2306.11074v1 [cs.LG] 19 Jun 2023

arxiv

Simple and Fast Group Robustness by Automatic Feature Reweighting

Shikai Qiu'“ Andres Potapczynski ' *

Abstract

A major challenge to out-of-distribution general-
ization is reliance on spurious features — patterns
that are predictive of the class label in the train-
ing data distribution, but not causally related to
the target. Standard methods for reducing the re-
liance on spurious features typically assume that
we know what the spurious feature is, which is
rarely true in the real world. Methods that attempt
to alleviate this limitation are complex, hard to
tune, and lead to a significant computational over-
head compared to standard training. In this pa-
per, we propose Automatic Feature Reweighting
(AFR), an extremely simple and fast method for
updating the model to reduce the reliance on spuri-
ous features. AFR retrains the last layer of a stan-
dard ERM-trained base model with a weighted
loss that emphasizes the examples where the ERM
model predicts poorly, automatically upweighting
the minority group without group labels. With this
simple procedure, we improve upon the best re-
ported results among competing methods trained
without spurious attributes on several vision and
natural language classification benchmarks, using
only a fraction of their compute.

1. Introduction

Most realistic datasets contain features that can be used
to achieve strong performance in-distribution, but that are
not inherently relevant to the predictive task. For example,
on Waterbirds (Sagawa et al., 2020), an image classifica-
tion dataset where the goal is to distinguish landbirds (e.g.
woodpecker) from waterbirds (e.g. seagull), a model can
reach 95% in-distribution accuracy by only looking at the
background and completely ignoring the actual bird.

“Equal contribution 'New York University. Correspon-
dence to: Shikai Qiu <sq2129 @nyu.edu>, Andres Potapczynski
<ap6604 @nyu.edu>, Pavel Izmailov <pi390@nyu.edu>, An-
drew Gordon Wilson <andrewgw @cims.nyu.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Pavel Izmailov! Andrew Gordon Wilson !

Features such as background (ocean), which are correlated
with but not causally related to the target (waterbird) are
known as spurious features or spurious attributes. By re-
lying on spurious features, a model performs well on the
training data distribution without learning the core features
that are intrinsically descriptive of the targets. Such models
inevitably fail to generalize to new data where the spurious
correlation breaks, such as images of waterbirds appearing
on land backgrounds.

The best existing approaches for addressing spurious fea-
tures require access to group labels on the training data
(Sagawa et al., 2020; Idrissi et al., 2021), which simultane-
ously specify both the class label and the spurious attribute
for each datapoint. This requirement presents a major lim-
itation: while many real-world problems contain spurious
correlations, we do not know what they are a priori! More-
over, even in rare cases where we could potentially identify
the spurious feature, it can be prohibitively expensive to
manually add group labels to a large dataset. Consequently,
there has been great interest in reducing the reliance on
spurious features without explicit access to the spurious at-
tributes (e.g., Liu et al., 2021; Nam et al., 2020; Zhang et al.,
2022; Lee et al., 2022b). However, compared to standard
training, the resulting methods are generally more complex,
computationally heavy, and difficult to tune, making them
difficult to adopt in practice.

In this paper, we propose Automatic Feature Reweighting
(AFR), a simple and fast method for reducing the reliance
on the spurious attributes with a minimal computational
overhead compared to standard training. As in Kirichenko
et al. (2022), we freeze the feature extractor of the base
model pretrained on a dataset with a spurious correlation,
and focus on retraining the last layer of the model. How-
ever, unlike Kirichenko et al. (2022), which uses a group-
balanced dataset for re-training, we use an weighted loss on
a held-out dataset drawn simply from the training distribu-
tion for retraining the last layer, where the weights prioritize
datapoints on which the base model performs poorly. These
weights automatically result in an approximately group-
balanced dataset for re-training without either group labels
or intervention in base model training. We illustrate AFR in
Figure 1.

We show that AFR achieves strong results on vision and lan-

Simple and Fast Group Robustness by Automatic Feature Reweighting

G,y=0
) Ghy=1

%*4&
drp ey
® " %, +iﬁ"ﬁ+*

2° +
O%%O ==
oo A

Gy,y=0 Gyy=1

(a) ERM classifier

(b) AFR classifier

95 200
Q —_
S £150 137
(<_') 90 IS
~—100
4]
%gs g <0 58
d F 19
80 0

AFR CnC JTT

AFR CnC JTT

(c) Performance and training time on Waterbirds

Figure 1: Automatic Feature Reweighting. (a) An illustration of the ERM classifier trained on a binary classification
problem with a spurious correlation. The dataset consists of four groups shown in different colours, and two classes shown
with circles and pluses. The ERM classifier (decision boundary shown with the black line) performs well on the majority
groups G2, G4 (shown in lighter colors), but underperforms on the minority groups G1, Gz (lighter colors). (b) AFR
upweights the datapoints where the base ERM model achieves high loss. The size of a marker reflects the weight of the
corresponding datapoint. This weighting automatically prioritizes the minority data, leading to a classifier that achieves
much better performance on the minority groups. (c) Test worst-group accuracy and training time comparison on Waterbirds
for state-of-the-art methods that do not use group information during training. AFR outperforms the baselines, while only

requiring a small fraction of compute time.

guage benchmarks such as Waterbirds, CelebA, MultiNLI,
CivilComments and Chest X-Ray while requiring a negligi-
ble training time overhead compared to ERM. In particular,
we improve upon the best reported results on Waterbirds
and MultiNLI among methods which do not require labels
for the spurious attributes during training. Furthermore, we
show that AFR can significantly outperform a state-of-the-
art method that explicitly uses group labels during training,
when only a small number of group labels are available.
Through extensive ablations, we find AFR is robust to its
hyperparameters such that it often significantly improves
group robustness without careful hyperparameter tuning.

Code for AFR is available at
https://github.com/AndPotap/afr.

2. Preliminaries

We frame the group robustness problem and outline several
baseline methods.

2.1. Problem Setting

We consider the group robustness setting (Sagawa et al.,
2020). Specifically, we assume that the data distribution
consists of several groups g € G, which are typically defined
by a combination of the class label y €) and a spurious
attribute s € S. For example, in CelebA where we classify
y € {Blond, Not Blond}, the spurious attribute is the gen-
der of the person shown in the image s € {Male, Female}.
The groups then correspond to all pairs of values of the class
label and spurious attribute G =) x S.

The attribute s is spurious if it is correlated with y, but
not causally related with it. In CelebA, about 94% of

the datapoints with y = Blond have the spurious attribute
s = Female. As a result, models trained on this problem
rely on the gender feature to predict the hair color, and
underperform on the minority group ¢ = (Blond, Male).
Throughout the paper, we will be evaluating the worst group
accuracy (WGA), i.e. the minimum of predictive accuracies
of our model across all groups.

Access to spurious attributes. Most existing methods
for robustness to spurious correlations assume access to
spurious attributes s on the training data (Sagawa et al.,
2020), or on a subset of the available data used to train
the parameters of the model (Kirichenko et al., 2022; Nam
et al., 2022; Sohoni et al., 2021). In contrast, we consider
the more challenging setting, where the group attributes are
not available to us on any of the datapoints used to train the
parameters of the model. We underscore that, as all other
methods following this setting (Liu et al., 2021; Zhang et al.,
2022), we tune hyperparameters on a validation set with
explicit spurious attributes. However, as seen in Section 4.4,
our method does not require a large amount of validation
data.

2.2. Group Robustness Baselines

Empirical Risk Minimization (ERM). In ERM, we
learn the parameters 6 of the model by minimizing the loss
¢ averaged over the training data:

N
1
ERM (p\ _ .
c (9)—N;€(a€l,yz,9). (1)
We use cross-entropy £*°(x;,y;;6) = —logpy,(x:;0),

where p,(x;6) is the probability of the class y predicted
by the model with parameters 6 on an input z.

https://github.com/AndPotap/afr

Simple and Fast Group Robustness by Automatic Feature Reweighting

Group Distributionally Robust Optimization (GDRO).
Intuitively, GDRO (Sagawa et al., 2020) minimizes the worst
group loss given by

EGDRO (

where N, is the number of observations with group g; = g.
To compute the GDRO objective, we require group labels
gn, for all of the training data and these group labels help
GDRO to considerably improve worst group performance.
Therefore, the worst group accuracy achieved by GDRO is
considered an upper bound on a given dataset. Sagawa et al.
(2020) provides full details of the method.

Deep Feature Reweighting (DFR). Kirichenko et al.
(2022) showed that it is sufficient to retrain just the last layer
of a classifier on a group-balanced held-out reweighting
dataset to obtain results similar to GDRO. Specifically, they
represent the model mg = cy o ey, where e, is the feature
extractor with parameters v and cy, is the classification head
(last layer) with parameters ¢, and 6 = (¢,). Starting
with a pretrained model, we freeze the feature extractor
parameters 1), and retrain only the classifier ¢4 using a held-
out dataset (not used to train the feature extractor) where
the number of datapoints from each group is the same. They
use the ERM objective in Eq. (1) to retrain the classifier.
While DFR does not require group annotations on all of
the training data like GDRO, it requires a group-balanced
reweighting dataset.

