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Abstract
Disclosure avoidance (DA) systems are used to
safeguard the confidentiality of data while allow-
ing it to be analyzed and disseminated for ana-
lytic purposes. These methods, e.g., cell suppres-
sion, swapping, and k-anonymity, are commonly
applied and may have significant societal and eco-
nomic implications. However, a formal analysis of
their privacy and bias guarantees has been lacking.
This paper presents a framework that addresses this
gap: it proposes differentially private versions of
these mechanisms and derives their privacy bounds.
In addition, the paper compares their performance
with traditional differential privacy mechanisms in
terms of accuracy and fairness on US Census data
release and classification tasks. The results show
that, contrary to popular beliefs, traditional dif-
ferential privacy techniques may be superior in
terms of accuracy and fairness to differential pri-
vate counterparts of widely used DA mechanisms.

1 Introduction
Disclosure avoidance (DA) systems are methods used to pro-
tect confidentiality while still enabling data analyses and dis-
semination. These techniques are used in various fields, such
as economics, public health, social science, and data science,
and have a long history in censuses and other data collection
efforts. For example, the US Census Bureau has leveraged
various traditional DA techniques from the 1930 decennial
release on. These include suppressing certain tables based
on the number of people or households in a given area and
swapping data in records with similar characteristics.

While traditional confidentiality measures, such as sup-
pression [Kelly et al., 1992], swapping [Dalenius and Reiss,
1982], and k-anonymity [Sweeney, 2002] are important for
protecting against accidental or intentional disclosure, they
lack formal guarantees that quantify the privacy risks that in-
dividuals incur upon data releases. This is important as it re-
stricts the ability of participants to assess the impact of these
protections on published data.

In contrast, differential privacy (DP) [Dwork et al., 2006]
is a relatively newer DA that provides a rigorous definition
of privacy and allows for quantifiable privacy guarantees. In

differential privacy, the privacy of an individual is preserved
by adding noise to their data in a controlled way. Such a
process ensures that the participation of an individual in a
dataset does not significantly affect the results of subsequent
queries. Marking a significant shift towards more rigorous
privacy protections, the US Census has recently adopted dif-
ferential privacy for the 2020 Census release. However, it is
worth noting that many other data agencies and organizations
still rely on traditional disclosure avoidance systems to pro-
tect the confidentiality of their data.

While these approaches can be effective at protecting
against accidental or intentional disclosures, it is unclear what
privacy guarantees they provide when compared to differen-
tial privacy. On the other hand, while differential privacy can
provide stronger privacy guarantees than traditional disclo-
sure avoidance systems, it may come with a cost in terms of
accuracy and fairness [Kuppam et al., 2019; Tran et al., 2021;
Fioretto et al., 2022], a topic of considerable debate recently.

Given that these DA are used to release data products that
inform decisions with significant societal and economic con-
sequences, it is essential to conduct a rigorous comparison
of traditional DA and differential privacy in terms of privacy,
bias, and fairness. However, one of the challenges faced in
this comparison is the absence of a standardized framework
for evaluating privacy protections. Differential privacy offers
a rigorous definition of privacy and enables quantifiable pri-
vacy guarantees. On the other hand, traditional disclosure
avoidance techniques may not have a distinct set of privacy
metrics, making it challenging to directly compare the level
of privacy protection they offer.
Contributions This paper aims at addressing this chal-
lenge: it proposes a framework for comparing traditional DA
to differential privacy and makes four distinct contributions.
(1) It first proposes carefully randomized versions of three
widely adopted traditional DA: suppression, swapping, and
k-anonymity. The resulting randomized mechanisms can then
be analyzed rigorously. In particular, the paper derives (✏, �)-
differential privacy bounds for these new mechanisms and
demonstrates that they are close to their traditional counter-
parts in terms of accuracy. (2) The paper then derives bounds
for the bias of the new DA mechanisms, allowing for a direct
comparison with classical differential privacy techniques for
which such bounds exist. (3) Next, the paper analyzes the
fairness impact induced by the considered DA systems and
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Figure 1: Illustration of the various traditional DA mechanisms.

shows that the fairness violations incurred by the randomized
DA algorithms are close to those of their traditional counter-
parts. (4) Finally, it provides an extensive empirical analysis
of the performance of the new DA mechanisms and a com-
parison with two classical differentially private algorithms on
data release and classification tasks.

From a broader perspective, the paper demonstrates that,
contrary to popular belief, classical differential privacy
mechanisms may be superior to traditional disclosure avoid-
ance systems in important data release and learning tasks in
terms of accuracy and fairness for the same privacy levels.
As a consequence, the results of this study have the potential
to impact the way in which data agencies and organizations
approach disclosure avoidance: indeed, it provides the first
framework for comparing the relative strengths and limita-
tions of traditional DA and differential privacy.

2 Problem Setting
The paper considers datasets of m records with d attributes,
A1, . . . , Ad. Each record is a d-dimensional tuple of at-
tributes associated with a unique individual from a data uni-
verse X :=

Qd
i=1 dom (Ai), where dom (A) represents the

collection of all the possible values for the attribute A. For
convenience, assume that X = {a1, . . . ,an}, with n being
the size of the data universe X , and consider the histogram
x(D) 2 Nn

+ of dataset D, whose ith entry xi(D) represents
the count of the individual records with the combination of
attributes ai. When there is no ambiguity, the dataset D is
omitted in the expression x(D) for simplicity. Additionally,
and without loss of generality, the histogram x is assumed
to be sorted in some increasing order, i.e., xi  xj , for any
i < j. Finally, each entry of the histogram x is assumed to
be bounded by a value B > 0, i.e., x 2 [B]n.

Consider, for example, the illustration in Figure 1(a); The
dataset D contains records with three attributes: (geographic)
“Block”, “Gender”, and “Voting Age”. The associated his-
togram is illustrated in Figure 1(b). In this instance, the at-
tribute “Gender”, when combined with external information
like “Zip code”, can become personally identifying informa-
tion and thus is known as a quasi-identifier (QI) while the
remaining attributes are referred to as non-quasi-identifiers.
Throughout the paper, the sets of quasi-identifiers and non-
quasi-identifiers are denoted by Q and N , respectively. Given
a record a and a set S of attributes, a[S] is the vector of val-
ues for attributes S in a.

The goal of the paper is to analyze the privacy, utility, and
fairness properties of traditional disclosure avoidance sys-
tems (reviewed in the next section) on the task of releasing
a privacy-preserving version x̃(D) of the histogram x(D).
The notion of privacy considered in this paper is that of dif-
ferential privacy, which is reviewed in the next section. The
notions of utility and fairness central to the analysis rely on
the concept of (statistical) bias. For any entry i 2 [n], the bias
associated with a mechanism M is

B(M)i = E [M(D)i]� xi(D) ,

where the expectation is taken over the randomness of the
mechanism, and B (M) = [B (M)1 . . . B (M)n] . Fair-
ness is defined as the maximal difference in biases across the
histogram entries.
Definition 1 (↵-fairness [Zhu et al., 2022]). A mechanism
M is said to be ↵-fair if the maximum difference among the
biases is bounded by ↵, i.e.,

kB (M)k⌦ = max
i2[n]

B (M)i � min
i2[n]

B (M)i  ↵.

3 DA for Private Data Release
This section provides an overview of the prevalent DA meth-
ods utilized by data agencies to safeguard sensitive informa-
tion within datasets. To comply with space limitations, the
paper reports the proofs of all theorems in the appendix.
Differential Privacy. Differential privacy (DP) [Dwork et
al., 2006] is a strong privacy notion used to quantify and
bound the privacy loss of an individual participation to a com-
putation. Informally, it states that the probability of any out-
put does not change much when a record is changed from a
dataset, limiting the amount of information that the output re-
veals about any individual. The action of changing a record
from a dataset D, resulting in a new dataset D0, defines the
notion of adjacency, denoted D ⇠ D0.
Definition 2. A mechanism M :D!R with domain D and
range R is (✏, �)-differentially private, if, for any two inputs
D ⇠ D02D, and any subset of output responses R ✓ R:

Pr[M(D) 2 R]  e✏ Pr[M(D0) 2 R] + �.

