined by the learned
denoising function, which depends on the prior through the score (the gradient of the log density).
But density or score estimation is notoriously difficult for high-dimensional signals because of the
curse of dimensionality: worst-case data requirements grow exponentially with the data dimension.
How do neural network models manage to avoid this curse?

Traditionally, density estimation is made tractable by assuming simple low-dimensional models, or
structural properties that allow factorization into products of such models. For example, the classical
Gaussian spectral model for images or sounds rests on an assumption of translation-invariance
(stationarity), which guarantees factorization in the Fourier domain. Markov random fields (Geman &
Geman, 1984) assume localized conditional dependencies, which guarantees that the density can be
factorized into terms acting on local, typically overlapping neighborhoods (Clifford & Hammersley,
1971). In the context of images, these models have been effective in capturing local properties, but
are not sufficiently powerful to capture long-range dependencies. Multi-scale image decompositions
offered a mathematical and algorithmic framework better suited for the structural properties of images
(Burt & Adelson, 1983; Mallat, 2008). The multi-scale representation facilitates handling of larger
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structures, and local (Markov) models have captured these probabilistically (e.g., Chambolle et al.
(1998); Malfait & Roose (1997); Crouse et al. (1998); Buccigrossi & Simoncelli (1999); Paget
& Longstaff (1998); Mihçak et al. (1999); Wainwright et al. (2001); Şendur & Selesnick (2002);
Portilla et al. (2003); Cui & Wang (2005); Lyu & Simoncelli (2009)). Recent work, inspired by
renormalization group theory in physics, has shown that probability distributions with long-range
dependencies can be factorized as a product of Markov conditional probabilities over wavelet
coefficients (Marchand et al., 2022). Although the performance of these models is eclipsed by recent
DNN models, the concepts on which they rest—stationarity, locality and multi-scale conditioning—
are still of fundamental importance. Here, we use these tools to constrain and study a score-based
diffusion model.

A number of recent DNN image synthesis methods—including variational auto-encoders (Chen et al.,
2018), generative adversarial networks (Gal et al., 2021) normalizing flow models (Yu et al., 2020;
Li, 2021)), and diffusion models (Ho et al., 2022; Guth et al., 2022)—use coarse-to-fine strategies,
generating a sequence of images of increasing resolution, each seeded by its predecessor. With the
exception of the last, these do not make explicit the underlying conditional densities, and none impose
locality restrictions on their computation. On the contrary, the stage-wise conditional sampling is
typically accomplished with huge DNNs (up to billions of parameters), with global receptive fields.

Here, we develop a low-dimensional probability model for images decomposed into multi-scale
wavelet sub-bands. Following the renormalization group approach, the image probability distribution
is factorized as a product of conditional probabilities of its wavelet coefficients conditioned by coarser
scale coefficients. We assume that these conditional probabilities are local and stationary, and hence
can be captured with low-dimensional Markov models. Each conditional score can thus be estimated
with a conditional CNN (cCNN) with a small receptive field (RF). The score of the coarse-scale low-
pass band (a low-resolution version of the image) is modeled using a CNN with a global RF, enabling
representation of large-scale image structures and organization. We test this model on a dataset
of face images, which present a challenging example because of their global geometric structure.
Using a coarse-to-fine anti-diffusion strategy for drawing samples from the posterior (Kadkhodaie &
Simoncelli, 2021), we evaluate the model on denoising, super-resolution, and synthesis, and show that
locality and stationarity assumptions hold for conditional RF sizes as small as 9× 9 without harming
performance. In comparison, the performance of CNNs restricted to a fixed RF size in the pixel
domain dramatically degrades when the RF is reduced to such sizes. Thus, high-dimensional score
estimation for images can be reduced to low-dimensional Markov conditional models, alleviating
the curse of dimensionality. A software implementation is available at https://github.com/
LabForComputationalVision/local-probability-models-of-images

1 MARKOV WAVELET CONDITIONAL MODELS

Images are high-dimensional vectors. Estimating an image probability distribution or its score
therefore suffer from the curse of dimensionality, unless one limits the estimation to a relatively
low-dimensional model class. This section introduces such a model class as a product of Markov
conditional probabilities over multi-scale wavelet coefficients.

Markov random fields (Dobrushin, 1968; Sherrington & Kirkpatrick, 1975) define low-dimensional
models by assuming that the probability distribution has local conditional dependencies over a graph,
which is known a priori. One can then factorize the probability density into a product of conditional
probabilities, each defined over a small number of variables (Clifford & Hammersley, 1971). Markov
random fields have been used to model stationary texture images, with conditional dependencies
within small spatial regions of the pixel lattice. At a location u, such a Markov model assumes that
the pixel value x(u), conditioned on pixel values x(v) for v in a neighborhood of u, is independent
from all pixels outside this neighborhood. Beyond stationary textures, however, the chaining of short-
range dependencies in pixel domain has proven insufficient to capture the complexity of long-range
geometrical structures. Many variants of Markov models have been proposed (e.g., Geman & Geman
(1984); Malfait & Roose (1997); Cui & Wang (2005)), but none have demonstrated performance
comparable to recent deep networks while retaining a local dependency structure.

