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Abstract

Machine learning models frequently experience
performance drops under distribution shifts. The
underlying cause of such shifts may be multiple
simultaneous factors such as changes in data qual-
ity, differences in specific covariate distributions,
or changes in the relationship between label and
features. When a model does fail during deploy-
ment, attributing performance change to these
factors is critical for the model developer to iden-
tify the root cause and take mitigating actions. In
this work, we introduce the problem of attributing
performance differences between environments
to distribution shifts in the underlying data gener-
ating mechanisms. We formulate the problem as
a cooperative game where the players are distribu-
tions. We define the value of a set of distributions
to be the change in model performance when only
this set of distributions has changed between en-
vironments, and derive an importance weighting
method for computing the value of an arbitrary set
of distributions. The contribution of each distribu-
tion to the total performance change is then quan-
tified as its Shapley value. We demonstrate the
correctness and utility of our method on synthetic,
semi-synthetic, and real-world case studies, show-
ing its effectiveness in attributing performance
changes to a wide range of distribution shifts.

1. Introduction

Machine learning models are widely deployed in dynamic
environments ranging from recommendation systems to
personalized clinical care. Such environments are prone to
distribution shifts, which may lead to serious degradations
in model performance (Guo et al., 2022; Chirra et al., 2018;
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Koh et al., 2021; Geirhos et al., 2020; Nestor et al., 2019;
Yang et al., 2023). Importantly, such shifts are hard to
anticipate and reduce the ability of model developers to
design reliable systems.

When the performance of a model does degrade during de-
ployment, it is crucial for the model developer to know not
only which distributions have shifted, but also how much a
specific distribution shift contributed to model performance
degradation. Using this information, the model developer
can then take mitigating actions such as additional data col-
lection, data augmentation, and model retraining (Ashmore
et al., 2021; Zenke et al., 2017; Subbaswamy et al., 2019).

In this work, we present a method to attribute changes in
model performance to shifts in a given set of distributions.
Distribution shifts can occur in various marginal or condi-
tional distributions that comprise variables involved in the
model. Further, multiple distributions can change simulta-
neously. We handle this in our framework by defining the
effect of changing any set of distributions on model perfor-
mance, and use the concept of Shapley values (Shapley et al.,
1953) to attribute the change to individual distributions. The
Shapley value is a co-operative game theoretic framework
with the goal of distributing surplus generated by the players
in the co-operative game according to their contribution. In
our framework, the players correspond to individual distri-
butions, or more precisely, mechanisms involved in the data
generating process.

Most relevant to our contributions is the work of Budhathoki
et al. (2021), which attributes a shift between two joint
distributions to a specific set of individual distributions.
The distributions here correspond to the components of
the factorization of the joint distribution when the data-
generating process is assumed to follow causal structural
assumptions. This line of work defines distribution shifts as
interventions on causal mechanisms (Pearl & Bareinboim,
2011; Subbaswamy et al., 2019; 2021; Budhathoki et al.,
2021; Thams et al., 2022). We build on their framework
to justify the choice of players in our cooperative game.
We significantly differ from the end goal by attributing a
change in model performance between two environments to
individual distributions. Note that each shifted distribution
may influence model performance differently and may result
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in significantly different attributions than their contributions
to the shift in the joint distribution between environments.

In this work, we focus on explaining the discrepancy in
model performance between two environments as measured
by some metric such as prediction accuracy. We emphasize
the non-trivial nature of this problem, as many distribution
shifts will have no impact on a particular model or metric,
and some distribution shifts may even increase model perfor-
mance. Moreover, the root cause of the performance change
may be due to distribution shifts in variables external to
the model input. Thus, explaining performance discrepancy
requires us to develop specialized methods. Specifically, we
want to quantify the contribution to the performance change
of a fixed set of distributions that may change across the
environments. Given such a set, we develop a model-free
importance sampling approach to quantify this contribution.
We then use the Shapley value framework to estimate the at-
tribution for each distribution shift. This framework allows
us to expand the settings where our method is applicable.

We make the following contributions':

* We formalize the problem of attributing model perfor-
mance changes due to distribution shifts.

* We propose a principled approach based on Shapley val-
ues for attribution, and show that it satisfies several desir-
able properties.

* We validate the correctness and utility of our method on
synthetic and real-world datasets.

2. Problem Setup

Notation. Consider a learning setup where we have some
system variables denoted by V' consisting of two types of
variables V' = (X,Y"), which comprises of features X and
labels Y such that V' ~ D. Realizations of the variables are
denoted in lower case. We assume access to samples from
two environments. We use D*°*"° to denote the source dis-
tribution and D™ for the target distribution. Subscripts on
D refer to the distribution of specific variables. For example,
Dy, is the distribution of feature X; C X, and Dy‘ x is the
conditional distribution of labels given all features X .

Let Xy C X be the subset of features utilized by a given
model f. We are given a loss function £((x,y), f) — R
which assigns a real value to the model evaluated at a spe-
cific setting x of the variables. For example, in the case
of supervised learning, the model f maps Xy, into the la-
bel space, and a loss function such as the squared error
0((x,y), f) := (y — f(xy))? can be used to evaluate model
performance. We assume that the loss function can be com-
puted separately for each data point. Then, performance

'Code: https://github.com/MLforHealth/expl_
perf_drop

of the model in some environment with distribution D is
summarized by the average of the losses:

Perf(D) := E(, ) p[l((2, ), [)]

This implies that a shift in any variables V' in the system may
result in performance change across environments, includ-
ing those that are not directly used by the model, but drive
changes to the features Xy used by the model for learning.

Setup. Suppose we are given a candidate set of (marginal
and/or conditional) distributions Cp over V' that may ac-
count for the model performance change from D%°“*° to
prareet; Perf(DEt) — Perf(D%°""¢). QOur goal is to at-
tribute this change to each distribution in the candidate
set Cp. For our method, we assume access to the model f,
and samples from DU as well as D& (see Figure 1).

We assume that dependence between variables V is de-
scribed by a causal system (Pearl, 2009). For every variable
X; € V, this dependence is captured by a functional rela-
tionship between X; and the so-called “causal parents” of
X; (denoted as parent(X;)) driving the variation in X;. The
causal dependence induces a Markov distribution over the
variables in this system. That is, the joint distribution Dy
can be factorized as, Dy = || X, ev DX |parent(x,)- This de-
pendence can be summarized graphically using a Directed
Acyclic Graph (DAG) with nodes corresponding to the sys-
tem variables and directed edges (parent(X;) — X;) in
the direction of the causal mechanisms in the system (see
Figure 1 for an example).

Example. We provide an example that illustrates that the
performance attribution problem is ill-specified without
knowing how the mechanisms can change to result in the
observed performance difference. Suppose we are predict-
ing Y from X with a linear model f(x) := ¢ under the
squared loss function. Consider two possible scenarios for
data generation — (1) X < Y where Dy changes from
source to target while Dx |y remains the same, (2) X — Y
where Dy changes from source to target while Dy |x re-
mains the same. The performance difference of f(x) is the
same in both the cases. Naturally, we want an attribution
method to assign all of the difference to the mechanism for
Y in the first case and to the mechanism of X in the second
case. Thus, for the same performance difference between
source and target data, we would like a method to output dif-
ferent attributions depending on whether the data generating
process is case (1) or (2). Note that, in general, it is im-
possible to find the appropriate attributions by first finding
the direction of the causal mechanisms. This follows from
the fact that learning the structure is in general, impossible
purely from observational data (Peters et al., 2017). Hence
knowledge of the data-generating mechanisms is necessary
for appropriate attribution.