Parameter ✏ > 0 describes the privacy loss of the algorithm,
with values close to 0 denoting strong privacy, while param-
eter � 2 [0, 1) captures the probability of failure of the al-
gorithm to satisfy ✏-DP. In particular, the Laplace mecha-
nism for histogram data release, defined by MLap(x) = x +



Lap(2/✏), where Lap(⌘) is the Laplace distribution centered at
0 and with scaling factor ⌘, satisfies (✏, 0)-DP. Additionally,
the discrete Gaussian mechanism [Canonne et al., 2020], de-
fined by MGaus(x) = x + NZ(0, 4/✏2), where NZ(0,�) is
the discrete Gaussian distribution with 0 mean and standard
deviation �, satisfies ( 12✏

2 + ✏
p
2 log(1/�), �)-DP.

We next discuss three predominant traditional DA systems
which, in contrast to differential privacy, do not provide for-
mal bounds on privacy leakage.
Cell suppression. The cell suppression technique [Kelly et
al., 1992], frequently employed by statistical agencies (e.g.,
[Tatauranga Aotearoa, 2020]), aims at concealing the low-
frequency counts in histograms before data dissemination.
Definition 3. Given a histogram x and a threshold value k,
cell suppression returns a private histogram x̃ with entries

x̃i = max {xi, k/2} . (1)
Figure 1(c) illustrates the application of cell suppression with
threshold value k = 2 to the histogram of Figure 1(b). The af-
fected row counts are highlighted in red. A significant limita-
tion of this approach is that it only protects sensitive attributes
with a low number of records while neglecting others.
Swapping. Swapping [Dalenius and Reiss, 1982] is a
mechanism that swaps the values of a set of sensitive at-
tributes (the quasi-identifiers) in a record with those of an-
other record. Informally speaking, the basic steps of the al-
gorithms can be summarized as follows:
1. Select multiple pairs of records in the histogram with

probability proportional to their discrepancies;
2. Swap the values of the quasi-identifiers attributes for each

selected pair of records.
Like cell suppression, swapping produces a privacy-
preserving histogram x̃. However, contrary to cell sup-
pression (and differential privacy mechanisms), swapping re-
quires a piece of additional information: the quasi-identifier
attributes of the dataset. Figure 1(d) illustrates the application
of swapping where two rows are swapped, using “Gender” as
the quasi-identifier attribute (see figure (a)). The affected row
counts are highlighted in red. While swapping has been com-
monly used, for example by the US Census Bureau, to swap
similar individuals within close geographies, it is not immune
to reconstruction attacks [Garfinkel et al., 2019].
k-anonymity. Next, k-anonymity protects sensitive data in a
dataset by ensuring that each record in the dataset is indistin-
guishable from at least k � 1 other records.
Definition 4 (k-Anonymity [Sweeney, 2002]). A dataset sat-
isfies k-anonymity, relative to a set of the quasi-identifiers,
if and only if when the dataset is projected to include only
quasi-identifiers, every record appears at least k times.

The basic idea behind k-anonymity is to generalize certain
identifying attributes of individuals in the dataset such that
each group of individuals with similar characteristics contains
at least k individuals. An outline of the algorithm is provided
below (a formal description is given in Appendix B):
1. define a hierarchy H for each quasi-identifier;
2. constructs a histogram that lists the number of records for

each combination of quasi-identifiers;

3. suppress the combinations in the generalization histogram
that have fewer than k instances.

4. release the resulting histogram x̃(D,H).
An important observation is that, contrary to the previ-
ous methods reviewed, k-anonymity produces a privacy-
preserving histogram x̃(D,H) in a different space than X .
This important observation will be relevant in the error anal-
ysis. It additionally requires access to quasi-identifier at-
tributes as well as a generalization histogram.

Figure 1(e) illustrates the application of k-anonymity with
k=2 to the histogram of Figure 1(b), using a generalization
hierarchy grouping Males and Females into a single attribute.
Despite being widely adopted to publish statistics and med-
ical data, k-anonymity does not prevent re-identification at-
tacks that exploit external public data [Li et al., 2011].

4 DA Analysis Roadmap
This section outlines the methodology followed in the rest of
the paper. Section 5 presents DP counterparts to traditional
DA systems, including cell suppression, swapping, and k-
anonymity. It aims to show that these DP counterparts pre-
serve the main characteristics of the original mechanisms and
provide an analysis of their privacy and errors under a unified
privacy setting of histogram data release x̃(D). It is impor-
tant to note that classical DP algorithms (e.g., Laplace mech-
anism) and cell suppression, make no assumptions about data
attributes. In contrast, swapping relies on the use of quasi-
identifiers, and k-anonymity further requires a generalization
hierarchy This hierarchy forces k-anonymity to produce a
histogram x̃(D,H) in a different space than that of x̃(D).
While this does not affect the privacy analysis, which allows
for a meaningful comparison across all mechanisms, it chal-
lenges the evaluation of the performance of these techniques.
The paper addresses this challenge by also presenting a uni-
fied empirical framework for comparing the errors and biases
of the various techniques in terms of the original data space
X . This necessitates a reconstruction step for k-anonymity,
which is outlined in Appendix B.3. It is important to recog-
nize that, while the DP DA mechanisms share many charac-
teristics with their traditional DA counterparts, they should
not be considered as “noisy” versions of them. As a re-
sult, the analytical and experimental results presented may
not necessarily show a decrease in error as the privacy budget
increases. In fact, they may even be more precise than the
traditional mechanisms for some privacy budgets.

Next, we present the DP versions of the traditional DA sys-
tems and their privacy analyses. These analyses specify the
value of the � parameter for a given value of ✏. Section 6
analyzes the fairness results. Finally, Section 7 presents an
experimental evaluation on an extract of the American Com-
munity Survey (ACS) data [NIST, 2021].

5 Privacy and Errors Analysis
This section presents the first main contribution of the pa-
per. It introduces differentially private counterparts to the DA
presented earlier and analyzes their privacy guarantees and er-
rors. The section starts with a technical lemma that specifies a
sufficient condition for (✏, �)-DP. The lemma is a critical tool



to derive the privacy guarantees of the randomized versions
of the DA discussed next.
Lemma 1. Let D, D0 be datasets such that D ⇠ D0, let S be
defined as

S :=

⇢
o

����
Pr (M(D) = o)

Pr (M(D0) = o)
 exp(✏)

�

and let S{ denote the complement set of S. If

Pr
⇣
M(D) 2 S{

⌘
 � ,

then mechanism M is (✏, �)-differentially private.

5.1 Differentially Private Cell Suppression
While cell suppression protects the privacy of the minorities
of the dataset, it neglects the privacy protection of the majori-
ties and thus does not satisfy the requirements of differential
privacy. Indeed, the deterministic nature of this mechanism
prevents it from generating different outputs for two neigh-
boring datasets. An extended discussion is deferred to Ap-
pendix B. To address this issue, the paper introduces a ran-
domized version of cell suppression, referred to as DP cell
suppression. This mechanism, denoted by MCS, releases a
private count for every i 2 [n] as follows:

MCS(D)i = x̂i =

⇢
xi if xi + ⌘i � k,
k/2 otherwise

, (2)

where ⌘i ⇠ Lap (2/✏) is an additive noise variable drawn
from a 0-centered Laplace distribution with factor 2/✏ and k
is the cell suppression threshold.

Mechanism MCS has similarities with the Sparse Vector
Technique (SVT) [Dwork et al., 2014] which, given a se-
quence of queries and a real-valued threshold, outputs a vec-
tor indicating whether each (noisy) query answer is above or
below the corresponding (noisy) threshold. However, there
are three fundamental differences: (1) MCS, does not perturb
the threshold value k; (2) it generates numeric outputs in con-
trast to binary outputs of SVT ; and (3) it reports true counts
rather than noisy counts, as long as the noisy counts are above
the threshold (first condition of Equation (2)).