Just Train Twice JTT). InJTT (Liuetal., 2021), we first
train a classifier my with ERM for T steps finding weights 0,
and then construct the set £ = {i : argmax, m; (z;) [y] #
y; } of misclassified training indices. We then retrain my by
minimizing the loss

|g| nge xl’ y’L?

i€E

ﬁJTT

nge ll’ y’b?

|5”|
igE

where the hyperparameter A € R upweights the relevance
of the missclassified observations. JITT does not explicitly
require access to the group labels. Importantly, JTT tunes
the number 7" of epochs for which the first model is trained
to avoid both under and over-fitting the training set. If 7" is
too small, the error set will approach the entire training set.
If T is too large, the error set will approach the empty set.

Correct-N-Contrast (CNC). The method in Zhang et al.
(2022) builds upon JTT and also trains two models, but
it uses a contrastive loss to train the second model. The
first model is used to define the positive pairs (objects with
the same class, but different predictions), and negative pairs
(objects with different classes but the same prediction). CNC
achieves strong WGA without requiring group annotations,
but requires tuning and comes at a large computational

Algorithm 1 Automatic Feature Reweighting

Input: Training set partitioned into Dggry (80%), Drw
(20%), v > 0 and a classifier that decomposes as my =
g © ey, where 6 = (¢, 7).

Stage 1: Train checkpoint § = (¢, 1)) until convergence
on Dy using the loss LERM,

Stage 2: Re-train last layer ¢4 on Dgry using the loss
LATR in Eq. (2), leaving the feature extractor e,; fixed.

overhead compared to standard training: the authors report
10x training time for CNC compared to ERM on multiple
datasets. Similar to how JTT requires tuning the number
of epochs to train the first model, CNC requires tuning the
weight decay parameter for training the first model to avoid
both under and over-fitting the training set in order to extract
information on the spurious attributes from its prediction.

We provide an extended discussion of additional related
work in Appendix D.

3. Automatic Feature Reweighting

We now introduce AFR, a fast and simple method to improve
group robustness without group annotations during training.
As we will show, AFR is based on the key insight that we can
infer minority group examples from an ERM model alone,
trained in the standard way without intervention. The ability
to use a standard ERM model is an important advantage over
JTT and CNC where a model is trained specifically to learn
the spurious features by applying heavy regularization. We
use the inferred information about the minority examples
to automatically construct a more group-balanced dataset
and retrain only the last layer of the ERM model without
access to any group labels, unlike DFR where group labels
are required.

3.1. Method Description

At a high level, AFR proceeds in two stages. In the first
stage, we train an ERM model on the training set Dgry -
In the second stage, we retrain only the last layer of the
model on a reweighting set Drw, with examples receiving
high loss under the ERM checkpoint upweighted. Here,
Drrm and Dy are two distinct datasets drawn from the
same distribution and neither of them needs to be group-
balanced. We find that splitting the training set in a 80%—
20% proportion to construct Dgry and Dryw works well in
practice, but we show that performance is not particularly
sensitive to the split in Appendix C.6.

We summarize AFR in Algorithm 1. We now describe the
two stages in further detail.

Stage 1. We train a model checkpoint on Dgry until

Simple and Fast Group Robustness by Automatic Feature Reweighting

convergence via standard ERM without any modifications
to the standard training procedure. Typically in this stage,
we would achieve near 100% accuracy on the training data
and the resulting model would have poor test performance
on minority groups. In contrast to JTT and CNC (see Section
2.2), we do not under-trained our first stage model to avoid
completely fitting the training data, i.e., achieving near-zero
training cross-entropy loss.

Stage 2. Denote the model parameters as 6 = (¢,),
where ¢ represents the last layer parameters and) repre-
sents all the other parameters and denote by 6= (QZ), 1[)) their
values learned at the end of stage 1. In the second stage,
we retrain the last layer parameters ¢ of the model on Drw
using the following objective:

2
» (@)
2

LAFR () — f:mé"e (l'iyyiﬂﬁﬂ;) +A H¢ N (;3‘
im1

where M = |Drw]|, and {y; }}£, are per-example weights
for the cross-entropy loss £*°. These weights are designed to
be large for datapoints where the original model 6 predicts
poorly, thus automatically upweighting the minority groups.
We consider a simple functional form for the weights given
by a softmax over the per-example “incorrectness” 1 — p;,
where p; is the probability for the correct class y; assigned
by the stage 1 checkpoint 6, with a tunable inverse tem-
perature v > 0: p; o< exp(y (1 — p;)) o exp(—vyp;). To
address datasets with class imbalance, we further modulate
the per-example weight with a class-dependent constant and
define

ﬂyi exp(ff)’ﬁi)
S By, exp(—vp;)

where 3, is one divided by the number of examples belong-
ing to class y in the reweighting set. Note that the weights
w; in Eq. (3) are only computed once and fixed during the
second stage.

pi = 3)

The hyperparameter ~ specifies how much to upweight ex-
amples with poor predictions, while A > 0 is a regulariza-
tion hyperparameter to prevent the last layer from focusing
only on minority examples at the expense of degrading per-
formance on majority group examples to an unacceptable
level. The regularization also reduces overfitting to limited
reweighting data. In Section 5, we investigate how optimal
our weighting function is for group robustness.

Effect of +. The hyperparameter + determines how
strongly we upweight the datapoints where the first stage
model 4 provides poor predictions. In particular, by setting
v = 0, we recover standard ERM (with class reweighting),
as all the weights in Eq. (3) become simply 1; o< 8y,. In
contrast, as we increase vy, AFR’s loss concentrates more on
the poorly classified points.

Group weights
o © © ° o
[l N w B w

o
=)

Figure 2: AFR weights on Waterbirds. Group aggre-
gated weights as a function of v on Dgyy for the Waterbirds
dataset, with majority groups G; and G4, and minority
groups (1 and G3. The ERM model performs poorly on
minority groups G2 and G3, enabling automatic group re-
balancing by upweighting poorly predicted examples. The
reweighted group distribution is more balanced than the
original group distribution, for a broad range of vy values.

To illustrate how we automatically upweight minority exam-
ples and reduce group imbalance with the weights {z; }2£,,
in Figure 2 we plot the group aggregated weights defined
as the sum . gi—g M of all per-example weights within
each group g, as a function of v on Dgyy for the Waterbirds
dataset. As we increase 7y, the minority groups (G, and
G'3) receive increasingly higher weights. The re-weighted
group distribution is more balanced than the original group
distribution, regardless of the value of v, as long as it is
positive. Aty = 4.4, the group aggregated weights are
23%, 15%, 31% and 31%, which is close to group balanced
weights of 25% each.

In the following sections, we expand on key design decisions
in AFR and important conceptual differences between AFR
and existing work that underlies AFR’s strong performance,
simplicity, and efficiency.

3.2. Inferring Minority Examples without Intervention

One key insight that distinguishes AFR from JTT and CNCis
that we do not need to intervene on the ERM model (e.g. by
over-regularizing) to infer spurious attributes or to identify
minority group examples. While an ERM model trained via
the standard procedure can fit all datapoints in its training
set Der, its performance on minority group examples in a
held-out dataset will be much worse compared to the major-
ity group examples. Indeed, this performance discrepancy
is precisely why spurious correlations are problematic in the
first space. In AFR, we take advantage of this performance
discrepancy to automatically isolate and upweight the mi-
nority group examples on the reweighting set Dryw during
the second stage to retrain only the last layer.

In contrast, both JITT and CNC rely on heavy regularization

Simple and Fast Group Robustness by Automatic Feature Reweighting

to encourage the model to under-fit the data and only learn
spurious features in the first stage. These methods are thus
more expensive and harder to tune, as the entire model has
to be retrained from scratch in order to find, for example, the
optimal regularization strength. Moreover, an entirely new
model needs to be trained in the second stage to learn the
core features relevant to the actual classification problem,
resulting in substantial computational overhead over training
a single ERM model.

A potential downside of splitting the training data into
Dgru and Dry is that we only use a subset of the available
data for training the feature extractor. As such, we may learn
a slightly weaker feature extractor compared to a standard
ERM model trained with the entire training set. However,
by reweighting the last layer with the remaining data Drw,
AFR is able to achieve much higher worst group accuracies
than ERM, showing that the benefit of the procedure drasti-
cally outweighs its cost when the goal is to achieve group
robustness. In Appendix C.6 we also show AFR is not very
sensitive to the choice of this splitting ratio.