More concretely, suppose the processes are (1) ¥ ~
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Figure 1: Inputs and outputs for attribution. Input: Causal graph, where all variables are observed providing the candidate
distribution shifts we consider. The goal is to attribute the model’s performance change A between source and target
distributions to these candidate distributions. Here, out of the three candidate distributions, the marginal distribution of X3
and the conditional distribution of X5 given X; change. Our method attributes changes to each one such that the attributions
sum to the total performance change A. Note that nodes in the causal graph may be vector-valued, which allows our method

to be used on high-dimensional data such as images.

N(p1,1),X ~ Y 4+ N(0,1). The mean of Y shifts to
o in target, and (2) X ~ N(p1,1),Y ~ X + N(0,1)
where the mean of X shifts to 9 in target. For the model
f(z) := ¢z, the performance difference A in both cases
is (1 — ¢)?(u2 — p?). This example illustrates the need
for specifying how the mechanisms can shift from source
to target to solve the attribution problem. In this work, we
use partial causal knowledge, in terms of the causal graph
only, to specify the data-generating mechanisms.

In general, this partial knowledge further allows us to iden-
tify potential shifts to consider. Specifically, the number
of marginal and conditional shifts that can be defined over
(X,Y) is exponential in the dimension of X. The factoriza-
tion induced by the causal graph or equivalently knowledge
of the data-generating mechanism reduces the space of pos-
sible shifts to consider for attribution. See Section 3 for
additional advantages of using a causal framework.

3. Method

We now formalize our problem setup and motivate a game
theoretic method for attributing performance changes to
distributions over variable subsets (See Figure 1 for a sum-
mary). We proceed with the following Assumptions.

Assumption 3.1. The causal graph corresponding to the
data-generating mechanism is known and all variables in
the system are observed. Thus, the factorization of the joint
distribution Dy, is known.

Assumption 3.2. Distribution shifts of interest are due to
(independent) shifts in one or more factors of Dy .

Given these assumptions, we now describe our game theo-
retic formulation for attribution.

3.1. Game Theoretic Distribution Shift Attribution

We consider the set of candidate distributions Cp as the
players in our attribution game. A coalition of any subset
of players determines the distributions that are allowed to
shift (from their source domain distribution to the target
domain distribution), keeping the rest fixed. The value
for the coalition is the model performance change between
the resulting distribution for the coalition and the training
distribution. See Figure 2 for an overview of the method.

Value of a Coalition. Consider a coalition of distributions
C C Cp. This coalition implies a joint distribution over
system variables V', where members in the coalition con-
tribute their target domain distribution, and non-members
contribute their source domain distribution:

~ target
D H DX;, |parent(X;)

i:DX,i | parent (X ; ) ec

Coalition
()

source
DX ; |parent( X;
p

i:’DXi |parent( X ;) gcC

Not in Coalition

The above factorization follows from Assumptions 3.1
and 3.2. Note that the coalition only consists of distribu-
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Figure 2: Sketch of the game theoretic attribution
method. Each causal mechanism is a player that, if present
in the coalition, changes to the target distribution and, if
absent, remains fixed at the source distribution. This defines
the distribution of the resulting coalition D. Performance
on D is estimated using importance sampling from training
data samples. After computing values for each possible
coalition, Shapley value (Eq. 3) gives the attribution to each
player. Thus, we estimate the performance change under all
possible ways to shift the mechanisms from source to target
and use these to distribute the total performance change
among the individual distributions.

tions that are allowed to change across environments. All
other relevant mechanisms are indeed fixed to the source
distribution. We present an example of a coalition of two
players in Figure 2. The value of the coalition C with the
coalition distribution D is now given by

Val(C) := Perf(D) — Perf(D*"") )

Thus, our assumptions allow us to represent a factorization
where only members of the coalition change, while all other
mechanisms correspond to the source distribution. If we
consider the change in performance for all combinatorial
coalitions, we can estimate the total contribution of a spe-
cific distribution by aggregating the value for all possible
coalitions a candidate distribution is a part of. This is exactly
the Shapley value applied to a set of distributions. The Shap-
ley value framework thus allows us to obtain the attribution
of each player d € Cp using Equation 3.

Abstractly, the Shapley values framework (Shapley et al.,
1953) is a game theoretic framework which assumes that
there are C := {1,2,...,n} players in a co-operative game,
achieving some total value (in our case, model performance
change). We denote by Val : 2 — R, the value for any
subset of players, which is called a coalition. Shapley val-
ues correspond to the fair assignment of the value Val(C)
to each player d € C. The intuition behind Shapley values
is to quantify the change in value when a player (here, a
distribution) enters a coalition. Since the change in model

performance depends on the order in which players (distribu-
tions) may join the coalition, Shapley values aggregate the
value changes over all permutations of C. Thus the Shapley
attribution Attr(d) for a player d is given by:

>

cce\{d}

Attr(d) = .

5 <|C|: 1>  (Val@ U {d}) - Val(@))

|
3

where we measure the change in model performance (de-
noted by Val) after adding d to the coalition averaged over
all potential coalitions involving d. The computational com-
plexity of estimating Shapley values is exponential in the
number of players. Hence we rely on this exact expression
only when the number of candidate distributions is small.
That is, the causal graph induces a factorization that results
in smaller candidate sets. For larger candidate sets, we
use previously proposed approximation methods (Castro
et al., 2009; Lundberg & Lee, 2017; Janzing et al., 2020)
for reduced computational effort.

Choice of Candidate Distribution Shifts. We motivate
further the choice of candidate distributions that will in-
form the coalition. As mentioned before, without the
knowledge of the causal graph, many heuristics for choos-
ing the candidate sets are possible. For example, a can-
didate set could be the set of all marginal distributions
on each system variable, Cp = {Dx,,Dx,, -}, or dis-
tribution of each variable after conditioning on the rest,
Cp = {Dx,jv\x.s Px,|v\x, - }- Since we have com-
binatorially many shifts that can be defined on subsets of
V = (X,Y), choosing candidate sets that would then in-
form the coalition is challenging. The causal graph, on the
other hand, specifies the factorization of the joint distribu-
tion into a set of distributions. We form the candidate set
constituting each distribution in this factorization. That is,

Cp = {DX1|parenl(X1)a e aDXi\parem(Xi)v T }i:L--- V]

For a node without parents in the causal graph, the parent set
can be empty, which reduces D, parent(x;) t0 the marginal
distribution of X;. This choice of candidate set has three
main advantages. First, it is interpretable since the candi-
date shifts are specified by domain experts who constructed
the causal graph. Second, it is actionable since identifying
the causal mechanisms most responsible for performance
change can inform mitigating methods for handling distri-
bution shifts (Subbaswamy et al., 2019). Third, it will lead
to succinct attributions due to the independence property.

Consider the case where only one conditional distribution
D(X;|parent(X;)) changes across domains. This will result
in a change in distributions of all descendants of X; (due to
the above factorization). In this case, a candidate set defined
by all marginals is not succinct, as one would attribute
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performance changes to all marginals of descendants of X;.
Instead, the candidate set determined by the causal graph
will isolate the correct conditional distribution.

Crucially, to compute our attributions, we need estimates
of model performance under D. Note that we only have
model performance estimates under D¢ and D™, but
not for any arbitrary coalition where only a subset of the
distributions have shifted. To estimate the performance of
any coalition, we propose to use importance sampling.