Figure 2(left) reports the empirical errors of MCS for sev-
eral threshold values k (x-axis) and ✏ parameters. The errors
are given for the ACS Massachusetts dataset [NIST, 2021]
(described in details in Appendix C.1): they report the `1 dis-
tances kx̃� xk1 between the histograms of the cell suppres-
sion and its DP counterpart. Notice how close the errors in-
curred by MCS are with respect to the original mechanism.
This is important as it enables a meaningful comparison of
MCS and other DP mechanisms, since MCS has a similar
bias as the traditional cell suppression that is currently widely
adopted by statistical agencies and organizations.
Privacy Analysis. The next theorem reports the privacy
guarantee provided by MCS.
Theorem 1. Given a value ✏ > 0 and a threshold k < B,
mechanism MCS is (✏, �)-differentially private with

� = 1� 1

4
exp (�✏(B � k)) ,

where B is a bound on the histogram entries.

Error Analysis. Having examined privacy, the paper shows
how close the histograms x̃ returned by MCS are to the orig-
inal histogram x. The error analysis focuses on the statistical
bias which, for each entry i 2 [n], can be expressed as

B (MCS)i = E [MCS(D)i]� xi =

✓
k

2
� xi

◆
· Pr (xi + ⌘i < k) .

Observe that the error merely takes place when the noisy
count is below the threshold k and is quantified as the differ-
ence between half of the threshold and the true count. There-
fore, the following theorem relates the errors associated with
MCS with the probabilities of noisy counts being below the
threshold, and the differences between half of the threshold
and the counts of the original histogram.
Theorem 2. The statistical bias of the DP cell suppression
mechanism MCS can be bounded as follows,

kB (MCS)k1  kk/2 · 1n � xk2 · kpk2 ,

where p is a shorthand for the vector

p := [Pr (x1 + ⌘1 < k) . . . Pr (xn + ⌘n < k)] . (3)

5.2 Differentially Private Swapping
Despite its randomized nature, the swapping mechanism fails
to meet the requirements of differential privacy. To illustrate
its failure, let us take a look at an instance of two neighboring
datasets D and D0. Suppose that D0 has a record, say a1,
which does not match any record in D for any attribute A 2
Q. No matter how swapping is performed, it cannot generate
a record a1 from the input dataset D.

To obtain a DP counterpart to swapping, it is thus criti-
cal to reason about the universe of quasi-identifiers, not sim-
ply the set of quasi-identifiers present in the database. Let
XQ = {q1, . . . , qnQ} denote the data universe of quasi-
identifiers. Instead of swapping quasi-identifiers, the mech-
anism will randomly choose some quasi-identifiers from XQ.
The mechanism, referred to as DP swapping and denoted by
MSW, works as follows: for every ai 2 X , consider the pair
(ai, xi) denoting the tuple and its associated count in the his-
togram x. MSW defines ãi[N ] = ai[N ] and

ãi[Q] =

(
ai[Q] w.p. � = exp(✏)

exp(✏)+nQ�1 ,

Uniform(XQ \ ai[Q]) w.p. 1� �
(4)

where Uniform(C) denotes the uniform probability over the
event space C. The result of the step above may create multi-
ple entries (ãi, xi) and (ãj , xj) with ãi = ãj . The procedure
collapses all such tuples by summing the various xi and xj .
The induced sub-histogram is then extended to a histogram
x̃. Notice that MSW only modifies quasi-identifiers and pro-
duces a private histogram x̃(D̃), similarly to what done by
the original swapping algorithm.

Figure 2 (center) compares the `1 distances kx̃ � xk1 be-
tween the histograms generated by MSW and its traditional
counterpart for various amounts of rows swapped (in %) and
parameters ✏. Once again, observe how close the errors of the
two mechanisms are.
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Privacy analysis. Recall that differential privacy protects
the disclosure of any individual user participating in the
dataset. On the other hand, DP swapping operates at the level
of a histogram count and it does so in way which impedes
an analysis relying on pure (✏, 0)-DP. The privacy analysis of
MSW is reported in the following theorem.
Theorem 3. For a given ✏ > 0, the MSW algorithm is (✏, �)-
DP with � given by

1� 1� �2

nQ � 1
�
✓

1� �

nQ � 1

◆2

,

with � defined in Equation (4) and nQ = |XQ|,
Error analysis. Next we discuss how close the errors of the
histograms returned by swapping and its DP counterparts are.
Proposition 1. The bias associated with each element i 2 [n]
of the DP swapping histogram can be expressed as

B (MSW)i =

P
j2Ii

xj � nQ · xi

exp(✏) + nQ � 1
,

with the index set Ii collecting all the elements of the data
universe X = {aj | j 2 [n]}, which share the same non-
quasi-identifiers N with ai, i.e.,

Ii := {j 2 [n] | aj [N ] = ai[N ]} . (5)

Theorem 4. The statistical bias of the DP swapping mecha-
nism MSW can be expressed as follows,

kB (MSW)k1 =
nQ

exp(✏) + nQ � 1

nX

i=1

Dmean (xIi) ,

where Ii is an index set defined in Equation (5) and xIi is the
reduced histogram consisting of the count xj for any j 2 Ii.
Additionally, Dmean (xIi) is the mean absolute deviation of
the histogram xIi , i.e.,

Dmean (xIi) :=
1

nQ

X

j2Ii

����xj �
P

l2Ii
xl

nQ

���� .

5.3 Differentially Private k-anonymity
Like cell suppression, k-anonymity is a deterministic algo-
rithm, which cannot produce outputs satisfying DP. In recent
years, however, there were several attempts to integrate k-
anonymity and differential privacy. In particular, Li et al.

[2011] proposed a mechanism that applies the generalization
histogram and cell suppression with parameter k to a sub-
sampled version of the original dataset. This paper proposes
a generalization of this mechanism.
DP k-anonymity algorithm. The paper proposes a simple
modification to the k-anonymity algorithm presented in the
previous section. The mechanism, called DP-k-anonymity
and denoted by MKA, operates in two steps:
1. Produce a subsampled version D� of the dataset D in

which each row is retained with probability �2(0, 1).
2. Apply the classical k-anonymity algorithm on D� .
Contrary to [Li et al., 2011], MKA makes it possible to use
a generalization hierarchy for merging cells, like in its deter-
ministic counterpart. Figure 2 (right) reports the empirical
errors of MKA for several values k (x-axis); The values of �
are implied by the choice of the privacy parameter ✏ (see The-
orem 5). The figure reports the `1 distances between the his-
tograms (in the original space X ) reconstructed from the gen-
eralized DP k-anonymized and the original histogram x(D)
as well as those derived via its deterministic counterpart. A
description of the reconstruction step adopted is provided in
Appendix B. Once again, notice that the errors incurred by
the DP and deterministic k-anonymity counterparts are very
close to each other: in fact, the DP versions improve upon the
deterministic mechanism for small values of ✏ as an artifact
of the sampling procedure which considers fewer records.
Privacy Analysis. The next result generalizes [Li et al.,
2011] and reports the privacy guarantees provided by MKA.
Theorem 5. For a given k>0 and sampling probability �2
(0, 1), MKA satisfies (✏, �)-DP for � = d(k,�, ✏), where the
function d is defined as

d(k,�, ✏) = 1� min
w2[B]

0

@
⌫X

j=0

f(j;w,�)

1

A
2

, (6)

⌫ is a shorthand for b(1 � exp(�✏))wc and f represents the
probability mass function of the binomial random variable,

f(j;w,�) =

✓
w

j

◆
�w(1� �)w�j , 8 j 2 [w], (7)

Error Analysis. The goal of the analysis is again to show
that the DP version of k-anonymity is close, in errors, to its



Figure 3: MA ACS dataset: Fairness values ↵ for cell suppression (left), swapping (center) and k-anonymity (right) and their differentially
private counterparts (average of 200 repetitions).

deterministic counterpart. Recall that, contrary to cell sup-
pression and swapping, k-anonymity does not return a his-
togram in the same space of the attribute universe, due to
its application of the generalization hierarchy. As a conse-
quence, the output of k-anonymity consists of the counts of
individual records with respect to the data universe XH of
the generalization hierarchy. Because of this critical differ-
ence, the rest of this section analyzes the mechanism errors by
bounding whether a count of the histogram x(D�) (produced
in step 1) is merged by the k-anonymization step (step 2).
Let M�

KA denote the binary vector

M�
KA (D�) := [1 {x1 (D�) < k} . . . 1 {xn (D�) < k}] .

