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ABSTRACT

Learning energy-based models (EBMs) is known to be difficult especially on
discrete data where gradient-based learning strategies cannot be applied directly.
Although ratio matching is a sound method to learn discrete EBMs, it suffers from
expensive computation and excessive memory requirements, thereby resulting in
difficulties in learning EBMs on high-dimensional data. Motivated by these limita-
tions, in this study, we propose ratio matching with gradient-guided importance
sampling (RMwGGIS). Particularly, we use the gradient of the energy function w.rt.
the discrete data space to approximately construct the provably optimal proposal
distribution, which is subsequently used by importance sampling to efficiently
estimate the original ratio matching objective. We perform experiments on den-
sity modeling over synthetic discrete data, graph generation, and training Ising
models to evaluate our proposed method. The experimental results demonstrate
that our method can significantly alleviate the limitations of ratio matching, per-
form more effectively in practice, and scale to high-dimensional problems. Our
implementation is available at https://github.com/divelalb/RMwGGIS.

1 INTRODUCTION

Energy-Based models (EBMs), also known as unnormalized probabilistic models, model distribu-
tions by associating unnormalized probability densities. Such methods have been developed for
decades (Hopfield, 1982; Ackley et al., 1985; Cipra, 1987; Dayan et al., 1995; Zhu et al., 1998;
Hinton, 2012) and are unified as energy-based models (EBMs) (LeCun et al., 2006) in the machine
learning community. EBMs have great simplicity and flexibility since energy functions are not
required to integrate or sum to one, thus enabling the usage of various energy functions. In practice,
given different data types, we can parameterize the energy function with different neural networks as
needed, such as multi-layer perceptrons (MLPs), convolutional neural networks (CNNs) (LeCun et al.,
1998), and graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008). Recently, EBMs
have been drawing increasing attention and are demonstrated to be effective in various domains,
including images (Ngiam et al., 2011; Xie et al., 2016; Du & Mordatch, 2019), videos (Xie et al.,
2017), texts (Deng et al., 2020), 3D objects (Xie et al., 2018), molecules (Liu et al., 2021; Hataya
et al., 2021), and proteins (Du et al., 2020b).

Nonetheless, learning (a.k.a., training) EBMs is known to be challenging since we cannot compute
the exact likelihood due to the intractable normalization constant. As reviewed in Section 4, many
approaches have been proposed to learn EBMs, such as maximum likelihood training with MCMC
sampling (Hinton, 2002) and score matching (Hyvérinen & Dayan, 2005). However, most recent
advanced methods cannot be applied to discrete data directly since they usually leverage gradients
over the continuous data space. For example, for many methods based on maximum likelihood
training with MCMC sampling, they use the gradient w.z¢. the data space to update samples in each
MCMC step. However, if we update discrete samples using such gradient, the resulting samples are
usually invalid in the discrete space. Therefore, learning EBMs on discrete data remains challenging.

Ratio matching (Hyvirinen, 2007) is a method to learn discrete EBMs on binary data by matching
ratios of probabilities between the data distribution and the model distribution, as detailed in Sec-
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tion 2.2. However, as analyzed in Section 3.1, it requires expensive computations and excessive
memory usages, which is infeasible if the data is high-dimensional.

In this work, we propose to use the gradient of the energy function w.r.t. the discrete data space to
guide the importance sampling for estimating the original ratio matching objective. More specifically,
we use such gradient to approximately construct the provably optimal proposal distribution for
importance sampling. Thus, the proposed approach is termed as ratio matching with gradient-guided
importance sampling (RMwGGIS). Our RMwGGIS can significantly overcome the limitations of
ratio matching. In addition, it is demonstrated to be more effective than the original ratio matching in
practice. We perform extensive analysis for this improvement by connecting it with hard negative
mining, and further propose an advanced version of RMwGGIS accordingly by reconsidering the
importance weights. Experimental results on synthetic discrete data, graph generation, and Ising
model training demonstrate that our RMwGGIS significantly alleviates the limitations of ratio
matching, achieves better performance with obvious margins, and has the ability of scaling to
high-dimensional relevant problems.

2 PRELIMINARIES

2.1 ENERGY-BASED MODELS

Let x be a data point and Fg(x) € R be the corresponding energy, where 6 represents the learnable

parameters of the parameterized energy function Eg(-). The probability density function of the model
T - Fg (@) . o
distribution is given as pg(x) = % x e~ Fo(®) where Zg € R is the normalization constant

(a.k.a., partition function). To be specific, Zg = [ e~ Pe(®)dz if 2 is in the continuous space and

Zg =S e Fo(®) for discrete data. Hence, computing Zg is usually infeasible due to the intractable
integral or summation. Note that Zy is a variable depending on 6 but a constant w.zt. .

2.2  RATIO MATCHING

Ratio matching (Hyvérinen, 2007) is developed for learning EBMs on binary discrete data by
matching ratios of probabilities between the data distribution and the model distribution. Note that
we focus on d-dimensional binary discrete data € {0, 1} in this work.

Specifically, ratio matching considers the ratio of p(x) and p(x_;), where x_; =
(x1,29, - ,&;, - ,24) denotes a point in the data space obtained by flipping the i-th dimen-
sion of x. The key idea is to force the ratios -2 o) defined by the model distribution pg to be as

po(x—i)

close as possible to the ratios p’; ?ﬁ)_) given by the data distribution pp. The benefit of considering
ratios of probabilities is that they do not involve the intractable normalization constant Zg since
po(z) _ e~Fo= Zeo

, 2o — eFe(z—i)=Fe(®) To achieve the match between ratios, Hyvirinen
pe(wfz) Zo e”! 8(. —i) . ) )
(2007) proposes to minimize the objective function

ey
The sum of two square distances with the role of « and x_; switched is specifically designed since it
is essential for the following simplification. In addition, the function g(u) = H%u is also carefully

chosen in order to obtain the subsequent simplification. To compute the objective defined in Eq. (1),
it is known that the expectation over data distribution (i.e., E4 ., (2)) can be unbiasedly estimated
by the empirical mean of samples © ~ pp(x). However, to obtain the ratios between pp (x) and
pp(x_;) in Eq. (1), the exact data distribution is required to be known, which is usually impossible.

