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Abstract—The AC Optimal Power Flow (AC-OPF) problem is
a core building block in electrical transmission system. It seeks
the most economical active and reactive generation dispatch to
meet demands while satisfying transmission operational limits.
It is often solved repeatedly, especially in regions with large
penetration of wind farms to avoid violating operational and
physical limits. Recent work has shown that deep learning tech-
niques have huge potential in providing accurate approximations
of AC-OPF solutions. However, deep learning approaches often
suffer from scalability issues, especially when applied to real
life power grids. This paper focuses on the scalability limitation
and proposes a load compression embedding scheme to reduce
training model sizes using a 3-step approach. The approach
is evaluated experimentally on large-scale test cases from the
PGLib, and produces an order of magnitude improvements in
training convergence and prediction accuracy.

Index Terms—ACOPF, Deep Learning, Dimension Reduction

I. INTRODUCTION

The AC Optimal Power Flow (AC-OPF) is an optimization
model that finds the most economical generation dispatch
meeting the consumer demand, while satisfying the physical
and operational constraints of the underlying power net-
work [[1]]. The AC-OPF, together with its approximations and
relaxations, constitutes a fundamental building block for day
ahead and real time market operations, including the day-ahead
security-constrained unit commitment and real time security-
constrained economic dispatch.

The non-convexity of the OPF limits the solving frequency
of many operational tools. In practice, generation dispatch in
real time markets are often required to be cleared in every cou-
ple of minutes. Additionally, the integration of renewable en-
ergy and demand response programs create significant stochas-
ticity in load and generation. To improve solving efficiency,
recently there has been a growing interest in applying machine
learning techniques to power system optimization problems.
One line of research focus on how to predict AC-OPF solutions
directly using Deep Neural Networks (DNN) (e.g., [2]-[5]).
Once a deep neural network is trained, predictions can be
computed in the order of milliseconds with a single forward
pass through the network. Deep neural networks can also be
spatially decomposed [6] to learn large-scale power networks.

Prior results are encouraging, showing that deep learning
techniques can approximate solutions with high quality. How-
ever, many of these learning models tend to have a very large
number of input features and training parameters. For deep
learning, re-training Deep Neural Nets with a large number
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of features and parameters is computationally challenging, in
particular when generator commitments and grid topology are
changing due to operators/market decisions and DNN needs
to be frequently updated within the day-ahead/realtime mar-
kets. Avoiding re-training completely is also computationally
challenging since crafting a generic learning framework on a
complex engineering system considering for all possible gen-
erator commitments, renewable forecasts, topological changes,
and operator decisions is extremely difficult and intractable.

This paper tackles the the scalability issues of deep neural
networks for learning AC-OPF when the network scales with
increasing load demand input features. Its main contribution
is a load embedding scheme that reduces the input feature
dimension of the deep learning network. The approach is
based on the recognition that, in many circumstances, aggre-
gating loads at adjacent buses does not fundamentally change
the nature of the AC-OPF predictions. The load embedding
scheme has two key components: (1) An optimization model
for load aggregation that reduces the number of loads in an
OPF instance, while staying close to the optimal AC-OPF cost;
and (2) A learning model for load embedding that, given the
loads for an AC-OPF instance, returns a vector of encoded
loads of smaller dimensions. It is important to emphasize that
the proposed approach is not a generic network reduction
technique for preserving the network physical properties. Its
goal is to reduce the input feature dimension of the learning
model to maintain decent training accuracy within a time limit.

Figure |1| shows the training architecture. The encoder first
computes a load embedding, which will then be used as inputs
to the learning model to predict the AC-OPF solutions (e.g.,
active & reactive generator dispatch). The encoder and AC-
OPF learning models do not share parameters and are trained
in sequence — first learns the encoder and then trains the
AC-OPF DNN using the outputs of the learned encoder.

The approach has been evaluated on a wide range of PGLib
(formerly NESTA) test cases [7]], [8]. Results show that the
proposal can produce significant dimensionality reduction and
significant improvements in convergence speed and accuracy.



II. RELATED WORK

Power network reduction techniques, such as Kron and
Ward reduction [9]] and Principle Component Anaylsis [10],
have been widely used in the industry for more than 70
years. Early techniques focused on crafting simpler equivalent
circuits to be used by system operators for analysis. With the
advancement of computer technology and lower computation
costs, complex reduction models became more feasible [11]-
[14]. While it is possible to use classical reduction techniques
to reduce the power systems before constructing the learning
model, the learned model can only predict the reduced net-
works, with potential accuracy issues. The main focus of the
paper is rot on general network reduction techniques. Instead,
it focuses on reducing the size of the input features and
learnable parameters while retaining the prediction accuracy.