The error analysis focuses on statistical bias regarding
whether a count would be merged by the generalization hier-
archy, i.e., the difference between M�

KA (D�) and M�
KA(D):

B
⇣
M�

KA

⌘
= E

h
M�

KA (D�)
i
�M�

KA(D)

=

2

64
E [1 {x1 (D�) < k}]� 1 {x1 < k}

...
E [1 {xn (D�) < k}]� 1 {xn < k}

3

75

>

.

Next, we establish the equivalence between the count xi(D�)
and a binomial random variable B(xi,�) and presents the
mathematical expressions characterizing the bias.
Theorem 6. The statistical bias associated of the DP k-
anonymity mechanism M�

KA ca be expressed as, each i 2 [n],

B
⇣
M�

KA

⌘

i
= E [1 {xi (D�) < k}]� 1 {xi < k}

=

(Pxi

j=xi�k+1

�xi

j

�
�xi�j(1� �)j , xi � k,

0, otherwise.

6 Fairness analysis
The second main contribution of this paper is an analysis of
the fairness of various differentially private DA algorithms,
compared to traditional differential privacy. The definition
of fairness used in this paper (Definition 1) is the maximum
difference in biases in the privacy-preserving histograms. It
should be noted that the bias of the DP k-anonymity algo-
rithm, which utilizes a generalization histogram, is examined

in a different context than the one of the other mechanisms.
Thus, the paper specifically focuses on an analytical compar-
ison of the fairness of the DP k-anonymity algorithm.

The next result quantifies the unfairness of the DP cell sup-
pression and swapping, along with the Laplace mechanism.
Theorem 7 (↵-fairness for MCS). The DP cell suppression
algorithm is ↵CS-fair with ↵CS given by

(xn � x1) p1 +max

⇢����
k

2
� x1

���� ,
����
k

2
� xn

����

�
(p1 � pn),

where p1 and pn are the first and last entries of p defined in
Equation (3) respectively.
Theorem 8 (↵-fairness for MSW). The DP swapping algo-
rithm MSW is ↵SW-fair with ↵SW given by

2nQ kxk⌦
exp(✏) + nQ � 1

=
2nQ

exp(✏) + nQ � 1
(xn � x1).

Theorem 9 (↵-fairness for MLap). The Laplace mechanism
MLap is ↵Lap-fair with ↵Lap given by

exp (�✏x1/2)

2
kxk⌦ =

exp (�✏x1/2)

2
(xn � x1) .

Figure 3 illustrates the fairness violations values, repre-
sented by the value of ↵, for cell suppression, swapping,
and k-anonymity, as well as their differentially private coun-
terparts, for various privacy parameters ✏ and values of k
(for cell suppression and k-anonymity) or percentage of rows
swapped (for swapping). It can be observed that the fairness
violations of the differentially private mechanisms are com-
parable (or better) to those of their traditional counterparts.
This is particularly noteworthy as the privacy parameter ✏ in-
creases. As previously mentioned, it is important to remem-
ber that the differentially private mechanisms are not “noisy”
versions of their traditional counterparts; rather they are con-
ceptually similar mechanisms. Consequently, they may ex-
hibit lower fairness violations compared to their traditional
counterparts, as seen for DP k-anonymity.

The following theorem is the third key result of this paper.
It proves the superiority of the Laplace mechanism over DP
cell suppression and swapping in terms of fairness errors.
Theorem 10. Suppose that the minimum count of the original
histogram x(D) is between 2 and the threshold k, i.e., 2 



✏ Mechanism � Bias (`1 norm) ↵-fairness

0.5

Laplace 0 763.775 3.655
Discrete Gaussian 0.363 980.81 4.945
DP Suppression 0.999 935.525 4.345
DP Swapping 0.868 10906.79 469.015
DP k-anonymity 0.878 2337.8 22.65

1

Laplace 0 342.885 1.845
Discrete Gaussian 0.132 659.215 3.065
DP Suppression 0.999 1003.035 4.5
DP Swapping 0.874 9859.26 425.335
DP k-anonymity 0.906 3297.4 32.1

2

Laplace 0 154.78 0.905
Discrete Gaussian 0.017 436.925 2.2
DP Suppression 0.999 1018.335 4.72
DP Swapping 0.899 6841.19 282.73
DP k-anonymity 0.981 4175.5 37.65

4

Laplace 0 67.34 0.465
Discrete Gaussian 3E-4 290.715 1.495
DP Suppression 0.999 1014.63 4.92
DP Swapping 0.969 1664.63 101.645
DP k-anonymity 0.999 4590.7 40.75

Table 1: MA dataset data release: Comparison of DP mechanisms
in terms of �, `1 norm of the empirical bias and ↵-fairness.

x1  k. Then, the fairness error associated with the Laplace
mechanism is not greater than that of the DP cell suppression
or DP swapping mechanism, namely,

↵Lap  ↵CS and ↵Lap  ↵SW.

It is worth noting that k-anonymity operates in a differ-
ent space from the original histogram space, thus a theoret-
ical comparison between the Laplace mechanism and DP k-
anonymity is not feasible. However, the paper next presents
empirical evidence that the Laplace mechanism has a signifi-
cant advantage over DP k-anonymity as well.

7 Experimental Evaluation
This study assesses the performance of the DP variants of tra-
ditional DA mechanisms and compares them with two key DP
mechanisms, the Laplace and the Discrete Gaussian Mecha-
nisms, reviewed in Section 3. The experiments use the ACS
2019 IPUMS datasets for Massachusetts, Texas, and Outlier
[NIST, 2021]. All the experiments report the average of 200
repetitions. Results for the latter two datasets are included in
the appendix as their trends are similar to the former. The
appendix also includes a more extensive description of the
dataset and experimental settings. This section focuses on
evaluating the mechanisms in two settings: data release and
classification.
Data Release. The first task compares datasets recon-
structed from histograms generated by the various DP mech-
anisms studied. Readers are referred to Appendix B for de-
tails on the reconstruction algorithms. Table 1 assesses the
performance of the DP variants of the traditional DA mecha-
nisms and the Laplace and the discrete Gaussian mechanisms
in terms of errors and fairness violations. In mechanisms that
may produce negative counts, a simple post-processing pro-
jection into the non-negative orthant is applied.

� = 0.5 � = 1 � = 2 � = 4
0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y
(R

O
C

A
U

C
Sc

or
e)

Baseline

Laplace

Discrete Gaussian

DP Cell Suppression

DP k-anonymity

DP Swapping

Figure 4: MA dataset: Results for Logistic Regression.

These results are particularly significant: contrary to com-
monly held beliefs, they demonstrate that classical DP algo-
rithms not only provide strong privacy guarantees (see the �
values), but also produce histograms that improve over tradi-
tional DA mechanisms in terms of both accuracy (see the bias
column) and fairness metrics (see ↵-fairness column). As a
consequence, when agencies desire to release data sets, it is
advisable they consider traditional DP mechanisms.
Classification. It is also important to compare the perfor-
mance of all the DP mechanisms in a classification task. The
setting employs the private datasets obtained through a data-
release query in order to train a logistic regression classifier.
The task is to predict whether an individual earns more than
$50,000 per year, and the results in Figure 4 are presented in
terms of accuracy on the original, non-private dataset. Ob-
serve how the Laplace and discrete Gaussian mechanisms
lead to classifiers with much higher accuracies than clas-
sifiers trained over data produced by other traditional DA
mechanisms. Notably, the classification accuracy of Laplace
and discrete Gaussian is much closer to that of the base-
line method (trained on non-private datasets) than any other
method. Again, this is significant: despite their simplicity,
these tasks are the basis for numerous statistical analyses per-
formed routinely by data agencies and organizations.