Based on the renormalization group approach in statistical physics (Wilson, 1971), new probability
models are introduced in Marchand et al. (2022), structured as a product of probabilities of wavelet
coefficients conditioned on coarser-scale values, with spatially local dependencies. These Markov
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Figure 1: Markov wavelet conditional model structure. At each scale j, an orthogonal wavelet
transform W decomposes an image xj−1 into three wavelet channels, x̄j , containing vertical,
horizontal, and diagonal details, and a low-pass channel xj containing a coarse approximation of the
image, all subsampled by a factor of two. At each scale j, we assume a Markov wavelet conditional
model, in which the probability distribution of any wavelet coefficient of x̄j (here, centered on the left
eye), conditioned on values of xj and x̄j in a local spatial neighborhood (red squares), is independent
of all coefficients of x̄j outside this neighborhood.

conditional models have been applied to ergodic stationary physical fields, with simple conditional
Gibbs energies that are parameterized linearly. Here, we generalize such models by parameterizing
conditional Gibbs energy gradients with deep conditional convolutional neural networks having
a local RF. This yields a class of Markov wavelet conditional models that can generate complex
structured images, while explicitly relying on local dependencies to reduce the model dimensionality.

An orthonormal wavelet transform uses a convolutional and subsampling operator W defined with
conjugate mirror filters (Mallat, 2008), to iteratively compute wavelet coefficients (see Figure 1). Let
x0 be an image of N ×N pixels. For each scale j > 1, the operator W decomposes xj−1 into:

Wxj−1 = (x̄j ,xj),

where xj is a lower-resolution image and x̄j is an array of three wavelet coefficient images, each
with dimensions N/2j ×N/2j , as illustrated in Figure 1. The inverse wavelet transform iteratively
computes xj−1 = WT (x̄j ,xj).

We now introduce the wavelet conditional factorization of probability models. Since W is orthog-
onal, the probability density of xj−1 is also the joint density of (xj , x̄j). It can be factorized by
conditioning on xj :

p(xj−1) = p(xj , x̄j) = p(xj)p(x̄j |xj).

This is performed J times, so that the lowest resolution image xJ is small enough, which yields:

p(x) = p(xJ)
J∏

j=1

p(x̄j |xj). (1)

The conditional distributions p(x̄j |xj) specify the dependencies of image details at scale j condi-
tioned on the coarser scale values, and may be expressed in terms of a conditional Gibbs energy:

p(x̄j |xj) = Zj(xj)
−1 e−Ej(x̄j |xj), (2)

where Z(xj) is the normalization constant for each xj . The conditional Gibbs energies (2) have been
used in the wavelet conditional renormalization group approach to obtain a stable parameterization
of the probability model even at critical phase transitions, when the parameterization of the global
Gibbs energy becomes singular (Marchand et al., 2022).

Local wavelet conditional renormalization group models (Marchand et al., 2022) further impose
that p(x̄j |xj) is a conditional Markov random field. That is, the probability distribution of a
wavelet coefficient of x̄j conditioned on values of xj and x̄j in a restricted spatial neighborhood is
independent of all coefficients of x̄j and x̄ outside this neighborhood (see Figure 1). The Hammersley-
Clifford theorem states that this Markov property is equivalent to imposing that Ej can be written
as a sum of potentials, which only depends upon values of x̄j and xj over local cliques (Clifford &
Hammersley, 1971). This decomposition substantially alleviates the curse of dimensionality, since
one only needs to estimate potentials over neighborhoods of a fixed size which does not grow with
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the image size. To model ergodic stationary physical fields, the local potentials of the Gibbs energy
Ej have been parameterized linearly using physical models Marchand et al. (2022).

We generalize Markov wavelet conditional models by parameterizing the conditional score with a
conditional CNN (cCNN) having small receptive fields (RFs):

−∇x̄j
log p(x̄j |xj) = ∇x̄j

Ej(x̄j |xj). (3)

Computing the score (3) is equivalent to specifying the Gibbs model (2) without calculating the
normalization constants Z(xj), since these are not needed for noise removal, super-resolution or
image synthesis applications.

