
Backpropagation of Unrolled Solvers with Folded Optimization

James Kotary1 , My H Dinh1 and Ferdinando Fioretto1

1 University of Virginia
{jkotary, mydinh}@syr.edu, fioretto@virginia.edu

Abstract
The integration of constrained optimization models
as components in deep networks has led to promis-
ing advances on many specialized learning tasks.
A central challenge in this setting is backpropaga-
tion through the solution of an optimization prob-
lem, which typically lacks a closed form. One typ-
ical strategy is algorithm unrolling, which relies on
automatic differentiation through the operations of
an iterative solver. While flexible and general, un-
rolling can encounter accuracy and efficiency is-
sues in practice. These issues can be avoided by
analytical differentiation of the optimization, but
current frameworks impose rigid requirements on
the optimization problem’s form. This paper pro-
vides theoretical insights into the backward pass
of unrolled optimization, leading to a system for
generating efficiently solvable analytical models of
backpropagation. Additionally, it proposes a unify-
ing view of unrolling and analytical differentiation
through optimization mappings. Experiments over
various model-based learning tasks demonstrate the
advantages of the approach both computationally
and in terms of enhanced expressiveness.

1 Introduction
The integration of optimization problems as components in
neural networks has shown to be an effective framework for
enforcing structured representations in deep learning. A para-
metric optimization problem defines a mapping from its un-
specified parameters to the resulting optimal solutions, which
is treated as a layer of a neural network. Outputs of the layer
are then guaranteed to obey the problem’s constraints, which
may be predefined or learned [Kotary et al., 2021].

Using optimization as a layer can offer enhanced accu-
racy and efficiency on specialized learning tasks by imparting
task-specific structural knowledge. For example, it has been
used to design efficient multi-label classifiers and sparse at-
tention mechanisms [Martins and Astudillo, 2016], learning
to rank based on optimal matching [Adams and Zemel, 2011;
?], accurate model selection protocols [Kotary et al., 2023a],
and enhanced models for optimal decision-making under un-
certainty [Wilder et al., 2019].

While constrained optimization mappings can be used as
components in neural networks in a similar manner to linear
layers or activation functions [Amos and Kolter, 2017], a pre-
requisite is their differentiation, for backpropagation of gra-
dients in end-to-end training by stochastic gradient descent.

This poses unique challenges, partly due to their lack of
a closed form, and modern approaches typically follow one
of two strategies. In unrolling, an optimization algorithm is
executed entirely on the computational graph, and backprop-
agated by automatic differentiation from optimal solutions to
the underlying problem parameters. The approach is adapt-
able to many problem classes, but has been shown to suf-
fer from time and space inefficiency, as well as vanishing
gradients [Monga et al., 2021]. Analytical differentiation is
a second strategy that circumvents those issues by forming
implicit models for the derivatives of an optimization map-
ping and solving them exactly. However, current frameworks
have rigid requirements on the form of the optimization prob-
lems, such as relying on transformations to canonical con-
vex cone programs before applying a standardized procedure
for their solution and differentiation [Agrawal et al., 2019].
This system precludes the use of specialized solvers that are
best-suited to handle various optimization problems, and in-
herently restricts itself only to convex problems.1

Contributions. To address these limitations, this paper pro-
poses a novel analysis of unrolled optimization, which re-
sults in efficiently-solvable models for the backpropagation
of unrolled optimization. Theoretically, the result is signifi-
cant because it establishes an equivalence between unrolling
and analytical differentiation, and allows for convergence of
the backward pass to be analyzed in unrolling. Practically,
it allows for the forward and backward passes of unrolled
optimization to be disentangled and solved separately, using
blackbox implementations of specialized algorithms. More
specifically, the paper makes the following novel contribu-
tions: (1) A theoretical analysis of unrolling that leads to
an efficiently solvable closed-form model, whose solution is
equivalent to the backward pass of an unrolled optimizer. (2)
Building on this analysis, it proposes a system for generat-
ing analytically differentiable optimizers from unrolled im-
plementations, accompanied by fold-opt, a Python library

1A discussion of related work on differentiable optimization and
decision-focused learning is provided in Appendix A.

https://github.com/AIPOpt-Lab-SU/folded_optimization


to facilitate automation. (3) Its efficiency and modeling ad-
vantages are demonstrated on a set of end-to-end optimiza-
tion and learning tasks, including the first demonstration of
decision-focused learning with nonconvex decision models.
Supplemental material. Please refer to [Kotary et al.,
2023b] for an extended version of this paper including Ap-
pendix additional related work, implementation details, anal-
ysis, and experiments. All references to the Appendix in this
paper refer to that of the extended version.

