
PAT: Geometry-Aware Hard-Label Black-Box Adversarial Attacks
on Text

Muchao Ye
The Pennsylvania State University
University Park, Pennsylvania, USA

muchao@psu.edu

Jinghui Chen
The Pennsylvania State University
University Park, Pennsylvania, USA

jzc5917@psu.edu

Chenglin Miao
Iowa State University
Ames, Iowa, USA
cmiao@iastate.edu

Han Liu
Dalian University of Technology

Dalian, Liaoning, China
liu.han.dut@gmail.com

Ting Wang
The Pennsylvania State University
University Park, Pennsylvania, USA

ting@psu.edu

Fenglong Ma∗
The Pennsylvania State University
University Park, Pennsylvania, USA

fenglong@psu.edu

ABSTRACT
Despite a plethora of prior explorations, conducting text adversarial
attacks in practical settings is still challenging with the following
constraints: black box – the inner structure of the victim model is
unknown; hard label – the attacker only has access to the top-1 pre-
diction results; and semantic preservation – the perturbation needs
to preserve the original semantics. In this paper, we present PAT,1
a novel adversarial attack method employed under all these con-
straints. Specifically, PAT explicitly models the adversarial and non-
adversarial prototypes and incorporates them to measure semantic
changes for replacement selection in the hard-label black-box set-
ting to generate high-quality samples. In each iteration, PAT finds
original words that can be replaced back and selects better candidate
words for perturbed positions in a geometry-aware manner guided
by this estimation, which maximally improves the perturbation
construction and minimally impacts the original semantics. Exten-
sive evaluation with benchmark datasets and state-of-the-art mod-
els shows that PAT outperforms existing text adversarial attacks
in terms of both attack effectiveness and semantic preservation.
Moreover, we validate the efficacy of PAT against industry-leading
natural language processing platforms in real-world settings.
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1 INTRODUCTION
Deep neural networks (DNNs) have obtained remarkable achieve-
ments in various machine learning tasks [7, 11, 30]. However, it is
known that DNNs are subject to the adversarial attack [9], which
crafts malicious inputs that are nearly undetectable by human per-
ception to deceive target victim models. A number of adversarial
attack methods have since been proposed. However, compared with
a plethora of studies in continuous domains, e.g., in images [4, 6, 18],
conducting text adversarial attacks [13, 25] by synonym substitu-
tion under practical settings is still challenging and awaits im-
provement. The task of text adversarial attack in practical settings
includes a variety of constraints: black box – the architectures and
parameters of target victim models are often unknown; hard label
– the attacker is only able to access the top-1 prediction results;
and semantic preservation – the perturbation needs to preserve the
semantics of original texts.

The existing attack pipelines under such practical settings usu-
ally adopt three steps: (1) random initialization, (2) replacing orig-
inal words back, and (3) selecting a replacement. Since the last
step allows attackers to get out of the local optimum in the huge
search space of the exponential number of possible combinations,
existing works mainly focus on designing novel word replacement
strategies, including heuristic-based and gradient-based approaches.
Genetic algorithm-based optimization [19] is one of the represen-
tative heuristic-based attack approaches, which maintains a pop-
ulation of adversarial candidates at each iteration to search for
the optimal one. Such approaches have to implicitly characterize
the semantic change using the survival of good candidates at each
iteration, which requires a prohibitively large number of queries
for seeking the optimal from a whole population. Gradient-based
attacks [28, 29] are then proposed to alleviate this inefficiency by
formulating the perturbation as an optimization problem in the
auxiliary continuous word embedding space. Although they out-
perform heuristic-based ones, there still exist research gaps in gen-
erating high-quality adversarial examples.

Motivation. To specify, state-of-the-art gradient-based methods
such as LeapAttack [28] use the estimated gradients to determine
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Figure 1: Drawbacks of existing gradient-based methods.

the replaced synonym words for achieving attacks. They assume
that adversarial perturbations in the word embedding space obey
Gaussian distributions as the ones do on images [4, 6]. However,
this assumption does not always hold because candidate words only
discretely distribute in the embedding space. Besides, they need to
map the continuous perturbations to the discrete words, which causes
unavoidable approximation errors. Figure 1 shows an example to
demonstrate the drawbacks of existing gradient-based attacks. After
estimating the gradient g, existing approaches then map g to a
candidate word based on the 𝐿2 norm due to the discrete selection.
In this example, the replacement will be the word 𝑎. However, the
word 𝑏 seems to be a better substitution because it is closer to the
decision boundary. Therefore, in this paper, we eye on the challenge
of designing an effective strategy for determining discrete word
replacement with a suitable semantic similarity measure in the hard-
label setting.

Our Approach. In this paper, we follow a geometry-aware design
principle and propose a solution named PAT based on prototype
estimation for adversarial attack to solve this challenge. In par-
ticular, PAT utilizes the distance to the estimated adversarial and
non-adversarial prototypes from each candidate word to directly
measure the semantic change instead of using the estimated gradi-
ents. As a result, the semantic deviation of each candidate word can
be calculated from its distance to the estimated prototypes under
the geometry interpretation – high-quality adversarial examples
are the ones closer to non-adversarial prototype.

As demonstrated in Figure 2(a), PAT adopts the three-step pipeline.
In Step (1), PAT randomly initializes an adversarial example 𝑥 ′0 for
the original input 𝑥 following [19, 28, 29]. From 𝑥 ′0, PAT will it-
eratively run the combination of Step (2) and Step (3) to find out
the optimal replacements in 𝑥 ′0. As shown in Figure 2(b), for each
iteration 𝑡 (0 ≤ 𝑡 ≤ 𝑇 − 1), the input of Step (2) outputs 𝑥𝑡 with
input 𝑥 ′𝑡 , and Step (3) outputs 𝑥

′
𝑡+1 with 𝑥𝑡 as the input. To illustrate:

In Step (2), PAT continuously replaces original words back in
the input 𝑥 ′𝑡 based on their contributions to the original seman-
tics, where 𝑥 ′𝑡 is evolved from 𝑥 ′0. For example, PAT will replace
“difficult” with the original word “hard” and then calculate the se-
mantic similarity improvement. The larger the improvement is,
the more helpful it is to retain original semantics and generate
high-quality adversarial samples. Thus, these improvement scores
determine the order of replacing the original words back to generate
𝑥𝑡 .