8 Conclusion
This paper presented a framework for comparing traditional
disclosure avoidance systems (DA) to differential privacy.
It proposed carefully randomized versions of three widely
adopted traditional DA methods, i.e., suppression, swapping,
and k-anonymity, and derived (✏, �)-DP bounds for these
mechanisms. The paper also analyzed these DP algorithms
empirically and showed that they are close to their tradi-
tional counterparts both in terms of accuracy and fairness.
The DP DA mechanisms were then compared experimentally
with traditional DP mechanisms (i.e., the Laplace or the dis-
crete Gaussian mechanisms) on data release and classification
tasks. Contrary to popular belief, the experimental evalua-
tion showed that classical DP mechanisms may be superior
to traditional DA in terms of accuracy and fairness for the
same privacy levels. This study has the potential to impact
the way in which data agencies and organizations approach
disclosure avoidance in the future as it provides a framework
that enables a comparison of the strengths and limitations of
traditional DA and differential privacy.



Ethical Statement
From an ethical standpoint, the study’s purpose is not to
condone the release of data by agencies that have not fully
considered the privacy implications of their actions. The
study should not be taken as a means to discredit tradi-
tional DA methods. Furthermore, the empirical analysis pre-
sented should be understood as specific to the mechanisms
and datasets discussed in the study.

It is also important to consider the potential benefits of the
study, such as improved accuracy and fairness in data release
which may be gained with the adoption of traditional differ-
entially private tools. Additionally, the study has the poten-
tial to advance the development of more effective privacy-
preserving technologies.
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A Missing Proofs
Proof of Lemma 1. For any output O ✓ R and neighboring
datasets D,D0 2 Xm,

Pr (M(D) 2 O)

= Pr (M(D) 2 (O \ S)) + Pr
⇣
M(D) 2

⇣
O \ S{

⌘⌘


Z

o2(O\S)
Pr (M(D) = o) do+ Pr

⇣
M(D) 2 S{

⌘

 exp(✏) ·
Z

o2(O\S)
Pr (M(D0) = o) do+ �

 exp(✏) ·
Z

o2O
Pr (M(D0) = o) do+ �

= Pr (M(D0) 2 O) + �.

Proof of Theorem 1. Without loss of generality, the neigh-
boring datasets, D,D0 2 Xm, are assumed to have different
last records with an in D and an�1 in D0. It implies that the
histograms of D and D0 differ in the last two entries, i.e.,

x(D0) = [x0
1 . . . x0

n�1 x0
n]

= [x1 . . . xn�1 + 1 xn � 1] .

Consider the following set

S =

⇢
o 2 Nn

+

���� on�1 = on =
T

2

�
.

For any element o 2 S, it follows that

Pr (MCS(D) = o)

Pr (MCS(D0) = o)

=
Pr (xn�1 + ⌘n�1 < k)

Pr
�
x0
n�1 + ⌘0n�1 < k

� · Pr (xn + ⌘n < k)

Pr (x0
n + ⌘0n < k)

(8)

=

R k
�1 exp

�
� ✏

2 |v � xn�1|
�
dv

R k
�1 exp

�
� ✏

2

��v � x0
n�1

��� dv
·
R k
�1 exp

�
� ✏

2 |v � xn|
�
dv

R k
�1 exp

�
� ✏

2 |v � x0
n|
�
dv

 exp
⇣ ✏
2

⌘
· exp

⇣ ✏
2

⌘
(9)

= exp(✏),

where, in Equation (8), ⌘n�1, ⌘0n�1, ⌘n, and ⌘0n are all i.i.d.
Laplacian random variables with the parameter 2/✏. Besides,
Equation (9) comes from the triangle inequality. This in-
equality implies that the set S is a subset of S in Lemma 1.
As a result, the probability Pr

⇣
MCS(D) 2 S{

⌘
can then be

evaluated as follows

Pr
⇣
MCS(D) 2 S{

⌘

 Pr
⇣
MCS(D) 2 S{

⌘
= 1� Pr (MCS(D) 2 S)

= 1� Pr (xn�1 + ⌘n�1 < k) · Pr (xn + ⌘n < k)

 1� Pr (B + ⌘n�1 < k) · Pr (B + ⌘n < k) (10)

= 1� 1

4
exp (�✏(B � k)) , (11)

where Equation (10) comes from the fact that the function
x 7! Pr (x+ ⌘ < k) with ⌘ ⇠ Lap (2/✏) is decreasing and
the histogram x(D) is assumed to be bounded by the con-
stant B entrywise. Additionally, Equation (11) is due to the
assumption that k < B. By Lemma 1, the privacy guarantee
is established for the mechanism MCS, which completes the
proof here.

Proof of Theorem 2. By the Cauchy-Schwarz inequality,

kB (MCS)k1 =
nX

i=1

����

✓
k

2
� xi

◆
· Pr (xi + ⌘i < k)

����


����
k

2
· 1n � x

����
2

· kpk2 .

Proof of Theorem 3. Without loss of generality, the neigh-
boring datasets, D,D0 2 Xm, are assumed to have dif-
ferent last records with an in D and an�1 in D0, where
an[Q] 6= an�1[Q] and an[N ] = an�1[N ]. Consider the
following set

S =
�
x̃ 2 Nn

+

�� ãn�1[Q] = ãn[Q]
 
,

where x̃ is the resulting histogram associated with {ãi | i 2
[n]} generated by the DP swapping mechanism. It is straight-
forward to see that, for any x̃ 2 S,

exp (�✏)  Pr (MSW(D) = x̃)

Pr (MSW(D0) = x̃)
 exp (✏) .

Then, it follows that

Pr
⇣
MSW(D) 2 S{

⌘

= 1� Pr (MSW(D) 2 S)

= 1�
X

j2In

Pr (ãn�1[Q] = ãn[Q] = aj [Q])

= 1� 2
�(1� �)

nQ � 1
� (nN � 2)

✓
1� �

nQ � 1

◆2

= 1� 1� �2

nQ � 1
�
✓

1� �

nQ � 1

◆2

.

By Lemma 1, it provides the privacy guarantee for the DP
swapping mechanism.

Proof of Theorem 5. In order to derive the privacy guarantee
for the DP k-anonymity mechanism, it suffices to show that
the sample dataset D� satisfies (✏, �)-differential privacy with
� defined in Equation (6) because of the significant property,
known as post-processing immunity [Dwork et al., 2014].

Prior to analysis, let M� denote the randomized mecha-
nism which generates the sample dataset. Without loss of
generality, assume that the neighboring datasets, D,D0 2
Xm, have different last records with an in D and an�1 in
D0. It implies that the histograms of D and D0 differ in the
last two entries, i.e.,

x(D0) = [x0
1 . . . x0

n�1 x0
n]

= [x1 . . . xn�1 + 1 xn � 1] .



Consider the set

SD,D0 :=
⇢
D�

����
x(D�)n  b(1� exp (�✏)) · xnc
x(D�)n�1  b(1� exp (�✏)) · (xn�1 + 1)c

�
.

For any sample dataset D� 2 SD,D0 ,

x(D�)n  b(1� exp (�✏)) · xnc ,
=) x(D�)n  (1� exp (�✏)) · xn ,

=) exp (�✏)xn  xn � x(D�)n

=) xn

xn � x(D�)n
 exp (✏) .

Notice that the count x(D�)n is non-negative, which implies
the following

1  xn

xn � x(D�)n
 exp (✏) . (12)

Likewise, for the attribute an�1, the following inequalities
hold

exp (�✏)  xn�1 + 1� x(D�)n�1

xn�1 + 1
 1 . (13)

Therefore,

Pr
⇣
M�

KA(D) = D�

⌘

Pr
⇣
M�

KA(D
0) = D�

⌘

=
Pr (x(D�)n�1 | xn�1)

Pr (x(D�)n�1 | x(D0)n�1)
· Pr (x(D�)n | xn)

Pr (x(D�)n | x(D0)n)

=

� xn

x(D�)n

�� xn�1

x(D�)n�1

� ⇣ �
1��

⌘x(D�)n+x(D�)n�1

(1� �)xn+xn�1

� xn�1
x(D�)n

�� xn�1+1
x(D�)n�1

� ⇣ �
1��

⌘x(D�)n+x(D�)n�1

(1� �)xn+xn�1

=
xn

xn � x(D�)n
· xn�1 + 1� x(D�)n�1

xn�1 + 1
.