2 Setting and Goals
In this paper, the goal is to differentiate mappings that are de-
fined as the solution to an optimization problem. Consider
the parameterized problem (1) which defines a function from
a vector of parameters c 2 Rp to its associated optimal solu-
tion x?(c) 2 Rn:

x?(c) = argmin
x

f(x, c) (1a)

subject to: g(x, c)  0, (1b)
h(x, c) = 0, (1c)

in which f is the objective function, and g and h are vector-
valued functions capturing the inequality and equality con-
straints of the problem, respectively. The parameters c can
be thought of as a prediction from previous layers of a neural
network, or as learnable parameters analogous to the weights
of a linear layer, or as some combination of both. It is as-
sumed throughout that for any c, the associated optimal so-
lution x?(c) can be found by conventional methods, within
some tolerance in solver error. This coincides with the “for-
ward pass” of the mapping in a neural network. The primary
challenge is to compute its backward pass, which amounts to
finding the Jacobian matrix of partial derivatives @x?(c)

@c .
Backpropagation. Given a downstream task loss L, back-
propagation through x?(c) amounts to computing @L

@c given
@L
@x? . In deep learning, backpropagation through a layer is
typically accomplished by automatic differentiation (AD),
which propagates gradients through the low-level operations
of an overall composite function by repeatedly applying the
multivariate chain rule. This can be performed automatically
given a forward pass implementation in an AD library such as
PyTorch. However, it requires a record of all the operations
performed during the forward pass and their dependencies,
known as the computational graph.
Jacobian-gradient product (JgP). The Jacobian matrix of
the vector-valued function x?(c) : Rp

! Rn is a matrix
@x?

@c in Rn⇥p, whose elements at (i, j) are the partial deriva-
tives @x?

i (c)
@cj

. When the Jacobian is known, backpropagation
through x?(c) can be performed by computing the product

@L

@c
=

@L

@x?
·
@x?(c)

@c
. (2)

Folded Optimization: Overview. The problem (1) is most
often solved by iterative methods, which refine an initial
starting point x0 by repeated application of a subroutine,
which we view as a function. For optimization variables

Figure 1: Compared to unrolling, unfolding requires fewer oper-
ations on the computational graph by replacing inner loops with
Jacobian-gradient products. Fixed-point folding models the unfold-
ing analytically, allowing for blackbox implementations.

x 2 Rn, the update function is a vector-valued function
U : Rn

! Rn:

xk+1(c) = U(xk(c), c). (U)

The iterations (U) converge if xk(c) ! x?(c) as k ! 1.
When unrolling, the iterations (U) are computed and recorded
on the computational graph, and the function x?(c) can be
thereby be backpropagated by AD without explicitly repre-
senting its Jacobian. However, unrolling over many iterations
often faces time and space inefficiency issues due to the need
for graph storage and traversal [Monga et al., 2021]. In the
following sections, we show how the backward pass of un-
rolling can be analyzed to yield equivalent analytical models
for the Jacobian of x?(c). We recognize two key challenges
in modeling the backward pass of unrolling iterations (U).

First, it often happens that evaluation of U in (U) requires
the solution of another optimization subproblem, such as a
projection or proximal operator, which must also be unrolled.
Section 3 introduces unfolding as a variant of unrolling,
in which the unrolling of such inner loops is circumvented
by analytical differentiation of the subproblem, allowing the
analysis to be confined to a single unrolled loop.

Second, the backward pass of an unrolled solver is de-
termined by its forward pass, whose trajectory depends on
its (potentially arbitrary) starting point and the convergence
properties of the chosen algorithm. Section 4 shows that the
backward pass converges correctly even when the forward
pass iterations are initialized at a precomputed optimal so-
lution. This allows for separation of the forward and back-
ward passes, which are typically entangled across unrolled
iterations, greatly simplifying the backward pass model and
allowing for blackbox implementations of both passes.

Section 5 uses these concepts to show that the backward
pass of unfolding (U) follows exactly the solution of the linear
system for @x?(c)

@c which arises by differentiating the fixed-
point conditions of (U). Section 6 then outlines fixed-point
folding, a system for generating Jacobian-gradient products
through optimization mappings from their unrolled solver im-
plementations, based on efficient solution of the models pro-
posed in Section 5. The main differences between unrolling,
unfolding, and fixed-point folding are illustrated in Figure 1.



Figure 2: Unfolding Projected Gradient Descent at x? consists of
alternating gradient step S with projection PC. Each function’s for-
ward and backward pass are in blue and red, respectively.