In Step (3), PAT introduces the estimated prototypes to discover
better replacements for the remaining perturbed words to preserve
more original semantics iteratively. Take Figure 2(c) as an exam-
ple. PAT starts with the word 𝑤̃ (𝑡 )

𝑗
= “difficult” first in this step.

To find out a better replacement, PAT randomly samples several
synonyms of the original word “hard” as the exploration directions.
PAT replaces the target word “difficult” with each synonym in 𝑥𝑡
and then queries the black-box model to output the predicted label
for the new sentence. Replacing some synonyms circled by the blue
dots in Figure 2(c) may make some new sentences still adversar-
ial, but those circled by the green dots are not. Next, PAT adopts
the metric learning principle [23, 27] to use the centers (i.e., ★) of
these two types of synonyms in the word embedding space as the
prototypes of the adversarial and non-adversarial ones for
the word “difficult” only. PAT then measures the influence on the
semantic change based on the distances to them. The word in the
adversarial half-space whose projection into the line segment of
two centers has the smallest distance to the non-adversarial center
will be selected as the new replacement. As shown in Figure 2(d),
PAT will choose “challenging” as the replacement of “difficult” with
this principle. After that, PAT will conduct the same process for
the next word “think” and the rest in 𝑥𝑡 one by one. After running
Step (3) for all words, we will get 𝑥 ′

𝑡+1.
Contributions. Our contributions are as follows:

• We propose a novel geometry-aware hard-label black-box
text adversarial attack that discovers substitution words for
original ones based on prototype estimation. This design re-
lieves the limitation of existing methods and provides a more
suitable measure for characterizing the semantic change
caused by different candidate words under practical settings.
• We introduce a metric learning-based method for selecting
the replacements. Using the distance between the prototypes
in the word embedding space, we explicitly characterize the
semantic change brought by each word in the continuous
word embedding, which helps find better candidate words
in the hard-label setting.
• PAT attains the best performance measured by semantic
similarity and perturbation rate in attacking representative
victim models on five commonly used text classification
datasets. Moreover, the success of attacking three real-world
APIs also demonstrates the effectiveness of PAT.

2 PRELIMINARIES
2.1 DNNs for Text Data
Text is a special type of discrete data that are constructed by a
sequence of words. For text DNNs, each input text sample can be
represented as 𝑥 = [𝑤1, · · · ,𝑤𝑛], where 𝑛 is the number of words
in 𝑥 , and 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑛) is the 𝑖-th word. In this paper, DNNs
are used for the text classification task, and they aim to correctly
classify each 𝑥 into the ground truth label 𝑦 ∈ C, i.e., 𝑓 (𝑥) = 𝑦,
where C = {𝑦1, · · · , 𝑦𝑐 } is the set of label categories.

2.2 Problem Formulation
In the setting of adversarial attacks, the attackers want to perturb
original text samples to fool 𝑓 . In other words, for any 𝑥 that satisfies
𝑓 (𝑥) = 𝑦, attackers try to make 𝑓 overturn its previous prediction
by adding a small perturbation, where 𝑓 is referred to as the victim
model. During the adversarial attack, there is a set of allowable
substitute synonym 𝑆 (𝑤𝑖 ) = {𝑠 (1)𝑖 , ..., 𝑠

(𝑀 )
𝑖
}, where 𝑀 = |𝑆 (𝑤𝑖 ) |,
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Figure 2: (a) Overview of PAT. It is an (b) iterative process for attaining optimal text adversarial examples, starting with (1)
random initialization. In each iteration, PAT (2) replaces the original words back and (3) selects replacement by prototype
estimation. Step (3) includes the operations of (c) prototype estimation and (d) replacement selection. “difficult” is the position
the current prototype estimation focuses on, and the rest underlined ones will be the next position for the same operation.

accompanying each word 𝑤𝑖 , and 𝑤𝑖 ∈ 𝑆 (𝑤𝑖 ). The attackers will
replace each word 𝑤𝑖 by its synonym 𝑤 ′

𝑖
∈ 𝑆 (𝑤𝑖 ) to construct a

perturbed sample 𝑥 ′ = [𝑤 ′1, · · · ,𝑤
′
𝑛]. We say that the attackers

conduct a successful adversarial attack if they craft an 𝑥 ′ satisfying

𝑓 (𝑥 ′) ≠ 𝑦. (1)

We would like to point out that the event that victim models
have similar predictions for two text samples is independent with
the one that two text samples have similar semantic similarity. It
is a common case that there exists more than one 𝑥 ′ satisfying
Eq. (1). The semantic preservation condition requests that the opti-
mal adversarial example 𝑥∗ is the one having the highest semantic
similarity with the original sample 𝑥 among all valid adversarial
examples [20]. Mathematically, the optimal adversarial example 𝑥∗
for a correctly classified sample 𝑥 by 𝑓 satisfies:

𝑥∗ = argmax
𝑥 ′

Sim(𝑥, 𝑥 ′), 𝑠 .𝑡 . 𝑓 (𝑥 ′) ≠ 𝑓 (𝑥), (2)

where Sim(𝑥, 𝑥 ′) is a predefined semantic similarity calculation
function with regard to 𝑥 and each adversarial example 𝑥 ′, e.g., the
Universal Sequence Encoder [3].

This paper targets at designing a new type of adversarial attack
in the hard-label black-box setting. The difficulty of this setting
stems from the assessed information of attackers from the victim
model, where they can only know the top-1 prediction instead
of the prediction score distribution with respect to each category
in C. Using such limited information is difficult for attackers to
distinguish the semantic change brought by each word.

2.3 Victim Models
Following the setting of existing hard-label black-box adversarial
attack methods, we use the following three natural language pro-
cessing (NLP) models as the victim models, including BERT [7],
WordCNN [14], andWordLSTM [12]. These three models are all rep-
resentative methods that are widely used in the NLP tasks through-
out the development of DNNs for text data, and the well-trained
models are publicly accessible from the repository of [19].