Then, by Equation (12) and (13),

exp (�✏)  Pr (M�(D) = D�)

Pr (M�(D0) = D�)
 exp (✏) .

Thus, for any neighboring datasets D and D0, SD,D0 turns out
to be a set, each element of which M�(D) and M�(D0) gen-
erate with similar probability. By Lemma 1, the error proba-
bility � can then be computed as

� = max
D⇠D0

Pr
⇣
M�(D) 2 S{

D,D0

⌘

= 1� min
D⇠D0

Pr (M�(D) 2 SD,D0)

= 1� min
w2[B]

0

@
⌫X

j=0

f(j;w,�)

1

A
2

,

where ⌫ is a shorthand for b(1 � exp(�✏))wc and f is a
probability mass function defined in Equation (7). In this
way, the privacy guarantee has been established for the DP
k-anonymity mechanism.

Proof of Theorem 7. Observe that, for any i < j,

B (MCS)i � B (MCS)j =

✓
k

2
� xi

◆
pi �

✓
k

2
� xj

◆
pj

=

✓
k

2
� xi

◆
pi �

✓
k

2
� xj

◆
pi

�
+

✓
k

2
� xj

◆
pi �

✓
k

2
� xj

◆
pj

�

= (xj � xi) pi +

✓
k

2
� xj

◆
(pi � pj) (14)

It follows that the fairness error ↵CS can be computed as

kB (MCS)k⌦ = max
i2[n]

B (MCS)i � min
j2[n]

B (MCS)j

= max
1i<jn

���B (MCS)i � B (MCS)j

���

= max
1i<jn

����(xj � xi) pi +

✓
k

2
� xj

◆
(pi � pj)

���� (15)

 max
1i<jn

|(xj � xi) pi| + max
1i<jn

����

✓
k

2
� xj

◆
(pi � pj)

����
(16)

= (xn � x1)p1 + max
1i<jn

����

✓
k

2
� xj

◆
(pi � pj)

���� (17)

 (xn � x1)p1 + (p1 � pn)max
j2[n]

����

✓
k

2
� xj

◆����

 (xn � x1) p1 +max

⇢����
k

2
� x1

���� ,
����
k

2
� xn

����

�
(p1 � pn) ,

where Equation (15) is derived from Equation (14) and Equa-
tion (16) comes from the triangle inequality. Besides, Equa-
tion (17) is due to the fact that the histogram x is sorted in an
increasing order, i.e., x1  · · ·  xn and, as a consequence,
the probabilities p in Equation (3) appear in a decreasing or-
der, i.e., p1 � · · · � pn. Except for the trivial case that,
the the counts are all the same, i.e., x1 = · · · = xn, this in-
equality is also tight when the maximum count of the original
histogram is exactly half of the threshold, i.e., xn = k/2.



Proof of Proposition 1. For any ai 2 X , it follows that
B (MSW)i = E [MSW(D)i]� xi

=
nX

j=1

E [xj · 1 {ãj = ai | ai}]� xi

= E [xi · 1 {ãi = ai | ai}] +X

j2Ii\{i}

E [xj · 1 {ãj = ai | ai}] +

X

j2[n]\Ii

E [xj · 1 {ãj = ai | ai}]� xi

= xi · � +
X

j2Ii\{i}

✓
xj · 1� �

nQ � 1

◆
+ 0� xi

=
xi exp(✏)

exp(✏) + nQ � 1
+

P
j2Ii

xj � xi

exp(✏) + nQ � 1
+ 0� xi (18)

=

P
j2Ii

xj � nQxi

exp(✏) + nQ � 1
,

where Equation (18) just plugs in the value � defined in
Equation (4). Thus, it manages to establish the mathemat-
ical expression of the bias of the DP swapping mechanism
MSW.

Proof of Theorem 8. In the first place, notice that, for any i 2
[n],

X

j2Ii

B (MSW)j =
X

j2Ii

P
l2Ii

xl � nQxj

exp(✏) + nQ � 1
= 0 ,

which implies the following
max
j2Ii

B (MSW)j � 0 � min
j2Ii

B (MSW)j . (19)

Suppose that g and h are the indices associated with maxi-
mum and minimum biases respectively, i.e.,

g = argmax
l2[n]

B (MSW)l , h = argmin
l2[n]

B (MSW)l .

and g (or h) represents the index associated with the mini-
mum (or maximum) bias over the index set Ig (or Ih), i.e.,

g = argmin
l2Ig

B (MSW)l , h = argmax
l2Ih

B (MSW)l .

By Equation (19), the following inequalities hold
B (MSW)g  0  B (MSW)h . (20)

Then, it follows that
kB (MSW)k⌦ = B (MSW)g � B (MSW)h


⇣
B (MSW)g � B (MSW)g

⌘
+
⇣
B (MSW)h � B (MSW)h

⌘

(21)

=
nQ

⇣
xg � xg

⌘

exp(✏) + nQ � 1
+

nQ

�
xh � xh

�

exp(✏) + nQ � 1

 2nQ (xn � x1)

exp(✏) + nQ � 1

=
2nQ kxk⌦

exp(✏) + nQ � 1
,

where Equation (21) is a direct consequence of Equation (20).

Proof of Theorem 9. By Definition 1 of ↵-fairness, the fair-
ness violation coefficient ↵ can be computed as

kB (MLap)k⌦ = max
j2[n]

B (MLap)j � min
j2[n]

B (MLap)j

= B (MLap)1 � B (MLap)n (22)

=
exp (�✏x1/2)� exp (�✏xn/2)

✏

 xn � x1

✏
sup

x2(x1,xn)

����
d exp (�✏x/2)

dx

���� (23)

=
exp (�✏x1/2)

2
(xn � x1)

=
exp (�✏x1/2)

2
kxk⌦ ,

where Equation (22) comes from the fact that the biases de-
crease, as the counts increase, i.e., B (MLap)1 � · · · �
B (MLap)n � 0. Besides, Equation (23) is due to the mean
value inequalities [Clarke and Ledyaev, 1994]. It completes
the proof here.

Proof of Theorem 10. First of all, note that

↵CS = (xn � x1) p1 +max

⇢����
k

2
� x1

���� ,
����
k

2
� xn

����

�
(p1 � pn)

� (xn � x1) p1

� 1

2
(xn � x1) (24)

� exp (�✏x1/2)

2
(xn � x1)

= ↵Lap ,

where the inequality in Equation (24) comes from the fact
that the function x 7! Pr (x+ ⌘  k) with ⌘ ⇠ Lap (2/✏) is
decreasing and x1 is below the threshold k, which implies the
following

p1 = Pr (x+ ⌘  k) � Pr (k + ⌘  k) =
1

2
.

Besides, nQ is the cardinality of the restricted data universe
XQ, which is assumed to be non-empty and thus nQ is at least
1. Then, it follows that

↵SW =
2nQ

exp(✏) + nQ � 1
(xn � x1)

= 2

✓
1� exp(✏)� 1

exp(✏) + nQ � 1

◆
(xn � x1)

� 2 exp (�✏) (xn � x1)

� 2 exp (�✏x1/2) (xn � x1) (25)

� exp (�✏x1/2)

2
(xn � x1)

= ↵Lap ,

where Equation (25) is based on the assumption that x1 is no
less than 2.



B Traditional DA Algorithms
This section presents more formal specifications of the tradi-
tional DA algorithms adopted in the paper.

B.1 DP Cell Suppression
Algorithms 1 and 2 provide the pseudocode for the tradi-
tional cell suppression mechanism and its differentially pri-
vate counterpart, respectively.

To further elaborate, algorithm 1, which describes the tra-
ditional cell suppression mechanism, takes as input a his-
togram x(D) and a threshold k 2 Z+ and returns a private
version x̃(D) of x(D). The algorithm iterates through each
record of the histogram and suppresses each value xi with
value bk/2c if xi < k or releases the original value xi other-
wise (lines 1–3).