3 From Unrolling to Unfolding
For many optimization algorithms of the form (U), the up-
date function U is composed of closed-form functions that
are relatively simple to evaluate and differentiate. In general
though, U may itself employ an optimization subproblem that
is nontrivial to differentiate. That is,

U(xk) := T ( O(S(xk)), xk ) , (O)

wherein the differentiation of U is complicated by an inner
optimization sub-routine O : Rn

! Rn. Here, S and T rep-
resent any steps preceding or following the inner optimization
(such as gradient steps), viewed as closed-form functions. In
such cases, unrolling (U) would also require unrolling O.
If the Jacobians of O can be found, then backpropagation
through U can be completed, free of unrolling, by applying
a chain rule through Equation (O), which in this framework
is handled naturally by automatic differentiation of T and S .

Then, only the outermost iterations (U) need be unrolled
on the computational graph for backpropagation. This partial
unrolling, which allows for backpropagating large segments
of computation at a time by leveraging analytically differen-
tiated subroutines, is henceforth referred to as unfolding. It is
made possible when the update step U is easier to differenti-
ate than the overall optimization mapping x?(c).
Definition 1 (Unfolding). An unfolded optimization of the
form (U) is one in which the backpropagation of U at each
step does not require unrolling an iterative algorithm.

Unfolding is distinguished from more general unrolling by
the presence of only a single unrolled loop. This definition
sets the stage for Section 5, which shows how the backprop-
agation of an unrolled loop can be modeled with a Jacobian-
gradient product. Thus, unfolded optimization is a precur-
sor to the complete replacement of backpropagation through
loops in unrolled solver implementations by JgP.

When O has a closed form and does not require an iter-
ative solution, the definitions unrolling and unfolding coin-
cide. When O is nontrivial to solve but has known Jaco-
bians, they can be used to produce an unfolding of (U). Such
is the case when O is a Quadratic Program (QP); a JgP-based
differentiable QP solver called qpth is provided by [Amos
and Kolter, 2017]. Alternatively, the replacement of unrolled
loops by JgP’s proposed in Section 5 can be applied recur-
sively O.

These concepts are illustrated in the following examples,
highlighting the roles of U , O and S . Each will be used to

create folded optimization mappings for a variety of learning
tasks in Section 6.
Projected gradient descent. Given a problem

min
x2C

f(x) (3)

where f is differentiable and C is the feasible set, Projected
Gradient Descent (PGD) follows the update function

xk+1 = PC(xk � ↵krf(xk)), (4)

where O = PC is the Euclidean projection onto C, and
S(x) = x � ↵rf(x) is a gradient descent step. Many
simple C have closed-form projections to facilitate unfold-
ing of (4) (see [Beck, 2017]). Further, when C is linear, PC

is a quadratic programming (QP) problem for which a dif-
ferentiable solver qpth is available from [Amos and Kolter,
2017].

Figure 2 shows one iteration of unfolding projected gra-
dient descent, with the forward and backward pass of each
recorded operation on the computational graph illustrated in
blue and red, respectively.
Proximal gradient descent. More generally, to solve

min
x

f(x) + g(x) (5)

where f is differentiable and g is a closed convex function,
proximal gradient descent follows the update function

xk+1 = Prox↵kg (xk � ↵krf(xk)) . (6)

Here O is the proximal operator, defined as

Proxg(x) = argmin
y

⇢
g(y) +

1

2
ky � xk2

�
, (7)

and its difficulty depends on g. Many simple proximal op-
erators can be represented in closed form and have sim-
ple derivatives. For example, when g(x) = �kxk1, then
Proxg = T�(x) is the soft thresholding operator, whose
closed-form formula and derivative are given in Appendix C.
Sequential quadratic programming. Sequential
Quadratic Programming (SQP) solves the general opti-
mization problem (1) by approximating it at each step by
a QP problem, whose objective is a second-order approx-
imation of the problem’s Lagrangian function, subject to
a linearization of its constraints. SQP is well-suited for
unfolded optimization, as it can solve a broad class of convex
and nonconvex problems and can readily be unfolded by
implementing its QP step (shown in Appendix C with the
qpth differentiable QP solver.
Quadratic programming by ADMM. The QP solver of
[Boyd et al., 2011], based on the alternating direction of mul-
tipliers, is specified in Appendix C. Its inner optimization step
O is a simpler equality-constrained QP; its solution is equiva-
lent to solving a linear system of equations, which has a sim-
ple derivative rule in PyTorch.

Given an unfolded QP solver by ADMM, its unrolled loop
can be replaced with backpropagation by JgP as shown in
Section 5. The resulting differentiable QP solver can then



Figure 3: Forward and backward pass error in unfolding PGD

take the place of qpth in the examples above. Subsequently,
this technique can be applied recursively to the resulting un-
folded PGD and SQP solvers. This exemplifies the interme-
diate role of unfolding in converting unrolled, nested solvers
to fully JgP-based implementations, detailed in Section 6.

From the viewpoint of unfolding, the analysis of backprop-
agation in unrolled solvers can be simplified by accounting
for only a single unrolled loop. The next section identifies
a further simplification: that the backpropagation of an un-
folded solver can be completely characterized by its action at
a fixed point of the solution’s algorithm.