3.3. Last Layer Retraining without Group Labels

Retraining only the last layer on the reweighting set is an
important design decision in AFR that has several impor-
tant benefits. First, as a standard ERM model learns the
core features sufficiently well despite spurious correlations,
retraining only the last layer is sufficient to significantly im-
prove group robustness (Kirichenko et al., 2022; Lee et al.,
2022a). Second, as the last layer tends to have several or-
ders of magnitude fewer parameters than the entire model,
retraining only the last layer is more data efficient than re-
training the entire model. This data efficiency enables us to
use a small reweighting set and leave most of the training
data to train the feature extractor during the first stage. Fi-
nally, retraining the last layer is extremely fast. By caching
the embeddings from the fixed feature extractor, we can
complete the last layer retraining in less than a minute on
standard hardware.

In contrast to DFR, our reweighting set does not need to be
group-balanced and can simply be drawn from the training
distribution. The weighting in Eq. (3) automatically con-
structs a more balanced dataset. As such, AFR can tackle
problems where no group-annotated data exists, whereas
DFR cannot.

3.4. AFR’s Advantages over Alternatives

To the best of our knowledge, AFR is the only group ro-
bustness method to achieve state-of-the-art results across a
wide variety of benchmarks without requiring group labels
through training, and with negligible computational over-
head over standard ERM, as we will show in Section 4. We
summarize AFR’s advantages over prior group robustness

methods as follows:

* More broadly applicable: Unlike methods such as
DFR and GDRO, AFR does not require group labels
during training and is therefore applicable to problems
where DFR and GDRO are not due to unavailability of
group annotated data.

* Simpler to use: To run AFR, we only need a stan-
dard ERM checkpoint, potentially from an existing
pretrained model. We then only retrain its last layer
using a weighted cross-entropy loss and /5 regulariza-
tion to the initial weights. Unlike JTT and CNC, AFR
does not require any intervention for the first stage of
training, or implementing special training objectives
and batch samplers for the second stage.

» Faster to train: AFR only retrains the last layer pa-
rameters, often taking less than a minute by caching
the embeddings {e;(2)}scppy , While JTT and CNC
train a second model entirely from scratch, which can
take hours. We show a comparison of training times in
Figure 3.

» Easier to tune: Since AFR has no hyperparameter
for training the first checkpoint, unlike JTT and CNC,
hyperparameter tuning is much easier and cheaper for
AFR. Indeed, as a single first stage checkpoint can be
reused, the time for sweeping over K hyperparameter
settings is roughly O(1) for AFR but O(K) for JTT and
CNC since training time for the last layer is negligible
compared to retraining the entire model.

These advantages reflect important conceptual differences
between AFR and alternatives as outlined in previous sec-
tions, despite a few high level similarities to methods like
JTT and DFR, such as two-stage training.

4. Experiments

We evaluate AFR on a range of benchmarks and provide
detailed ablations on design decisions and hyperparameters.

4.1. Datasets, Models and Hyperparameters

We now describe the datasets, models and hyperparameters
that we use in the experiments.

Datasets. We consider several image and text classifica-
tion problems. For more details, see Appendix B.

e Waterbirds (Sagawa et al., 2020) is an image classifi-
cation dataset where the goal is to classify birds into
landbirds (woodpecker, catbird, etc) and waterbirds
(albatross, seagull, etc). The background is a spuri-
ous feature, as most waterbirds are shown on water
backgrounds and most landbirds are shown on land.

Simple and Fast Group Robustness by Automatic Feature Reweighting

Method Waterbirds CelebA MultiNLI CivilComments Chest X-Ray
Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%)

ERM 72.6 97.3 47.2 95.6 67.9 82.4 57.4 92.6 4.4 95.3

JTT 86.7 93.3 81.1 88.0 72.6 78.6 69.3 91.1 52.3 64.2

CNC 88.5+0.3 90.940.1 88.840.9 89.9+05 — — 68.942.1 8l.7+05 — —
AFR (Ours) 90.4:{:1‘1 94.2j:1.2 820;‘:0,5 91.3i0.3 73-4:t0.6 81.4:‘:0.2 68-7;&0,6 89.8:‘:0.6 56.0:‘:3,4 70-1:t6.0

Group-DROT 91.4 93.5 88.9 92.9 7T 81.4 69.9 88.9 — —
DFR}L 92.9i0,2 94.2:‘:0.4 88.3i1,1 91.3:‘:0.3 74.7i0,7 82.1:t0.2 70-1:t0.8 87.2:‘:0.3 59~8:tl.8 64.2i3,1

Table 1: Results on spurious correlation benchmarks. We report test worst-group accuracy and test mean accuracy.
Additionally, T denotes oracle methods that make explicit use of group annotations. For AFR, we report the mean =+ std over
3 independent runs. We report CNC numbers from Zhang et al. (2022), ERM and JTT numbers from Liu et al. (2021) and
DFR numbers from Kirichenko et al. (2022). For Chest X-Ray, we report the JTT number from Yang et al. (2022) and the
ERM number from our own run. For mean accuracy, we follow Liu et al. (2015) and Sagawa et al. (2020) and weight the
group accuracies according to their prevalence in the training data. AFR provides competitive results with substantially
lower runtime (shown in Figure 3) than alternatives that do not use group information during training.

* CelebA (Liu et al., 2015) is an image classification
dataset, where we focus on classifying whether an
image shows a person with blond hair or not. Gender
is the spurious feature, as 94% of images showing
people with blond hair in CelebA are of women, and
blond men constitute a minority group.

MultiNLI (Williams et al., 2017) is a text classifica-
tion problem, where we discern whether the second
sentence in a given pair of sentences is entailed by,
contradicts or is neutral to the first sentence. The spuri-
ous attribute is the presence of negation words such as
“never” which correlates with “contradiction”.

CivilComments (Borkan et al., 2019) is a text classi-
fication benchmark, where we classify an online com-
ment as “toxic” or “not toxic”. We use the version
from the WILDS benchmark (Koh et al., 2021), where
the presence of text related to gender (male, female),
sexual orientation (LGBTQ), race (black, white) and
religion (Christian, Muslim or other) is spuriously cor-
related with the comment being labeled as “toxic”.

* CXR (Yang et al., 2022) is an image classification
dataset where we consider the task of predicting pneu-
monia based on chest X-rays from two sources: CheX-
pert (Irvin et al., 2019) and NIH (Wang et al., 2017).
Here the spurious feature is the source of the image
(machine-specific artifacts).

Models. We follow standard model choices consistent
with the baselines on each of the datasets (Liu et al., 2021;
Kirichenko et al., 2022; Zhang et al., 2022): for Waterbirds
and CelebA we use ResNet-50 (He et al., 2016) pretrained
on ImageNetlk (Russakovsky et al., 2015), for MultiNLI
and CivilComments we use BERT (Devlin et al., 2018)
pre-trained on Book Corpus and English Wikipedia data,

and for Chest X-Ray we use DenseNet-121 (pretrained on
ImageNet1K). We provide further details in Appendix B.

Hyperparameters. Following all other group robustness
methods, we use validation WGA to tune AFR’s v and A
and perform early stopping (see Appendix B for details).

4.2. AFR Achieves Strong Group Robustness

We report the results for AFR and the baselines in Table 1,
showing that AFR outperforms or that it is competitive
with the best reported results among methods trained with-
out access to the spurious attributes on all datasets except
CelebA. AFR improves upon the best reported results on
Waterbirds and MultiNLI. Compared to JTT, AFR achieves
better performance on all datasets except for CivilCom-
ments where the results are slightly worse. Compared to
CNC, AFR achieves better results on Waterbirds, similar
results on CivilComments, and underperforms on CelebA.
In Appendix C.1 we present additional experiments where
we show that AFR can be safely applied to data without
known spurious features without losing performance.

4.3. AFR is Much Faster Than Alternatives

In Figure 3, we visualize the training time required by AFR
and baselines on each of the datasets (see Appendix B.2 for
more details). Unsurprisingly, AFR incurs a negligible over-
head (6% on average) compared to ERM by only retraining
the last layer. Here we included the time to pre-compute
and cache the embeddings, which in practice can be ignored
by amortizing across a hyperparameter sweep. In contrast,
JTT is on average three times as expensive (205% overhead
compared to ERM). It might appear counter-intuitive that
JTT takes 3x the time of ERM, as we are “just training
twice”! However, both stages of JTT, especially the last one,
are more expensive than ERM. First, the initial checkpoint

Simple and Fast Group Robustness by Automatic Feature Reweighting

I ERM

40

= I AFR
20 . TT

i I CnC
P J d

WB CelebA MNLI CivilC CXR

Time

Figure 3: Training time. Training time (in hours) across
different spurious correlation benchmarks. AFR only incurs
a negligible overhead compared to standard ERM and is
substantially less expensive than JTT and CNC.

takes longer to run as it converges slower due to high regu-
larization (training to convergence is needed in order to tune
the first stage epoch number). Second, the second phase has
substantially more data which increases the epoch runtime,
as all misclassified examples are repeated multiple times
in the dataset. Finally, CNC is the least scalable method
with an average overhead of 550% compared to ERM. CNC
shares similar steps to JTT but the contrastive objective is
expensive to optimize.