Dimension reduction is an important and widely studied
topic in machine learning, and reduction techniques have been
successfully applied on various learning applications in power
systems. For example, auto-encoders have been applied to
predict renewable productions [15]], [[16], and to detect false
data injection attacks [17]]. The proposed approach differs from
general auto-encoder techniques on several aspects. First, the
load embeddings are explicitly computed through a bilevel
optimization model and not implicitly trained by an auto-
encoder. Second, the computed load embeddings are AC-
feasible, and their optimal power flows have the same cost
as the original ones. Third, the reduced dimensionality is
determined by optimization models instead of chosen a-priori.

III. BACKGROUND

This paper uses the rectangular form for complex power
S = p+jq and line/transformer admittance Y = g+ jb, where
p and ¢ denote active and reactive powers, and g and b denote
conductance and susceptance. Complex voltages are in polar
form V = vel?, with magnitude v = |V| and phase angle 6 =
V. Notation z* is used to represent the complex conjugate
of quantity = and notation & the prediction of quantity z.

A. AC Optimal Power Flow

The AC Optimal Power Flow (OPF) determines the most
economical generation dispatch balancing the load and gen-
eration in a power network (grid). A power network N is
represented as a graph (N, E), where the set of nodes N
represent buses and the set of edges E represent branches.
Since edges in F are directed, EZE is used to denote arcs in the
reverse direction. The AC power flow equations are expressed
in terms of complex quantities for voltage V, admittance Y,
and power S. Model [T| presents an AC OPF formulation, with
variables and parameters in the complex domain for ease of
presentation. Superscripts u and [ are used to indicate upper
and lower bounds for variables. The objective function O(.S9)
captures the cost of the generator dispatch, with S9 denoting
the vector of generator dispatch values (S7|i € V). Constraint
sets the voltage angle of an arbitrary slack bus s € N to
zero to eliminate numerical symmetries. Constraints (3]) bound
the voltage magnitudes for every bus, and constraints limit

Model 1 O(S%): AC Optimal Power Flow
input: S Vie N
variables: SY,V; Vi€ N, Si; V(i,j) € EUE"

minimize: Z c2i(R(S9))* + c1iR(S?) + cos (1)
subject to: ;E‘Z =0, seN 2)
vl < |Vi| <wvf YieN 3)
0i; < Z(ViV}') <65 V(i,j) € E “)
S <89 < SI Yie N 5)
|Si| < s V(i,5) € EUE" 6)
Szg - S{i = Z(i,j)EEuER Sij Vie N )

Siy = Y5 |Vil? = Y ViVy© V(i,j) e EUE™  (8)

the voltage angle differences for every branch. Constraints
enforce the generator output SY to stay within its limits
[S9',.59"]. Constraints () impose the line flow limits 53 on all
the line flow variables S;;. Constraints (7) capture Kirchhoff’s
Current Law enforcing the flow balance of generations S7,
loads S¢, and branch flows S;; across every node. Finally,
constraints capture Ohm’s Law describing the nonlinear
and nonconvex AC power flow .5;; across lines/transformers.

B. Deep Learning Models

Deep Neural Networks (DNNs) are learning architectures
composed of a sequence of layers, each typically taking as
inputs the results of the previous layer. Feed-forward neural
networks are DNNs where the layers are fully connected and
the function connecting the layers is given by y = m(Wx+b),
where £ € R™ is an input vector with dimension n, y € R™ is
the output vector with dimension m, W € R™*"™ is a matrix
of weights, and b € R™ is a bias vector. Together, W and b
define the trainable parameters of the network. The activation
function 7 is usually non-linear (e.g., a rectified linear unit
(ReLLU)). This paper uses the following OPF-DNN models
from [2] to evaluate the proposed embedding scheme:

h1 = 7T(W1CE + bl), h2 = W(Wghl + bg),
Yy = W(Wghg + bg) (9)

where the input vector = (pd, qd) represents the vector of
active and reactive loads, and the output vector y represents the
vector of active and reactive generation dispatch predictions
y = (p9,q9). Learning DNN models consists in finding
matrices W, and the associated bias vectors b, to make the
output prediction ¢ close to the ground truth y, as measured
by a loss function L.