4 Unfolding at a Fixed Point
Optimization procedures of the form (U) generally require a
starting point x0, which is often chosen arbitrarily, since con-
vergence xk ! x? of iterative algorithms is typically guar-
anteed regardless of starting point. It is natural to then ask
how the choice of x0 affects the convergence of the backward
pass. We define backward-pass convergence as follows:

Definition 2. Suppose that an unfolded iteration (U)
produces a convergent sequence of solution iterates
limk!1 xk = x? in its forward pass. Then convergence of
the backward pass is

lim
k!1

@xk

@c
(c) =

@x?

@c
(c). (8)

Effect of the starting point on backpropagation. Con-
sider the optimization mapping (19) which maps feature em-
beddings to smooth top-k class predictions, and will be used
to learn multilabel classification later in Section 6. A loss
function L targets ground-truth top-k indicators, and the re-
sult of the backward pass is the gradient @L

@c . To evaluate
backward pass convergence in unfolded projected gradient
descent, we measure the relative L1 errors of the forward
and backward passes, relative to the equivalent result after
full convergence. We consider two starting points: the pre-
computed optimal solution xa

0 = x?, and a uniform random
vector xb

0 = ⌘ ⇠ U(0, 1). The former case is illustrated in
Figure 2, in which xk remains stationary at each step.

Figure 3 reports the errors of the forward and backward
pass at each iteration of the unfolded PGD under these two

starting points. The figure shows that when starting the un-
folding from the precomputed optimal solution xa

0 , the for-
ward pass error remains within error tolerance to zero. This
is because x?(c)=U(x?(c), c) is a fixed point of (U). Inter-
estingly though, the backward pass also converges, but at a
slightly faster rate than when starting from the random xb

0.
We will see that this phenomenon holds in general: when

an unfolded optimizer is iterated at a precomputed optimal
solution, its backward pass converges. This has practical im-
plications which can be exploited to improve the efficiency
and modularity of differentiable optimization layers based on
unrolling. These improvements will form the basis of our sys-
tem for converting unrolled solvers to JgP-based implemen-
tations, called folded optimization, and are discussed next.
Fixed-Point Unfolding: Forward pass. Note first that
backpropagation by unfolding at a fixed point must assume
that a fixed point has already been found. This is gener-
ally equivalent to finding a local optimum of the optimization
problem which defines the forward-pass mapping (1) [Beck,
2017]. Since the calculation of the fixed point itself does not
need to be backpropagated, it can be furnished by a blackbox
solver implementation. Furthermore, when x0 = x? is a fixed
point of the iteration (U), we have U(xk) = xk = x?, 8k.
Hence, there is no need to evaluate the forward pass of U in
each unfolded iteration of (U) at x?.

This enables the use of any specialized method to com-
pute the forward pass optimization (1), which can be different
from unfolded algorithm used for backpropagation, assuming
it shares the same fixed point. It also allows for highly opti-
mized software implementations such as Gurobi [Gurobi Op-
timization, LLC, 2023], and is a major advantage over exist-
ing differentiable optimization frameworks such as cvxpy,
which requires converting the problem to a convex cone pro-
gram before solving it with a specialized operator-splitting
method for conic programming [Agrawal et al., 2019], ren-
dering it inefficient for many optimization problems.
Fixed-Point Unfolding: Backward pass. While the for-
ward pass of each unfolded update step (U) need not be
recomputed at a fixed point, the dotted curves of Figure 3
illustrate that its backward pass must still be iterated un-
til convergence. However, since xk = x?, we also have
@U(xk)
@xk

= @U(x?)
@x? at each iteration. Therefore the backward

pass of U need only be computed once, and iterated until
backpropagation of the full optimization mapping (1) con-
verges.

Next, it will be shown that this process is equivalent to it-
eratively solving a linear system of equations. We identify
the iterative method first, and then the linear system it solves,
before proceeding to prove this fact. The following textbook
result can be found, e.g., in [Quarteroni et al., 2010].
Lemma 1. Let B 2 Rn⇥n and b 2 Rn. For any z0 2 Rn,
the iteration

zk+1 = Bzk + b (LFPI)
converges to the solution z of the linear system z = Bz + b
whenever B is nonsingular and has spectral radius ⇢(B) <
1. Furthermore, the asymptotic convergence rate for zk ! z
is

� log ⇢(B). (9)



Linear fixed-point iteration (LFPI) is a foundational iterative
linear system solver, and can be applied to any linear system
Ax=b by rearranging z=Bz+b and identifying A=I�B.

Next, we exhibit the linear system which is solved for the
desired gradients @x?