4.4. AFR is Group Label Efficient

Efficiency in terms of group labels is valuable for group
robustness methods, because correctly identifying the spu-
rious attributes and collecting corresponding group labels
can be a time-consuming and expensive process. Unlike
methods such as DFR and Group DRO, AFR can be applied
when group labels are not available on the training set. On
the other hand, while AFR is generally not sensitive to the
choice of hyperparameters, as we show in Section 4.5 and
Appendix C, optimal performance still requires hyperpa-
rameter tuning on a group-annotated validation set, and the
same applies to JTT and CNC. However, since AFR only
uses group labels for hyperparameter tuning and not for
training, it is reasonable to expect AFR to be more efficient
in terms of group labels than methods like DFR. In Figure 5,
we show that AFR can indeed achieve significantly higher
test WGA than DFR when only a small fraction of group-
annotated validation data are accessible to both methods. On
Waterbirds, for example, AFR achieves near-maximal test
WGA improvement with only 0.5% of the group-annotated
validation data, consisting of merely 5 examples, whereas
DFR achieves lower test WGA than ERM by overfitting
to these examples. On the other hand, since DFR directly
uses group labels to train the model, rather than only to tune
the hyperparameters, it can eventually outperform AFR as
more group labels become available, as shown in the case
of CelebA.

As a result, we conclude that AFR is often more efficient
in terms of group labels than DFR when the number of
available group labels is limited, though not necessarily
when group labels are abundant.

%0 "
9
—85 =
X £
< 80 & 102
Q #*
=75 o
Mg Ry Sy >
870 g
Q
65 —e— AFR E 1
--- ERM 10
60
0 10 20 30 0 10 20 30
12 v

(a) Test WGA (b) Effective sample size

Figure 4: Robustness to . (a) AFR significantly improves
test WGA on Waterbirds for any v € [0,30]. We show
mean and standard deviation (error bars) across 3 runs. (b)
The effective sample size decreases and then stabilizes as
v grows, explaining stability in AFR’s performance as v
increases.

4.5. AFR is Robust to Hyperparameters

We study the robustness of AFR to the choice of the hyper-
parameter y for Waterbirds. Furthermore, in Appendix C,
we present additional results ablating early stopping, /5 reg-
ularization to initial checkpoint, dataset splitting ratio, and
the functional form of the weights, demonstrating AFR is
also robust to these hyperparameters and design decisions.

As argued earlier, we do not expect the performance to be
highly sensitive to v, since as long as +y is positive, the
reweighted group distribution will be more balanced than
the original group distribution. We confirm this intuition in
Figure 4(a), which shows the mean and standard deviation
of the test worst group accuracy achieved by our method
over 3 runs on Waterbirds across a wide range of -y, keeping
A = 0 for simplicity. AFR achieves near-optimal test WGA
by the time v = 6. As we continue to increase v, the test
WGA degrades slightly and then stabilizes around a value
still much higher than ERM. To understand this behavior,
note that for a sufficiently large -, the set of examples that
receive non-negligible weights j; converges approximately
to a fixed set, namely, the set of most poorly predicted ex-
amples under the first stage checkpoint. This property is
evident in Figure 4(b), where we show the effective sample
size Neg approximately stabilizes after initially plummeting
for v < 6. Here, Nog = 1/ 3., 112 represents the effec-
tive number of observations for weighted samples (Kish,
1965). As a result, the performance of AFR doesn’t vary
significantly beyond v = 6, revealing only a gradual de-
crease in mean and an increase in variance as the effective
sample size slowly diminishes. Overall, AFR maintains a
significant improvement over ERM for all v € [0, 30]. In
Appendix C.2, we show AFR is even more robust to -y on
CelebA where its performance is almost constant over 7.

Setting v = 0 already yields a significant increase in test
WGA over standard ERM. This improvement is not surpris-

Simple and Fast Group Robustness by Automatic Feature Reweighting

©
o

1
s 8

Test WGA [%]
o
&
Test WGA [%]
v o
a 3

o
o

90
=80
s
<70

g

=60

3

[--- ERM
—e— AFR

40 —e— DFR 50

0.0050.01 0.02 0.05 0.1 0.2 05 1.0
Fraction of group labels

Test WGA [%

0.0050.01 0.02 0.05 0.1 0.2 05 1.0
Fraction of group labels

(a) Waterbirds (b) CelebA

75 70

<
=]
%
o
o

£

=== ERM
—e— AFR
—e— DFR

=== ERM
—e— AFR
—e— DFR

o
=]

60

a5

0.0050.01 0.02 0.05 0.1 0.2 05 1.0
Fraction of group labels

0.01 0.02 0.05 01 0.2 05 1.0
Fraction of group labels

(c) MultiNLI (d) CivilComments

Figure 5: Group label efficiency of AFR vs DFR. AFR significantly outperforms DFR on 3 out of 4 datasets when
only a small fraction of group-annotated validation data is used by AFR and DFR for hyperparameter tuning and training
respectively. We show means and standard deviations computed over 9 runs, with 3 seeds for base model training and 3

seeds for validation set down-sampling.

ing since the per-example weights ;; in AFR account for
class imbalance and the smallest group in Waterbirds indeed
belongs to the less represented class.

S. Are AFR Weights Optimal?

In this section, we explore how optimal the AFR weights
are for improving group robustness. We find that it is not
always possible for AFR to produce group-balanced weights
and we could achieve better performance if we had access to
such weights. However, we also find that AFR’s weights are
in fact near-optimal for maximally re-balancing the group
distribution, given constraints on the available information
and practical considerations. These findings suggest both
that AFR should be very effective among approaches based
on dataset reweighting, and that these approaches, including
AFR and JTT, share intrinsic limitations, and alternative
approaches, e.g. CNC, may provide better results on certain
datasets, such as CelebA.

5.1. AFR Weights Are Imbalanced on CelebA

Kirichenko et al. (2022) showed that retraining the last layer
of an ERM checkpoint with a group-balanced held-out set
is sufficient for state-of-the-art worst group accuracy. By
upweighting minority group examples, AFR aims to auto-
matically construct a group-balanced held-out set without
access to group labels. However, achieving completely bal-
anced group weights with AFR is not always possible.

To illustrate this point, we analyze how AFR weights dis-
tribute over different groups, and study their training dy-
namics, as a function of « on CelebA, where AFR does
not match state of the art results. In Figure 6, we show
the group aggregated weights produced by AFR on CelebA
and the training accuracy per group during the second stage.
While AFR correctly upweights the two groups G4 and G's
with the lowest accuracy and downweights the remaining
groups G1 and G, at no value of -y are the group aggregated
weights close to balanced, unlike on Waterbirds (see Figure

2). Either the worst group G4 is assigned too small a weight
that it is not sufficiently optimized for by the model as in
Figure 6(b), or the second worst group G35 is assigned too
large a weight that the accuracy on one of the other groups
(G1) drops significantly as seen in Figure 6(c). The reason
AFR assigns a much larger weight to G5 than to G4 is be-
cause (i3 is 14 times larger in population than G4, despite
being the second worst group.

To demonstrate that the imbalance of the weights is the cause
for AFR’s sub-optimal performance, we show in Figure 6(d)
that last layer retraining on the reweighting set can achieve
as high as 86% train and test WGA if we had access to group-
balanced weights where p; < 1/|G;| with |G;| denoting the
size of group .

5.2. AFR Weights are Near-Optimal Given Constraints

AFR weights are not optimal in the unrestricted sense, since
group-balanced weights perform better on CelebA. But are
AFR weights optimal without using additional information?

In Appendix C.7, we present strong evidence showing that,
rather than AFR’s specific choice of p; o« 3, exp(— p;)
being ineffective, there in fact exists no function of only the
first-stage predictions (which contains p;) and the true class
label y; that can produce completely balanced weights on
CelebA. We do this by showing a neural network trained to
maximally balance group weights is unable to do so given
the first-stage predictions and class labels. We provide train-
ing details in Appendix C.7. This result indicates that, with-
out access to additional information, any approach based on
reweighting the dataset, such as AFR and JTT, is unlikely
to lead to optimal performance on CelebA, potentially ex-
plaining the fact that both AFR and JTT are outperformed
by CNC on this dataset by a wide margin.