2 SCORE-BASED MARKOV WAVELET CONDITIONAL MODELS

Score-based diffusion models have produced impressive image generation results (e.g., Song et al.
(2021); Ho et al. (2022); Rombach et al. (2022); Saharia et al. (2022); Ramesh et al. (2022)). To
capture large-scale properties, however, these networks require RFs that encompass the entire image.
Our score-based wavelet conditional model leverages the Markov assumption to compute the score
using cCNNs with small receptive fields, offering a low-dimensional parameterization of the image
distribution while retaining long-range geometric structures.

Let y = x + z be a noisy observation of clean image x ∈ RN×N drawn from p(x), with z ∼
N (0, σ2Id) a sample of Gaussian white noise. The minimum mean squared error (MMSE) estimate
of the true image is well-known to be the conditional mean of the posterior:

x̂(y) =

∫
xp(x|y)dx. (4)

This integral can be re-expressed in terms of the score:

x̂(y) = y + σ2∇y log p(y). (5)

This remarkable result, published in Miyasawa (1961), exposes a direct and explicit relationship
between the score of probability distributions and denoising (we reproduce the proof in Appendix B
for completeness). Note that the relevant density is not the image distribution, p(x), but the noisy
observation density p(y). This density converges to p(x) as the noise variance σ2 goes to zero.

Given this relationship, the score can be approximated with a parametric mapping optimized to
estimate the denoised image, f(y) ≈ x̂(y). Specifically, we implement this mapping with a CNN,
and optimize its parameters by minimizing the denoising squared error ||f(y) − x||2 over a large
training set of images and their noise-corrupted counterparts. Given eq. (5), the denoising residual,
f(y)− y, provides an approximation of the variance-weighted score, σ2∇y log p(y). Also known
as denoising score matching (Vincent, 2011), such denoiser-estimated score functions have been
used in iterative algorithms for drawing samples from the density (Song et al., 2021; Ho et al., 2020;
Dhariwal & Nichol, 2021; Ho et al., 2022), or solving inverse problems (Kadkhodaie & Simoncelli,
2020; Cohen et al., 2021; Kawar et al., 2021; Laumont et al., 2022).

To model the conditional wavelet distribution p(x̄j |xj), Guth et al. (2022) parameterize the score
∇ȳj

log p(ȳj |xj) of noisy wavelet coefficients ȳj conditioned on a clean low-pass image xj with
a cCNN (eq. (3)). Specifically, the cCNN takes as input three noisy wavelet detail channels, along
with the corresponding low-pass channel, and generates three estimated detail channels. The network
is trained to minimize mean square distance between x̄j and fj(ȳj ,xj). Thanks to a conditional
extension of eq. (5), an optimal network computes fj(ȳj ,xj) = ∇ȳj

log p(ȳj |xj). Additionally, at
the coarsest scale J , a CNN denoiser fJ(yJ) is trained to estimate the score of the low-pass band,
∇yJ

log p(xJ) by minimizing mean square distance between xJ and fJ(yJ).

The following theorem proves that the Markov wavelet conditional property is equivalent to imposing
that the cCNN RFs are restricted to the conditioning neighborhoods. The RF of a given element of
the network response is defined as the set of input image pixels on which this element depends.

Theorem 1. The wavelet conditional density p(x̄j |xj) is Markovian over a family of conditioning
neighborhoods if and only if the conditional score∇x̄j log p(x̄j |xj) can be computed with a network
whose RFs are included in these conditioning neighborhoods.
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Figure 2: Wavelet conditional denoiser architecture used to estimate the score (illustrated for a two-
scale decomposition). The input noisy image y (lower left) is decomposed by recursive application of
a fast orthogonal wavelet transform W into successive low-pass images yj (blue) and three wavelet
detail images ȳj (red). The coarsest low-pass image yJ is denoised using a CNN with a global
receptive field to estimate x̂J . At all other scales, a local conditional CNN (cCNN) estimates ˆ̄xj

from ȳj conditioned on x̂j , from which WT recovers x̂j−1.

The proof of the theorem is provided in Appendix A. Note that even if the conditional distribution of
clean wavelet coefficients p(x̄|xj) satisfies a local Markov property, the noisy distribution p(ȳj |xj) is
in general not Markovian. However, we shall parameterize the scores with a cCNN with small RFs and
hence show that both the noisy and clean distributions are Markovian. At each scale 1 ≤ j ≤ J , the
cCNN has RFs that are localized in both ȳj and xj , and have a fixed size over all scales, independent
of the original image size. From Theorem 1, this defines the Markov conditioning neighborhoods of
the learned model. The effect of the RF size is examined in the numerical experiments of Section 3.