IV. DIMENSIONALITY REDUCTION BY LOAD EMBEDDING

This section motivates the concept of load embedding,
which is formalized using a bilevel optimization model. The
load embedding is motivated by the fact that real-life trans-
mission systems are large and involve tens of thousands of
buses and loads. Naively incorporating all the input features
of a large system would easily result in a humongous neural



network, which is difficult to train and computationally chal-
lenging to cope with time limits in practice. The proposed
dimensionality reduction is motivated by the observation that,
unless there is significant congestion or line power losses,
moving a unit of load between two adjacent buses will not have
a major effect on the final dispatch. This observation yields
opportunities to aggregate load features into smaller subsets
and reduce the number of training parameters. This section
explores an encoder that performs such an aggregation.

A. The Bilevel Load-Embedding Model Mp;

Let O° be the optimal cost of the original OPF, S{° the
original dispatch of generator i, and S%° = p®° + j¢° the
original complex load . The load-embedding model can be
formulated as a bilevel optimization model Mgy :

min Z 1(S +#0) (10)
iEN

s.t. - (AC Power Flow) (11)
S9=57° Vie N, (Generation Equiv.)  (12)
Sopl = pie (Active Load Equiv.)  (13)
iEN ieN
Z @ = ¢*  (Reactive Load Equiv.) (14)
iEN ieN
|O(8%) — 0°| < 3 (Cost Equiv.)  (15)

Its goal is to find the embedded loads (p¢,q¢) (i € N)
which are the key decision variables. Objective minimizes
the number of nonzero loads using an indicator function.
Constraints impose the power flow equations. Constraints
ensure that the generation dispatch remains the same,
given that they are the targets of the learning task. Constraints
and require the sum of the active and reactive loads
to remain the same after the encoding. Together, these con-
straints ensure that the loads are AC-feasible for the original
generation dispatch. However, they do not guarantee that they
could not be served by a significantly better generator dispatch.
This is the role of constraint that ensures the encoded
load vector S¢ = p? + jq< induces an optimal flow with cost
close to the original cost O° (within a tolerance parameter /3).
This constraint introduces an AC-OPF as a subproblem, hence
creating a bilevel model.

B. Load Embedding with Congestion Constraints: Model Mg

Optimization model My, is challenging for two reasons: (1)
it implicitly features discrete variables through the indicator
variables in its objective; (2) it is a bilevel optimization
problem. The first challenge can be addressed by replacing its
discrete objective by a continuous expression that maximizes
the square of the real and reactive powers of each load, i.e.,

max > [(p{)* + (¢)?].

ieEN

(16)

Objective encourages active and reactive loads to be
aggregated without the need of binary variables.

Algorithm 1: Load Encoding

Input : A : power grid data; p,, ps : penalty steps;
(Bv, Bs) : constraint tolerances;
3 : cost tolerance;
4" : max iteration limit.
Output: S = (p<, ¢%)
for i =0,1,2,...,i" do
Sd <~ (pd7 qd) <~ MR(ﬁv, ﬂs)
if |O(S%) — 0°| < § then
| break

BU — pv/va ﬁs — Psﬁs

s W o=

wn

The second challenge can be addressed by replacing con-
straint by proxy constraints that characterize the OPFE.
Indeed, in the original OPF, a number of voltage and thermal
constraints are binding. Imposing constraints on the associated
voltages and flows will help in keeping the optimal cost close
to the original cost. Let N and N* be the set of buses with
binding lower and upper constraints on voltages, and £ be the
set of lines with binding thermal limit constraints. Constraint
(15) can be relaxed and reformulated as:

lv; — vi| < By, Vi € N* (Voltage Congestion) (17)

lv; — 0| < B,,Vi € N' (Voltage Congestion) (18)

|1Si;] — si5] < Bs,¥(i,7) € E* (Line Congestion) (19)
where 3, and S35 are the tolerance parameters for the tightness

of the original binding constraints. The relaxed model My is
then defined as:

max > [(p{)* + (¢f)’]
1EN

s.t. —
-
-

C. Load Embedding with a Penalty Method: Model Mp

Model My requires the choice of tolerance parameters
B, and (. If these tolerances are too tight, it may not be
possible to aggregate loads effectively. If they are too loose,
the resulting predictions may be inaccurate. To overcome this
difficulty, this paper uses a penalty methodm The resulting
model Mp (B, Bs) becomes

max Y [(pf)* + (a)*]+ B Y llvi —of P+

(AC Power Flow)
(Equiv. Constr.)
(Congestion Constr.)

i€EN iEN®
Bu D o =villP+ 8 Y ISl = sll?
ieN! (i,j)eE™

s.t. @) — (8) and (12) — (14)

and it can be solved iteratively by increasing (3, and (¢ until
(15) is satisfied, using Algorithm [T}

! Alternatively, it is possible to use an Augmented Lagrangian Method.
Experimental results have shown that the encoding quality is similar but
solving times were slightly longer for the latter.