Fortunately, thanks to the above carefully designed objective, Hyvirinen (2007) demostrates that the
objective function in Eq. (1) is equivalent to the following simplified version

Tirt(0) = By [g (pi‘gff))ﬂ 2 @)

i=1
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which does not require the data distribution to be known and can be easily computed by evaluating

the energy of  and «_;, according to IJS‘(’T(O?) = ePo(@—:)=FEo(x) Fuyrther, Lyu (2009) shows that

the above objective function of ratio matching agree with the following objective

d 2 d
T_; —Eo(m. ]2
Trm(0) = Eonpp@) ) [p;g(w;)] = Eanpo@) 3 [P0 3
=1

i=1

They agree with each other since function g(-) decreases monotonically in [0, +00), which aligns

with the value range of probability ratios ’9’ Z’iw)v) . Note that Eq. (3) is originally named as the discrete

extension of generalized score matching in Lyu (2009). Since it agrees with Eq. (2) and includes
ratios of probabilities, we also treat it as an objective function of ratio matching in our context. In
the rest of this paper, we provide our analysis and develop our method based on Eq. (3) for clarity.
Nonetheless, our proposed method below can be naturally performed on Eq. (2) as well.

Intuitively, the objective function of ratio matching, as formulated in Eq. (3) or Eq. (2), can push
down the energy of the training sample « and push up the energies of other data points obtained by
flipping one dimension of . Thus, this objective faithfully expect that each training sample x has
higher probability than its local neighboring points that are hamming distance 1 from «.

It is worth mentioning that ratio matching is not suitable for binary image data. This is because it
faithfully treats « as a positive sample and x_; for i = 1,2,--- | d as negative samples. However,
this assumption does not hold for binary image data. Specifically, if we flip one dimension/pixel of a
binary image such as a digit image from MNIST, the resulting image is almost unchanged and is still
a positive sample in nature. Thus, it is not reasonable to use ratio matching to train EBMs on binary
images. Similarly, our RMwGGIS presented below also has this limitation. Having said this, our
RMwGGIS is still an effective and efficient method for a broad of binary discrete data. We leave
extending its applicability to general discrete EBMs for future work.

3 THE PROPOSED METHOD

We first analyze the limitations of the ratio matching method from the perspective of computational
time and memory usage. Then, we describe our proposed method, ratio matching with gradient-
guided importance sampling (RMwGGIS), which uses the gradient of the energy function w.r.t. the
discrete input x to guide the importance sampling for estimating the original ratio matching objective.
Our approach can alleviate the limitations significantly and is shown to be more effective in practice.

3.1 ANALYSIS OF RATIO MATCHING

Time-intensive computations. Based on Eq. (3), for a sample x, we have to compute the energies
for all &_;, where i = 1,--- , d. This needs O(d) evaluations of the energy function for each training
sample. This is computationally intensive, especially when the data dimension d is large.

Excessive memory usages. The memory usage of ratio matching is another limitation that cannot be
ignored, especially when we learn the energy function using modern GPUs with limited memory.
As shown in Eq. (3), the objective function consists of d terms for each training sample. When we
do backpropagation, computing the gradient of the objective function w.zt. the learnable parameters
of the energy function is required. Therefore, in order to compute such gradient, we have to store
the whole computational graph and the intermediate tensors for all of the d terms, thereby leading to
excessive memory usages especially if the data dimension d is large.

3.2 RATIO MATCHING WITH GRADIENT-GUIDED IMPORTANCE SAMPLING

The key idea is to use the well-known importance sampling technique to reduce the variance of
estimating Jgras(6) with fewer than d terms. The most critical and challenging part of using the
importance sampling technique is choosing a good proposal distribution. In this work, we propose
to use the gradient of the energy function w.rz. the discrete input & to approximately construct the
optimal proposal distribution for importance sampling. We describe the details of our method below.
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The objective for each sample x, defined by Eq. (3), can be reformulated as

d
1 — T _; 2 x)— T 2
Tint (6, @) = dzg |:eEe(m) Eo( -1,)] = By om(e {eEe( )=Fo(z-)|" (4)
i=1
where m(x_;) = é fori =1,---,dis adiscrete distribution. Thus, the objective of ratio matching

for each sample @ can be viewed as the expectation of [eE o(x)—FEe (”’*i)] ? over the discrete distribution
m(x_;). In the original ratio matching method, as described in Section 2.2, we compute such
expectation exactly by considering all possible x_;, leading to expensive computations and excessive
memory usages. Naturally, we can estimate the desired expectation with Monte Carlo method by
considering fewer terms sampled based on m(x_;). However, such estimation usually has a high
variance, and is empirically verified to be ineffective by our experiments in Section 5.

Further, we can apply the importance sampling method to reduce the variance of Monte Carlo
estimation. Intuitively, certain values have more impact on the expectation than others. Hence, the
estimator variance can be reduced if such important values are sampled more frequently than others.
To be specific, instead of sampling based on the distribution m(x_;), importance sampling aims to
sample from another distribution n(x_; ), namely, proposal distribution. Formally,

5 N [oEe(x)—Ee(x_;)]2
Jrm(0,2) = B crom(z_ ) eEe(z)—Ee(zq)] — dELwn(m,i)m(m*Z) [e ]

n(x_;) ’

&)
A short derivation of Eq. (5) is in Appendix A. Afterwards, we can apply Monte Carlo estimation
N .. 06)

xTr

based on the proposal distribution n(x_;). Specifically, we sample s terms, denoted as i ST,

according to the proposal distribution n(x_;). Note that s is usually chosen to be much smaller than
d. Then the estimation for Jgas (0, ) is computed based on these s terms. Formally,
(@®) [eEQ(w)ng(a;(_tz)]Q