Algorithm 1 Cell Suppression

Require: Histogram x(D) with vector of counts (xi)i2[n],
threshold k 2 Z+.

function cellSuppress(x(D), k):
1: for i 2 [n] do

2: x̃i  
⇢
bk/2c if xi < k
xi otherwise

3: end for
4: return Histogram x̃(D) with counts x̃ = (x̃i)i2[n]

Algorithm 2 describes the differentially private counterpart
of cell suppression. It takes as input a histogram x(D), a
threshold k 2 Z+, and a privacy parameter ✏ > 0 and returns
a private version x̃(D) of the original histogram x(D). First
the threshold k is perturbed with Laplace noise (of scale 2/✏)
to obtain k̃ (line 1). Then the algorithm iterates over every
record of the histogram and suppresses each count xi with
value bk̃/2c if xi < k̃ or releases the original value xi other-
wise (lines 2–4).

Algorithm 2 DP Cell Suppression

Require: Histogram x(D) with vector of counts (xi)i2[n],
threshold k 2 Z+, privacy parameter ✏ > 0.

function DPCellSuppress(x(D), k, ✏):
1: k̃  k + Laplace(2/✏)
2: for i 2 [n] do

3: x̃i  
⇢
bk̃/2c if xi < k̃
xi otherwise

4: end for
5: return Histogram x̃(D) with counts (x̃i)i2[n]

On why cell suppression does not satisfy differential
privacy. For instance, there exists a pair of neighboring
datasets, D and D0. Suppose that D has one more record
of an than D0 while D0 has one more record of an�1 than D.
The attributes an�1 and an are assumed to be the “majori-

ties” in whichever dataset, D or D0, i.e.,

x(D0)n�1 > x(D)n�1 � k ,

x(D)n > x(D0)n � k .

Thus, given the input datasets D and D0, the outputs of the
original cell suppression mechanism associated with an are
still x(D)n and x(D0)n = x(D)n � 1 respectively. It means
that this mechanism, due to the nature that it is deterministic,
can hardly derive the same output from these two neighbor-
ing datasets, which violates the requirements of differential
privacy.

B.2 DP Swapping
Swapping is done with respect to a metric that quantifies the
discrepancies between any two records. Given the set of fea-
tures ⇤, this metric, let us denote it by dswap, is defined over
the domain of possible records of a histogram as

dswap(ai,aj) ,
X

�2⇤

cat(�)⇢(ai[�],aj [�])

+ num(�)
|ai[�]� aj [�]|

�range

Where ⇢ is the discrete metric (i.e. ⇢(a, b) = 0 () a = b
and 1 otherwise) and �range is the range of the possible values
taken by a numerical feature �. cat and num are characteris-
tic functions of the sets of categorical and numerical features
of the histogram respectively. Refer to algorithm 3 for details
on the non-private/deterministic swapping algorithm.

Algorithm 3 describes the traditional swapping mecha-
nism. This takes as input a histogram x(D) with N records,
a swapping parameter � 2 [0, 1], and a list of quasi-
identifiers. For b(1��)N/2c times, the algorithm picks a hith-
erto unswapped record ai of the histogram, picks the closest
unswapped record as to ai (w.r.t. the metric dswap) and swaps
the quasi identifiers of ai and as (lines 1–4).

Algorithm 3 Swapping

Require: Histogram x(D) of size N , Swapping Parameter
� 2 [0, 1], list of quasi-identifiers Q

function swapping(x(D), �, Q):
1: for b(1��)N/2c times do
2: Randomly pick an unswapped row ai of x(D)
3: as  arg min

aj2x(D)\ai

aj is unswapped

dswap(aj ,ai)

4: ai[Q],as[Q] as[Q],ai[Q]
5: end for
6: return Swapped histogram x(D).

The differentially private counterpart of swapping was de-
scribed in subsection 5.2. Algorithm 4 presents this form of
swapping. It takes as input a histogram x(D) with N records,
a privacy parameter ✏ > 0, and a list of quasi-identifiers Q
and returns a private/modified histogram x(D). For each
record ai of the histogram, the algorithm preserves it with
probability � , exp(✏)

exp(✏)+nQ�1 ; else with probability 1 � �



picks a set of values of quasi-identifiers from �Q \ai[Q] uni-
formly at random, where �Q is the data universe of quasi-
identifiers, and assigns it to ai[Q] (lines 1–3).

Algorithm 4 DP Swapping

Require: Histogram x(D) of size N , privacy parameter ✏ >
0, list of quasi-identifiers Q

function DPSwapping(x(D), ✏, Q) :
1: for row ai in D do

2: ai[Q] 
(
ai[Q] w.p. exp(✏)

exp(✏)+nQ�1 ,

Uniform(XQ \ ai[Q]) otherwise
3: end for
4: return Swapped histogram x(D) with rows {ai}

B.3 DP k-anonymity
In this paper, to k-anonymize a dataset we utilize the Mon-
drian algorithm (LeFevre et al. [2006]). This is a top-down
greedy algorithm that takes a dataset as input and outputs a k-
anonymized version of it. Interested readers may refer to the
cited paper for details about this algorithm. anonypy, an
anonymization package for python, includes an implementa-
tion for k-anonymity via the Mondrian algorithm, which has
been used for the results on k-anonymity in this paper.

Algorithm 5 Producing Synthetic k-Anonymized Dataset
Require: Dataset D, anonymization parameter k 2 Z+

function produceKanonymizedDataset(D, k) :
1: k-anonymize D to get Dk-anon using the Mondrian

method (LeFevre et al. [2006]).
2: D̃  reconstructDataset(Dk-anon)

return Reconstructed dataset D̃.
function reconstructDataset(Dk-anon, D) :

3: Initialise an empty dataset D̃ with the same set of features
as D

4: for every row r in Dk-anon do
5: for r[count] many times do
6: Create new row r̃ for D̃
7: for each feature � do
8: if � is categorical then
9: Assign r̃(�) a value from the list r[�] uni-

formly at random.
10: else
11: Assign r̃(�) a value from the Gaussian

N (µ,�) (rounded off to the nearest non-negative inte-
ger), where µ , a+b

2 and � , b�a
4 , where a, b are the

endpoints of the interval r[�] , [a, b].
12: end if
13: end for
14: end for
15: end for
return Reconstructed dataset D̃.

In the k-anonymized version, categorical attribute values
are grouped together as lists and numerical ones are grouped
together as intervals and each row is assigned a count attribute

Algorithm 6 DP k-Anonymity
Require: Dataset D, anonymization parameter k 2 Z+, pri-

vacy parameter ✏ > 0
function produceDPKanonymizedDataset(D, k, ✏) :

1: �  1� (exp(�✏))
2: Create a subset D0 of the dataset D by sampling from the

rows of D uniformly at random with probability �.
3: D̃  produceKanonymizedDataset(D0, k) . Using

produceKanonymizedDataset from algorithm 5
return Reconstructed dataset D̃.

corresponding to how many rows of the original dataset the
said row in the k-anonymized version represents.
Reconstruction step. However, this makes it difficult to an-
alyze the anonymized output with the original dataset in the
same space. Thus it is necessary to reconstruct a synthetic
dataset from the k-anonymized version that is in the same
space as that of the original dataset. In our experiments, we
include a reconstruction step for k-anonymity.

Algorithm 5 describes how we obtain a reconstructed,
privatized version of the dataset using the traditional k-
anonymity algorithm. This algorithm involves two compo-
nents: k-anonymization and reconstructing an output, priva-
tized dataset in the space of the original dataset. It takes as
input a dataset D and k 2 Z+ and outputs a reconstructed
dataset D̃.

First, the original dataset D is k-anonymized using the
Mondrian method (LeFevre et al. [2006]) to obtain Dk-anon
(line 1). As Dk-anon is not in the same space as D, the algo-
rithm uses a reconstruction step (line 2).