3.2. Importance Sampling to Estimate Performance
under a Candidate Distribution Shift

Assumption 3.3. support (D;‘?fgl‘;farem( x») -
target
support (DY (x,)) forall D, parent(x:) €CD-

Importance sampling allows us to re-weight samples drawn
from a given distribution, which can be D°U*® or Dlreet 1o
simulate eXBectations for a desired distribution, which is the
candidate D in our case. Thus, we re-write the value as

Val(C) = Perf(D) — Perf(D¥") @
=E, on (@), /)] = B y)mpen[((2,9), f)]

D((z,y))
’Dsource((x’ y))

E(mvy)ND“’"'“ [f((l‘, y)7 f)]

The importance weights are themselves a product of ratios
of source and target distributions corresponding to the causal
mechanisms in Cp as follows:

U(z,y), f)

= E(w)y)N’Dsource

w~((x y)) — D((l’,y)) _ H D:;rge[((x7y))
ST Dewee((ay)) 2 DR ()
[Se (5)
= [[wa((z,y))
dec
By Assumption 3.3, we ensure that all importance weights
are finite.

Computing Importance Weights. There are multiple
ways to estimate importance weights wq((x, y)), which are
a ratio of densities (Sugiyama et al., 2012). Here, we use
a simple approach for density ratio estimation via train-
ing probabilistic classifiers as described in Sugiyama et al.
(2012, Section 2.2).

Let D be a binary random variable, such that when D =
1,Z ~ D4®(Z), and when D = 0, Z ~ D$""°*(Z). Sup-
pose d= ,DXi|parent(Xi)7 then

P(D = O|parent(X;)) P(D = 1|X;, parent(X;))
P(D = 1|parent(X;)) P(D = 0|X;, parent(X;))’

where each term is computed using a probabilistic classifier
trained to discriminate data points from D0 and D'"reet

Wq =

from the concatenated dataset. We show the derivation of
this equation in Appendix A. In total, we need to learn
O(|cp|) models for computing all importance weights.

3.3. Properties of Our Method

Under perfect computation of importance weights, the Shap-
ley attributions resulting from the performance-change game
have the following desirable properties, which follow from
the properties of Shapley values. We provide proofs of these
properties in Appendix B.

Property 1. (Efficiency) »  Aur(d) = Val(Cp) =
decp
Perf(D™e") — Perf(D*""°)
Property 2.1. (Null Player) Diuee = D"
Attr(d) = 0.

=

Property 2.2. (Relevance) Consider a mechanism d.
If Perf(C U {d}) = Perf(C) for all C C Cp \ d, then
Attr(d) = 0.

Property 3. (Attribution Symmetry) Let Attrp, p,(d)
denote the attribution to some mechanism d when D; =
D and Dy = D™t Then, Attrp, p,(d) =
—Attrpzpl (d) Vd € Cp.

Thus, the method attributes the overall performance change
only to distributions that actually change in a way that af-
fects the specified performance metric. The contribution
of each distribution is computed by considering how much
they impact the performance if they are made to change in
different combinations alongside the other distributions.

3.4. Analysis using a Synthetic Setting

We derive analytical expressions for attributions in a simple
synthetic case with the following data generating process.
Source : X ~ N (u1,0%)
Y ~60;X +N(0,0%)
Target : X ~ N (2, 0%)
Y ~ 0:X + N(0,0%)

The model that we are investigating is f(X) = ¢X, and
W(z,y), [) = (y = f())*

We show the attribution of our method, along with the attri-
bution using the joint method from Budhathoki et al. (2021),
in Table 1. The complete derivation, along with experi-
mental verification of the derived expressions, can be found
in Appendix C. We highlight several advantages that our
method has over the baseline.

First, our attribution takes the model parameter ¢ into
account in order to explain model performance changes,
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Table 1: Analytical expressions of the attributions for the synthetic case described in Section 3.4. For the full derivation, see

Appendix C.
Attr(Dx) Attr(Dy|x)
Ours (313 = 510)((02 — 0)* + (01 — 0)*) (0% + 541 + 513)((62 — ¢)* — (61 — ¢)?)
(02—61)?

Budhathoki et al. (2021)

(#2*{:1)2
20%

20—% (ag( + ﬂ%)

whereas Budhathoki et al. (2021) do not, as they only ex-
plain shifts in (X, Y), or changes in simple functions such
as E[X] of the variables. Second, we find that our Attr(Dx)
is a function of 5. This is desirable, as covariate shift may
compound with concept shift to increase loss non-linearly.
This also ensures that both attributions always sum to the
total shift. Third, we note that our attributions are signed,
which is particularly important as some shifts may decrease
loss. Finally, we note that our attributions are symmetric
when the source and target data distributions are swapped
by Property 3. This is not true of the baseline method in gen-
eral, as the KL divergence is asymmetric. Since we assume
knowledge of the true causal graph (which provides the fac-
torization that determines the coalition), we also evaluate
the attribution when the graph is misspecified. In this case,
the coalition will consist of { Dy, Dx|y }. We include these
attribution results in Appendix D.1, specifically, Figure C.2.
In this case, as expected, both Dy and D X|y are attributed
the change in model performance (at varying levels depend-
ing on the magnitude of concept shift). While this may still
be a meaningful attribution, knowledge of the causal graph
provides a more succinct interpretation of system behavior.

4. Related Work

Identifying relevant distribution shifts. There has been
extensive work that tests whether the data distribution has
shifted (e.g. ones evaluated in Rabanser et al. (2019)). Past
work has proposed to identify sub-distributions (factors con-
stituting the joint distribution as determined by a generative
model for the data) that comprise the shift between two
joint distributions and order them by their contribution to
the shift (Budhathoki et al., 2021). However, as suggested
before, the sub-distributions may have different influence on
model performance. Even a small change in some (factors)
may have a large effect on model performance (and vice-
versa). Thus, a model developer has to filter distributions to
identify ones that actually impact model performance (see
Property 2.2 and Appendix C). Further, Budhathoki et al.
(2021) focuses on changes to the joint distribution as mea-
sured by the KL-divergence, which requires assumptions
on the class of distributions to leverage closed-form expres-
sions of KL-divergence (such as exponential families), or
non-parametric KL estimation which is challenging in high
dimensions (Wang et al., 2005; 2006).

Other approaches which aim to localize shifts to individ-
ual variables (conditional on the rest of the variables) do
not provide a way to identify the ones relevant to perfor-
mance (Kulinski et al., 2020). In contrast to testing for shifts,
Podkopaev & Ramdas (2022) tests for changes in model per-
formance when distribution changes in deployment. Recent
work by Wu et al. (2021) decomposes performance change
to changes in only marginal distributions using Shapley
value framework (Lundberg & Lee, 2017). However, the
method as described is restricted to categorical variables.
Kulinski & Inouye (2022) propose a method for distribution
shift explanation based on transport mappings, though their
focus is still on how the distribution has shifted and not its
impact on some downstream model. In parallel work, Cai
et al. (2023) propose a method for attributing performance
degradation to distribution shifts, but their decomposition is
limited to P(X') and P(Y'|X) and thus has limited granular-
ity. Finally, Jung et al. (2022) propose a framework for mea-
suring causal contributions to expected change in outcomes
using Shapley values. This work focuses on attributions
to specific feature values, by framing causal attribution as
hard/do-interventions in a causal system. Further, they only
examine the system in a single domain, and focus on the
expected causal effect on a target variable Y. On the other
hand, our work can be considered to focus on attributing
model performance change to mechanisms by considering
mechanism changes across domains as “soft-interventions”.
Further, our main goal is to attribute model performance
change across two fixed domains where we have access to
iid samples from both domains.