—1

2" ~n(z_;). ©)

- — 1 S m
Trm (0, ), = d; Z

t=1 n(w(j) 7

To make it clear, we stop the gradient flowing through the importance weights during back-
propagation. It is known that the estimator obtained by Monte Carlo estimation with importance
sampling is an unbiased estimator, as the conventional Monte Carlo estimator. The key point of
importance sampling is to choose an appropriate proposal distribution n(x_;), which determines
the variance of the corresponding estimator. Based on Robert et al. (1999), the optimal proposal
distribution n*(x_;), which yields the minimum variance, is given by the following fact.

eFo(@)—Eg(z_;) 2 . . . . .
Fact 1. Let n*(x_;) = — s be a discrete distribution on x_;, where i =
Zﬁ—1[5Ee(E) Eg(z_})
1,---,d. Then for any discrete distribution n(x_;) on x_;, where i = 1,---,d, we have

Var (mn> <Var (mn)
Proof. The proof is included in Appendix B. O

To construct the exact optimal proposal distribution n* (2 _;), we still have to evaluate the energies of
all x_;, where i = 1, --- | d. To avoid such complexity, we propose to leverage the gradient of the
energy function w.r.t. the discrete input @ to approximately construct the optimal proposal distribution.
Only O(1) evaluations of the energy function is needed to construct the proposal distribution.

It is observed by Grathwohl et al. (2021) that many discrete distributions are implemented as continu-
ous and differentiable functions, although they are evaluated only in discrete domains. Grathwohl
et al. (2021) further proposes a scalable sampling method for discrete distributions by using the
gradients of the underlying continuous functions w.zt. the discrete input. In this study, we extend
this idea to improve ratio matching. More specifically, in our case, even though our input x is
discrete, our parameterized energy function Eg(-), such as a neural network, is usually continuous
and differentiable. Hence, we can use such gradient information to efficiently and approximately
construct the optimal proposal distribution given by Fact 1.
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Algorithm 1 Ratio Matching with Gradient-Guided Importance Sampling (RMwGGIS)

D . .
|7n‘:1 , parameterized energy function Fg(-), number of samples

s for Monte Carlo estimation with importance sampling

: forx ~Ddo > Batch training is applied in practice
Compute Eg(x)
Compute V, Eg(x)
Compute the proposal distribution 2* (z_;) > Eq. (10)
Sample s terms, denoted as x(fj, cee ac(fl), according to n*(x_;)
Compute Jra (0, ). > Eq. (6) (or Eq. (11))
Update 0 based on Vo g (0, ).

: end for

The basic idea is that we can approximate Fg(_;) based on the Taylor series of Fg(-) at &, given that
x_; is close to x in the data space because they only have differences in one dimension'. Formally,

Eo(x_;) ~ Eg(x) + (x_; —x)" VyEe(x). )

Thus, we can approximately obtain the desired term Fg(x) — Fg(x_;) in Fact 1 using Eq. (7).
Note that V,, Fg(x) € R? contains the information for approximating all Fg(z) — Eg(z_;), where

i=1,---,d. Hence, we can consider the following d-dimensional vector
(2 — 1) ® VyEe(z) €RY, 3
where © denotes the element-wise multiplication. Note that we have z; — z; = —1 if z; = 0 and
x; — x; = 1if x; = 1, which can be unified as x; — T; = 2x; — 1. Therefore, we have
FEo(x) — Eg(x_;) = [2x — 1) © VzEg(x)],,i=1,--- ,d. )

Afterwards, we can provide a proposal distribution 72*(_;) as an approximation of the optimal
proposal distribution n*(_;) given by Fact 1. Formally,
[62(2m71)®VmE9(m)]i

= ZZZI [62(2m—1)®V2E9 (m)] X

L i=1,-,d. (10)

Then n*(x_;) is used as the proposal distribution for Monte Carlo estimation with importance
sampling, as in Eq. (6). The overall process of our RMwGGIS method is summarized in Algorithm 1.

3.3 COMPARISON BETWEEN RATIO MATCHING AND RMwWGGIS

Time and memory. Since only s (s < d) terms are considered in the objective function of
our RMwGGIS, as shown in Eq. (6), we have better computational efficiency and less memory
requirement compared to the original ratio matching method. To be specific, our RMwGGIS only
needs O(s) evaluations of the energy function compared with O(d) in ratio matching, leading to a
linear speedup, which is significant especially when the data is high-dimensional. The improvement in
terms of memory usage is similar. In Section 5.1, we compare the real running time and memory usage
between ratio matching and our proposed RMwGGIS on datasets with different data dimensions.

Better optimization? In Section 3.2, we propose our RMwGGIS based on the motivation to approxi-
mate the objective of ratio matching with fewer terms. Although our RMwGGIS can approximate
the original ratio matching objective numerically, our objective only includes s terms compared to
d terms in the original ratio matching objective. In other words, the objective of ratio matching, as
shown in Eq. (3), intuitively pushes up the energies of all x _; fori = 1, - - - , d, while our RMwGGIS
only considers pushing up energies of s terms among them, as formulated by Eq. (6). Thus, one may
wonder why our objective is effective for learning EBMs without pushing up the energies of all d
terms? In practice, we even observe that RMwGGIS achieves better density modeling performance

'We have this assumption because data space is usually high-dimensional. If the number of data dimension is
small, we can simply use the original ratio matching method since time and memory are affordable in this case.
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than ratio matching. We conjecture that this is because our RMwGGIS can lead to better optimization
of Eq. (3) in practice for the following two properties, which are empirically verified in Section 5.