V. LEARNING TO ENCODE

Algorithm [T] computes an “optimal” load embedding for a
load profile S¢. However, computing Algorithm [1| at predic-
tion time is expensive, hence defeating the purpose of speed
up OPF computations. Instead, this paper proposes to learn the
encoder, i.e., to learn a machine-learning proxy for Algorithm
[I] The idea is to take the set of training instances for OPF
and apply Algorithm (1] to obtain the load embeddings. The
machine-learning model then learns the mapping between the
original and embedded loads. The input vector is the load
vector £ = (p%, q?) and the output vector is the embedded
load vector z = (p<, G?). The structure of the output, i.e., the
embedded load vector, is obtained by removing the loads that
are relocated in all the training instances. The training of the
machine-learning model then consists in mapping the original
loads into this smaller set of loads to mimic Algorithm |1} The
paper proposes to learn the encoder, and explores two learning
schemes: (1) a linear regression E; (x) = z = Wa + b, that
is extremely fast, and; (2) a DNN similar to (9) Er(xz) = z =
T{Wan[Waom(Wiz + by) + ba] + bs}.

For the full NN-encoder, the dimension of the first and
second layers are set to twice of the dimensions of the input
and the output vectors respectively. For a data set collection
D = {(z%,2%) : i € [1...n]} with n test cases where the
outputs z’ are computed using Algorithm |1} the goal of the
learning task is to find the model parameters W and b that
minimize the empirical risk function:

min > LEm(x’),2").

" (x?,z7)eD

(20)

where m € {L, F'} is used to discriminate the model adopted.

VI. SCALABLE OPF LEARNING

Once the load encoder has been learned, the OPF learning
task is performed using the architecture in Figure |1} NN layers
(tensors) are represented by rectangular boxes and arrows
represent connections between layers. The architecture uses
fully connected layers with ReLU as the activation functions.
Notice that the encoder is pre-trained, so the learning task will
not affect its parameters. The dimensions of h; and ho of the
OPF layers are set to twice of the dimension of the input and
the output vectors respectively as [2].

Unless required to, the encoder does not preserve the values
of many physical parameters, including phase angles, voltage
magnitudes, and line flows. However, these physical values
on the reduced network, which are available as a result of
Algorithm 1} are still important to improve prediction accuracy
using, for instance, a Lagrangian dual approach as in [2].

VII. EXPERIMENTAL EVALUATION

Parameter Setup: The experiments were performed on vari-
ous PGLib (formerly NESTA) test cases [7], and Algorithm
was implemented on top of PowerModels.jl 18], a state-of-
the-art open source Julia package for solving or approximating

2When the models for OPF and the encoder are both fully trained, only 1
forward NN pass (encoder, then OPF model) is needed during predictions.

TABLE I: OPF-DNN: Original & Reduced Input dimension

Network | Orig. dim.  Reduced dim. | Reduction %
14_ieee 22 11 50%
30_ieee 42 13 69%
39_epri 42 29 31%
57_ieee 84 26 69%
73_ieee_rts 102 88 14%
89_pegase 70 55 21%
118_ieee 198 198 0%
162_ieee_dtc 226 143 37%
189_edin 1244 336 73%
1394_sop_eir 524 207 60%
1460_wp_eir 536 536 0%
1888_rte 2000 1555 22%
2848_rte 3022 2310 24%
2868_rte 3102 2221 28%
3012wp_mp 4542 2043 55%
3375wp_mp 4868 2109 57%

AC-OPFE. The tolerance 3 was set to 0.5%, i* = 500, and
parameters p, and ps; were both set to 1.5. The OPF data sets
were generated by varying the load profiles of each benchmark
network from 80% to 120% of their original (complex) load
values, with a step size of 0.02%, giving a maximum of 2000
test cases for every benchmark network. For each test case, to
create enough diversity, every load is perturbed with random
noise from the polar Laplace distribution whose parameter A
is set to 10% of the apparent power. The test cases were split
with 80%-20% ratio for training and testing. The OPF-DNN
models and the encoding models (E, /E ), were implemented
using PyTorch [[19] and run with Python 3.6, with the Mean
Squared Error (MSE) as the loss function. The training was
performed using Tesla-V100 GPUs with 16GBs HBM2 ram on
machines with Intel CPU cores at 2.1GHz. The training used
Averaged Stochastic Gradient Descent (ASGD) with learning
rate 0.001. The paper uses default parameters from PyTorch
for all other hyper-parameters across various learning models.