Shapley values for attribution. Shapley value-based attri-
bution has recently become popular for interpreting model
predictions (gtrumbelj & Kononenko, 2014; Lundberg &
Lee, 2017; Wang et al., 2021). In most prior work, Shap-
ley values have been leveraged for attributing a specific
model prediction to the input features (Sundararajan & Na-
jmi, 2020). Challenges to appropriately interpreting such
attributions and desirable properties thereof have been ex-
tensively discussed in (Janzing et al., 2020; Kumar et al.,
2021). In this work, we advance the use of Shapley values
for interpreting model performance changes to individual
distributions at the dataset level.

Detecting data partitions with low model performance.
Recent work aims to find subsets of the dataset that have
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significantly worse (or better) performance (d’Eon et al.,
2022; Eyuboglu et al., 2022; Jain et al., 2023; Park et al.,
2023). However, they do not study changes in the underly-
ing data distribution. The work by Ali et al. (2022) describes
a method to identify and localize a change in model perfor-
mance, and is applicable under distribution shifts. The main
difference in our work is the data representations used for
attribution. Instead of identifying subsets of data that are
relevant to performance change, we find individual distribu-
tions represented by causal mechanisms.

5. Empirical Evaluation

Table 2: Datasets used to empirically evaluate our method.

Dataset Modality Ground Truth Known Results Section
Synthetic Tabular v D.1
ColoredMNIST  Images v D.2
CelebA Images v D3
elCU Tabular X 5.1
Camelyon-17 Images X 52

We empirically validate our method on five datasets, shown
in Table 2. First, we validate the correctness of our method
on three synthetic and semi-synthetic datasets where the
ground truth shift(s) are known, and show that the baseline
methods described below do not attain the correct attribu-
tions. Next, we demonstrate the utility of our method on two
real-world datasets. Each attribution experiment was run on
a cluster using 4 cores from an Intel Xeon Gold 5218R Pro-
cessor and 16 GB of memory. We present two case studies
on real-world data here, and the remaining results can be
found in Appendix Section D.

Baselines. On datasets with known ground truth shifts
(see Appendix Sections D.1, D.2) we evaluate the following
baselines:

(a) Misspecified or unknown causal graph. When
the causal graph is unknown, the user may create a
causal graph based on intuition or causal discovery
methods (Glymour et al., 2019). Here, we evaluate
two simple mis-specified candidate shift sets. First,
we evaluate the candidate shifts corresponding to all
marginals (ie. Cp = {Dx,, - ,Dx,, - }iz1,,|V]>
which is similar to the method in Wu et al. (2021).
Second, we evaluate the candidate shifts correspond-
ing to a fully connected graph (.e. Cp =

{Dx,jv\x1  Dxyjvaxss " Y, [V])-

(b) KL-based attribution. We evaluate the joint method
from Budhathoki et al. (2021).

(c) SHAP-based attribution. We test a two-stage heuristic
devised for this problem setting. First, we use a con-
ditional independence test (Zhang et al., 2011) to find

the distributions that are significantly different between
source and target. Then, we run Kernel SHAP (Lund-
berg & Lee, 2017) on all samples in the target domain,
taking the mean absolute value of the feature importance
only for features that have significant shifts. To create
attributions, we normalize these values to sum to the per-
formance drop. Note that this method has several major
flaws, namely that it can only attribute to shifts in input
features to the model (and not system variables unused
by the model), and cannot attribute to the distribution
generating the target variable.

5.1. Case Study: Mortality Prediction in the ICU

Setup. Clinical machine learning models are being in-
creasingly deployed in the real-world in hospitals, laborato-
ries, and Intensive Care Units (ICUs) (Sendak et al., 2020).
However, prior work has shown that such machine learning
models are not robust to distribution shifts, and frequently
degrade in performance on distributions different than what
is seen during training (Singh et al., 2022). Here, we ex-
plore a simulated case study where a model which predicts
mortality in the ICU is deployed in a different geographical
region from where it is trained. We use data from the eICU
Collaborative Research Database V2.0 (Pollard et al., 2018),
which contains 200,859 de-identified ICU records for 208
hospitals across the United States. We simulate the deploy-
ment of a model trained on data from the Midwestern US
(source) to the Southern US (target). We subset to 4 hospi-
tals in each geography with the most number of samples. To
mimic a realistic deployment scenario with limited sample
size, we only observe 250 samples randomly selected from
the target domain.

We learn an XGB (Chen & Guestrin, 2016) model to predict
mortality given vitals, labs, and demographics data in the
source domain. We assume the causal graph in Figure D.12,
informed by prior work utilizing causal discovery on this
dataset (Singh et al., 2022). As prior work has shown lim-
ited performance drops for models in this setting (Zhang
et al., 2021), we subsample older population in the source
environment to create an additional semi-synthetic distribu-
tion shift. We use our method to attribute the increase in
Brier score from Midwest to South datasets.

Our method provides actionable attributions. First, we
observe from our attributions (Figure 3a) that shift in the
age distribution is responsible for 29.5% of the total shift
(0.0108 of 0.0366). This confirms the validity of the attri-
butions on a known semi-synthetic shift. Suppose that the
practitioner decides to focus on mitigating the shift in age
in order to improve target domain performance. To do so,
they first plot the age distribution in the source and target
environments (Figure 3b), finding that the target domain has
dramatically more older patients. Then, they choose to col-
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Figure 3: Attributing Brier score differences to candidate distributions on the eICU dataset for an XGB model trained on
either (a) original or (c) age-balanced Midwest, and tested on the South domain.

lect additional data from the older population in the source.
Training a new model on this augmented dataset, they find
that the target domain performance improves by 10.8%, and
the drop in performance is reduced by 36.6% (Figure 3d). In
addition, this targeted mitigating action outperforms naively
retraining the model on the merged datasets, or only on
the target domain, due to the few target samples observed.
Now that Dag. is no longer a significant factor in the per-
formance drop across domains (Figure 3c), the practitioner
may next turn their attention to mitigating shifts in more
impactful conditional mechanisms such as Dyius|Age, Demos
using methods such as GAN data augmentation (Mariani
et al., 2018) or targeted importance weighting (Zhang et al.,
2013), but we leave such explorations to future work.

5.2. Case Study: Tumor Prediction from Camelyon17

We evaluate our method on the Camelyon17 dataset (Bandi
et al., 2018; Koh et al., 2021), which consists of histopathol-
ogy images from five hospitals, and the goal is to clas-
sify whether the central region contains any tumor tissue.
We assume the causal setting (i.e. an X — Y causal
graph) (Bandi et al., 2018), as labels are generated by pathol-
ogists from the image. Here, X is a vector-valued node for
the image, which we represent using static features extracted
from an ImageNet-pretrained ResNet-18. We train linear
models on these representations to predict Y separately for
each site. We use our method to attribute drops in accuracy

of each model to each of the other four sites, to P(X) and
P(Y|X).

Results. In Figure 4, we show the attributions from our
method for each distribution, as well as the total accuracy
drop. We find that our method attributes most of the perfor-
mance drop to covariate shift P(X) as opposed to concept
shift P(Y'|X). This aligns with prior work showing that
unsupervised domain adaptation methods improve domain
robustness in this dataset (Wiles et al., 2022; Ginsberg et al.,
2023). Using this result, a practitioner can apply targeted
mitigating methods such as targeted data augmentation (Gao
et al., 2022) or domain-adversarial training (Ganin et al.,
2016).