@c (c) by unfolding at a fixed point. Con-
sider the fixed-point conditions of the iteration (U):

x?(c) = U(x?(c), c) (FP)

Differentiating (FP) with respect to c,

@x?

@c
(c) =

@U

@x?
(x?(c), c)

| {z }
�

·
@x?

@c
(c) +

@U

@c
(x?(c), c)

| {z }
 

, (10)

by the chain rule and recognizing the implicit and explicit de-
pendence of U on the independent parameters c. Equation
(10) will be called the differential fixed-point conditions. Re-
arranging (10), the desired @x?

@c (c) can be found in terms of
� and as defined above, to yield the system (DFP) below.

The results discussed next are valid under the assumptions
that x? : Rn

! Rn is differentiable in an open set C, and
Equation (FP) holds for c 2 C. Additionally, U is assumed
differentiable on an open set containing the point (x?(c), c).
Lemma 2. When I is the identity operator and � nonsingu-
lar,

(I��)
@x?

@c
=  . (DFP)

The result follows from the Implicit Function theorem
[Munkres, 2018]. It implies that the Jacobian @x?

@c can be
found as the solution to a linear system once the prerequisite
Jacobians� and are found; these correspond to backprop-
agation of the update function U at x?(c).

5 Folded Optimization
We are now ready to discuss the central result of the paper. In-
formally, it states that the backward pass of an iterative solver
(U), unfolded at a precomputed optimal solution x?(c), is
equivalent to solving the linear equations (DFP) using linear
fixed-point iteration, as outlined in Lemma 1.

This has significant implications for unrolling optimiza-
tion. It shows that backpropagation of unfolding is compu-
tationally equivalent to solving linear equations using a spe-
cific algorithm and does not require automatic differentiation.
It also provides insight into the convergence properties of this
backpropagation, including its convergence rate, and shows
that more efficient algorithms can be used to solve (DFP) in
favor of its inherent LFPI implementation in unfolding.

The following results hold under the assumptions that the
parameterized optimization mapping x? converges for certain
parameters c through a sequence of iterates xk(c) ! x?(c)
using algorithm (U), and that� is nonsingular with a spectral
radius ⇢(�) < 1.
Theorem 1. The backward pass of an unfolding of algorithm
(U), starting at the point xk = x?, is equivalent to linear
fixed-point iteration on the linear system (DFP), and will con-
verge to its unique solution at an asymptotic rate of

� log ⇢(�). (11)

Proof. Since U converges given any parameters c 2 C, Equa-
tion (FP) holds for any c 2 C. Together with the assumption
the U is differentiable on a neighborhood of (x?(c), c),

(I��)
@x?

@c
=  (12)

holds by Lemma 2. When (U) is unfolded, its backpropaga-
tion rule can be derived by differentiating its update rule:

@

@c
[ xk+1(c) ] =

@

@c
[ U(xk(c), c) ] (13a)

@xk+1

@c
(c) =

@U

@xk

@xk

@c
+

@U

@c
, (13b)

where all terms on the right-hand side are evaluated at c and
xk(c). Note that in the base case k = 0, since in general x0

is arbitrary and does not depend on c, @x0
@c = 0 and

@x1

@c
(c) =

@U

@c
(x0, c). (14)

This holds also when x0 = x? w.r.t. backpropagation of (U),
since x? is precomputed outside the computational graph of
its unfolding. Now since x? is a fixed point of (U),

xk(c) = x?(c) 8k � 0, (15)

which implies
@U

@xk
(xk(c), c) =

@U

@x?
(x?(c), c) = �, 8k � 0 (16a)

@U

@c
(xk(c), c) =

@U

@c
(x?(c), c) =  , 8k � 0. (16b)

Letting Jk :=
@xk
@c (c), the rule (13b) for unfolding at a fixed-

point x? becomes, along with initial conditions (14),

J0 =  (17a)
Jk+1 = �Jk + . (17b)

The result then holds by direct application of Lemma 1 to
(17), recognizing zk = Jk , B = � and z0 = b =  .

The following is a direct result from the proof of Theorem 1.
Corollary 1. Backpropagation of the fixed-point unfolding
consists of the following rule:

J0 =  (18a)
Jk+1 = �Jk + , (18b)

where Jk := @xk
@c (c).

Theorem 1 specifically applies to the case where the initial
iterate is the precomputed optimal solution, x0 = x?. How-
ever, it also has implications for the general case where x0

is arbitrary. As the forward pass optimization converges, i.e.
xk ! x? as k ! 1, this case becomes identical to the one
proved in Theorem 1 and a similar asymptotic convergence
result applies. If xk ! x? and � is a nonsingular operator
with ⇢(�) < 1, the following result holds.
Corollary 2. When the parametric problem (1) can be solved
by an iterative method of the form (U) and the forward pass
of the unfolded algorithm converges, the backward pass con-
verges at an asymptotic rate that is bounded by � log ⇢(�).