(1) RMwGGIS introduces stochasticity. Without involving all d terms in the objective function,
our method can introduce stochasticity, which could lead to better optimization in practice. This has
the same philosophy as the comparison between mini-batch gradient descent and vanilla gradient
descent. The gradient is obtained based on each batch in mini-batch gradient descent, while it is
computed over the entire dataset in vanilla gradient descent. It is known that the mini-batch gradient
descent usually performs better in practice since the stochasticity introduced by mini-batch training
could help escape from the saddle points in non-convex optimization (Ge et al., 2015). Therefore,
the stochasticity introduced by sampling only s terms in RMwGGIS might help the optimization
especially when d is large.

(2) RMwGGIS focuses on neighbors with low energies. Even though only energies of s terms are
pushed up in our method, these s terms correspond to the neighboring points that have low energies.
According to n*(x_;) given by Fact 1, a neighbor of x, denoted as «_;, is more likely to be sampled
if its corresponding energy value is lower 2. Hence, we choose to push up the energies of s neighbors
according to their current energies. The lower the energy, the more likely it is to be selected. This
is intuitively sound because the terms that have low energies are the most offending terms, which
should have the higher priorities to be pushed up. In other words, neighbors with lower energies
contribute more to the objective function according to Eq. (3). That is, the loss values for these
neighbors are larger. Thus, RMwGGIS has the same philosophy as hard negative mining, which
pays more attention to hard negative samples during training. More detailed explanation about this
connection is provided in Appendix C.

Following the hard negative mining perspective, we observe that the coefficients used in Eq. (6)
provide smaller weights for terms with lower energies. In other words, among its selected offending
terms (i.e., hard negative samples), it pay least attention to the most offending terms, which is
intuitively less effective. Therefore, we further propose the following advanced version as an
objective function by removing the coefficients in Eq. (6). Formally,

— adv s 2

Tan(0,2)5. = [eEe@)fEe(m(:i) ,2W N (). (11)

t=1

This advanced version is essentially a heuristic extension of the basic version in Eq. (6). It is
demonstrated to be more effective in practice. The explanation about this is discussed in Appendix D.

4 RELATED WORKS

Learning EBMs has been drawing increasing attention recently. Maximum likelihood training with
MCMC sampling, also known as contrastive divergence (Hinton, 2002), is the most representative
method. It contrasts samples from training set and samples from the model distribution. To draw
samples from the model distribution, we can employ MCMC sampling approaches, such as Langevin
dynamics (Welling & Teh, 2011) and Hamiltonian dynamics (Neal et al., 2011). Such methods are
further improved and shown to be effective by recent studies (Xie et al., 2016; Gao et al., 2018;
Du & Mordatch, 2019; Nijkamp et al., 2019; Grathwohl et al., 2019; Jacob et al., 2020; Qiu et al.,
2019; Du et al., 2020a). These methods, however, require the gradient w.r¢. the data space to update
samples in each MCMC step. Thus, they cannot be applied to discrete data directly. To enable
maximum likelihood training with MCMC sampling on discrete data, we can naturally use discrete
sampling methods, such as Gibbs sampling and Metropolis-Hastings algorithm (Zanella, 2020), to
replace the above gradient-based sampling algorithms. Unfortunately, sampling from a discrete
distribution is extremely time-consuming and not scalable. Recently, Dai et al. (2020) develops a
learnable sampler parameterized as a local discrete search algorithm to propose negative samples for
contrasting. Grathwohl et al. (2021) proposes a scalable sampling method for discrete distributions
by surprisingly using the gradient w.z¢. the data space, which inspires our work a lot.

An alternative method for learning EBMs is score matching (Hyvérinen & Dayan, 2005; Vincent,
2011; Song et al., 2020; Song & Ermon, 2019), where the scores, i.e., the gradients of the logarithmic

?Although this only strictly holds for n* (z—;), this can serve as a relaxed explanation for 71* (z_;) as well
since n* (& —_;) is a good approximation of n* (x_;). More detailed analysis is included in Appendix C
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Table 1: Results on 32-dimensional synthetic discrete data in terms of MMD. The lower the better.
The top two results on each dataset are highlighted as 1st and 2nd.

Method 2spirals  8gaussians  circles moons  pinwheel  swissroll  checkerboard
Ratio Matching 0.01514  0.10270  0.11856 0.02901  0.31353  0.05820 0.00059
RMwGGIS (basic) 0.01099 0.09763 0.11017 0.03111 0.27885  0.05176 0.00050
RMwGGIS (advanced)

probability distribution w.r.z. the data space, of the energy function are forced to match the scores of
the training data. Ratio matching (Hyvérinen, 2007; Lyu, 2009) is obtained by extending the idea
of score matching to discrete data. Our work is motivated by the limitations of ratio matching, as
analyzed in Section 3.1. Stochastic ratio matching (Dauphin & Bengio, 2013) also aims to make ratio
matching more efficient by considering the sparsity of input data. Stochastic ratio matching is limited
to sparse data, while our method is effective for general EBMs

There are some other methods for learning EBMs, such as noise contrastive estimation (Gutmann
& Hyvirinen, 2010; Bose et al., 2018; Ceylan & Gutmann, 2018; Gao et al., 2020) and learning
the stein discrepancy (Grathwohl et al., 2020). We recommend readers to refer to Song & Kingma
(2021) for a comprehensive introduction on learning EBMs. We note that several works (Elvira et al.,
2015; Schuster, 2015) use the gradient information of the target distribution to iteratively optimize
the proposal distributions for adaptive importance sampling. However, compared to our method, they
can only applied to continuous distributions and require expensive iterative processes.

5 EXPERIMENTS

5.1 DENSITY MODELING ON SYNTHETIC DISCRETE DATA

Setup. For both quantitative results and qualitative visualization, we follow the experimental
setting of Dai et al. (2020) for density modeling on synthetic discrete data. We firstly draw 2D
data points from 2D continuous space according to some unknown distribution p, which can be
naturally visualized. Then, we convert each 2D data point £ € R? to a discrete data point €
{0,1}4, where d is the desired number of data dimensions. To be specific, we transform each
dimension of &, which is a floating-point number, into a g—bit Gray code® and concatenate the
results to obtain a d-bit vector . Thus, the unknown distribution in discrete space is p(x) =

D ({GrayToFloat(mlz %), GrayToFloat(x 441, d)} ) This density modeling task is challenging since

the transformation from & to « is non-linear.