6. Discussion

We develop a method to attribute changes in performance
of a model deployed on a different distribution from the
training distribution. We assume that distribution shifts
are induced due to interventions in the causal mechanisms
which result in model performance changes. We use the
knowledge of the causal graph to formulate a game theoretic
attribution framework using Shapley values. The coalition
members are mechanisms contributing to the change in
model performance. We demonstrate the correctness and
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Figure 4: Attributions made by our method to domain shifts in Camelyon-17, using accuracy as the metric. We show (a) the
total change in performance, (b) our attribution to P(Y|X), (c) our attribution to P(X).

utility of our method on synthetic, semi-synthetic, and real-
world data.

Limitations and Future Work. Our work assumes knowl-
edge of the causal graph to obtain interpretable and succinct
attributions. When the causal graph is unknown, methods
in causal discovery (Glymour et al., 2019) can produce
a Markov equivalence class of causal graphs for tabular
datasets, though these methods often have strict assump-
tions. While we may still be able to obtain reasonable
attributions from a misspecified graph, we argue that such
attributions may not be minimal. In addition, we observe
some variance in the importance weighting estimates, which
may potentially be remedied by using more advanced den-
sity estimation techniques (e.g. (Liu et al., 2021)). We note
that our experiments on the CelebA dataset are for demon-
stration purposes only, and do not advocate for deployment
of such models. Similarly, while we demonstrate case stud-
ies on publicly available health data, our work is only a
proof of concept, and we recommend further evaluation
before practical deployment. Future work includes relaxing
the assumption that all variables are observed, comparing
strategies for mitigating conditional shifts, and extending
the experiments to additional settings such as unsupervised
learning and reinforcement learning.
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A. Derivation of Importance Weights

Let D be a binary random variable, such that when D = 1, X ~ D% (X), and when D = 0, X ~ D%*"(X). Suppose
d = Dx,|parent(x,) then, for a particular value (z,y):

D ((2,y)) := P(X; = x|parent(X;) = parent(z;), D = 1)
P(D = 1,parent(X;) = x;| X; = ;) - P(X; = x;)
P(D = 1, parent(X;) = x;)
_ P(D = 1jparent(X;) = z;, X; = x;) - P(X; = x;, parent(X;) = X;)
n P(D = 1|parent(X;) = z;) - P(parent(X;) = x;)

Then,

i ()
Dy((z.y))
_ P(D = Olparent(X;) = parent(z;)) P(D = 1|X; = x;, parent(.X;) = parent(x;))
~ P(D = 1|parent(X;) = parent(z;)) P(D = 0|X; = x;, parent(X;) = parent(z;))
_ 1 —=P(D = 1|parent(X;) = parent(z;))  P(D = 1|X; = x;, parent(X;) = parent(x;))
~ " P(D = 1|parent(X;) = parent(z;))  1—P(D = 1|X; = ;, parent(X;) = parent(z;))

Thus, we learn a model to predict D from X;, and a model to predict D from [X;; parent(X)], on the concatenated dataset.
In practice, we learn these models on a 75% split of both the source and target data, and use the remaining 25% for Shapley
value computation, which only requires inference on the trained models. Therefore, an upper limit on the number of weight
models required is 2|Cp|, though in practice, this number is often smaller as several nodes may have the same parents.

In the case where X; is a root node, the expression becomes:

_1-P(D=1) P(D = 1|X; = x;)
YT TPMD =1 1-P(D=1X; =)

Where we simply compute P(D = 1) as the relative size of the provided source and target datasets.
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B. Proof of Properties

Property 1. (Efficiency) Z Attr(d) = Val(Cp) = Perf(D"™e") — Perf(D%""¢)

deCp

By the efficiency property of Shapley values (Shapley et al., 1953), we know that the sum of Shapley values equal the value
of the all-player coalition. Thus, we distribute the total performance change due to the shift from source to target distribution
to the shifts in causal mechanisms in the candidate set.

Property 2.1. (Null Player) D = D" — Attr(d) = 0.

Property 2.2. (Relevance) Consider a mechanism d. If Perf(C U {d}) = Perf(C) for all C C Cp \ d, then Attr(d) = 0.

We can verify that our method gives zero attribution to distributions that do not shift between the source and target, and
distribution shifts which do not impact model performance. First, we observe that in both cases, Val(D) = Val(D U {d}).
For Property 2.1, this is because D=DU {d} for any D C Cp since the factor corresponding to d remains the same
between source and target even when it is allowed to change as part of the coalition. For Property 2.2, this is clear from Eq.
4. By definition of Shapley value in Eq. 3, Attr(d) = 0.

Property 3. (Attribution Symmetry) Let Attrp, p,(d) denote the attribution to some mechanism d when Dy = Dsovree
and Dy = D™ Then, Attrp, p,(d) = —Attrp, p, (d) Vd € Cp.

We overload Perfsrcﬁm,«(a) for some coalition C to denote Perf(ﬁ) where D is given by Equation 1. Analogously, we
denote Perf;q, _,sc(C) to be Perf(D’) when D’ is given by

N _ source target
D = H DXi|parent(Xi) H DXi|parenl(Xi)

1D x, parent(x;) EC 1:Dx, parent( X ;) EC

Note that Perfsrcﬂmr(ﬁcv) = Perfiar—sre(Cp \ 6) forall C C Cp.

We can use Equation 2 to rewrite Equation 3 as:

1 Cp|l—1\" - -
Attrp, p,(d) = — Z (l o| ) (PerfSTHW(c u{d}) —PerfSTHW(c))

[Cp| Scomuid) IC|
-1 |CD| -1 -1 ~ B
— @ Z |AC,| (Perftar—)src(cD \ C) — Perftarﬁsrc(cp \ (C U {d})))
cCep\{d}
—1 |CD| -1 -1 N N
- m Z ( 6/ ) (Perftar—wrc(cl U {d}) — Perftar_wrc(c/))
Plecen\ia) ]

= —AttI‘D2 D1 (d)
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C. Shapley Values for A Synthetic Setting
C.1. Derivation

Suppose that we have the following data generating process for the source environment:

X ~ N(Mlaa-?()
Y ~6,X + N(0,0%)

And for the target environment:

X NN(MQ’O%()
Y ~ 02X +N(0,0%)

The model that we are investigating is Y = f(X) = ¢.X, and I((z,y), f) = (y — f(z))2. Then,

Perf(D*") = E(q,y)~prou[l((2, y), f)]
= E(g o [(61 X + N(0,0%) — X))
= B e [(N (01 — @), (01 — $)%0%) + N (0,03))]
= By yympeone [(N (01 — D)pir, (01 — 6)20% +02))”]

= (61 — ¢)%0% + 0% + (61 — ¢)°u]

Perf(D[arget) = E(m,y)ND‘a‘ge‘ [l(((ﬁ, y)7 f)]
= (02 — 9)°0% + 0% + (02 — 0)°1i3

A = Perf('DlaIget) _ Perf(Dsource )
= 0% ((02 — ¢)2 — (61 — 0)2) + (02 — 0)2p3 — (01 — §)*pi3

= Val(cp)
Val({Dx}) = (61 — 6)* (13 — 1) (62 := 1)
VAI({Dy 1)) = (0% + )82 — 6 — (01— 9)°) (12 2= )
Ate(Dx) = £ (Val(Cp) — Val({ Dy x }) + Val({Dx}) ~ Val({}))
= 2 (02— 0708 — ) + (01 — 673 — D)
= (318 — 5D (02— 6 + (61 — 6)°)
Ati(Dy(x) = 3 (Val(Cp) — Val({Dx}) + Val({Dy x}) — Val({}))
= (% )02~ ) — (61— 6) + (0% + 1) (82— 6)” — (6 — 9)?))
= (0% + 518 + 502 — ) — (61— 6"

Note that Attr(Dx ) + Attr(Dy|x) = A.
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Using the method proposed by Budhathoki et al. (2021), we get that:

(2 = )
20§(
D(PrixlIPrix) = Expy DBy x=el|Pri=)
—Ey.5 [Wz—onxq (626

2 2

D(Px||Px) =

C.2. Experiments

Now, we verify the correctness of our method by conducting a simulation of this setting, using y; = 0, 0; = 1, 0% = 0.5,
02 = 0.25, ¢ = 0.9, and varying pus (the level of covariate shift), and 05 (the level of concept drift). We generate
10, 000 samples from the source environment, and, for each setting of uo and 65, we generate 10,000 samples from the
corresponding target environment. We then apply our method to attribute shifts to {Dx, Dy |x }, using XGB to estimate
importance weights. We also apply the joint method in Budhathoki et al. (2021).