The result above helps explain why the forward and backward
pass in the experiment of Section 4 converge at different rates.
If the forward pass converges faster than � log ⇢(�), the
overall convergence rate of an unfolding is limited by that of
the backward pass.

Fixed-Point Folding. To improve efficiency, and building
on the above findings, we propose to replace unfolding at the
fixed point x? with the equivalent Jacobian-gradient product
following the solution of (DFP). This leads to fixed-point fold-
ing, a system for converting any unrolled implementation of
an optimization method (U) into a folded optimization that
eliminates unrolling entirely. By leveraging AD through a
single step of the unrolled solver, but avoiding the use of
AD to unroll through multiple iterations on the computational
graph, it enables backpropagation of optimization layers by
JgP using a seamless integration of automatic and analytical
differentiation. Its modularization of the forward and back-
ward passes, which are typically intertwined in unrolling, also
allows for efficient blackbox implementations of each pass.

It is important to note that as per Definition 1, the inner-
most optimization loop of a nested unrolling can be consid-
ered an unfolding and can be backpropagated by JgP with
fixed-point folding. Subsequently, the next innermost loop
can now be considered unfolded and the same process ap-
plied until all unrolled optimization loops are replaced with
their analytical models. Figure 1 depicts fixed-point folding,
where the gray arrows symbolize a blackbox forward pass
and the long red arrows illustrate that a backpropagation is
performed an iterative linear system solver. The procedure is
also exemplified by f-PGDb (introduced in Section 6), which
applies successive fixed-point folding through ADMM and
PGD to compose a JgP-based differentiable layer for any op-
timization problem with a smooth objective function and lin-
ear constraints.

Note that although it is not used for forward pass conver-
gence, a folded optimizer still typically requires selecting a
constant stepsize, or similar parameter, to specify U and the
resulting Jacobian model (DFP). This can affect ⇢(�), and
hence the backward pass convergence and its rate by The-
orem 1. A further discussion of the aspect is made in Ap-
pendix D.

6 Experiments
This section evaluates folded optimization on four end-to-
end optimization and learning tasks. It is primarily evalu-
ated against cvxpy, which is the preeminent general-purpose
differentiable optimization solver. Two crucial limitations
of cvxpy are its efficiency and expressiveness. This is
due to its reliance on transforming general optimization pro-
grams to convex cone programs, before applying a standard-
ized operator-splitting cone program solver and differentia-
tion scheme (see Appendix A). This precludes the incorpo-
ration of problem-specific solvers in the forward pass and
limits its use to convex problems only. One major benefit
of fold-opt is the modularity of its forward optimization
pass, which can apply any black-box algorithm to produce
x?(c). In each experiment below, this is used to demonstrate
a different advantage.

A summary of results is provided below for each study, and
a more complete specification is provided in Appendix E.
Implementation details. All the folded optimizers used in
this section were produced using the accompanying Python
library fold-opt, which supplies routines for constructing
and solving the system (DFP), and integrating the resulting
Jacobian-vector products into the computational graph of Py-
Torch. To do so, it requires a Pytorch implementation of an
update function U for an appropriately chosen optimization
routine. The linear system (DFP) is be solved by a user-
specifed blackbox linear solver, as is the forward-pass opti-
mization solver, as discussed in Section 4. Implementation
details of fold-opt can be found in Appendix B.

The experiments test four folded optimizers: (1) f-PGDa
applies to optimization mappings with linear constraints, and
is based on folding projected gradient descent steps, where
each inner projection is a QP solved by the differentiable QP
solver qpth [Amos and Kolter, 2017]. (2) f-PGDb is a varia-
tion on the former, in which the inner QP step is differentiated
by fixed-point folding of the ADMM solver detailed in Ap-
pendix C. (3) f-SQP applies to optimization with nonlinear
constraints and uses folded SQP with the inner QP differenti-
ated by qpth. (4) f-FDPG comes from fixed-point folding of
the Fast Dual Proximal Gradient Descent (FDPG) shown in
Appendix C. The inner Prox is a soft thresholding operator,
whose simple closed form is differentiated by AD in PyTorch.
Decision-focused learning with nonconvex bilinear pro-
gramming. The first experiment showcases the ability of
folded optimization to be applied in decision-focused learn-
ing with nonconvex optimization. In this experiment, we pre-
dict the coefficients of a bilinear program

x?(c,d) = argmax
0x,y1

cTx+ xTQy + dTy

s.t.
X

x = p,
X

y = q,

in which two separable linear programs are confounded by a
nonconvex quadratic objective term Q. Costs c and d are pre-
dicted by a 5-layer network, while p and q are constants. Such
programs have numerous industrial applications such as opti-
mal mixing and pooling in gas refining [Audet et al., 2004].
Here we focus on the difficulty posed by the problem’s form
and propose a task to evaluate f-PGDb in learning with non-
convex optimization. Feature and cost data are generated by
the process described in Appendix E, along with 15 distinct
Q for a collection of nonconvex decision models.