In Figure 7, we plot the learned weighting function against
p for the each class on Waterbirds and CelebA. Using a log-
scale for the y-axis, all learned functions follow an approx-
imately straight line, showing that the optimal weighting

Simple and Fast Group Robustness by Automatic Feature Reweighting

y=0, test WGA=0.70
1.0
0.6 — G
= —

>

<0.7
0.2 =

:

= 0.6
0.0 0.5

Y 0 10

Group weights

20
Epoch

(a) Group aggreagated weights ®)yy=0

y=4, test WGA=0.81 Balanced, test WGA = 0.86

—_G
el

-_— G

—_— Gy

0 10 30 40 0 10 20 30 40

20
Epoch Epoch

©y=14 (d) Group-balanced

Figure 6: AFR on CelebA. (a) AFR upweights the minority groups but does not achieve group-balance. (b) v = 0 : AFR
weight on the worst group G4 is not high enough. (¢) v = 4 : Accuracy increases for G5 and G4 but decreases for G; and
G4 due to group-imbalance in AFR weights. (d) Group-balanced weights improves training dynamics and performance.

function is indeed well-modelled by a decaying exponential
in p. Furthermore, the class with fewer examples (C1) is
offset by a positive constant in log-scale from the other class
(Cp) in CelebA, showing that it is useful to allow a class-
dependent multiplicative constant before the exponential for
addressing class imbalance.

Since neural networks can learn functions much more com-
plex than what can be represented with a single parameter v,
unsurprisingly there are still some differences between the
learned functional form and ours: in log-space the weights
aren’t perfectly linear as a function of and on CelebA the
slope, which corresponds to —v in AFR, is class-dependent,
which can be accounted for at the cost of more hyperpa-
rameters. Given the constraints that 1) we can only afford
a handful of hyperparameters so that cross-validation with
a small group-annotated validation set is effective and effi-
cient, and 2) no additional information, such as group labels,
is used to define the weights, AFR’s specification of the
weights, 11, o< [y, exp(—yp;), is in fact near-optimal in
maximally re-balancing the group distribution.

Learned weights on Waterbirds
— G
—

Learned weights on CelebA
— G
—

102

1073

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
4 P

(a) Waterbirds (b) CelebA

Figure 7: The optimal weighting function approximated
by a neural network resembles the one used by AFR: a
decaying exponential in the predicted probability p for the
correct class under the first ERM checkpoint, multiplied by
class-dependent constants to address class imbalance.

6. Discussion

We have seen that we can profoundly simplify approaches
to addressing spurious correlations while achieving state-of-
the-art performance. AFR is driven by the key insight that,

without either group labels or special intervention, a stan-
dard ERM model can be used to infer minority examples
and then be minimally modified for improved group robust-
ness. As a result, AFR is considerably simpler and faster
than alternatives such as JTT and CNC, and more broadly
applicable than methods like Group DRO and DFR which
use group annotations during training. AFR reduces the
barrier to deploying group robustness methods by reducing
computational overhead, the need to recognize and label the
spurious attributes a priori, and the need to use non-standard
training procedures. Moreover, we have shown that AFR
is robust to hyperparameters and can outperform methods
like DFR that use group labels for training the model, when
only a small number of group labels are available.

On the other hand, AFR is not without limitations. Similar
to methods like JTT and CNC, AFR can still benefit from
some group-labeled data for hyperparameter tuning. As
the number of groups increases, more group labels will be
needed to estimate worst group performance and select the
best hyperparameters, which may pose challenges for its use
in datasets with numerous classes and spurious attributes.
Indeed, AFR cannot always re-balance the groups, though
it achieves near-optimal balance without access to group
label information. While using group-balanced weights is
not necessarily best for maximizing worst group accuracy,
we have seen improving the balance in AFR’s weights can
further improve worst group performance. Addressing these
limitations offers an exciting opportunity for future research.

Acknowledgements

We thank Greg Benton and Yucen Lily Li for helpful dis-
cussions. This work is supported by NSF CAREER IIS-
2145492, NSF I-DISRE 193471, NIH ROIDA048764-01A1,
NSF 11S-1910266, NSF 1922658 NRT-HDR, Meta Core
Data Science, Google Al Research, BigHat Biosciences,
Capital One, and an Amazon Research Award.

Simple and Fast Group Robustness by Automatic Feature Reweighting

References

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and Vasser-
man, L. Nuanced Metrics For Measuring Unintended
Bias With Real Data For Text Classification. Companion
proceedings of the 2019 world wide web conference, pp.
491-500, 2019.

Brendel, W. and Bethge, M. Approximating CNNs With
Bag-of-local-Features Models Works Surprisingly Well
On ImageNet. arXiv preprint arXiv:1904.00760, 2019.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S. Class-
balanced Loss Based On Effective Number Of Samples.
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9268-9277, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training Of Deep Bidirectional Transformers For Lan-
guage Understanding. arXiv preprint arXiv:1810.04805,
2018.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. ImageNet-trained CNNs
Are Biased Towards Texture; Increasing Shape Bias
Improves Accuracy And Robustness. arXiv preprint
arXiv:1811.12231, 2018.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut
Learning In Deep Neural Networks. Nature Machine
Intelligence, 2(11):665-673, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning For Image Recognition. Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 770-778, 2016.

Idrissi, B. Y., Arjovsky, M., Pezeshki, M., and Lopez-Paz,
D. Simple Data Balancing Achieves Competitive Worst-
Group-Accuracy. arXiv preprint arXiv:2110.14503,
2021.

Irvin, J., Rajpurkar, P, Ko, M., Yu, Y., Ciurea-Ilcus, S.,
Chute, C., Henrik Marklund, B. H., Ball, R., Shpanskaya,
K., Seekins, J., Mong, D. A., Halabi, S. S., Sandberg,
J. K., Jones, R., Larson, D. B., Langlotz, C. P., Patel,
B. N., Lungren, M. P,, and Ng, A. Y. CheXpert: A Large
Chest Radiograph Dataset With Uncertainty Labels And
Expert Comparison. Association for the Advancement of
Artificial Intelligence (AAAI), 2019.

Izmailov, P., Kirichenko, P., Gruver, N., and Wilson, A. G.
On Feature Learning in the Presence of Spurious Correla-

tions. Neural Information Processing Systems (NeurIPS),
35:38516-38532, 2022.

10

Kirichenko, P., Izmailov, P., and Wilson, A. G. Last Layer
Re-Training Is Sufficient For Robustness To Spurious
Correlations. Preprint arXiv 2204.02937v1, 2022.

Kish, L. Survey Sampling. John Wiley and Sons, New York,
NY, 1965.

Koh, P. W, Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I, et al. Wilds: A Benchmark Of In-The-Wild
Distribution Shifts. International Conference on Machine
Learning (ICML), 2021.

Krizhevsky, A. and Hinton, G. Learning Multiple Layers
Of Features From Tiny Images. PhD Thesis, 2009.

Krizhevsky, A., Hinton, G., et al. Learning Multiple Layers
Of Features From Tiny Images. University of Toronto
(CS), 2009.

Lee, Y., Chen, A. S., Tajwar, F., Kumar, A., Yao, H.,
Liang, P, and Finn, C. Surgical Fine-Tuning Im-
proves Adaptation To Distribution Shifts. arXiv preprint
arXiv:2210.11466, 2022a.

Lee, Y., Yao, H., and Finn, C. Diversify And Disambiguate:
Learning From Underspecified Data. arXiv preprint
arXiv:2202.03418, 2022b.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollér, P.
Focal loss for dense object detection. In Proceedings of
the IEEE international conference on computer vision,
pp- 29802988, 2017.

Lin, Y., Zhu, S., Tan, L., and Cui, P. ZIN: When and How to
Learn Invariance Without Environment Partition? Neural
Information Processing Systems (NeurlPS), 2022.

Liu, E. Z., Haghgoo, B., Chen, A. S., Raghunathan, A.,
Koh, P. W., Sagawa, S., Liang, P., and Finn, C. Just Train
Twice: Improving Group Robustness Without Training
Group Information. International Conference on Machine
Learning (ICML), 2021.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep Learning
Face Attributes In The Wild. Proceedings of the IEEE
international conference on computer vision, 2015.

Menon, A. K., Rawat, A. S., and Kumar, S. Overparame-
terisation and Worst-Case Generalisation: Friend or Foe?
International Conference on Learning Representations
(ICLR), 2020.

Moayeri, M., Pope, P., Balaji, Y., and Feizi, S. A Compre-
hensive Study Of Image Classification Model Sensitivity
To Foregrounds, Backgrounds, And Visual Attributes.
arXiv preprint arXiv:2201.10766, 2022.

Simple and Fast Group Robustness by Automatic Feature Reweighting

Nam, J., Cha, H., Ahn, S., Lee, J., and Shin, J. Learning
From Failure: De-biasing Classifier From Biased Classi-
fier. Neural Information Processing Systems (NeurIPS),
33:20673-20684, 2020.

Nam, J., Kim, J., Lee, J., and Shin, J. Spread Spurious
Attribute: Improving Worst-group Accuracy With Spu-
rious Attribute Estimation. International Conference on
Learning Representations, 2022.

Oakden-Rayner, L., Dunnmon, J., Carneiro, G., and Ré,
C. Hidden Stratification Causes Clinically Meaningful
Failures In Machine Learning For Medical Imaging. Pro-
ceedings of the ACM conference on health, inference, and
learning, pp. 151-159, 2020.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. ImageNet Large Scale Visual Recognition

Challenge. International journal of computer vision, 115
(3):211-252, 2015.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P. Dis-
tributionally Robust Neural Networks For Group Shifts:
On The Importance Of Regularization For Worst-Case
Generalization. International Conference on Learning
Representations (ICLR), 2020.