3 THE PROPOSED PAT METHOD
3.1 Overview
As shown in Figure 2(a), PAT harnesses an iterative process to grad-
ually optimize the quality of adversarial examples. In the beginning,
the optimization gets the initial guess 𝑥 ′0 by Step (1) random initial-
ization, which is to keep replacing original words with their random
synonyms until it finds an initial adversarial example. In the rest
iterations, PAT adopts a two-step process to optimize the initial
adversarial examples, i.e., Step (2) replacing original words back
while keeping the text candidate adversarial and Step (3) discover-
ing better substitutes that can recover the original semantics by the
prototype estimation. The detailed process is shown in Algorithm 1
in the Appendix.

3.2 Initialization
For the iterative optimization process, we need to attain an ini-
tial solution by random initialization first. This step is necessary
because the lack of prediction score distribution in the hard-label
setting does not allow attackers to find adversarial examples during
optimizing the perturbation. It is widely adopted in the hard-label
black-box adversarial attacks in various domains, including im-
ages [4–6] and text [19, 29]. In this operation, for each word 𝑤𝑖
in 𝑥 , we randomly select a synonym 𝑤

(0)
𝑖
∈ 𝑆 (𝑤𝑖 ) as its replace-

ment. If we attain a text sample 𝑥 ′0 that satisfies 𝑓 (𝑥
′
0) ≠ 𝑦, where

𝑥 ′0 = [𝑤
(0)
1 , · · · ,𝑤 (0)𝑛 ], we now have an initial guess of the solution

for Eq. (1). However, we usually need to change multiple words in
𝑥 to obtain 𝑥 ′0, making 𝑥 ′0 generally have low quality, where the
quality is measured by both the semantic similarity between 𝑥 ′0 and
𝑥 and word change percentage, i.e., perturbation rate compared
with 𝑥 .

To get an optimal adversarial example 𝑥∗, PAT will then itera-
tively optimize the semantic similarity between 𝑥 and the adver-
sarial example 𝑥 ′𝑡 (0 ≤ 𝑡 ≤ 𝑇 − 1) in 𝑡-th iteration, where 𝑇 is the
total number of iterations. Given an 𝑥 ′𝑡 , PAT obtains the adversarial
example 𝑥 ′

𝑡+1 in two steps, which are detailed in Sec. 3.3 and 3.4.
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3.3 Replacing Original Words Back
The optimization during each iteration starts from finding out the
words that can be replaced back to the adversarial example 𝑥 ′𝑡 with-
out hurting the adversary property of the sample. To preserve the
original semantics, this step uses the semantic similarity improve-
ment brought by each original word to decide the replacement or-
der [19]. In particular, for each word𝑤 (𝑡 )

𝑖
in 𝑥 ′𝑡 = [𝑤

(𝑡 )
1 , · · · ,𝑤 (𝑡 )𝑛 ],

PAT replaces it with its original word𝑤𝑖 in 𝑥 , and we then have a
temporary sample 𝑥 (𝑖 )tem = [𝑤 (𝑡 )1 , · · · ,𝑤𝑖 , · · · ,𝑤 (𝑡 )𝑛 ]. If 𝑥

(𝑖 )
tem still sat-

isfies the adversary property 𝑓 (𝑥 (𝑖 )tem) ≠ 𝑦, we calculate the semantic
similarity improvement as a measure to determine the replacement
order. The semantic similarity improvement is defined as follows:

𝑠𝑖𝑚𝑖 = Sim(𝑥, 𝑥 (𝑖 )tem) − Sim(𝑥, 𝑥
′
𝑡 ) . (3)

After looping over all words in 𝑥 ′𝑡 , the set {𝑠𝑖𝑚𝑖 } can tell us
which word can make the adversarial example stay adversarial and
their importance in improving the semantic similarity with the
original adversarial sample. The original word𝑤𝑖 with higher 𝑠𝑖𝑚𝑖
indicates that it recovers more semantic similarity. Therefore, the
next operation is to keep replacing the original words𝑤𝑖 back to 𝑥 ′𝑖
in the descending order of semantic similarity scores {𝑠𝑖𝑚𝑖 } until
the new sample is not adversarial. After that, we obtain an adver-
sarial example 𝑥𝑡 that has more original words with 𝑥 compared to
𝑥 ′𝑡 . The detailed process is shown in Algorithm 2 in the Appendix.

3.4 Selecting Replacement by Prototype
Estimation

With the adversarial example 𝑥𝑡 = [𝑤̃ (𝑡 )1 , · · · , 𝑤̃ (𝑡 )𝑛 ] attained above,
PAT then selects better substitutions for the words in 𝑥𝑡 that are not
the same as the original words by using the prototype estimation,
which is shown in Figure 2(c)-(d) and Algorithm 3 in the Appendix.
The attack order is determined by random sampling. In our random
sampling, we calculate the 𝐿2 norms of current replacements and
their corresponding original words in the embedding space, and the
sampling probabilities associated with each word are the softmax
ones of these computed 𝐿2 norms. Pseudocode of this process is
shown in Algorithm 3.

Prototype Estimation. Suppose the 𝑗-th word 𝑤̃ (𝑡 )
𝑗

is not equal
to𝑤 𝑗 , and we want to choose a better replacement that leads to an
adversarial example with greater semantic similarity. To conduct
this process under the geometry-aware intuition, we rely on the
adversarial and non-adversarial prototypes to judge the semantic
deviation of each substitution candidate with the original word. We
estimate it based on a frozen pre-trained word embedding space
H ∈ Rℎ (where ℎ is the dimension size), e.g., the Counter-Fitted
Word Vectors [21]. Specifically, we get the word embeddings of the
original word and all candidate words first. Next, we estimate the
prototypes given adversarial examples and non-adversarial ones
by random sampling. The estimated prototypes are then used for
determining the candidate word.

Condition for Prototype Estimation. Before we conduct the pro-
totype estimation, we need to make sure that we have observed
that some candidate words cause the existing text to become ad-
versarial while the others do not. To illustrate, for the 𝑗-th word
𝑤̃
(𝑡 )
𝑗

in the text sample 𝑥𝑡 , we randomly sample 𝐾 candidate words

{𝑠 (1)
𝑗
, · · · , 𝑠 (𝐾 )

𝑗
} from the synonym set 𝑆 (𝑤 𝑗 ). For each sampled

word 𝑠 (𝑘 )
𝑗
(1 ≤ 𝑘 ≤ 𝐾), PAT explores whether the condition is satis-

fied by seeing if some sampled candidate words lead to adversarial
examples and the others lead to non-adversarial examples:

• Put 𝑠 (𝑘 )
𝑗

in the 𝑗-th position of 𝑥𝑡 and attain a temporary sample

𝑥
(𝑘 )
tem = [𝑤̃ (𝑡 )1 , · · · , 𝑠 (𝑘 )

𝑗
, · · · , 𝑤̃ (𝑡 )𝑛 ].