It is known that PGD converges to local optima in non-
convex problems [Attouch et al., 2013], and this folded im-
plementation uses the Gurobi nonconvex QP solver to find
a global optimum. Since no known general framework can
accommodate nonconvex optimization mappings in end-to-
end models, we benchmark against the two-stage approach,
in which the costs c, and d are targeted to ground-truth costs
by MSE loss and the optimization problem is solved as a sep-
arate component from the learning task (see Appendix F for
additional details). The integrated f-PGDb model minimizes
solution regret (i.e., suboptimality) directly. [Elmachtoub and
Grigas, 2021]. Notice in Figure 4(a) how f-PGDb achieves
much lower regret for each of the 15 nonconvex objectives.



(a) (b) (c)

Figure 4: Bilinear decision focus (a), Enhanced Denoising with f-FDPG (b), and Portfolio optimization (c).

Enhanced total variation denoising. This experiment il-
lustrates the efficiency benefit of incorporating problem-
specific solvers. The optimization models a denoiser

x?(D) = argmin
x

1

2
kx� dk2 + �kDxk1,

which seeks to recover the true signal x? from a noisy input
d and is often best handled by variants of Dual Proximal Gra-
dient Descent. Classically, D is a differencing matrix so that
kDxk1 represents total variation. Here we initialize D to this
classic case and learn a better D by targeting a set of true
signals with MSE loss and adding Gaussian noise to generate
their corresponding noisy inputs. Figure 4(b) shows test MSE
throughout training due to f-FDPG for various choice of �.
Appendix G shows comparable results from the framework of
[Amos and Kolter, 2017], which converts the problem to a QP
form (see Appendix C) in order to differentiate the mapping
analytically with qpth. Small differences in these results
likely stem from solver error tolerance in the two methods.
However, f-FDPG computes x?(D) up to 40 times faster.
Mutilabel classification on CIFAR100. Since gradient er-
rors accumulate at each training step, we ask how precise
are the operations performed by fold-opt in the backward
pass. This experiment compares the backpropagation of both
f-PGDa and f-SQP with that of cvxpy, by using the forward
pass of cvxpy in each model as a control factor.

This experiment, adapted from [Berrada et al., 2018],
implements a smooth top-5 classification model on noisy
CIFAR-100. The optimization below maps image feature em-
beddings c from DenseNet 40-40 [Huang et al., 2017], to
smoothed top-k binary class indicators (see Appendix E for
more details):

x?(c)=argmax
0x1

cTx+
X

i

xi log xi s.t.
X

x = k (19)

Appendix G shows that all three models have indistinguish-
able classification accuracy throughout training, indicating
the backward pass of both fold-opt models is precise and
agrees with a known benchmark even after 30 epochs of train-
ing on 45k samples. On the other hand, the more sensitive test
set shows marginal accuracy divergence after a few epochs.
Portfolio prediction and optimization. Having estab-
lished the equivalence in performance of the backward pass
across these models, the final experiment describes a situation

in which cvxpy makes non negligible errors in the forward
pass of a problem with nonlinear constraints:

x?(c) = argmax
0x

cTx s.t. xTVx  �,
X

x = 1. (20)

This model describes a risk-constrained portfolio optimiza-
tion where V is a covariance matrix, and the predicted cost
coefficients c represent assets prices [Elmachtoub and Gri-
gas, 2021]. A 5-layer ReLU network is used to predict future
prices c from exogenous feature data, and trained to mini-
mize regret (the difference in profit between optimal portfo-
lios under predicted and ground-truth prices) by integrating
Problem (20). The folded f-SQP layer used for this prob-
lem employs Gurobi QCQP solver in its forward pass. This
again highlights the ability of fold-opt to accommodate
a highly optimized blackbox solver. Figure 4(c) shows test
set regret throughout training, three synthetically generated
datasets of different nonlinearity degrees. Notice the accu-
racy improvements of fold-opt over cvxpy. Such dra-
matic differences can be explained by non-negligible errors
made in cvxpy’s forward pass optimization on some prob-
lem instances, which occurs regardless of error tolerance set-
tings (please see Appendix E for details). In contrast, Gurobi
agrees to machine precision with a custom SQP solver, and
solves about 50% faster than cvxpy. This shows the im-
portance of highly accurate optimization solvers for accurate
end-to-end training.