Sohoni, N., Dunnmon, J., Angus, G., Gu, A., and Ré, C.
No Subclass Left Behind: Fine-Grained Robustness In
Coarse-Grained Classification Problems. Neural Infor-
mation Processing Systems (NeurIPS), 33:19339-19352,
2020.

Sohoni, N., Sanjabi, M., Ballas, N., Grover, A., Nie, S.,
Firooz, H., and Ré, C. BARACK: Partially Supervised
Group Robustness With Guarantees. arXiv preprint
arXiv:2201.00072, 2021.

Taghanaki, S. A., Choi, K., Khasahmadi, A., and Goyal,
A. Robust Representation Learning Via Perceptual Sim-
ilarity Metrics. International Conference on Machine
Learning (ICML), 2021.

Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Sum-
mers, R. M. Chestx-ray8: Hospital-scale Chest X-Ray
Database And Benchmarks On Weakly-Supervised Clas-
sification And Localization Of Common Thorax Diseases.
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2097-2106, 2017.

Williams, A., Nangia, N., and Bowman, S. R. A Broad-
Coverage Challenge Corpus For Sentence Understanding
Through Inference. arXiv preprint arXiv:1704.05426,
2017.

Xiao, K., Engstrom, L., Ilyas, A., and Madry, A. Noise
Or Signal: The Role Of Image Backgrounds In Object
Recognition. arXiv preprint arXiv:2006.09994, 2020.

11

Yang, W., Kirichenko, P., Goldblum, M., and Wilson, A. G.
Chroma-VAE: Mitigating Shortcut Learning With Gener-
ative Classifiers. Neural Information Processing Systems
(NeurlIPS), 2022.

Yang, Y., Zhang, H., Katabi, D., and Ghassemi, M. Change
is Hard: A Closer Look at Subpopulation Shift. arXiv
preprint arXiv:2302.12254, 2023.

Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano,
J. J., and Oermann, E. K. Variable Generalization Perfor-
mance Of A Deep Learning Model To Detect Pneumonia
In Chest Radiographs: A Cross-Sectional Study. PLoS
medicine, 15(11):¢1002683, 2018.

Zhang, M., Sohoni, N. S., Zhang, H. R., Finn, C., and
Ré, C. Correct-n-Contrast: A Contrastive Approach For
Improving Robustness To Spurious Correlations. Preprint
arXiv 2203.01517v1, 2022.

Simple and Fast Group Robustness by Automatic Feature Reweighting

Appendix Outline

This Appendix is organized as follows:

* In Section A, we provide code for computing the weights in AFR.
* In Section B, we describe the details of the experimets.
* In Section C, we provide additional ablations.

¢ In Section D, we discuss additional related work.

A. Automatic Feature Reweighting Implementation Details
In this section, we provide the code for computing the weights for the weighted loss in AFR.

def compute_afr_weights(erm_logits, class_label, gamma) :
erm _logits: (n_samples, n_classes)
class_label: (n_samples,)
gamma: float
with torch.no_grad() :
p = erm_logits.softmax (-1)

y_onehot = torch.zeros_like(erm_logits) .scatter_(-1, class_label.unsqueeze(-1), 1)
p_true = (p » y_onehot) .sum(-1)
weights = (-gamma * p_true) .exp ()

n_classes = torch.unique(class_label) .numel ()
class balancing

class_count = []

for y in range(n_classes):

class_count.append((class_label == y) .sum())
for y in range(l, n_classes):
weights|[class_label == y] = class_count[0] / class_count]|[y]

weights /= weights.sum()
return weights

B. Experimental details
B.1. Last layer retraining implementation

To retrain the last layer, we pre-compute and store the embeddings produced by the stage 1 ERM model. Unless stated
otherwise, we use full-batch gradient descent without momentum to retrain the last layer parameters, initializing them to
their values at the end of stage 1. We clip the {5 norm of the gradient vector to 1. The epoch achieving highest validation
worst group accuracy is used to report our result, except for the experiment in Section 4.4 where we do not perform early
stopping on Waterbirds and CelebA when not using the entire validation set, which we found to improve performance by
avoiding stopping too early.

B.2. Timing experiment details

Timings for AFR and JTT in Figure 3 are obtained by running on a single RTX8000 (48 GB) NVIDIA GPU. For JTT we
have the following (epochs, batch size) tuples per dataset which incorporate the two stages of training. Waterbirds (360, 64),
CelebA (51, 128), MultiNLI (7, 32), CivilComments (7, 16), and CXR (150, 128). For CNC, we present timings reported by
Zhang et al. (2022).

B.3. Dataset details

‘We now detail the models and hyperparameters used on each of the tasks.

* Waterbirds: ResNet-50 (torchvision.models.resnetS0(pretrained=True))

12

Simple and Fast Group Robustness by Automatic Feature Reweighting

AFR 1st stage: epochs = 50, optimizer=sgd, scheduler=cosine, batch size = 32, learning rate = 3e-3, weight decay
= le-4.

AFR 2nd stage: epochs = 500, v from 33 points linearly spaced between [4,20], learning rate in = le-2,
A €{0,0.1,0.2,0.3,0.4}.

JTT same hyperparameters as in Liu et al. (2021).

— CNC same hyperparameters as in Zhang et al. (2022).

¢ CelebA ResNet-50 (torchvision.models.resnet50(pretrained=True))
— AFR Ilst stage: epochs = 20, optimizer=sgd, scheduler=cosine, batch size = 32, learning rate = 3e-3, weight decay
= le-4.

— AFR 2nd stage: epochs = 1000, v from 10 points linearly spaced between [1, 3], learning rate =2e-2, A €
{0.001,0.01,0.1}.

— JTT same hyperparameters as in Liu et al. (2021).
— CNC same hyperparameters as in Zhang et al. (2022).

e MultiNLI BERT (using HuggingFace)

AFR Ist stage: epochs = 5, optimizer = SGD, scheduler = constant, batch size = 32, learning rate = 2e-5, weight
decay = 0.

AFR 2nd stage: epochs = 200, v from 10 points linearly spaced between [1e2, 1e5], learning rate = le-2, A from
26 points linearly spaced between [0, 50].

JTT same hyperparameters as in Liu et al. (2021).
— CNC same hyperparameters as in Zhang et al. (2022).

* CivilComments BERT (using HuggingFace)

— AFR Ist stage: epochs = 3, optimizer = SGD, scheduler = constant, batch size = 24, learning rate = 2e-5, weight
decay = 0.

— AFR 2nd stage: v € {0,0.01,0.1,1,3,10}, A = 0, learning rate 3 - 10~3. For hyperparameter tuning and early
stopping, we combine all religions into a single attribute, as we found it to produce more stable results.

— JTT same hyperparameters as in Liu et al. (2021).
— CNC same hyperparameters as in Zhang et al. (2022).

¢ Chest X-Ray DenseNet121 (torchvision.models.densenet121(pretrained=True))

— AFR Ist stage: epochs = 100, optimizer = AdamW, scheduler = constant, batch size = 32, learning rate = le-4,
weight decay = le-5.

— AFR 2nd stage: v € [1,6], A = 0, learning rate € {10=%,50~%,1073,5073, 102,50~ 2}.
— JTT same hyperparameters as in Yang et al. (2022).

¢ CIFAR-10 ResNet-18 (torchvision.models.resnet18(pretrained=True))

— (Krizhevsky & Hinton, 2009), is an image classification task with no obvious spurious features. we want to
identify to what of 10 groups (airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck) does an image
belong to.

— AFR Ist stage / ERM: epochs = 20, optimizer = AdamW, scheduler = cosine, batch size = 32, learning rate =
le-4, weight decay = Se-4.

— AFR 2nd stage: epochs = 500, optimizer = sgd, scheduler = constant, batch size = full batch, v € {1, 2,5, 10},
learning rate in {1le — 4, 1e — 3, 1le — 2}, weight decay = 0. A = 0.

* Camelyon17 DenseNet-121 (torchvision.models.densenet121(pretrained=True))

— (Zech et al., 2018; Koh et al., 2021) is an image classification task where the goal is to predict whether a a digital
whole-slide image (WSIs) of a lymph node section contains cancer metastases.

13

Simple and Fast Group Robustness by Automatic Feature Reweighting

_e 0

(a) Waterbird on water (b) Landbird on water (c) Waterbird on land (d) Lanbird on land

Figure 8: Example images on Waterbirds. The objective is to identify the bird type (landbird y = 0 vs waterbird y = 1)
where the spurious feature is the background (water vs land). The groups are G; = lanbird on land, G = lanbird on water,
Gs = waterbird on land, and G, = waterbird on water. In terms of number of training samples per group we have

Gy = 3,498(73%), Gy = 184(4%), Gs = 56(1%), and G4 = 1,057(22%).