To quantitatively evaluate the performance of density modeling, we adopt the maximum mean
discrepancy (MMD) (Gretton et al., 2012) with a linear kernel corresponding to (d-HammingDistance)
to compare distributions. In our case, particularly, the MMD metric is computed based on 4000
samples, drawn from the learned energy function via Gibbs sampling, and the same number of
samples from the training set. Lower MMD indicates that the distribution defined by the learned
energy function is closer to the unknown data distribution. In addition, in order to qualitatively
visualize the learned energy function, we firstly uniformly obtain 10% data points from 2D continuous
space. Afterwards, they are converted into bit vectors and evaluated by the learned energy function.
Subsequently, we can visualize the obtained corresponding energies in 2D space.

The energy function is parameterized by an MLP with the Swish (Ramachandran et al., 2017)
activation and 256 hidden dimensions. The number of samples s, involved in the objective functions
of our RMwGGIS method, is set to be 10. In the following, we compare our basic and advanced
RMwGGIS methods, as formulated in Eq. (6) and Eq. (11) respectively, with the original ratio
matching method (Hyvirinen, 2007; Lyu, 2009).

Quantitative and qualitative results. The quantitative results on 32-dimensional datasets are shown
in Table 1. Our RMwGG IS, including the basic and the advanced versions, consistently outperforms
the original ratio matching by large margins, which demonstrates that it is effective for our proposed
gradient-guided importance sampling to stochastically push up neighbors with low energies. This

Shttps://en.wikipedia.org/wiki/Gray_code
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verifies our analysis in Section 3.3. In Figure 1, we qualitatively visualize the learned energy
functions of our proposed RMwGGIS. It is observed that EBMs learned by our method can fit the
data distribution accurately. Note that we choose d = 32 for quantitative evaluation because Gibbs
sampling cannot obtain appropriate samples from the learned energy function with an affordable time
budget if the data dimension is too high, thus leading to invalid MMD results. We will compare the
results on higher-dimensional data in the following by observing the qualitative visualization. To
further demonstrate that the performance improvement of RMwGGIS over ratio matching is brought
by better optimization, we show that energy functions learned with our methods actually lead to lower
value for the objective function defined by Eq. (3). The details are included in Appendix E.

Observations on higher-dimensional data. As
analyzed in Section 3.3, the advantages of our

approach can be greater on higher-dimensional Data !.‘: @ 4 g‘ @ :E:
data. To evaluate this, we conduct experiments .

on the 256-dimensional 2spirals dataset, and vi- RI‘(’{,‘ZSSIS E . @ E
sualize the learned energy functions correspond- = - rm »‘

ing to different learning iterations. We con- (advanced) I’I‘ E E
struct a ablation method, named as RMwRAND,

which estimates the original ratio matching ob- Figure 1.3 Visu.alization of lt?arqed energy functions
jective by randomly sampling s = 10 terms. ©on 32-dimensional synthetic discrete datasets.

The only difference between our RMwGGIS method and RMwRAND is that we focus more on the
terms corresponding to low energies, based on our proposed gradient-guided importance sampling.

. ’ . (&
2irasy Stssig, rete;  Moon Pty Wissypg Cheng, v

As shown in Figure 4, Appendix F, our RMwGGIS accurately captures the data distribution, while the
original ratio matching method cannot. This further verifies that RMwGGIS leads to better optimiza-
tion than ratio matching especially when the data dimension is high, as analyzed in Section 3.3. In
addition, although RMwRAND can also introduce stochasticity as RMwGGIS by randomly sampling,
it fails to capture the data distribution. This observation is intuitively reasonable since randomly push-
ing up s = 10 terms among d = 256 terms leads to large variance. Instead, our RMwGGIS performs
well since we focus on pushing up terms with low energies, which are the most offending terms
and should be pushed up first. Overall, these experiments can show the superiority of RMwGGIS
endowed by our proposed gradient-guided importance sampling on high-dimensional data.

Selection of s. Note that we did not perform extensive tuning s=5  s=10  s=50 s=100
for s, although tuning it might bring performance improve- RAN ‘
ment. To further show the influence of s and the effectiveness <" < N> ‘

of RMwGGIS (advanced) over RMwRAND. We perform an

experiment to train both models on 256-dimensional 2spi- RMwGGIS @
rals with s = 5, 10, 50, 100. The visualization of the learned
energy functions is shown in Figure 2. Our RMwGGIS is
observed to achieve good density modeling performance that
is robust to the selection of s. In contrast, RMwRAND fails
to capture the data distribution even with s = 100. This further demonstrates the effectiveness and
robustness of our proposed gradient-guided importance sampling strategy.

Figure 2: Comparison of RMwG-
GIS(advanced) and RMwRAND
with several configurations of s.

Running time and memory usage. To verify RMwGGIS has better efficiency than ratio matching,
we compare the real running time and memory usage on datasets of various dimensions. Specifically,
we construct several 2spirals datasets with different data dimensions and train parameterized energy
functions using ratio matching and our RMwGGIS, respectively. We choose batch size to be 256.
The reported time corresponds to the average training time per batch. For RMwGGIS, we report the
results of the advanced version.

As summarized in Table 5, Appendix G, our RMwGGIS is much more efficient in terms of running
time and memory usage, compared to ratio matching. In addition, the improvement is more obvious
with the increasing of data dimension. Specifically, compared with ratio matching, our RMwGGIS
can achieve 6.2 times speedup and save 90.1% memory usage on the 2048-dimensional dataset.