• Put 𝑥 (𝑘 )tem in the victim model 𝑓 to see if 𝑓 (𝑥 (𝑘 )tem) ≠ 𝑦 still holds.

If 𝑓 (𝑥 (𝑘 )tem) ≠ 𝑦 holds or does not hold for all temporary text samples,
we retain the original word 𝑤̃ (𝑡 )

𝑗
in 𝑥𝑡 for 𝑥 ′𝑡 . Otherwise, we are

given a chance to estimate the prototypes with the sampled 𝐾
candidates and use the distance measure to find a new substitute for
𝑤
(𝑡+1)
𝑗

in 𝑥 ′𝑡 under the generally held geometric assumption [4, 6]
that the semantic change caused by the adversarial attack can be
interpreted as the distance from the adversarial example to the
decision boundary.

Estimation of Prototypes. In the previous step, w.l.o.g., we know

that some temporary samples 𝑆𝑦 = {𝑠 (1)
𝑗
, · · · , 𝑠 (𝑚)

𝑗
} satisfy 𝑓 (𝑥 (𝑘 )tem) =

𝑦 (1 ≤ 𝑘 ≤ 𝑚), while other temporary text examples in the set
𝑆≠𝑦 = {𝑠 (𝑚+1)

𝑗
, · · · , 𝑠 (𝐾 )

𝑗
} satisfy 𝑓 (𝑥 (𝑘 )tem) ≠ 𝑦 (𝑚 + 1 ≤ 𝑘 ≤ 𝐾).

The question now turns to how we can estimate the prototypes.
In the metric learning [23, 27], the prototype is estimated by

averaging the samples of different classes element-wisely. Thus, we
calculate the adversarial prototype c( 𝑗 )𝑦 of 𝑆𝑦 and non-adversarial
prototype c( 𝑗 )≠𝑦 of 𝑆≠𝑦 by following [23], and

c( 𝑗 )𝑦 =
1
𝑚

𝑚∑︁
𝑖=1
H(𝑠 (𝑖 )

𝑗
) ∈ Rℎ, c( 𝑗 )≠𝑦 =

1
𝐾 −𝑚

𝐾∑︁
𝑖=𝑚+1

H(𝑠 (𝑖 )
𝑗
) ∈ Rℎ,

(4)
which are the element-wise mean of all word embeddings in 𝑆𝑦
and 𝑆≠𝑦 , respectively.

Replacement Selection. After estimating the adversarial and
non-adversarial prototypes by using 𝐾 candidates, we further em-
ploy the distances to them to guide the selection of optimal substi-
tute from 𝑆 (𝑤 𝑗 ). Based on the calculated distance, firstly, for each
candidate word 𝑠 ∈ 𝑆 (𝑤 𝑗 ), if it satisfies

| |H (𝑠) − c( 𝑗 )≠𝑦 | | < | |H (𝑠) − c
( 𝑗 )
𝑦 | |, (5)

it means that 𝑠 is estimated to generate an adversarial example
because it is closer to c( 𝑗 )≠𝑦 than c( 𝑗 )𝑦 , where | | · | | is the 𝐿2 norm, and
H(𝑠) is the word embedding of 𝑠 . Let 𝑆 ′ (𝑤 𝑗 ) denote all candidate
words that satisfy the condition shown in Eq. (5), and we are only
interested in the samples that are estimated to be adversarial for
replacement selection. For each candidate word 𝑠′ ∈ 𝑆 ′ (𝑤 𝑗 ), we
harness the projection ofH(𝑠′) − c( 𝑗 )𝑦 in the direction of c( 𝑗 )≠𝑦 − c

( 𝑗 )
𝑦

as the measurement of their impact on the semantic change. The
larger is the projection length, the higher is the degree of semantic
change. Geometrically, for word 𝑠′ ∈ 𝑆 ′ (𝑤 𝑗 ), the distance is

𝑑 (𝑠′) = | |H (𝑠′) − c( 𝑗 )𝑦 | | · |cos(H (𝑠′) − 𝑐
( 𝑗 )
𝑦 , c( 𝑗 )≠𝑦 − c

( 𝑗 )
𝑦 ) |, (6)

where the first term is the projection length between H(𝑠′) and
𝑐
( 𝑗 )
𝑦 in the direction of 𝑐 ( 𝑗 )𝑦 and 𝑐 ( 𝑗 )≠𝑦 , and cos(a, b) is the cosine
value of the angle between vectors a and b.
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Lastly, as shown in Figure 2(d), given the measurement values
calculated from Eq. (6) for all suitable candidates in 𝑆 ′ (𝑤 𝑗 ), we rank
each candidate in the ascending order of calculated measurement
values and select the candidate 𝑠′ ∈ 𝑆 ′ (𝑤 𝑗 ) that has the lowest
distance value𝑑 (𝑠′) andmakes the text sample satisfy the adversary
condition as the word𝑤 (𝑡+1)

𝑗
for 𝑥 ′

𝑡+1. After repeating this process

for other words, we can get 𝑥 ′
𝑡+1 = [𝑤

(𝑡+1)
1 , · · · ,𝑤 (𝑡+1)𝑛 ].

Comment. As the geometric assumption indicates, if an ad-
versarial example is close to the decision boundary, it has a small
degree of semantic change. Although in the hard-label setting the
real decision boundary can never be known due to the limited
information, it can be estimated locally around one word as the
bisector of line segment between c( 𝑗 )𝑦 and c( 𝑗 )≠𝑦 for a word. We can
find with ease that the distance from the projection of 𝑠′ into that
line segment to the decision boundary is 𝑑 (𝑠′) − ||c( 𝑗 )𝑦 − c

( 𝑗 )
≠𝑦 | |/2,

where the second term is a constant. Thus, finding the candidate
word with the smallest distance to the estimated decision boundary
is the same as finding the candidate word with the smallest 𝑑 (𝑠′).