(a) Non-blond female (b) Non-blond male (c) Blond female (d) Blond male

Figure 9: Example images on CelebA. The objective is to differentiate hair color (non-blond y = 0 vs blond y = 1)
where the spurious feature is the gender (female vs male). The groups are G; = non-blond female, G = non-blond male,
G3 = blond female, and G4 = blond male. In terms of number of training samples per group we have G; = 71,629(44%),
Go = 66,874(41%), G3 = 22,880(14%), and G4 = 1,387(1%).

— AFR 1st stage / ERM: epochs = 20, optimizer = AdamW, scheduler = constant, batch size = 256, learning rate
= le-3, weight decay = le-4. When evaluating the final worst group accuracy, we treat all groups separately, as
prescribed in Koh et al. (2021).

— AFR 2nd stage: epochs = 500, optimizer = SGD, scheduler = constant, batch size = full batch, v € (1, 100),
learning rate in {le — 4,5e — 4, le — 3,5e — 3, le — 2}, weight decay =0. A = 0.

C. Additional Ablations
C.1. Datasets without known spurious features

We evaluate AFR on the CIFAR-10 (Krizhevsky et al., 2009) and Camelyon17 (Zech et al., 2018; Koh et al., 2021) datasets
where there are no clearly identified spurious features that we can label. For CIFAR-10 we compute the test worst class
accuracy and test mean accuracy. For CIFAR-10 we use ResNet-18 (He et al., 2016) pre-trained on ImageNet1k and for
Camelyon17 we use ResNet-50 pretrained on ImageNetlk. As Camelyonl7 is a domain generalization benchmark, we
compute the test mean accuracy on hospital 2 and hospital 4, which are not represented in the training data (hospitals 1,
3, and 5). Reassuringly, we find that AFR only marginally affects the performance on all evaluations compared to ERM,
suggesting that it can be safely applied even in situations when we are unsure if the data contains spurious features.

C.2. Sensitivity to v on CelebA

Similar to what we observed on Waterbirds, Figure 14 shows AFR performs well across a wide range of v. We set A = 0 for
simplicity. On both CelebA and Waterbirds, AFR can be applied to improve worst group accuracy without tuning either -y or
A

14

Simple and Fast Group Robustness by Automatic Feature Reweighting

B/

(a) NIH - no (b) CheXpert - no (c) NIH - pneumonia (d) CheXpert - pneumonia

Figure 10: Example images on Chest-X-Ray. The objective is to identify if the patient has pneumonia (healthy y = 0 vs
pneumonia y = 1) where the spurious features are the hospital markings from the different sources (NIH and CheXpert). The
groups are G; = NIH - no, G = CheXpert - no, G3 = NIH - pneumonia, and G4 = CheXpert - pneumonia. In terms of
number of training samples per group we have G; = 9,281(47%), G2 = 8,766(44%), G3 = 978(5%), and G4 = 855(4%).

Peor
.
\;&

)
- . .
(a) H123 - No (b) H5 - No (c) H123 - Cancer (d) H5 - Cancer

Figure 11: Example images on Camelyon-17. The objective is to identify if a lymph node slide has cancer (no cancer y = 0
vs metastases y = 1) where the spurious features are the hospital slide characteristics. In this case, the in-distribution sources
are hospitals 1, 2, and 3 (H123) and the out-of-distribution source is hospital 5 (HS). The groups are G; = H123 - no,
Go = H4 -no, G3 = H123 - Cancer, and G, = H4 - Cancer. In terms of number of data samples per group we have
G1 = 151,390(39%), G2 = 42,527(11%), G3 = 151, 046(38%), and G4 = 42,627(12%). In contrast to other datasets, Go
and G, are not observed in the training data.

airplane car bird cat

Figure 12: Example images on CIFAR-10. CIFAR-10 consist of tiny images of 10 different categories: airplane (y = 0),
automobile (y = 1), bird (y = 2), cat (y = 3), deer (y = 4), dog (y = 5), frog (y = 6), horse (y = 7), ship (y = 8) and
truck (y = 9). The train size if S0K and each class consists of 8.3K images.

15

Simple and Fast Group Robustness by Automatic Feature Reweighting

MultiNLI
Class .. # Train
Text examples label Description data
“if residents are unhappy, they can put wheels
on their homes and go someplace else, she said. contradiction

G1 [SEP] residents are stuck here but they can’t 0
go anywhere else.”

“within this conflict of values is a clash
G2 about art. [SEP] there is no clash about art.” 0

“there was something like amusement in
Gs the old man’s voice. [SEP] 1
the old man showed amusement.”

“in 1988, the total cost for the postal service
Ga was about $36. [SEP] the postal service cost us 1

”»

citizens almost nothing in the late 80’s.

“yeah but even even cooking over an open fire
Gs is a little more fun isn’t it [SEP] 2
i like the flavour of the food.”

G “that’s not too bad [SEP]
6 it’s better than nothing”
Target: contradiction / entailment / neutral;

2

no negations

contradiction
has negations

entailment
no negations

entailment
has negations

neutral
no negations

neutral
has negations

Spurious feature: has negation words.

57498 (28%)

11158 (5%)

67376 (32%)

1521 (1%)

66630 (32%)

1992 (1%)
Minority: G4, Gg

CivilComments
Class # Train
Text examples Description
P label p data
“I'm quite surprised this worked for you. non-toxic
S 0 . . 148186 (55%)
Infrared rays cannot penetrate tinfoil. no identities
“I think you may have misunderstood what non-toxic
))) ; » 0 . " 90337 (33%)
straw men’ are. But I'm glad that your gravy is good. has identities
“Hahahaha putting his faith in Snopes. Pathetic.” 1 .tOXiC.) 12731 (5%)
no identities
“That sounds like something a white person would say.”’ 1 toxic 17784 (7%)

Target: Toxic / not toxic comment;

has identities

Spurious feature: mentions protected categories.

Figure 13: Dataset examples for MultiNLI and CivilComments. We underline the words corresponding to the spurious
feature. CivilComments contains 16 overlapping groups corresponding to toxic / non-toxic comments and mentions of one
of the protected identities: male, female, LGBT, black, white, Christian, Muslim, other religion. We only show examples
with mentions of the male and white identities.

16

Simple and Fast Group Robustness by Automatic Feature Reweighting

Method CIFAR-10 Camelyon17
Worst(%) Mean(%) HI123 Mean(%) H5 Mean(%)
ERM 89.6 95.1 85.0 90.1
AFR 89.3+05 94.940.1 87.110.1 88.940.4

Table 2: Performance on data with unidentified spurious features. For CIFAR-10 we report test worst class accuracy and
mean accuracy. For Camelyon17 we report mean accuracy for two different hospital’s data not seen during training. H123
relates to data from hospitals 1, 2, and 3 used for training and HS5 to the data from hospital 5 which is out of distribution.
When spurious correlations are not identified, AFR recovers the standard ERM performance.

80
& 10°
— (e}
=70 E
< wn
) —e— AFR $
= -=-- ERM °
+— 60 >
o et
= (9]
V.03
+ 10
50 w
0 10 20 30 0 10 20 30
Y Y
(a) Test WGA (b) Effective sample size

Figure 14: AFR’s 7y robustness on CelebA. (a) AFR achieves high test worst group accuracy on CelebA across a wide
range of ~. For simplicity, we do not tune the regularization parameter A and set it to 0. We show mean and standard
deviation across 3 runs. (b) The effective sample size decreases and then stabilizes as y increase.

C.3. Ablating early stopping and /- regularization

Similar to JTT and CNC, AFR employs early stopping during the 2nd stage. We re-ran AFR without early stopping while
allowing the other hyperparameters (y and) to be tuned as usual. As expected, AFR’s performance decreases, but we
still observe substantial improvement over ERM, showing that 2nd stage early stopping helps but is not essential to AFR’s
performance gain. Similarly, we found ablating /5 regularization (setting A = 0 and only tuning) only slightly degrades
AFR’s performance. These findings show AFR’s performance gain does not rely on carefully tuned regularization. Table 4
summarizes these results.

Method Waterbirds MultiNLI Chest X-Ray
AFR 0.022 0.07 0.10

Table 3: P-values testing the null hypothesis that AFR’s mean test WGA is lower than 2nd best performing method. When
the 2nd best performing method is CnC, we perform a two-sample t-test; when it’s JTT, we perform a one-sample t-test
since only its mean was reported

Method Waterbirds CelebA MultiNLI
ERM 72.6 47.2 67.9

AFR 904101 82.0105 734106
AFRW/OéQ reg. 90-1i0.7 81-3i1.8 71'1i1.4

AFR w/o early stopping 89.9107 80.0116 T7Tl.1i74

Table 4: AFR’s performance without early stopping or /5 regularization. AFR’s performance gain does not rely on
carefully tuned regularization. Reported mean and standard deviation are computed over three independent runs.