A. Compression Ratios

Table|l|shows, for each test case, the dimension (i.e., ¢, +c,)
for the input load tensor (p?,q?) in the original data set and
compares it to the reduced dimension for the input load tensor
(»*.4%). This reduced dimension is computed by running
Algorithm [T] on the (=~ 2000) test cases for each benchmark
data set and removing the loads that are always assigned to
zero. Remarkably, given the wide range of considered loads,
many of the test cases (except the 118 and 1460 cases) achieve
a significant dimensionality reduction. Of particular interest
are the large RTE test cases whose dimensions are reduced
by 24% and 28% and the large wp_mp test cases whose
dimensions are reduced by 55% and 57%.

TABLE II: Prediction Errors (p.u.).

L1 Error for Generator Dispatch

Network ‘ No Enc. Linear Enc.  Full Enc.
14_ieee 0.0065 0.0057 0.0050
30_ieee 0.0041 0.0033 0.0038
39_epri 0.2536 0.0632 0.0422
57_ieee 0.0433 0.0522 0.0130
73_ieee_rts 0.0602 0.0178 0.0676
89_pegase 0.1807 0.0243 0.0360
118_ieee 0.0504 0.0108 0.0063
162_ieee_dtc | 0.1622 0.0493 0.0329
189_edin 0.0209 0.0117 0.0075
1394_sop_eir | 0.0041 0.0039 0.0029
1460_wp_eir | 0.0129 0.0114 0.0055
1888_rte 0.1964 0.0792 0.2046
2848 _rte 0.0376 0.0125 0.0085
2868_rte 0.025 0.0095 0.2026
3375wp_mp 0.0483 0.0252 0.0212




B. OPF Prediction Errors

This section shows that learning with encoders almost
always reduces prediction errors, which is interesting in its
own right. Table [[I| depicts the prediction results for three
variants of OPF-DNN models on the testing data set: a) no
encoder, b) the OPF-DNN architecture with encoder E,, and ¢)
the OPF-DNN architecture with encoder Ep. Table [lI| reports
the averaged L1-losses ||-||1 for the main predictions:

S Z[Hﬁf,ptglll/\NGl + H‘jqu7?||l/|NG|]
T 2

teT

where N is the set of generators and 7 is the set of
testing data. The results demonstrate the effectiveness of the
proposed encoders, which yield predictors with smaller errors.
Interestingly, even for the 118 bus and 1460 bus bench-
marks, which have no dimensionality reduction, the generation
dispatch errors are reduced by an order of magnitude. The
results indicate that employing encoders are always effective,
regardless on whether its a simplified linear model or a more
complex multiple layered models.

Average MSE Loss (log scale)
Enc model
ful
linear linear
none

Average MSE Loss (log scale)

Enc model

100

2

Avg MSE Loss (log)

—
/
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i

Avg MSE Loss (log)
°

o 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000
Epoch Epoch

Fig. 2: Average MSE error (log scale) during training phase.
Left: 1394_sop_eir, right: 3375wp_mp.

C. Training Convergence and Speed

The key motivation of this paper is to speed up the learning
task. This section demonstrates that the OPF-DNN architecture
with load encoding quickly converges to an accuracy that is
an order of magnitude better than full OPF-DNN architecture.
Figure [2| shows the combined MSE losses (in log scale) for the
three OPF-DNN architectures during the training phase for the
1394 and 3375 bus benchmarks. The results are averaged by
the number of training cases as in previous sections. The full
NN-encoder is almost an order of magnitude more accurate
than the base model, and consistently better than the linear
encoder model. Both load-encoding architectures outperforms
the base model in the early convergence period (within 500
epochs), and a significant convergence gap still exists even
after the error curves have flattened (e.g., after 2500 epochs).
These results indicate that load reduction yields both a better
training convergence and smaller prediction errors.

VIII. CONCLUSION

This paper studied how to improve the scalability of deep
neural networks for learning the active and reactive power
of generators in AC-OPF. To address computational issues

3 Additional results indicate that training the linear/full encoder with good
convergence can be performed in under 20 min/2 hr, translating to roughly
20/120 extra epochs for OPF training on the largest network. Clearly, FigureE]
indicates the benefits of encoders outweigh the extra computational burden.

that arise in learning AC-OPF over large networks, this paper
proposed a load encoding scheme for dimensionality reduction
and its associated deep learning architecture. The load encod-
ing scheme consists of (1) an optimization model to aggregate
loads for each instance; and (2) a deep learning model that
approximates the load encoding. The learned encoder can
then be included in a deep learning architecture for AC-OPF
and produces an order of magnitude improvement in training
convergence and prediction accuracy of large realistic cases.
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