Parameterizing the score with a convolutional network further implies that the conditional probability
p(x̄j |xj) is stationary on the wavelet sampling lattice at scale j. Despite these strong simplifications,
we shall see that these models models are able to capture complex long-range image dependencies
in highly non-stationary image ensembles such as centered faces. This relies on the low-pass
CNN, whose RF is designed to cover the entire image xJ , and thus does not enforce local Markov
conditioning nor stationarity. The product density of eq. (1) is therefore not stationary.

3 MARKOV WAVELET CONDITIONAL DENOISING

We now evaluate our Markov wavelet conditional model on a denoising task. We use the trained
CNNs to define a multi-scale denoising architecture, illustrated in Figure 2. The wavelet transform of
the input noisy image y is computed up to a coarse-scale J . The coarsest scale image is denoised by
applying the denoising CNN learned previously: x̂J = fJ(yJ). Then for J ≥ j ≥ 1, we compute the
denoised wavelet coefficients conditioned on the previously estimated coarse image: ˆ̄xj = f(ȳj , x̂j).
We then recover a denoised image at the next finer scale by applying an inverse wavelet transform:
x̂j−1 = WT (ˆ̄xj , x̂j). At the finest scale we obtain the denoised image x̂ = x̂0.

Because of the orthogonality of W , the global MSE can be decomposed into a sum of wavelet MSEs
at each scale, plus the coarsest scale error: ∥x− x̂∥2 =

∑J−1
j=1 ∥x̄j− ˆ̄xj∥2+∥xJ− x̂J∥2. The global

MSE thus summarizes the precision of the score models computed over all scales. We evaluate the
peak signal-to-noise ratio (PSNR) of the denoised image as a function of the noise level, expressed as
the PSNR of the noisy image. We use the CelebA dataset (Liu et al., 2015) at 160× 160 resolution.
We use the simplest of all orthogonal wavelet decompositions, the Haar wavelet, constructed from
separable filters that compute averages and differences of adjacent pairs of pixel values (Haar, 1910).
All denoisers are “universal” (they can operate on images contaminated with noise of any standard
deviation), and “blind” (they are not informed of the noise level). They all have the same depth and
layer widths, and their receptive field size is controlled by changing the convolutional kernel size of
each layer. Appendix C provides architecture and training details.

Figure 3 shows that the multi-scale denoiser based on a conditional wavelet Markov model outper-
forms a conventional denoiser that implements a Markov probability model in the pixel domain.
More precisely, we observe that when the Markov structure is defined over image pixels, the per-
formance degrades considerably with smaller RFs (Figure 3, left panel), especially at large noise
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Figure 3: Comparison of denoiser performance on 160× 160 test images from the CelebA dataset.
Each panel shows the error of the denoised image as a function of the noise level, both expressed as
the peak signal-to-noise ratio (PSNR). Left: Conventional CNN denoisers with different RF sizes.
The blue curve shows performance of BF-CNN (Mohan* et al., 2020). The rest are BF-CNN variants
with smaller RF obtained from setting some intermediate filter sizes to 1 × 1. Right: Multi-scale
denoisers, as depicted in Figure 2, with different cCNN RF sizes. Note that the low-pass denoiser RF
is 40× 40 in all cases, and thus covers the entire low-pass band.

levels (low PSNR). Images thus contain long-range global dependencies that cannot be captured by
Markov models that are localized within the pixel lattice. On the other hand, multi-scale denoising
performance remains nearly the same for RF sizes down to 9× 9, and degrades for 5× 5 RFs only
at small noise levels (high PSNR) (Figure 3, right panel). This is remarkable considering that, for
the finest scale, the 9× 9 RF implies conditioning on one percent of the coefficients. The wavelet
conditional score model thus successfully captures long-range image dependencies, even with small
Markov neighborhoods.

It is also worth noting that in the large noise regime (i.e., low PSNR), all multi-scale denoisers (even
with RF as small as 5× 5) significantly outperforms the conventional denoiser with the largest tested
RF size (43× 43). The dependency on RF size in this regime demonstrates the inadequacy of local
modeling in the pixel domain. On the contrary, the effective neighborhoods of the multi-scale denoiser
are spatially global, but operate with spatially-varying resolution. Specifically, neighborhoods are of
fixed size at each scale, but due to the subsampling, cover larger proportions of the image at coarser
scales. The CNN applied to the coarsest low-pass band (scale J) is spatially global, and the denoising
of this band alone explains the performance at the highest noise levels (magenta curve, Figure 3).