In Figure C.1, we compare our attributions with the baseline, when both covariate and concept drift are present. We find that
for our method, the empirical results match with the previously derived analytical expressions, where any deviations can be
attributed to variance in the importance weight computations. For Budhathoki et al. (2021), we find that there appears to be
very high variance in the attribution the attribution to Dy|x, which is likely a product of the nearest-neighbors KL estimator
(Wang et al., 2009) used in their work.

In Figure C.2, we explore the case where we have a misspecified causal graph. Specifically, we examine the case where
only concept drift is present, for the actual graphical model (Cp = {Dx, Dy|x }), and for a misspecified graphical model
(Cp = {Dy,Dx|y}). We find that using the mechanisms from the true data generating process results in a minimal
attribution (i.e. Attr(Dx ) = 0), whereas the the misspecified causal graph gives non-zero attribution to both distributions.
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Figure C.1: Mean squared error differences attributed by our model and Budhathoki et al. (2021) in the synthetic setting
described in Appendix C
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Figure C.2: Mean squared error differences attributed by our model when there is only concept drift, for the actual causal
graph (a), and a mis-specified causal graph (b).
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D. Additional Experimental Results
D.1. Synthetic Data

Setup. We generate a synthetic binary classification dataset with five variables according to the following data generating
process, corresponding to the causal graph shown in Figure D.1. Here, &, : {0,1} — {0, 1} is a function that randomly flips
the input with probability p.

G ~ Ber(0.5), Xy = N(&.25(Y)+ G, 1)
Y = £,(G), X1 = N(wo.25(Y), 1)
X3 = N(fo,%(Y) + uG, 1)

Where ¢, w and 1 are parameters of the data generating process. Here, GG represents a spurious correlation (Aubin et al.,
2021; Arjovsky et al., 2019) that is highly correlated with Y, and is easily inferred from (X5, X3). By selecting a large value
for g (the spurious correlation strength) on the source environment, we can create a dataset where models rely more heavily
on using X5 and X3 to infer G and then Y, instead of inferring £y 25(Y") across the three features to estimate Y~ directly.

ORONC)

Figure D.1: Causal Graph for Synthetic data

In the source environment, we set ¢ = 0.9,w = 1 and p = 3. We generate 20,000 samples using these parameters, and
train logistic regression (LR) models on (X7, X5, X3) to predict Y, using 3-fold cross-validation to select the best model.
We attribute performance changes for this model using the proposed method. We explore four data settings for the target
environment:

(a) Label Shift: Vary ¢ € [0, 1]. Keep w and p at their source values. Only P(Y'|G) changes. This represents a label shift for
the model across domains (which does not have access to G).

(b) Covariate Shift: Vary p € [0,5]. Keep ¢ and w at their source values. Only P(X3|G,Y") changes across domains.

(c) Combined Shift 1: Set w = 0 in the target environment and vary ¢ € [0, 1]. Keep u at its source value. Both P(X;|Y)
and P(Y'|G) change across domains, but the shift should be largely attributed to P(Y'|G) as the model relies on this
correlation much more than X7 .

(d) Combined Shift 2: Set 1 = —1 in the target environment. Further, vary ¢ € [0, 1]. Keep w at its source value. Both
P(X3|Y) and P(Y|G) change across domains, but their specific contribution to model performance degradation is not
known exactly.

We use our method to explain performance changes in accuracy and Brier score for each model on target environ-
ments generated within each setting (with n = 20,000), computing density ratios using XGB (Chen & Guestrin,
2016) models. Note that the causal graph shown in Figure D.1 implies five potential distribution in the candidate set:
Cp ={Da, Dy|a: Dx, v Px,a,v» Pxsla,y }-

Our method correctly identifies distribution shifts. First, we focus on the output of our method with LR as the model of
interest and accuracy as the metric, shown in Figure D.2. We find that our method attributes all of the performance changes
to the correct ground truth shifts, both when there is a single shift (Settings (a) and (b)) and when there are multiple shifts
(Settings (c) and (d)). In the case of Setting (c), we find that our method attributes all of the performance drop to a shift in
P(Y'|G). This is because the model relies largely on the spurious information (G inferred from X3 and X3) in the source
environment. We verify this by examining the overall feature importance for both models (see Table D.2). Further, in the
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Figure D.2: Attributions by our method using the correct causal graph for the change in accuracy to five potential
distributional shifts on the synthetic dataset for the LR model. Further from 0 implies higher (signed) attribution. We observe
that the overall change (Perf Diff) is attributed to the true shift(s) in all cases.

presence of multiple shifts which simultaneously impact model performance (Setting (d)), we find that our method is able to
attribute a meaningful fraction of the performance shift to each distribution.

Baseline methods have multiple flaws. We find that the baselines methods all have several flaws which result in inadequate
attributions in this setting. For example, the marginal candidate set (Figure D.3) does not provide meaningful attributions as
it does not examine conditional relationships, especially as it attributes large shifts to P(X3). Similarly, the fully connected
graph (Figure D.4) demonstrates a large degree of noise, particularly in the combined shift, though the dominant distribution
appears to largely be correct. Next, the SHAP baseline (Figure D.5) completely fails in this setting, as it is not able to
attribute any shift to the mechanism for Y. Finally, we find that the attributions provided by the joint method in (Budhathoki
et al., 2021) (Figure D.6) are not meaningful, as the magnitude of the KL divergence varies wildly between distributions

when multiple shifts are present.

Table D.1: Performance of each model on the source environment for the synthetic dataset.

Accuracy Brier Score

LR

XGB 0.870

0.871

0.102
0.099
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Table D.2: Feature importances of each model on the synthetic dataset. For LR, the model coefficient is shown, and for XGB,

the total information gain from each feature.

Attribution

Attribution

LR (Coefficient) XGB (Gain)
X1 0.400 31.1
Xo  0.381 29.2
X3 1.994 358.2
0.0 ///\/) 0.01 = — =
2z < s~
-, o 7/
—0.21 /,’ 4:_; ,/
A 2-0.2 vl
—0.41 ol e 7
A < ’/,
—06] ==~ 7
el | | | —0.41 ‘
0.0 02 04 06 08 1.0 0 2 4
q M
(a) Label Shift (b) Conditional Covariate Shift
| / 101
0.00 — /,_ <
i ]
~0.25, Sl 3 o
Pig 5
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’
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P(G)
P(X1)
P(X2)
P(X3)
P(Y)
Perf Diff

Figure D.3: Accuracy differences attributed by our method using the marginal graph to five potential distributional shifts on
the synthetic dataset for the LR model.
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Figure D.4: Accuracy differences attributed by our method using the fully connected graph to five potential distributional
shifts on the synthetic dataset for the LR model.
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Figure D.5: Accuracy differences attributed by the SHAP baseline to five potential distributional shifts on the synthetic
dataset for the LR model.
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Figure D.6: Attributions by the joint method in Budhathoki et al. (2021) to five potential distributional shifts on the synthetic
dataset. We note that the magnitude of the attribution is not informative in interpreting model performance changes,

particularly when multiple shifts are present.
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D.2. ColoredMNIST

Setup. We evaluate our method on the popular ColoredMNIST dataset (Arjovsky et al., 2019). We generalize the data
generating process for this dataset to include several tunable dataset parameters, using the following procedure:

1. Generate a binary label y,p5 from the MNIST label ;4 by assigning yops = 0 if Ypum € {0,1,2,3,4}, and yops = 1
otherwise.