3.5 Summary
To sum up, given the input 𝑥 ′𝑡 in each iteration, PAT outputs 𝑥 ′

𝑡+1
using the two-step process introduced in Sec. 3.3 and 3.4. Let 𝑅
denote the number of changed words in the initialized 𝑥 ′0 compared
with𝑥 . After𝑇 iterations, PAT conducts at most𝑇×𝑅 local prototype
estimation, and will output 𝑥 ′ = 𝑥 ′

𝑇
as the solution to Eq. (2).

4 EXPERIMENTAL SETTINGS
4.1 Datasets
The experiments are conducted on five text classification datasets,
which are commonly used in the text adversarial attack task:MR [22],
a movie review dataset for binary sentiment classification; AG [30],
a 4-class news classification dataset; Yelp [30], a binary sentiment
classification dataset; Yahoo [30], a questions-and-answers topic
classification dataset with 10 classes; and IMDB [17], another bi-
nary sentiment classification dataset collected from the IMDB web-
site. In our experiments, we follow the setting of [13, 19, 29], taking
the same 1,000 test samples of each dataset to conduct attacks.

4.2 Baselines
To show the effectiveness of the proposed method, we would like
to compare PAT with both hard-label adversarial attack methods
and score-based ones. The comparison with hard-label ones can
directly illustrate the improvement brought by PAT over existing
techniques, while the comparison with the score-based ones can
show how effective PAT is despite lacking information on prediction
score distributions. In the comparison of the hard-label setting,
the baselines are as follows:

• Random, a naive baseline method that replaces each original
word with a randomly sampled substitute from the synonym set.
• TextHoaxer [29], a hard-label method that uses gradients to
guide the selection of word replacement.
• HLGA [19], a hard-label text adversarial attack framework that
utilizes the genetic algorithm (GA) for optimizing the semantic
similarity of adversarial examples.

• LeapAttack [28], another gradient-based hard-label method.
Different from TextHoaxer, it uses concrete candidate words for
calculating the gradient direction for finding substitute words.

As for the comparison between the performance of PAT in the
hard-label setting and that of scored-based black-box methods in
the soft-label setting, we use the state-of-the-art scored-based
adversarial attackmethods as baselines, includingTextBugger [16],
PWWS [25], and TextFooler [13].

4.3 Evaluation Metrics
The evaluation of adversarial attack mainly considers the following
three aspects [13, 19, 29]:

• After attack accuracy (Acc ↓). Since the victim model has the
same original accuracy before the adversarial attack, the effect
of adversarial attacks is reflected by the accuracy of the victim
model after the test samples are perturbed, which is called the
after attack accuracy. The lower after attack accuracy indicates
better perturbation ability of the adversarial attack method.
• Semantic similarity (Sim ↑). The semantic similarity is an impor-
tant measure of the quality of generated adversarial examples
because good adversarial attack methods are supposed to retain
most semantic meaning of the original text. Following previous
works [13, 19, 29], we use the Universal Sequence Encoder [3] to
judge the semantic similarity between the original text sample
and generated adversarial example, and the higher the better.
• Perturbation rate ( Pert ↓). Another property of good adversarial
attack methods is fooling the victim models with small perturba-
tions. The perturbation rate is defined as the number of changed
words over the number of total words in the adversarial example,
and the lower the better.

Note that in the hard-label setting, all the existing approaches [19,
28, 29] will initialize adversarial examples first, which are then
optimized by different optimization approaches to generate final
adversarial examples. Hard-label baselines and the proposed PAT
use the same initialization, which leads to the same Acc values for
all the methods in the hard-label setting. We mainly rely on Sim and
Pert to evaluate the performance between different hard-label ad-
versarial attack methods. As for the comparison with scored-based
baselines, we take the Acc metric into consideration in addition to
Sim and Pert due to the difference between the two settings.

4.4 Implementation
PAT is implemented with PyTorch on an NVIDIA Tesla P100 GPU.
The word embedding spaceH is a widely used one called Counter-
FittedWord Vectors [21]. Each word has a 50-word synonym set and
is the same as baselines [13, 19, 29]. We set the sampled synonym
number 𝐾 = 5 and iteration number 𝑇 = 100. For the baselines,
they are implemented with the settings of publicly available codes.

5 EXPERIMENTAL RESULTS
5.1 Comparison with Hard-Label Baselines
Converged Attack Performance.We first show the converged
performance of all approaches when attacking against three widely-
used text classification models on five datasets in Table 1 to verify
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Table 1: Converged performance comparison of semantic similarity (Sim) and perturbation rate (Pert) when attacking against
text classification models. Acc stands for after attack accuracy, which is determined by the random initialization step and the
same for different hard-label adversarial attack methods. The corresponding original accuracy is in the bracket.

Dataset Method BERT WordCNN WordLSTM
Acc (%) Sim (%) Pert (%) Acc (%) Sim (%) Pert (%) Acc (%) Sim(%) Pert (%)

MR

Random

1.0
(← 85.0)

15.2 41.264

0.7
(←76.5)

18.0 39.127

0.7
(← 78.0)

17.2 39.475
TextHoaxer 67.3 11.812 68.4 12.076 67.7 12.320

HLGA 64.8 13.360 66.6 12.976 65.4 13.574
LeapAttack 68.0 10.420 68.6 10.742 68.1 10.959

PAT 69.0 10.364 69.9 10.635 69.0 10.903

AG

Random

2.8
(← 93.0)

23.0 48.517

1.4
(← 90.4)

30.3 43.494

5.7
(← 90.2)

24.4 47.546
TextHoaxer 63.8 15.721 74.2 12.493 64.6 16.122

HLGA 68.9 12.750 78.2 10.250 70.9 12.864
LeapAttack 69.9 10.852 78.9 8.987 71.8 11.208

PAT 72.4 9.731 81.6 7.924 74.9 9.959

Yahoo

Random

0.5
(← 79.1)

29.7 30.239

0.8
(← 71.1)

27.6 32.302

1.9
(← 73.7)

24.6 33.291
TextHoaxer 70.9 6.726 75.0 7.616 67.2 8.396

HLGA 71.6 5.865 76.2 6.492 68.4 6.999
LeapAttack 72.0 4.851 78.2 5.629 69.6 5.952