5.2 GRAPH GENERATION

Setup. We further evaluate our RMwGGIS on graph generation using the Ego-small dataset (You
et al., 2018). It is a set of one-hop ego graphs, where the number of nodes 4 < |V/| < 18, obtained
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from the Citeseer network (Sen et al., 2008). Following the experimental setting of You et al. (2018)
and Liu et al. (2019), 80% of the graphs are used for training and the rest for testing. New graphs can
be generated via Gibbs sampling on the learned energy function. To evaluate the graph generation
performance based on the generated graphs and the test graphs, we calculate MMD over three
statistics, i.e., degrees, clustering coefficients, and orbit counts, as proposed in You et al. (2018).

We parameterize the energy function by a 5-layer R- Table 2: Graph generation results in
GCN (Schlichtkrull et al., 2018) model with the Swish terms of MMD. Avg. denotes the av-

activation and 32 hidden dimensions, whose input is the up- erage over three MMD results.

per triangle of the graph adjacency matrix. The number of  Method Degree  Cluster  Orbit | Avg.
samples s used in our RMwGGIS objective is 50. We apply  ~ GraphVAE 0130 0170 0.050 | 0.117
our advanced version to learn the energy function since itis ~ DeepGMG 0040 0.100  0.020 | 0.053
A . . . . GraphRNN 0.090 0220 0.003 | 0.104

more effective in Section 5.1. Besides ratio matching, we  Gnr 0030 0100 0.001 | 0.044
consider the recent proposed method EBM (GWG) (Grath- ~ EDP-GNN 0.052  0.093  0.007 | 0.050
hl et al.. 2021 basel; We al ider th GraphAF 0.030  0.110  0.001 | 0.047
wohl et al, ) as a baseline. We also consider the  Grpnpr 0.040  0.130  0.010 | 0.060
recent works developed for graph generation as baselines, =~ EBM(GWG)  0.093  0.027  0.053 | 0.058
including GraphVAE (Simonovsky & Komodakis, 2018),  Ratio Matching  0.062  0.066  0.008 | 0.045
RMwGGIS 0.044  0.059 0.013 | 0.039

DeepGMG (Li et al., 2018), GraphRNN (You et al., 2018),
GNF (Liu et al., 2019), EDP-GNN (Niu et al., 2020), GraphAF (Shi et al., 2019), and GraphDF (Luo
et al., 2021). The detailed setup is provided in Appendix H

Quantitative and qualitative results. As summarized in Table 2, our RMwGGIS outperforms
baselines in terms of the average over three MMD results. This shows that our method can learn
EBMs to generate graphs that align with various characteristics of the training graphs. The generated
samples are visualized in Figure 5, Appendix I. It can be observed that the generated samples are
realistic one-hop ego graphs that have similar characteristics as the training samples.

5.3 TRAINING ISING MODELS

To further demonstrate Table 3: Comparison of training Ising models.

the sca]ing ability of MCMC #Steps 5 10 25 50 100 | Ratio Matching | RMwGGIS
EBM (Gibbs) —1.60  —1.90  —250  —3.00  —3.60 . e
our method and compare  wxRvsE) UGG Ci0y  gde g ioi  _s0s ‘ 399 ‘ .06
with recent baselines more Timefiter EBM (Gibbs) 263.5ms 437.3ms 1113.2ms 2524.9ms  4670.1ms 1507 13.9
tme/iter EBM (GWG) 37.5ms  63.4ms  100.5ms  222.6ms  395.7ms U (ms -oms

thoroughly, we use our
RMwGG IS to train the Ising model with a 2D cyclic lattice structure, following Grathwohl et al.
(2021). We consider a 25 x 25 lattice, thus leading to a 625-dimension problem, which can be used
to evaluate the ability of scaling to high-dimensional problems. We compare methods in terms of the
RMSE between the inferred connectivity matrix J and the true J and the running time per iteration.
The experimental details are included in Appendix J. As shown in Table 3, our RMwGGIS is more
effective than ratio matching and EBM (Gibbs) with various sample steps. The recently proposed
EBM (GWG) (Grathwohl et al., 2021) achieves better RMSE than ours. In terms of running time,
our method is much more efficient than baselines since we avoid the expensive MCMC sampling
during training and do not have to consider flipping all dimensions as ratio matching. According
to this experiment, one future direction could be further improving the effectiveness of RMwGGIS
while preserving the efficiency advantage.

6 CONCLUSION

We propose ratio matching with gradient-guided importance sampling (RMwGGIS) for learning
EBMs on binary discrete data. In particular, we use the gradient of the energy function w.r.z. the
discrete input space to guide the importance sampling for estimating the original ratio matching
objective. We further connect our method with hard negative mining, and obtain the advanced
version of RMwGGIS. Compared to ratio matching, our RMwGGIS methods, including the basic
and advanced versions, are more efficient in terms of computation and memory usage, and are shown
to be more effective for density modeling. Extensive experiments on synthetic data density modeling,
graph generation, and Ising model training demonstrate that our RMwGGIS achieves significant
improvements over previous methods in terms of both effectiveness and efficiency.
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A THE DETAILED DERIVATION OF EQ. (5)

The detailed derivation of Eq. (5) is as follows.

2
jRJ\/[(97m) _ dEm,irvm(a:,i) {eEe(m)*Ee(m_i)}

=d i m(x_;) [eEe(w)*E"(w*i)] ’
i=1

)72 12
_ di m(@_;) [ePo@—Eo@- 0] e (12)
. n(a:_i) -
=1
m(x_;) [eEe(w)*Ee(w*i)]z
= dEm_irvn(m_,;) ]
n(x_;)
B PROOF OF FACT 1
Proof. According to Eq. (6), we have
o 2 \ [oBo(x)—Eo(z_;)]?
Var (JRM(G,w)n) = d—Var (m(:cz) [e ] ) . (13)
s n(xr_;)

Then we can compare the variance of the estimator based on n*(x_;) and n(x_;). Formally,