Flip y,ps With probability 7 to obtain y.

Generate the color a by flipping y with probability p.

Construct X as [X ¢, - (1 —a), X449 - a.

Subsample the majority class so that the fraction of samples with y = 1 in the dataset is equal to [.

Figure D.7: Causal graph for the ColoredMNIST dataset.

DA

This corresponds to the causal graph in Figure D.7. Note that X is a vector-valued node representing the image. We split
the MNIST data equally into source and target environments. On the source environment, we set 3 = 0.5, n = 0.25, and
p = 0.15. We vary these two parameters independently on the target environment, keeping the other fixed at their source
value. Note that shifting 3, 7, and p correspond to shifting P(Y'), P(X|A,Y) and P(A|Y) respectively.

Following (Arjovsky et al., 2019), we use 3-layer MLPs to predict y from X on the source dataset. We train this MLP
with standard ERM, as well as with GroupDRO (Sagawa* et al., 2020). The network trained with ERM should rely on the
spurious correlation (i.e. the color), while the GroupDRO network should be invariant to the color. We experiment with
using both the correct causal graph, and the all marginal causal graph.

Results. In Figure D.§8, we show the attributions provided by our method for the correct causal graph. We observe that the
ERM model is highly susceptible to shifts in p and correctly attributes all of the shift to P(A|Y") in that setting. In contrast,
the GroupDRO model receives almost no attribution to P(A|Y") as it does not use the attribute spuriously. However, since it
makes use of the invariant signal, shifting n results in large performance drops. Both models do not receive a significant
attribution for P(Y"), as the error rate tends to be similar between the two classes. Looking at the results for the marginal
causal graph in Figure D.9, we find that attributions created using this candidate set are not meaningful as it deviates too far
from the actual causal mechanism. For example, no shifts are ever attributed to P(A), as this distribution is not changed by
any parameters.
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Figure D.8: Accuracy differences attributed by our model with the correct causal graph to three potential distribution shifts
in ColoredMNIST.
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Figure D.9: Accuracy differences attributed by our model with the all marginals causal graph to three potential distribution
shifts in ColoredMNIST. We observe that using a causal graph that does not match the underlying shifting mechanisms may

lead to attributions that are not meaningful.
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D.3. Gender Classification in CelebA

Eye-
glasses

Figure D.10: Causal graph for the celebA dataset.

We use the CelebA dataset (Liu et al., 2015), where the goal is to predict gender from facial images. We adopt a setup
similar to the one presented in Thams et al. (2022). We assume this data is generated from the causal graph shown in Figure
D.10. We train a Causal GAN (Kocaoglu et al., 2018), a generative model that allows us to synthesize images faithful to the
graph. Causal GAN allows to train attribute nodes (young, bald, etc) which are binary-valued, and then synthesize images
conditioned on specific attributes. This allows us to simulate known distribution shifts (in attributes and hence images)
across environments. We assume that the causal mechanisms in the source environment have log-odds equal to the ones
shown in Table D.3. We omit Dipage|paimage) from Cp, as 1) this distribution is parameterized by the Causal GAN and does
not change, and 2) it is high-dimensional and difficult to work with. We investigate attribution to distribution shift of an
ImageNet-pretrained ResNet-18 (He et al., 2016) finetuned to predict gender from the image using frozen representations.
Note that the model is only given access to the image itself, but not any of the binary attributes in the causal graph. We
conduct the following two experiments for evaluation.

Experiment 1. The purpose of this experiment is to demonstrate that our method provides the correct attributions for
a wide range of random shifts. To create the target environment, we first select the number of mechanisms to perturb,
n, € {1,2,...,6}. We select n,, mechanisms from the causal graph, which we define as the ground truth shift. For each
mechanism, we perturb one of the log odds by a quantity uniformly selected from [—2.0, —1.0] U [1.0, 2.0]. We then use the
CausalGAN to simulate a dataset of 10, 000 images based on the modified mechanisms, and use our method to attribute the
accuracy change between source and target. We select the n,, distributions from our method with the largest attribution
magnitude, and compare this set with the set of ground truth shifts to calculate an accuracy score. We repeat this experiment
20 times for each value of n, € {1,2,...,6}, and only select experiments with a non-trivial change in model performance
(change in accuracy > 1%).

Experiment 2. The purpose of this experiment is to investigate the magnitude of our model attributions in the presence
of multiple shifts. We perturb the log odds for P(Wearing Lipstick|Male) and P(Mouth Slightly Open|Smiling) jointly by
[—3.0, 3.0]. We compare the magnitude of the attributions for the two associated mechanisms, relative to the total shift in
accuracy.

Results. In Table D.4, we show the average accuracy of our method for each value of n,,. We find that our method achieves
roughly 90% accuracy at this task. However, we note that this is not the ideal scenario to validate our method, as not all
shifts in the ground truth set will result in a decrease in the model performance. As our method will not attribute a significant
value to shifts which do not impact model performance, this explains the accuracy discrepancy observed.
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Table D.3: Data generating process for the causal graph shown in Figure D.10

Variable Log Odds

Young Base: 0.0

Male Base: 0.0

Eyeglasses Base: 0.0, Young: -0.4

Bald Base: -3.0, Male: 3.5, Young: -1.0

Mustache Base: -2.5, Male: 2.5, Young: 0.5

Smiling Base: 0.25, Male: -0.5, Young: 0.5

Wearing Lipstick Base: 3.0, Male: -5.0

Mouth Slightly Open  Base: -1.0, Young: 0.5, Smiling: 1.0

Narrow Eyes Base: -0.5, Male: 0.3, Young: 0.2, Smiling: 1.0

Table D.4: Average accuracy of our method in attributing shifts to the ground truth shift in CelebA for each number of
perturbed mechanisms (7).

n, Avg Accuracy

1 1.00 £ 0.00

2 0.72 +0.36

3 0.90 + 0.16

4 0.85 +0.13

5 0.93 +0.10

6 0.91 £ 0.09
) O —~
© © g
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Figure D.11: We vary the perturbation in log odds in the target environment for the “wearing lipstick” and “mouth slightly
open” attributes. We show (a) the total shift in accuracy, (b) our attribution to P(Wearing Lipstick|Male), (c) our attribution
to P(Mouth Slightly Open|Young, Smiling).

Table D.5: Predictive performance of XGB models trained to predict attributes from the source environment in CelebA, and
the correlation of each attribute the gender label, as measured by the Matthews Correlation Coefficient (MCC).