PAT 74.3 4.382 80.1 5.110 71.1 5.586

Yelp

Random

5.2
(← 96.5)

17.0 39.344

0.6
(← 92.9)

16.6 39.286

3.2
(← 94.8)

17.6 38.966
TextHoaxer 74.6 9.271 81.3 8.543 80.8 7.942

HLGA 78.4 7.081 83.8 6.675 83.0 6.166
LeapAttack 80.5 5.985 86.2 5.845 84.9 5.484

PAT 82.9 5.246 88.0 5.329 86.3 4.974

IMDB

Random

0.1
(← 90.3)

34.0 30.714

0.0
(← 87.8)

34.2 13.164

0.3
(← 89.3)

33.5 32.020
TextHoaxer 85.3 4.860 90.2 4.268 89.1 4.098

HLGA 87.5 3.307 91.3 3.001 90.1 2.916
LeapAttack 89.3 2.894 92.9 2.881 91.3 2.681

PAT 90.7 2.299 93.7 2.613 92.3 2.526

the attack effectiveness. That is, Table 1 demonstrates the perfor-
mance of different methods when they converge in optimization,
which usually reflects the upper bound attack performance of differ-
ent methods. We can observe that the proposed PAT can generate
better adversarial examples with the highest semantic and lowest
perturbation rate in the text classification datasets.

Semantic Similarity. PAT can achieve relatively high improve-
ment on semantic similarity over the second best method. Take
the scenario of attacking BERT as an example. PAT increases the
semantic similarity by 1.0%, 2.5%, 2.3%, 2.4%, and 1.4% compared to
the second best method when attacking BERT on the datasets of
MR, AG, Yahoo, Yelp and IMDB, respectively. These results show
that PAT is effective in improving the semantic similarity in the
hard-label setting.

Perturbation Rate. PAT consistently reduces the perturbation
rate in different cases. Especially, in the scenario of attacking the
AG dataset, the perturbation rate of PAT drops by 1.121%, 1.063%
and 1.249% when attacking BERT, WordCNN and WordLSTM, re-
spectively. These results demonstrate that PAT has the ability of
recovering the initialized perturbed words to original words, con-
tributing to decreasing the perturbation rate and improving the
semantic similarity.

Comparison Analysis. Compared to the baselines, the perfor-
mance improvement of PAT results from using the estimated ad-
versarial and non-adversrial prototypes to measure the semantic

change brought by each candidate word. Compared to the heuristic-
based method, PAT expresses discrete substitutes by continuous
vectors in the word embedding space, and its optimization is guided
by the quantifiable metric with one adversarial candidate in each
iteration rather than with a population of them. Compared to the
gradient-based methods, PAT does not need to introduce a mapping
step between continuous vectors and discrete candidates, and the
semantic change that each word will bring is concretely expressed
by its distance to the estimated prototypes. As a result, it can choose
the candidate that has the smallest impact on the original semantics
for keeping the sample adversarial and obtaining higher Sim and
lower Pert.

Attack Efficiency. In addition to the converged attack perfor-
mance, we would like to further compare the attack efficiency
between baselines and our method, which can be defined as the
quality of generated adversarial examples given the same amount
of queries. This property is also important because real-world DNN-
based NLP platforms such as Microsoft Azure Text Analytics usu-
ally have monthly query limits for each user. Thus, by adopting a
method with higher efficiency, we can generate adversarial exam-
ples with higher quality even given limited queries. Without loss of
generality, we take the results of attacking BERT as an illustration,
which is shown in Figure 3. The number of queries for different
methods to achieve convergence is the x-axis of the points where
each line converges. We report them in Table 4 in the Appendix.
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Figure 3: (1-5) Semantic similarity (↑) and (6-10) perturbation rate (↓) comparison w.r.t. query number between hard-label
baselines and PAT against BERT.

Comparison with Heuristic-Based Ones. We first compare the
query number required to achieve convergence between HLGA
and PAT. Since HLGA [19] needs to spend repetitive query on the
same operation for different adversarial candidates in each iteration,
as shown in Figure 3, the number of queries that HLGA takes to
achieve convergence is 2.54, 2.74, 3.24, 3.10, and 2.98 times that
of PAT in MR, AG, Yahoo, Yelp, and IMDB, respectively, which
means that it consumes much more queries than PAT to achieve the
convergence. In addition, given different query budget, PAT always
achieves better performance than HLGA with better performance.

Comparison with Gradient-Based Ones. Gradient-based meth-
ods usually can coverage quickly with a smaller number of budgets.
However, the error due to the mapping of the gradient to discrete
words can sometimes cause them to get stuck in the local optimum
in the long-term perspective. From Table 3, given the same amount
of queries, PAT is generally able to achieve higher semantic sim-
ilarity and lower perturbation rate compared to TextHoaxer and
LeapAttack. Therefore, the geometry-aware principle adopted by
PAT can help it craft adversarial examples with higher quality more
efficiently than the gradient-based ones adopted by the baselines.

Comparison Analysis. From the results above, PAT generally
gains better adversarial attack performance given the same amount
of query consumption compared to the hard-label baselines. Again,
such a good property is attributed to the following two factors.
Firstly, PATmaintains only one adversarial candidate each iteration,
and thus, it reduces repetitive consumption on queries compared
to population-based methods. Besides, using estimated prototypes
is useful for selecting better substitution candidates in each step
compared to the employment of gradients.

Attack Real-World APIs. Note that due to the space limit, we
leave the discussion on the results of attacking real-world APIs in
Sec. A.2 in the Appendix.

5.2 Comparison with Score-Based Baselines
We further compare the adversarial attack results of PAT in the
hard-label setting with those of score-based baselines in the soft-
label setting. In this comparison, score-based baselines can access
the prediction score distribution over each category, which is more
informative than the top-1 prediction used by PAT in the hard-label
setting. Such a comparison can help us gain a deeper understanding
of the effectiveness of the hard-label adversarial attack conducted
by PAT despite the loss of prediction score information.

Comparison Setting. Without the loss of generality, we show
the comparison results between PAT and score-based baselines
on text classification datasets in Figure 4 on attacking the BERT
model for discussion. For a fair comparison between two settings,
for each method, we report its performance on Acc, Sim, and Pert in
each dataset given a certain amount of queries. The range of query
amount for each dataset differs, which depends on the scale of input
texts. For instance, the maximum amount of queries for datasets
with short text like MR is 750, while that is 3,500 for datasets with
long text like Yelp and IMDB.