7 Conclusions
This paper introduced folded optimization, a framework
for generating analytically differentiable optimization solvers
from unrolled implementations. Theoretically, folded opti-
mization was justified by a novel analysis of unrolling at a
precomputed optimal solution, which showed that its back-
ward pass is equivalent to solution of a solver’s differential
fixed-point conditions, specifically by fixed-point iteration on
the resulting linear system. This allowed for the convergence
analysis of the backward pass of unrolling, and evidence that
the backpropagation of unrolling can be improved by using
superior linear system solvers. The paper showed that folded
optimization offers substantial advantages over existing dif-
ferentiable optimization frameworks, including modulariza-
tion of the forward and backward passes and the ability to
handle nonconvex optimization.



Acknowledgements
This research is partially supported by NSF grant 2232054
and NSF CAREER Award 2143706. Fioretto is also sup-
ported by an Amazon Research Award and a Google Research
Scholar Award. Its views and conclusions are those of the au-
thors only.

References
[Adams and Zemel, 2011] Ryan Prescott Adams and

Richard S Zemel. Ranking via sinkhorn propagation.
arXiv preprint arXiv:1106.1925, 2011.

[Agrawal et al., 2019] Akshay Agrawal, Brandon Amos,
Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico
Kolter. Differentiable convex optimization layers. Ad-
vances in neural information processing systems, 32,
2019.

[Amos and Kolter, 2017] Brandon Amos and J Zico Kolter.
Optnet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learn-
ing, pages 136–145. PMLR, 2017.

[Attouch et al., 2013] Hedy Attouch, Jérôme Bolte, and Be-
nar Fux Svaiter. Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms,
forward–backward splitting, and regularized gauss–seidel
methods. Mathematical Programming, 137(1):91–129,
2013.

[Audet et al., 2004] Charles Audet, Jack Brimberg, Pierre
Hansen, Sébastien Le Digabel, and Nenad Mladenović.
Pooling problem: Alternate formulations and solution
methods. Management science, 50(6):761–776, 2004.

[Beck, 2017] Amir Beck. First-order methods in optimiza-
tion. SIAM, 2017.

[Berrada et al., 2018] Leonard Berrada, Andrew Zisserman,
and M. Pawan Kumar. Smooth loss functions for deep top-
k classification. ArXiv, abs/1802.07595, 2018.

[Boyd et al., 2011] Stephen Boyd, Neal Parikh, Eric Chu,
Borja Peleato, Jonathan Eckstein, et al. Distributed op-
timization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends R� in
Machine learning, 3(1):1–122, 2011.

[Elmachtoub and Grigas, 2021] Adam N Elmachtoub and
Paul Grigas. Smart “predict, then optimize”. Management
Science, 2021.

[Gurobi Optimization, LLC, 2023] Gurobi Optimization,
LLC. Gurobi Optimizer Reference Manual. url-
https://www.gurobi.com, 2023.

[Huang et al., 2017] Gao Huang, Zhuang Liu, Laurens Van
Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4700–4708, 2017.

[Kotary et al., 2021] James Kotary, Ferdinando Fioretto,
Pascal Van Hentenryck, and Bryan Wilder. End-to-end

constrained optimization learning: A survey. In Proceed-
ings of the Thirtieth International Joint Conference on Ar-
tificial Intelligence, IJCAI-21, pages 4475–4482, 2021.

[Kotary et al., 2023a] James Kotary, Francesco Di Vito, and
Ferdinando Fioretto. Differentiable model selection for
ensemble learning. In Proceedings of the Fifteen Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-
23, 2023.

[Kotary et al., 2023b] James Kotary, My H. Dinh, and Ferdi-
nando Fioretto. Backpropagation of unrolled solvers with
folded optimization. arXiv preprint arXiv:2301.12047,
2023.

[Martins and Astudillo, 2016] Andre Martins and Ramon
Astudillo. From softmax to sparsemax: A sparse model
of attention and multi-label classification. In Interna-
tional conference on machine learning, pages 1614–1623.
PMLR, 2016.

[Monga et al., 2021] Vishal Monga, Yuelong Li, and Yon-
ina C Eldar. Algorithm unrolling: Interpretable, efficient
deep learning for signal and image processing. IEEE Sig-
nal Processing Magazine, 38(2):18–44, 2021.

[Munkres, 2018] James R Munkres. Analysis on manifolds.
CRC Press, 2018.

[Quarteroni et al., 2010] Alfio Quarteroni, Riccardo Sacco,
and Fausto Saleri. Numerical mathematics, volume 37.
Springer Science & Business Media, 2010.

[Wilder et al., 2019] Bryan Wilder, Bistra Dilkina, and
Milind Tambe. Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization.
In AAAI, volume 33, pages 1658–1665, 2019.


	Introduction
	Setting and Goals
	From Unrolling to Unfolding
	Unfolding at a Fixed Point
	Folded Optimization
	Experiments
	Conclusions