Var (mn*) (14)
2  [¢Fo(@)—Eo(z—:)]?
= iVar m(@_) [e ] s,
5 n*(z—;)
r 12
_& E ) m(a_;) [eFo(@)~Fo(e-:)]? e e (5% (@)~ Po (&
S @ _i~on* (i) n*(x_;) @ _ion* (@ ;) (@)
(16)
r 12
_ d72 m(a:fz) [eEe(m)fEB(mfi)}Q B jRM(a,J:) 2 (]7)
R B (@) d
2
Ul EE m(x—i) [eEs(m)iEe(Li)f Tru(6,2)7°
— ? E;n (iL'fz) [ n*(;c_7) - [ d :| (18)

d
i=1 1

% zd:mz(w,i) [eEQ(m)—EQ(m,i)r zd: [eEe(a:)—Ee(:c,k)]z - |:JRM(97£B)]2} (19)
2

k
K ) Trnr(0.2)712
p [Z m(x_;) [eEe(w)—Ee(wﬂ')} _ [RMé :13)] (20)
m(x_;) [eE"(‘”)’Ef’(‘”*i)]Q

d 2 2
;lz D m@nm(rni)} —{W]} 1)

? [ () [eFo@-Fo@-0)? g war(0,2))°
;Zl (o) [P Fele ] n(.m)] Zn(m)—[jff’)]} 22)

A
|

2

421 }



Published as a conference paper at ICLR 2023

2 [1d ) [ePo(@~Eo(z-]%]? 0 )12
=~ {72 "(@=) lm(m )[en(:,; 3 } ] - [jRMC(l ’x)} (23)
i=1 -
2
d? m(x_;) oFo(z)—Bo(x_)]? Tru (0,2 2
T P
= Var (Tan(6,2),,) . 25)

Eq. (17) can be derived because the estimator is unbiased no matter what proposal distribution

[e70 @)~ Po(=—0) 2
. Eq. (20) holds

is applied. Eq. (19) is obtained by choosing n*(x_;) =

Thoi [P P

since m(x_;) = é fori =1,---,d. To derive Eq. (22), we apply the Cauchy-Schwarz inequality
2
(Zle aibi) < (Zle a?) (Zle bf) This completes the proof of Fact 1.

C CONNECTION WITH HARD NEGATIVE MINING

Here, we provide an insight to understand why the second property, described in Section 3.3, can
lead to better optimization, by connecting it with hard sample mining.

Hard sample mining (Felzenszwalb et al., 2009; Rowley et al., 1998) has been widely applied to
train deep neural networks (Shrivastava et al., 2016). Our RMwGGIS is particularly highly related to
hard negative training strategies. The basic idea for hard negative mining is to pay more attention
to hard negative samples during training, which can usually achieve better performance since it can
reduce false positives. In our setting of discrete EBMs, each training sample « is a positive sample,
and its energy should be pushed down. For each positive sample x, all x_; fori = 1,2,--- ,d are
negative samples, and their energy should be pushed up. Our RMwGGIS with the specific proposal
distribution shown in Eq. (10) can approximately choose the x_;’s that currently have low energies
with larger probabilities. This has the same philosophy as hard negative mining. Specifically, in our
case, x_;’s with low energies are hard negative samples since they are the most offending terms,
which are close to the positive sample & and have low energies.

Since our proposal distribution defined in Eq. (10) approximates the provable optimal proposal
distribution given in Theorem 1, our proposal distribution thus approximately performs “hard negative
mining”. The natural follow-up question is how accurate is the approximation and how does it affect
the learning process? We answer this question by analyzing the following two stages during learning,
which can intuitively show that our RMwGGIS is technically sound.

Eo(-)4 Eo(-)4

Figure 3: An intuitive illustration of the approximation: (a) Stage I and (b) Stage II. The black curves
denote the energy functions. Green nodes and brown nodes represent the true energy values and
approximated values of neighbors, respectively. Note that the approximated values are obtained based
on Taylor series of Fy(-) at «, as shown in Eq. (7). For clarity, we only show two neighbors of x in
this figure, but this illustration can also be extended to include all neighbors.

Stage 1. As shown in Figure 3 (a), at the early stage of learning, the energy function is not learned
well, thus the energy Fy(x) of positive sample x is not smaller than its all neighbors. In this case,
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Table 4: Comparison of resulting objective values. The top two lowest values on each dataset are
highlighted as 1st and 2nd.

Method 2spirals  8gaussians  circles moons pinwheel swissroll checkerboard
Ratio Matching 46.02 39.26 31.82  28.57 28.50 37.52

RMwGGIS (basic) 30.15 29.89 27.80 28.08 32.20 26.09
RMwGGIS (advanced) 27.15 26.06

there are some neighbors of & which have lower energies than Ey(x), such as «_; in Figure 3 (a).
Therefore, “hard negative mining” is in demand in this stage. Under this situation, our approximated
energies of neighbors could help to perform “hard negative mining”. To be specific, the estimated
energies of neighbors are close to the true energies, and the estimated energy of _; is much lower
than the estimated energy of x_o. Thus, our proposal distribution will sample & _; with a higher
probability. This actually works as “hard negative mining” since x_ is the current most offending
term, i.e., the so-called hard negative sample.

Stage II. After learning for a while, we can obtain a relatively good energy function, where the
positive sample x locates in the low energy area compared to its local neighbors. In this case our
approximation is less accurate. Fortunately, in this case, “hard negative mining” is not that necessary
since there do not exist many offending terms. Specifically, as shown in Figure 3 (b), the energies of
x_1 and x_5 are safely higher than Fy(x).

Even though the above analysis is based on a simplified example, we believe it can serve as a good
intuitive understanding of why our RMwGGIS performs better than ratio matching.

D WHY DOES THE ADVANCED VERSION PERFORM BETTER?

Here, we provide an intuitive explanation on why our advanced version usually performs better than
the basic version.