Performance Analysis.As shown in Figure 4, in different cases,
PAT keeps the after attack accuracy of the victim model the same
given the different amounts of queries because the discovery of
adversarial examples is decided by the text random initialization
step and it does not need many queries. After that, with the increase
of query budgets, PAT keeps improving the quality of adversarial
examples by enhancing the semantic similarity and lowering the
perturbation rate. Most importantly, we observe that even though
the score-based baselines can access more information for generat-
ing adversarial examples, PAT is able to generally outperform them
such as in the cases of attacking the victim model on the Yahoo and
IMDB datasets with respect to Acc, Sim and Pert after the query
budget increases. The superior performance illustrates that the re-
striction of only having top-1 prediction results does not matter
much to PAT, and it is capable of crafting adversarial examples
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Figure 4: (1-5) After attack accuracy (↓), (6-10) semantic similarity (↑) and (11-15) perturbation rate (↓) comparison w.r.t. query
number between score-based methods and PAT against BERT.

of high quality in the more difficult hard-label setting, which are
comparable with the ones generated by score-based baselines.

Distance v.s. Score Distribution. The problem with score-
based baselines is that they usually adopt greedy mechanisms and
need to try every candidate word for finding the locally best candi-
date word. Therefore, they consume much more queries for finding
a good candidate word than ours, which causes them not to have
enough queries for discovering more good candidate words in this
setting. The results above suggest that the distance calculated based
on the estimated prototypes in PAT is as effective as the predic-
tion score distribution used by score-based baselines in selecting
synonyms for replacement. Although in the hard-label setting PAT
cannot utilize the prediction scores to find their influence on seman-
tics as the score-based baselines do, it uses the distances between
synonyms and the estimated prototypes as the measure for the
influence on the semantic meaning. As a result, PAT can gener-
ate high-quality adversarial examples despite the less instructive
information.

5.3 Model Insight Analysis
Previous experimental results clearly demonstrate the effectiveness
of PAT. Next, we use the following two experiments to verify the
design of our method. Without the loss of generality, we conduct
the experiments by attacking WordCNN on five text classification
datasets. Due to the space limit, we show the case on AG as an
illustration, and similar results are seen in other datasets.

Table 2: Ablation study results on module design.

Dataset Variant Sim (%) Pert (%)

AG
w/o Replacing 81.0 11.647

w/o Selecting (Random) 70.9 13.077
w/o Selecting (Most Similar) 68.8 14.541

PAT 81.6 7.924

Table 3: Influence of 𝐾 on results.

Dataset AG
Metric Sim (%) Pert (%)

𝐾

3 80.8 7.977
5 81.6 7.924
7 81.6 7.965
10 81.2 8.146

Ablation Study. Firstly, we conduct an ablation study to sub-
stantiate the optimization design as shown in Table 2. The baselines
in this ablation study are two variants of PAT. For the first variant
(w/o Replacing), it does not include the step of replacing original
words back in each iteration as illustrated in Sec. 3.3. In the second
variant (w/o Selecting), it either randomly chooses a synonym for
substitution (Random) or the most similar synonym (Most Similar)
with the original one in the embedding space, rather than using
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the estimated prototypes to decide the substitute. Compared with
the first variant, we find that the perturbation rate will increase if
we do not replace the original words back, which shows that the
step of replacing the original words back in each iteration is helpful
for reducing the perturbation rate. As for the comparison with the
second variant, it shows that selecting replacement by prototype
estimation is the key to the designed method. If we do not select re-
placement as PAT does, the semantic similarity will largely reduce,
and in contrast, the perturbation rate will greatly increase. Thus,
the designed process in PAT is reasonable and effective.

Hyperparameter Selection. Another study is on the influence
of the hyperparameter 𝐾 , i.e., the number of samples for prototype
estimation, on the adversarial attack performance. We change 𝐾
from 3 to 10 and show the experimental results in Table 3. We
can observe that 𝐾 does not have a significant influence on the
adversarial attack performance with respect to semantic similarity
and perturbation rate. These results manifest that the design of
prototype estimation in PAT can maintain stable adversarial attack
performance with different 𝐾 , indicating its insensitivity on 𝐾 for
obtaining good performance in hard-label adversarial attacks. In
addition, Table 3 shows that selecting 𝐾 = 5 can generally help
us obtain the best performance with a small number of queries.
Therefore, we set 𝐾 = 5 in our experiments.

6 RELATED WORK
6.1 Image Adversarial Attack
The adversarial attack is a task that can measure the robustness of
DNNs, which becomes a research focus after researchers find that
DNNs are prone to change their prediction given small perturbation
on original images in the image classification task [1, 2, 9, 15]. The
generation of image adversarial examples in the early stage relies on
parameter gradients, which is called the “white-box” setting. Rep-
resentative works include Fast Gradient Sign Method (FGSM) [9],
Projected Gradient Descent (PGD) [18] attack, and C&W attack [2].
After that, researchers [4, 15] gradually restrict the information that
the attackers can access and design the image adversarial attack
method in the hard-label black-box setting, where the attackers
only have the knowledge of the top-1 predicted label from the vic-
tim model. For instance, Sign-OPT [4] reformulates the hard-label
image adversarial attack problem as a gradient-based optimization
problem that aims to find the direction in the high-dimensional
pixel space leading to adversarial images with the highest similarity.
Another exemplary work is HopJumpSkipAttack [4], which esti-
mates the gradients for optimizing the existing adversarial image
near the decision boundary with the Monte Carlo method.

6.2 Text Adversarial Attack
Text adversarial attack [8, 13, 16, 19, 24, 25, 29] is generally the
task of conducting adversarial perturbation on text by replacing
original words with their synonyms and forcing victim models
to change their correct predictions into incorrect ones. Similar
to the development in image adversarial attack, text adversarial
attack is conducted from thewhite-box setting [8, 10] to the more
realistic black-box setting. A pioneering white-box method named
HotFlip [8] constructs text adversarial examples by the gradient

information of one-hot input vectors. Later, recent methods are
mostly proposed in the black-box setting.