17

Simple and Fast Group Robustness by Automatic Feature Reweighting

C.4. Improving group robustness with no hyperparameter tuning

To show that AFR improves group robustness without carefully tuning -y, ¢ regularization, or early stopping, we run AFR on
Waterbirds and CelebA where we set -y to four positive values {1, 2, 4,8} and run it for 100 steps without ¢5 regularization.
We found in most cases AFR still significantly improves test WGA compared to ERM. While the optimal value for ~y
depends on the dataset, most values between 1 and 8 lead to substantial improvement over ERM with the exception of v =1
on Waterbirds where the value appears to be too low for AFR upweight the minority group examples.

Waterbirds CelebA

vy=1,A=0,100steps 723115 759117
v =2, A =0, 100 steps 76.2135 8l.1i14
Y= 4, = 0, 100 steps 84~4i3.3 72-1i1.1
v =8,X=0,100steps 84.1is7 61.0400
ERM 72.6 47.2

Table 5: AFR’s outperforms ERM without hyperparameter tuning. AFR improves WGA on Waterbirds and CelebA
without tuning hyperparameters at all. Reported mean and standard deviation are computed over three independent runs.

C.5. Robustness to specification of the weights

While simple and intuitive, the choice to define the weights as p; o 8, exp(—y p;) is somewhat arbitrary. However, as the
goal is to simply upweight the poorly predicted examples, we again do not expect the performance of AFR to be sensitive
to the exact functional form used for y;, as long as it is large for poorly predicted examples. We verify this by replacing
exp(—~ p;) with two alternatives p; © = exp(y(—logp;)) and (1 — p;)7, as used by focal loss' (Lin et al., 2017), and
compare the resulting test WGA after tuning y on validation WGA in Table 6. Indeed, both variants of AFR are able to
drastically improve test WGA compared to ERM and achieve similar performance as the original one.

Method Test WGA
ERM 72.6
AFR exp(—vyp;) 90.441.1
AFR (1 —p;)" 89.3+1.9
AFR p;” 89.1413

Table 6: Performance on alternative functional choices. Test WGA achieved on the Waterbirds by ERM and variants
of AFR dataset using alternative definitions for the weights p;. v is always chosen to maximize validation worst group
accuracy. The performance of AFR is not sensitive to the choice of the exact functional form for the weights as long as it
upweights poorly predicted examples. The mean and standard deviation are computed over 3 independent runs.

C.6. Robustness to splitting ratio

The 80% : 20% splitting ratio between Dgry and Dryy is intended to keep most of training data for learning a sufficiently
good feature extractor and only a small portion for last layer retraining since the latter tends to be much more sample-efficient.
To study the sensitivity of AFR’s performance to this ratio, we compare the default choice with three alternatives. Table 7
shows the default choice of 80% : 20% performs well and the performance is not very sensitive to the value of this ratio.
For all four choices, AFR significantly improves over ERM on both datasets.

A clear case where AFR would fail to improve group robustness is when Dry does not contain any minority group examples
to upweight. Luckily, this scenario is extremely unlikely when Dryy is drawn from the train distribution. For instance,
suppose that we are considering a typical deep learning task where the training set has > 10k examples. Moreover, lets
suppose the minority group constitutes only 5% of the training data. Then there are on average 100 minority group examples
in the 2nd split, with a standard deviation of around 30. The probability of having fewer than 10 minority group examples (a
30 event) is less than 0.2%. Therefore, in practice there will be minority group examples, so long as the user follows our

"However, unlike in focal loss, our weights are fixed throughout training and do not depend on the parameters being optimized.

18

Simple and Fast Group Robustness by Automatic Feature Reweighting

0.4
2
e
0.3
=
e — G
Oo0.1 — G
/— G4
0.0

0 200 400 600 800 1000
Epoch

Figure 15: A trained neural network fails to completely balance group weights on CelebA. Group aggregated weights
on CelebA produced by a neural network trained to minimize group-imbalance.

recommendations for the split.

|DermM| : |Drw| Waterbirds CelebA

50:50 88.8i1,0 80.9io_3
70:30 89.8:|:1.1 84,2:|:1,6
80:20 90.411.1 82.0+0.5
90:10 89.012.7 82.710.2
ERM 72.6 47.2

Table 7: AFR is robust to the splitting ratio. Test WGA achieved on CelebA by AFR with different splitting ratios. The
default value of 80% : 20% performs well, but the performance is not very sensitive to this value. For all four choices, AFR
significantly improves over ERM. The mean and standard deviation are computed over 3 independent runs

C.7. Impossibility for group-balanced weights on CelebA

In general, it is not possible to define weights p; purely as a function of the output of an ERM model trained on Dggry such
that they are balanced over the groups on the held-out dataset Dy . To verify this claim, we train a neural network f to
minimize the following loss

1o 1
»’3212 A Z f(pERnyz‘) ik
g=1| \i€Drw:9i=g

which measures average deviation from 1/4 of the group aggregated weights produced by the network over 4 groups. The
input to f is (pI"®M, y,), the predicted probabilities for each class by the first-stage ERM model, and the true class label
y;. We use an MLP with two hidden layers and 128 units each, whose output is constrained to be positive using a softplus
function and normalized to sum to unity over all examples. Figure 15 shows the group aggregated weights on CelebA
produced by the network during training, using the Adam optimizer. The group aggregated weights don’t converge to 1/4,
showing that any upweighting strategy based only on ERM prediction and class label is unlikely to produce group-balanced
weights on CelebA.

D. Additional Related Work

On spurious correlations. Numerous studies expose how neural networks rely on spurious correlations for a diverse set
of real word problems. In image classification, neural networks rely on the background of the image and not on the actual
objects as seen in Xiao et al. (2020), Sagawa et al. (2020) and Moayeri et al. (2022). Additionally, neural network classifiers

19

Simple and Fast Group Robustness by Automatic Feature Reweighting

might rely on object textures (Geirhos et al., 2018) or on small image features (not actual spatial relationships) as argued
in Brendel & Bethge (2019). Critically, for chest X-ray classification tasks, neural networks have been shown to rely on
hospital specific tokens, chest drains or other features that irrelevant to the diagnosis of pneumonia as reported in Zech et al.
(2018) or Oakden-Rayner et al. (2020). For a comprehensive survey of the area, see Geirhos et al. (2020), and Yang et al.
(2023) provide a comprehensive evaluation of the existing methods.

Leveraging group annotations. When group annotations are present there are several methods that can provide high
WGA. We can leverage the group annotation through: (i) class or group balancing or weighting (Cui et al., 2019; Menon
et al., 2020; Idrissi et al., 2021; Kirichenko et al., 2022; Izmailov et al., 2022), or via (ii) distributionally robust optimization
(Sagawa et al., 2020), or finally via (iii) contrastive methods (Taghanaki et al., 2021). Taghanaki et al. (2021) propose CIM:
a method that leverages a contrastive loss and pixel-level image statistics to learn input-space transformations that improve
performance on downstream tasks. However, requiring annotations for a large dataset can be expensive. Worse, as we
showed in Section 4.2, there are problems where it is not evident what the spurious feature is. Additionally there could be
several spurious features present at the same time creating more difficulties.

Annotation-free methods. There has been plenty of efforts on developing methods that achieve high WGA without
requiring group annotations. A common theme amongst these methods is the presence of two stages: first, train a checkpoint
using ERM and then, modify this model to improve WGA. We now focus on the methods that were not discussed in Section
2. In GEORGE (Sohoni et al., 2020) the authors infer group annotations based on the clusters formed in the feature space
learnt by the ERM feature extractor f 2 With these discovered groups, the authors then run GDRO. In Nam et al. (2022) and
Sohoni et al. (2021), the authors use semi-supervised learning to propagate the limited available group labels to the entire
dataset. In LFF (Nam et al., 2020) the authors use a generalization of the cross-entropy loss as to identify samples that have
a strong agreement between the output of the neural network and the label and then to score higher the samples that do
not. Then, having identified the “difficult” samples, the authors upweight the cross-entropy loss using the score. Finally,
as shown in Section 2, JTT (Liu et al., 2021) and CNC (Zhang et al., 2022) are also methods that improve WGA without
requiring group annotations.

In Lin et al. (2022), the authors argue how in general it is impossible to perfectly separate the spurious and invariant features
without auxiliary information. We note that the good performance of AFR does not contradict their finding. First, in our
experiments we use the auxiliary information about the nature of the spurious features, as we tune the hyperparameters of
the method for worst group accuracy on the validation set. More importantly, AFR does not aim to learn invariant features,
rather it uses the same features learned by a standard ERM model and only retrains the last layer on a weighted heldout
dataset that upweights minority group examples. The discovery that such a procedure is sufficient to achieve SOTA worst
group performance on various vision and text benchmarks is an interesting and important one, which does not contradict
findings in Lin et al. (2022).

20