Following our analysis of the connection between our method and hard negative mining, as described
in Appendix C, it is obvious that both basic version (i.e., Eq. (6)) and advanced version (i.e., Eq.
(11)) perform “hard negative mining”. The difference lies in the coefficients for different terms.
Specifically, the advanced version gives the same weights to all sampled terms. In contrast, the
m()) (t)
n(@")) -
m(m(j) = é for all terms and n(ac(fZ) would be larger if a;(fz has lower energy. Hence, the basic
version provides smaller weights for terms with lower energies. In other words, among its selected
offending terms (i.e., hard negative samples), it pay least attention to the most offending terms, which
could be less effective than the advanced version with equal weights. This could explain why our
advanced RMwGGIS usually performs better than the basic version.

basic version provides a weight to each sampled term ., as shown in Eq. (6). Note that

E COMPARISON OF ACHIEVED OBJECTIVE VALUES

Specifically, for all the learned energy functions in Table 1, we sample 4000 data points on each
dataset and evaluate the resulting objective value defined by Eq. (3). The results are summarized
in Table 4. We can observe that our basic and advanced RMwGGIS indeed achieve lower objective
values, which further demonstrates that our proposed RMwGGIS can lead to better optimization.
This is quite natural and straightforward since our method focus on neighbors with low energies.
Specifically, according to the objective function of ratio matching (i.e., Eq. (3)), neighbors with lower
energies contribute more to the objective function. In other words, the loss values for these neighbors
are larger. This explains why our methods, focusing on reducing the loss values (i.e., pushing up
energies) of these neighbors, indeed lead to lower value for the objective function defined by Eq. (3).
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Figure 4: Visualization of learned energy functions w.r.z. number of learning iterations on the 256-
dimensional 2spirals dataset.

Table 5: Comparison between ratio matching and our RMwGGIS on 2spirals datasets with different
dimensions in terms of running time and memory usage.

# Data Dimensions 32 64 128 256 512 1024 2048
» Ratio Matching 63.9ms 106.5ms 185.6ms 372.9ms 735.2ms 1390.1ms 2684.1ms
E  RMwGGIS 41.2ms  47.2ms 58.8ms 86.9ms  137.7ms  244.9ms  434.1ms
& Speedup 1.6 2.3x 3.2x 4.3x 5.3x 5.7x 6.2x
g Ratio Matching 957MB 1031MB 1189MB 1545MB 2315MB  4237TMB  9633MB
& RMwGGIS 891IMB 893MB 893MB  915MB  919MB 931MB 951MB
é" Memory Saving 6.9% 13.4% 24.9% 40.8% 60.3% 78.0% 90.1%

F VISUALIZATION OF LEARNED ENERGY FUNCTIONS ON
HIGHER-DIMENSIONAL DATA

The learned energy functions w.r.t. number of learning iterations on the 256-dimensional 2spirals
dataset are qualitatively visualized in Figure 4

G COMPARISON OF RUNNING TIME AND MEMORY USAGE

The comparison of running time and memory usage are summarized in Table 5.

H DETAILED SETTINGS OF GRAPH GENERATION

The results of baselines in Table 2 are reported from You et al. (2018), Liu et al. (2019), Niu et al.
(2020), Shi et al. (2019), and Luo et al. (2021). We obtain the result of EBM (GWG) by using their
official implementation, and the detailed settings are provided as follows.

We use the official open-sourced implementation* of EBM (GWG) to perform its graph generation
experiment. We train models with persistent contrastive divergence (Tieleman, 2008) with a buffer size
of 200 samples. We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1e-4 and a
batch size of 200. The following hyperparameters are tuned and the finally chosen ones are underlined:
buffer initialization rate € {0, 0.2,0.4,0.6} and MCMC steps € {100, 200, 500, 1000, 2000}.

I VISUALIZATION OF GENERATED GRAPHS

Generated graph samples are shown in Figure 5.

*nttps://github.com/wgrathwohl/GWG_release
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Figure 5: Visualization of training data and samples drawn from the energy function learned by our
RMwGGIS for graph generation.

J DETAILS OF TRAINING ISING MODELS

Lattice Ising Models. Ising models (Cipra, 1987) is firstly developed to model the spin magnetic
particles (Ising, 1925). For Ising models, our energy function can be naturally defined as

E(z)=—x"Jz - b'x, (26)

where J and b are the parameters. J is the connectivity matrix which indicates the correlation across
dimensions in . We follow one specific setting in Grathwohl et al. (2021), where all of the non-zero
entries of J are identical (denoted as o) and J is the adjacency matrix of a cyclic 2D lattice structure.
Therefore,

E(x) = —ox’Jx — b x. 27

Setup. We follow Grathwohl et al. (2021) for our experimental setting. To be specific, we create
a model using a 25 x 25 lattice and ¢ = 0.25, thus leading to a 625 dimensional distribution. For
training the model, 2000 examples are generated via 1,000, 000 steps of Gibbs sampling. We apply
our proposed RMwGGIS method to train the model. The number of samples s used in our RMwGGIS
objective is set to 10. We use Adam optimizer (Kingma & Ba, 2015) with a learning rate of le-4
and a batch size of 100. /1 penalty with strength 0.01 is used to encourage sparsity. In terms of
baselines, in addition to ratio matching, we further consider the approaches which train discrete
EBMs with persistent contrastive divergence (Tieleman, 2008). The number of steps for MCMC
per training iteration is € {5, 10, 25,50, 100}. The samplers are Gibbs and Gibbs-With-Gradient
(GWG) (Grathwohl et al., 2021). Results of EBM (GWGQG) are obtained by running the official
implementation from Grathwohl et al. (2021). Results of EBM (Gibbs) are obtained by reading from
Figure 6 in Grathwohl et al. (2021).

Evaluation. We evaluate the performance by computing the root-mean-squared-error (RMSE)

between the learned connectivity matrix J and the true matrix J. In addition, we compare the
efficiency by reporting the running time for each iteration. To be specific, for comparing efficiency,
we use the same batch size 100 for our method and baselines. The report time is the average over 100
iterations.

O
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