To further illustrate this point, consider the denoising examples shown in Figure 4. Since all
denoisers are bias-free, they are piecewise linear (as opposed to piecewise affine), providing some
interpretability (Mohan* et al., 2020). Specifically, each denoised pixel is computed as an adaptively
weighted sum over the noise input pixels. The last panels show the equivalent adaptive linear filter
that was used to estimate the pixel marked by the green square, which can be estimated from the
associated row of the Jacobian. The top row shows denoising results of a conventional CNN denoiser
for small images that are the size of the network RF. Despite very heavy noise levels, the denoiser
exploits the global structure of the image, and produces a result approximating the clean image. The
second row shows the results after training the same denoiser architecture on much larger images.
Now the adaptive filter is much smaller than the image, and the denoiser solution fails to capture
the global structure of the face. Finally, the last row shows that the multi-scale wavelet conditional
denoiser can successfully approximate the global structure of a face despite the extreme levels of
noise. Removing high levels of noise requires knowledge of global structure. In our multi-scale
conditional denoiser, this is achieved by setting the RF size of the low-pass denoiser equal to the
entire low-pass image size, similarly to the denoiser shown on the top row. Then, each successive
conditioning stage provides information at a finer resolution, over ever smaller RFs relative to the
coefficient lattice. The adaptive filter shown in the last column has a foveated structure: the estimate
of the marked pixel depends on all pixels in the noisy image, but those that are farther away are only
included within averages over larger blocks. Thus, imposing locality in the wavelet domain lifts the
curse of dimensionality without loss of performance, as opposed to a locality (Markov) assumption
in the pixel domain.
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Figure 4: Denoising examples. Each row shows clean image, noisy image, denoised image, and
the adaptive filter (one row of the Jacobian of the end-to-end denoising transformation) used by the
denoiser to estimate a specific pixel, indicated in green. The heat-map ranges from red for most
negative to black for most positive values. In the last two rows, the last column shows an enlargement
of this adaptive filter, for enhanced visibility. Images are displayed proportional to their sizes. Top
row: 40 × 40 images estimated with a CNN denoiser with RF 40 × 40. Second row: 160 × 160
images estimated with a CNN denoiser with RF 43× 43. Third row: 160× 160 images, estimated
with the proposed conditional multi-scale denoiser of Figure 2. The denoiser uses a 40× 40 RF for
the coarsest scale, and 13× 13 RFs for conditional denoising of subsequent finer scales.

4 MARKOV WAVELET CONDITIONAL SUPER-RESOLUTION AND SYNTHESIS

We generate samples from the learned wavelet conditional distributions in order to visually assess
the quality of the model in a super-resolution task. We compare this approach with solving the
super-resolution inverse problem directly using a CNN denoiser operating in the pixel domain. We
also compare the models on image synthesis.

We first give a high-level description of our conditional generation algorithm. The low-resolution
image xJ is used to conditionally generate wavelet coefficients x̄J from the conditional distribution
p(x̄J |xJ). An inverse wavelet transform next recovers a higher-resolution image xJ−1 from both
xJ and x̄J . The conditional generation and wavelet reconstruction are repeated J times, increasing
the resolution of the sample at each step. In the end, we obtain a sample x from the full-resolution
image distribution conditioned on the starting low-resolution image p(x|xJ). x is thus a stochastic
super-resolution estimate of xJ .

To draw samples from the distributions p(x̄j |xj) implicitly embedded in the wavelet conditional
denoisers, we use the algorithm of ?, which performs stochastic gradient ascent on the log-probability
obtained from the cCNN using eq. (5). This is similar to score-based diffusion algorithms (Song
& Ermon, 2019; Ho et al., 2020; Song et al., 2021), but the timestep hyper-parameters require
essentially no tuning, since stepsizes are automatically obtained from the magnitude of the estimated
score. Extension to the conditional case is straightforward. The sampling algorithm is detailed in
Appendix D. All the cCCN denoisers have a RF size of 13× 13. Train and test images are from the
CelebA HQ dataset (Karras et al., 2018) and of size 320× 320. Samples drawn using the conditional
denoiser correspond to a Markov conditional distribution with neighborhoods restricted to the RFs of
the denoiser. We compare these with samples from a model with a local Markov neighbhorhood in the
pixel domain. This is done using a CNN with a 40× 40 RF trained to denoise full-resolution images,
which approximates the score ∇ log p(x). Given the same low-pass image xJ , we can generate
samples from p(x|xJ) by viewing this as sampling from the image distribution of x constrained by a
linear measurements xJ . This is done with the same sampling algorithm, with a small modification,
again described in Appendix D.

Figure 5 shows super-resolution samples from these two learned image models. The local Markov
model in the pixel domain generates details that are sharp but artifactual and incoherent over long
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Figure 5: Super-resolution examples. Column 1: original images (320× 320). Column 2: Low-pass
image of a 3-stage wavelet decomposition (downsampled to 40×40) expanded to full size for viewing.
Column 3: Conditional generation of full-resolution images using CNN denoiser with RF of size
43× 43. Column 4: Coarse-to-fine conditional generation using the multi-scale cCNN denoisers,
each with RFs of size 13× 13. Additional examples are shown in Appendix E.

spatial distances. On the other hand, the Markov wavelet conditional model produces much more
natural-looking face images. This demonstrates the validity of our model: although these face images
are not stationary (they have global structures shared across the dataset), and are not Markov in the
pixel domain (there are clearly long-range dependencies that operate across the image), the details
can be captured with local stationary Markov wavelet conditional distributions.