To perform the reconstruction, Dk-anon is taken and a new
empty dataset D̃ in the space of D is created (line 3). The al-
gorithm iterates over every row r in the k-anonymized dataset
for r[count] times (i.e. once for every row in the original
dataset that is represented by r in Dk-anon), creates a new row
r̃ for D; for each feature �, if � is categorical, then the al-
gorithm chooses one of the merged values of � in r[�] uni-
formly at random for r̃[�], or if � is numeric, then a random
value is chosen from N (µ,�) and rounded off to the nearest
non-negative integer, where µ is the midpoint of the interval
r[�] and � is 1/4 times the length of the interval r[�] (lines
4-15).

Algorithm 6 describes the DP counterpart of the aforemen-
tioned k-anonymity process. It takes as input a dataset D,
k 2 Z+, and a privacy parameter ✏ > 0 and outputs a recon-
structed, k-anonymized dataset D̃. The algorithm computes a
sampling probability � , 1�(exp(�✏)) and samples rows of
D uniformly at random with probability � to obtain D0 (lines
1–2). Then D0 and k are passed as input to algorithm 5 to
produce the reconstructed dataset D̃ (line 3).

C Extended Results
C.1 Datasets and Settings adopted
Datasets The data adopted in our experimental studies was
the Diverse Community Excerpts Benchmark Data, provided
by the National Institute of Standards and Technology and



available on the SDNist synthetic data evaluation library on
GitHub. The excerpts are a curated selection of geography
and features derived from the American Community Survey
(ACS). Each of these datasets is further divided into geo-
graphical regions known as PUMAs (Public Use Microdata
Areas). In particular, we use data provided for Massachusetts,
Texas, and Outlier PUMAs; these three datasets contain infor-
mation about 5, 6, and 20 PUMAs respectively.

In particular, while the full ACS data has about 200 fea-
tures, the Diverse Community Excerpts Benchmark Data
uses about 20 features. Out of these features, we use
a slice of the dataset for our experiments correspond-
ing to the features [’RACE’, ’SEX’, ’OWNERSHP’,
’AGE’,’INCTOT’], which correspond to the race, sex,
house ownership status, age and the total annual income of an
individual respectively. Wherever necessary, the numeric fea-
tures AGE and INCTOT are discretized/binarized respectively
into groups. For instance, unless stated otherwise, we bina-
rize INCTOT into whether a person earns more than $ 50000
per annum (1) or not (0). The age attribute, wherever used,
may be discretized into groups/age brackets, depending upon
the experiment. For example, our classification experiments
involve dividing ages equitably into 5 age brackets.

Note that in doing so, all features in the dataset slice being
considered are now categorical, and this is especially con-
venient when it comes to the reconstruction step of the k-
anonymity algorithm: now all the rows’ features can be cho-
sen uniformly at random from the list of merged attributes in
the anonymized version rather than sampling from a Gaussian
centered around the midpoint of an interval, which carries a
slight risk of sampling values outside of the region defined by
the endpoints of the interval.

Settings These experiments have been coded and run using
Python 3.9 and above. Some tasks involving heavy compu-
tation were performed using a cluster equipped with AMD
EPYC 7452 32-Core CPUs (@ 1.5 GHz) and 8GB of RAM.

C.2 Data Release
Here empirical results on the data release via different mecha-
nisms are provided for the Texas and Outlier datasets as done
earlier for the Massachusetts dataset.

Tables 2 and 3 provide the values of �, biases (w.r.t. the `1
norm), and the fairness violation bound ↵ respectively (wher-
ever applicable, the threshold k is set to be 6).

Here, a similar trend is seen as for table 1 in the main text
and the DP mechanisms (Laplace and discrete Gaussian) al-
most always offer lower values of �, biases, and ↵ than the
rest. This again demonstrates that DP methods do indeed of-
fer better privacy protection, higher accuracy of data release,
and better fairness guarantees than the other traditional DA
mechanisms.

Figures 6 and 7 provide plots showing the errors (kx̃�xk1)
associated with the data release of each DA method and its DP
variants. Figures 8 and 9 provide plots showing the fairness
values (↵) associated with the same.

As for the Massachusetts dataset in the main text, it is again
seen here for the Texas and Outlier datasets that as ✏ increases,
the DP counterpart of each DA mechanism approaches the

original DA mechanism in terms of errors and fairness viola-
tions. This further reinforces the observation that these dif-
ferentially private mechanisms are conceptually similar and
perform similarly.

✏ Mechanism � Bias (`1 norm) ↵-fairness

0.5

Laplace 0 901.21 3.645
Discrete Gaussian 0.363 1156.63 4.62
DP Suppression 0.999 1138.62 4.53
DP Swapping 0.868 12988.58 437.105
DP k-anonymity 0.878 2963.3 24.7

1

Laplace 0 409.03 1.815
Discrete Gaussian 0.132 777.455 2.96
DP Suppression 0.999 1205.315 4.47
DP Swapping 0.874 11624.64 394.28
DP k-anonymity 0.906 4296.8 35.4

2

Laplace 0 187.59 0.905
Discrete Gaussian 0.017 523.825 1.995
DP Suppression 0.999 1219.19 4.71
DP Swapping 0.899 8212.7 266.78
DP k-anonymity 0.981 5406.7 43.4

4

Laplace 0 81.63 0.46
Discrete Gaussian 3E-4 353.99 1.545
DP Suppression 0.999 1217.115 4.91
DP Swapping 0.969 2117.62 75.48
DP k-anonymity 0.999 5992.0 48.9

Table 2: TX dataset data release: Comparison of DP mechanisms in
terms of �, `1 norm of the empirical bias and ↵-fairness.

✏ Mechanism � Bias (`1 norm) ↵-fairness

0.5

Laplace 0 2992.88 4.02
Discrete Gaussian 0.363 3798.96 4.885
DP Suppression 0.999 3687.445 4.39
DP Swapping 0.868 35385.63 580.015
DP k-anonymity 0.878 10260.6 34.5

1

Laplace 0 1372.36 2
Discrete Gaussian 0.132 2570.38 3.235
DP Suppression 0.999 3911.82 4.56
DP Swapping 0.874 32134.71 553.66
DP k-anonymity 0.906 14668.5 46.1

2

Laplace 0 628.335 0.975
Discrete Gaussian 0.017 1728.1 2.62
DP Suppression 0.999 3969.165 4.76
DP Swapping 0.899 22242.12 339.09
DP k-anonymity 0.981 18529.7 54.4

4

Laplace 0 274.36 0.48
Discrete Gaussian 3E-4 1162 1.71
DP Suppression 0.999 3962.755 4.93
DP Swapping 0.969 5634.95 108.565
DP k-anonymity 0.999 20456.9 61.5

Table 3: Outlier dataset data release: Comparison of DP mecha-
nisms in terms of �, `1 norm of the empirical bias and ↵-fairness.

C.3 Classification
This subsection provides plots for accuracies of the logistic
regression task described in the paper using various DA meth-
ods over the Texas and Outlier dataset (Figure 5). For these
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Figure 5: Results for Logistic Regression for Texas (left) and Outlier (right) datasets

datasets as well, it is seen that training logistic regression
classifiers with data produced by DP mechanisms (Laplace
and discrete Gaussian) yields close-to-baseline classification
accuracy. Also, it is seen that using data produced by tradi-
tional DA mechanisms yields accuracies that are lower and
further away from the baseline accuracy than for any of the
DP mechanisms.



Figure 6: TX ACS dataset: Errors kx̃ � xk1 for cell suppression (left), swapping (center) and k-anonymity (right) and their differentially
private counterparts (average of 200 repetitions).

Figure 7: Outlier ACS dataset: Errors kx̃�xk1 for cell suppression (left), swapping (center) and k-anonymity (right) and their differentially
private counterparts (average of 200 repetitions).

Figure 8: TX ACS dataset: Fairness values ↵ for cell suppression (left), swapping (center) and k-anonymity (right) and their differentially
private counterparts (average of 200 repetitions).

Figure 9: Outlier ACS dataset: Fairness values ↵ for cell suppression (left), swapping (center) and k-anonymity (right) and their differentially
private counterparts (average of 200 repetitions).
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