Predictive Performance  Correlation
AUROC AUPRC MCC

Wearing Lipstick 0.968 0.976 -0.837
Mouth Slightly Open  0.927 0.924 -0.036
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In Figure D.11, we show the output of our method in Experiment 2. First, we find that shifting these two attributes
causes a large decrease in the accuracy (up to 6%), and that P(Wearing Lipstick|Male) seem to be the stronger factor
responsible for the decrease. Looking at our attributions, we find that we indeed attribute the large majority of the
shift to P(Wearing Lipstick|Male). Here, the relative attribution to P(Wearing Lipstick|Male) is relatively unaffected
by the shift in the other variable, as its effect on the total shift is so minuscule. However, looking at the attribution to
P(Mouth Slightly Open|Young, Smiling), in addition to the small magnitude, we do observe an interesting effect, where
the attributed accuracy drop is greater when the two shifts are combined.

To justify the magnitude of our attributions, we use an ad-hoc heuristic that attempts to approximate the model reliance
on each attribute in making its prediction. First, we train XGBoost models on the ResNet-18 embeddings from the source
environment to predict the two attributes. From Table D.5, we find that “Wearing Lipstick” is easier to infer from the
representations than “Mouth Slightly Open”. Next, we measure the correlation of each attribute to the label (gender), finding
that the magnitude of the correlation is also much higher for “Wearing Lipstick”. As “Wearing Lipstick” is both easier to
detect from the image, and is also a stronger predictor of gender, it seems reasonable to conclude that the model trained on
the source would utilize it more in its predictions, and thus our method should attribute more of the performance drop to the
“Wearing Lipstick” distribution when it shifts.

Figure D.12: Causal Graph for eICU data

D.4. eICU Data

Table D.6 lists the features that comprise the nodes in the causal graph. Please refer to (Singh et al., 2022, Supporting
Information Table C) for descriptions. Code for preprocessing the eICU database for the mortality prediction task is made
available at the Github repository by Johnson et al. (2018).

Table D.6: Features comprising the nodes of the causal graph in Figure D.12.

Variable Features

Demo is_female, race_black, race_hispanic, race_asian, race_other
Vitals heartrate, sysbp, temp, bg_pao2fio2ratio, urineoutput

Labs bun, sodium, potassium, bicarbonate, bilirubin, wbc, gcs
Age age

ElectiveSurgery electivesurgery

Outcome death

The Midwest domain has 10,056 samples, and the South domain has 7,836. Both domains have 20 features and a binary
outcome. We randomly split each into 50% for training the XGBoost model and 50% for evaluation (and estimation of
Shapley values). To create the resampled Midwest dataset, we subsample 67% of the training set but selectively sample
records with age less than 63 (which is the median age in Midwest) with probability 5 times that of the probability of
sampling the rest of the records.
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E. Convergence Analysis

We present a preliminary analysis to study the impact of errors resulting from estimating importance weights on the
properties of the Shapley values. The theoretical analysis is informal and presented here with the goal of motivating further
study. Importantly, we experimentally evaluate the error in a synthetic setup.

E.1. Sketch for a Theoretical Analysis

Remark E.1. Under bounded estimation error and for a bounded loss, Property 2.1 holds asymptotically.

Proof. Suppose 1 — €} < wq < 1+ €, that is we get approximate importance weights from finite samples. Then for a
bounded loss,

el lcpl -1\ 7! n €l lcp| -1\ "
@ Z ‘E| EDsource[ H wd'] S AttI‘ (d) S |C,D‘ Z |’C‘:" EDsource[ H wJ] (6)
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| | cCcp\{d} decud cCcp\{d} decud

Suppose that in the worst case all other distributions shift except d, but the shifts are bounded, i.e. % <wg <mnwheren >1
forall d € Cp \ {d}. Then,

_d E ~ - <At (d) < = E ~
C ( ] n < Atr'(d) < Co| IC] !

cCep\{d} cCep\{d} 7

el 1\/c . el B
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The error in attribution is dominated by the shifts in other distribution and the error in estimating the weight for distribution
d. Thus as n — 00, so long as €/} — 0, the attribution Attr" (d) — 0. O

The above suggests that our Property 2.1 may not hold exactly in finite samples due to estimation error.

E.2. Empirical Analysis

To empirically examine the estimation error as a function of the number of samples, we adopt the synthetic setup described
in Appendix C with #; = 0.5 and ps = 0.5. We choose this setup because the exact importance weights can be computed
analytically, and thus allows us to quantify the error of an importance weight estimator. We experiment with the KLIEP
method (Sugiyama et al., 2008), as well as using logistic regression (LR) and XGBoost (XGB) as probabilistic estimators,
the last of which we use in the paper. Given n samples, we randomly choose n/2 samples to train the importance weight
estimator, and the remaining n/2 samples to evaluate the attribution. In each run, we compute the mean squared error
between empirical and exact importance weights for Dx and Dy x, as well as the mean squared error between the empirical
and exact attributions Attr(Dx ) and Attr(Dy x ). Note that the analytical attributions are Attr(Dx) = —0.06375 and
Attr(Dy|x) = 0.16875. We display the result in Table E.7.

We first find that KLIEP did not converge for smaller values of n, and takes prohibitively long to run for larger values of n.
It was for these reasons that we did not select it for use in the main paper. Next, we note that a linear model is not complex
enough to differentiate between the source and target, and thus results in a biased estimator (non-zero MSE for large n),
though this still results in relatively small MSE for the attributions. Finally, we observe that the errors of XGB converge to
zero both in the estimated importance weights as well as in the resulting attributions.
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Table E.7: Estimation error in Shapley attributions for finite samples, using the synthetic setup described in Appendix C.

Model n MSE(’[U)() MSE(U)X’y) MSE(AttT(Dx)) MSE(AttT(Dy))
100 0.557 £ 0.339 1.093 + 0.422 0.016 + 0.003 0.029 £ 0.015

KLIEP 200 0.344 £ 0.194 1.612 + 0.809 0.004 + 0.000 0.037 £ 0.002
1000 0.212 £ 0.145 0.588 + 0.203 0.003 + 0.001 0.041 £0.012

20 0.237 £ 0.133 0.428 + 0.221 0.004 £ 0.000 0.028 £+ 0.000

50 0.748 £ 0.707 14.175 £ 22.402 0.004 + 0.000 0.023 £ 0.005

100 0.555 £ 0.064 0.549 £ 0.342 0.004 + 0.000 0.033 £ 0.009

LR 200 0.543 + 0.083 1.861 + 1.864 0.004 + 0.000 0.036 £ 0.012
1000 0.600 + 0.042 4.549 £ 3.196 0.004 + 0.000 0.010 £ 0.007

5000 0.583 + 0.061 3.208 £ 0.269 0.004 £ 0.000 0.008 + 0.003

10000 0.566 + 0.038 5.887 £+ 3.753 0.004 + 0.000 0.007 £ 0.004

50000 0.325 + 0.008 3.631 + 0.430 0.004 + 0.000 0.009 +£ 0.002

20 1.191 + 1.034 0.974 £ 0.740 0.003 + 0.003 0.068 £ 0.038

50 1.003 £ 0.848  40.087 £+ 66.979 0.010 £ 0.008 0.022 + 0.004

100 13.151 £19.926  30.083 + 25.079 0.017 = 0.016 0.013 £ 0.020

XGB 200 10.053 £ 8.450 7.491 + 9.321 0.001 £ 0.001 0.031 £ 0.015
1000 0.418 +0.378 39.845 + 66.373 0.005 + 0.003 0.031 £ 0.023

5000 0.419 £ 0.502 3.485 + 2.964 0.003 + 0.003 0.030 £ 0.025

10000 0.065 + 0.062 0.903 + 0.429 0.001 £+ 0.001 0.014 £ 0.018

50000 0.083 £ 0.050 0.396 + 0.095 0.000 £ 0.000 0.002 £+ 0.001
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