We also evaluated the Markov wavelet conditional model on image synthesis. We first synthesize a
40× 40 terminal low-pass image using the score,∇xJ

log p(xJ), obtained from the low-pass CNN
denoiser with a global RF. Again, unlike the conditional wavelet stages, this architectural choice
does not enforce any local Markov structure nor stationarity. This global RF allows capturing global
non-stationary structures, such as the overall face shape. The synthesis then proceeds using the same
coarse-to-fine steps as used for super-resolution: wavelet coefficients at each successive scale are
generated by drawing a sample using the cCNN conditioned on the previous scale.

The first (smallest) image in Figure 6 is generated from the low-pass CNN (see Appendix D for
algorithm). We can see that it successfully captures the coarse structure of a face. This image is then
refined by application of successive stages of the multi-scale super-resolution synthesis algorithm
described above. The next three images in Figure 6 show successively higher resolution images
generated in the procedure. For comparison, the last image in Figure 6 shows a sample generated
using a conventional CNN with equivalent RFs trained on large face images. Once again, this
illustrates that assuming spatially localized Markov property on the pixel lattice and estimating the
score with a CNN with RF smaller than the image fails to capture the non-stationary distribution of
faces. Specifically, the model is unable to generate structures larger than the RF size, and the samples
are texture-like and composed of local regions resembling face parts.

We note that the quality of the generated images is not on par with the most recent score-based
diffusion methods (e.g., Ramesh et al. (2022); Saharia et al. (2022); Rombach et al. (2022)), which
have also been used for iterative super-resolution of an initial coarse-scale sample. These methods use
much larger networks (more than a billion parameters, compared to ours which uses 600k parameters
for the low-pass CNN and 200k for the cCNNs), and each scale-wise denoiser is itself a U-Net, with
associated RF covering the entire image. Thus, the implicit probability models in these networks are

8



Published as a conference paper at ICLR 2023

Figure 6: Image synthesis. Left four images: Coarse-to-fine synthesis, achieved by sampling the
score learned for each successive conditional distribution. Synthesized images are shown at four
resolutions, from coarse-scale only (leftmost, 40 × 40) to the finest scale (rightmost, 320 × 320).
Conditional RFs are all 13× 13. Right image: Synthesis using a pixel-domain CNN with a receptive
field (40× 40) smaller than the synthesized image 320× 320.

global, and it is an open question whether and how these architectures are able to escape the curse of
dimensionality. Our local conditional Markov assumptions provide a step towards the goal of making
explicit the probability model and its factorization into low-dimensional components.

5 DISCUSSION

We have generalized a Markov wavelet conditional probability model of image distributions, and
developed an explicit implementation using cCNNs to estimate the conditional model scores. The
resulting conditional wavelet distributions are stationary and Markov over neighborhoods corre-
sponding to the cCNN receptive fields. The coarse-scale low-pass band is modeled using the score
estimated with a CNN with global receptive fields. We trained this model on a dataset of face images,
which are non-stationary with large-scale geometric features. We find that the model, even with
relatively small cCNN RFs, succeeds in capturing these features, producing high-quality results on
denoising and super-resolution tasks. We contrast this with local Markov models in the pixel domain,
which are not able to capture these features, and are instead limited to stationary ergodic textures.

The Markov wavelet conditional model demonstrates that probability distributions of images can be
factorized as products of conditional distributions that are local. This model provides a mathematical
justification which can partly explain the success of coarse-to-fine diffusion synthesis (Ho et al.,
2020; Guth et al., 2022), which also compute conditional scores at each scale. Although we set out to
understand how factorization of density models could allow them to avoid the curse of dimensionality
in training, it is worth noting that the dimensionality of the conditioning neighborhoods in our
network is still uncomfortably high (4 × 9 × 9 = 324). Although this is reduced by a factor of
roughly 300 relative to the image size (320 × 320 = 102, 400), and this dimensionality remains
constant even if this image size is increased, it is still not sufficient to explain how the conditional
score can be trained with realistic amounts of data. In addition, the terminal low-pass CNN operates
globally (dimensionality 40× 40 = 1600). Thus, the question of how to further reduce the overall
dimensionality of the model remains open.

Our experiments were performed on cropped and centered face images, which present a particular
challenge given their obvious non-stationarity. The conditional models are approximately stationary
due to the fully convolutional structure of the cCNN operations (although this is partially violated
by zero-padded boundary handling). As such, the non-stationary capabilities of the full model arise
primarily from the terminal low-pass CNN, which uses spatially global RFs. We speculate that for
more diverse image datasets (e.g., a large set of natural images), a much larger capacity low-pass
CNN will be needed to capture global structures. This is consistent with current deep networks that
generate high-quality synthetic images using extremely large networks (Ramesh et al., 2022; Saharia
et al., 2022; Rombach et al., 2022). On the other hand, the cCNNs in our model all share the same
architecture and local RFs, and may (empirically) be capturing similar local conditional structure at
each scale. Forcing these conditional densities to be the same at each scale (through weight sharing
of the corresponding cCNNs) would impose a scale invariance assumption on the overall model. This
would further reduce model complexity, and enable synthesis and inference on images of size well
beyond that of the training set.
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A PROOF OF THEOREM 1

To simplify notation, we drop the j subscript. Let I (resp. J) denote the set of indices of pixel values
of x̄ (resp. x). If S is a set of indices, we denote x̄(S) = (x̄(i))i∈S∩I . Let G be a graph whose
nodes are I ∪ J . For each i ∈ I , let N(i) ⊆ I ∪ J be the neighborhood of node i, with i ̸∈ N(i), and
N+(i) = N(i) ∪ {i}.
To prove Theorem 1, we need to show that the local Markov property:

∀i ∈ I, p
(
x̄(i)

∣∣ x̄(I \{i}),x) = p
(
x̄(i)

∣∣ x̄(N(i)),x(N+(i))
)
, (6)

is equivalent to the conditional score being computable with RFs restricted to neighborhoods:

∀i ∈ I,
∂ log p

∂x̄(i)

(
x̄
∣∣x) = fi

(
x̄(N+(i)),x(N+(i))

)
, (7)

for some functions fi.

We first prove that eq. (6) implies eq. (7). Let i ∈ I . We have the following factorization of the
probability distribution:

p
(
x̄
∣∣x) = p

(
x̄(i)

∣∣ x̄(I \{i}),x) p(x̄(I \{i}) ∣∣x)
= p

(
x̄(i)

∣∣ x̄(N(i)),x(N+(i))
)
p
(
x̄(I \{i})

∣∣x),
where we have used eq. (6) in the last step. Then, taking the logarithm and differentiating, only the
first term remains:

∂ log p

∂x̄(i)

(
x̄
∣∣x) = ∂ log p

∂x̄(i)

(
x̄(i)

∣∣ x̄(N(i)),x(N+(i))
)
,
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which proves eq. (7).

Reciprocally, we now prove that eq. (7) implies eq. (6). Let i ∈ I , and δi(j) = δij where δij is the
Kronecker delta. We have, by integrating the partial derivative:

log p
(
x̄
∣∣x) = log p

(
x̄− x̄(i)δi

∣∣x)− ∫ 1

0

∂ log p

∂x̄(i)

(
x̄− tx̄(i)δi

∣∣x)dt
= log p

(
x̄− x̄(i)δi

∣∣x)− ∫ 1

0

fi
(
x̄(N+(i))− tx̄(i)δi,x(N+(i))

)
dt,

where we have used eq. (7) in the last step. Note that the first term does not depend on x̄(i), while
the second term only depends on x̄(N+(i)) and x(N+(i)). This implies that when we condition on
x̄(N(i)) and x(N+(i)), the density factorizes as a term which only involves x̄(i) and a term which
does not involve x̄(i). This further implies conditional independence and thus eq. (6).

B PROOF OF EQ. (5)

Miyasawa’s remarkable result (Miyasawa, 1961), sometimes attributed to Tweedie (as communicated
by (Robbins, 1956)), is simple to prove (Raphan & Simoncelli, 2007). The observation distribution,
p(y) is obtained by marginalizing p(y,x):

p(y) =

∫
p(y|x)p(x)dx =

∫
g(y − x)p(x)dx,

where the noise distribution g(z) is Gaussian. The gradient of the observation density is then:

∇y p(y) =
1

σ2

∫
(x− y)g(y − x)p(x)dx =

1

σ2

∫
(x− y)p(y,x)dx.

Multiplying both sides by σ2/p(y) and separating the right side into two terms gives:

σ2∇y p(y)

p(y)
=

∫
xp(x|y)dx−

∫
yp(x|y)dx = x̂(y)− y.

C TRAINING AND ARCHITECTURE DETAILS

Architecture. The terminal low-pass CNN and all cCNNs are “bias-free”: we remove all additive
constants from convolution and batch-normalization operations (i.e., the batch normalization does
not subtract the mean) (Mohan* et al., 2020). All networks contain 21 convolutional layers with
no subsampling, each consisting of 64 channels. Each layer, except for the first and the last, is
followed by a ReLU non-linearity and bias-free batch-normalization. Thus, the transformation is both
homogeneous (of order 1) and translation-invariant (apart from handling of boundaries), at each scale.
All convolutional kernels in the low-pass CNN are of size 3× 3, resulting in a 43× 43 RF size and
665, 856 parameters in total. Convolutional kernels in the cCNNs are adjusted to achieve different
RF sizes. For example, a 13× 13 RF arises from choosing 3× 3 kernels in every 4th layer and 1× 1
(i.e., pointwise linear combinations across all channels) for the rest, resulting in a total of 214, 144
parameters. For comparison, we also trained conventional (non-multi-scale) CNNs for denoising. For
RF 43× 43, we used the same architecture as for the coarsest scale band of the multi-scale denoiser:
21 bias-free convolutional layers with no subsampling. To create smaller RFs, we followed the same
strategy of setting some filter sizes in the intermediate layer to 1× 1.

Training. For experiments shown in Figure 3 and Figure 4, we use 202, 499 training and 100 test
images of resolution 160× 160 from the CelebA dataset (Liu et al., 2015). For experiments shown in
Figure 5, Figure 7 and Figure 6, we use 29, 900 train and 100 test images, drawn from the CelebA
HQ dataset (Karras et al., 2018) at 320× 320 resolution. We follow the training procedure described
in (Mohan* et al., 2020), minimizing the mean squared error in denoisingd images corrupted by
i.i.d. Gaussian noise with standard deviations drawn from the range [0, 1] (relative to image intensity
range [0, 1]). Training is carried out on batches of size 512. Note that all denoisers are universal
and blind: they are trained to handle a range of noise, and the noise level is not provided as input to
the denoiser. These properties are exploited by the sampling algorithm, which can operate without
manual specification of the step size schedule Kadkhodaie & Simoncelli (2021).
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D WAVELET CONDITIONAL SYNTHESIS ALGORITHM

Sampling from both the CNN and cCNN denoisers is achieved using a slightly modified version of
the algorithm of ?, as defined in Algorithm 1. This method uses only two hyperparameters, aside
from initial and final noise levels, and their settings are more forgiving than those of backward SDE
discretization parameters in score-based diffusions. A step size parameter, h ∈ [0, 1], controls the
trade-off between computational efficiency and visual quality. A stochasticity parameter, β ∈ (0, 1],
controls the amount of noise injected during the gradient ascent. For the examples in Figure 5,
Figure 7 and Figure 6, we chose h = 0.01, σ0 = 1, β = 0.1 and σ∞ = 0.01.

Image synthesis is initialized with a terminal low-pass image (either sampled from the associated
CNN, or computed from a test image), and successively sampling from the wavelet conditional
distributions at each scale, as defined in Algorithm 2.

Algorithm 1 Sampling via ascent of the log-likelihood gradient from a denoiser residual

Require: denoiser f , step size h, initial noise level σ0, final noise level σ∞
1: t = 0
2: Draw x0 ∼ N (0, σ2

0Id)
3: while σt ≥ σ∞ do
4: t← t+ 1
5: dt ← f(xt−1)− xt−1 ▷ Compute the score from the denoiser residual
6: σ2

t ← ||dt||2/N ▷ Compute the current noise level for stopping criterion
7: γ2

t =
(
(1− βh)2 − (1− h)2

)
σ2
t

8: Draw zt ∼ N (0, I)
9: xt ← xt−1 + hdt + γtzt ▷ Perform a partial denoiser step to remove a fraction of the noise

10: end while
11: return xt

Algorithm 2 Wavelet Conditional Synthesis

Require: number of scales J , low-pass image xJ , conditional denoisers (fj)1≤j≤J , step size h,
initial noise level σ0, final noise level σ∞

1: for j ∈ {J, . . . , 1} do
2: x̄j ← DrawSample(fj(·,xj), h, σ0, σ∞) ▷ Wavelet conditional sampling
3: xj−1 ←WT (x̄j ,xj) ▷ Wavelet reconstruction
4: end for
5: return x0

E ADDITIONAL SUPER-RESOLUTION EXAMPLES
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Figure 7: Additional super-resolution examples. Columns, in groups of three, from left to right:
original images, 320× 320 pixels. Low-pass images of corresponding 3-stage wavelet decomposition
(downsampled to 40× 40, expanded to full size for viewing). Coarse-to-fine conditional generation
using the multi-scale conditional denoisers, each with RF size 13× 13.
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Figure 8: Additional super-resolution examples. See caption of Fig. 7.
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