The first type of black-box setting is the soft-label (or score-
based) one, where the attackers can access the prediction score
distribution of all categories given an input text sample, and the
representative methods include TextBugger [16], PWWS [25], and
TextFooler [13]. Since the soft-label score distribution is provided,
attacks of this type usually use the greedy mechanism to decide
which word to be replaced and which synonym is used to replace
the original word. For example, TextBugger [16] uses the soft-label
saliency score for position ranking and substitution.

Another type of black-box setting is the hard-label (or decision-
based) one [19, 26, 28, 29], which is more realistic and difficult than
the soft-label one because attackers only know the top-1 predicted
label output by the model. The first successful work [19] for this
setting is proposed recently, which uses a genetic algorithm (GA)
to optimize the quality of adversarial examples. Its limitation is
that GA needs to maintain many adversarial candidates and update
them by mutation and crossover in each iteration, which only im-
plicitly expresses the influence on the semantic meaning of different
replacements as the survival of candidates. After that, [29] and [28]
try to make the gradient-based method workable in the hard-label
setting by introducing the word embedding space to guide the ad-
versarial example construction. However, their gradient estimation
is based on the assumption that text adversarial perturbation obeys
Gaussian distribution as image one does, which is unsuitable for
modeling the discrete distribution of candidate words.

Different from existing methods, we introduce prototype estima-
tion to explicitly characterize the semantic meaning change brought
by different candidate words for replacement selection. This method
can avoid the step of mapping continuous vectors to discrete words
and maintain one adversarial candidate in each iteration. Thus, it
can generate adversarial examples of better quality.

7 CONCLUSION
Hard-label black-box adversarial attack on text is more challeng-
ing because attackers can only access the top-1 prediction results.
Existing methods are limited by the lack of an effective metric for
measuring the semantic meaning change brought by different sub-
stitute candidates during perturbation. To relieve this conundrum,
this paper proposes a geometry-aware iterative solution named
PAT that designs a semantic change measure as the distance from
the candidate word to the estimated prototypes obtained from the
metric learning principle in a pre-trained word embedding space. In
each iteration, it firstly lowers the perturbation rate of the previous
adversarial candidate by replacing the original words back, and
then selects better substitutes for the remaining perturbed words
based on prototype estimation. Experimental results show that PAT
outperforms existing hard-label adversarial attack methods, whose
performance is comparable with those of score-based methods ap-
plied in the more informative soft-label setting. In addition, PAT
can successfully attack three industry-leading APIs.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation
under Grant No. 2212323, 2119331, 1951729, and 1953893.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Muchao Ye et al.

REFERENCES
[1] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-Based Ad-

versarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models.
In ICLR. OpenReview.net.

[2] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In S&P. IEEE Computer Society, 39–57. https://doi.org/10.
1109/SP.2017.49

[3] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, et al.
2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

[4] Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. 2020. HopSkipJumpAt-
tack: A Query-Efficient Decision-Based Attack. In S&P. IEEE, 1277–1294. https:
//doi.org/10.1109/SP40000.2020.00045

[5] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, Jinfeng Yi, and Cho-Jui
Hsieh. 2019. Query-Efficient Hard-label Black-box Attack: AnOptimization-based
Approach. In ICLR. OpenReview.net.

[6] Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and
Cho-Jui Hsieh. 2020. Sign-OPT: A Query-Efficient Hard-label Adversarial Attack.
In International Conference on Learning Representations.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT. Association for Computational Linguistics, 4171–4186. https:
//doi.org/10.18653/v1/n19-1423

[8] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-
Box Adversarial Examples for Text Classification. In ACL. Association for Com-
putational Linguistics, 31–36. https://doi.org/10.18653/v1/P18-2006

[9] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In ICLR.

[10] Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. 2021.
Gradient-based Adversarial Attacks against Text Transformers. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing.
5747–5757.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[13] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is BERT Really
Robust? A Strong Baseline for Natural Language Attack on Text Classification
and Entailment. In AAAI. AAAI Press, 8018–8025.

[14] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP. ACL, 1746–1751. https://doi.org/10.3115/v1/d14-1181

[15] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In ICLR. OpenReview.net.

[16] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2019. TextBugger:
Generating Adversarial Text Against Real-world Applications. In NDSS.

[17] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In
ACL. The Association for Computer Linguistics, 142–150.

[18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=rJzIBfZAb

[19] Rishabh Maheshwary, Saket Maheshwary, and Vikram Pudi. 2021. Generating
Natural Language Attacks in a Hard Label Black Box Setting. In AAAI.

[20] Paul Michel, Xian Li, Graham Neubig, and Juan Miguel Pino. 2019. On Evaluation
of Adversarial Perturbations for Sequence-to-Sequence Models. In NAACL-HLT
2019. Association for Computational Linguistics, 3103–3114. https://doi.org/10.
18653/v1/n19-1314

[21] Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gasic, Lina Maria
Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve J.
Young. 2016. Counter-fitting Word Vectors to Linguistic Constraints. In NAACL
HLT 2016. The Association for Computational Linguistics, 142–148.

[22] Bo Pang and Lillian Lee. 2005. Seeing Stars: Exploiting Class Relationships for
Sentiment Categorization with Respect to Rating Scales. In ACL. The Association
for Computer Linguistics, 115–124. https://doi.org/10.3115/1219840.1219855

[23] Mikhail Pautov, Olesya Kuznetsova, Nurislam Tursynbek, Aleksandr Petiushko,
and Ivan Oseledets. 2022. Smoothed Embeddings for Certified Few-Shot Learning.
Neurips (2022).

[24] Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan Liu, and Maosong
Sun. 2021. Mind the Style of Text! Adversarial and Backdoor Attacks Based on
Text Style Transfer. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. 4569–4580.

[25] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating Natural
Language Adversarial Examples through Probability Weighted Word Saliency. In
ACL. Association for Computational Linguistics, 1085–1097. https://doi.org/10.
18653/v1/p19-1103

[26] Sachin Saxena. 2020. Textdecepter: Hard label black box attack on text classifiers.
arXiv preprint arXiv:2008.06860 (2020).

[27] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. 2016. A discriminative
feature learning approach for deep face recognition. In European conference on
computer vision. Springer, 499–515.

[28] Muchao Ye, Jinghui Chen, Chenglin Miao, Ting Wang, and Fenglong Ma. 2022.
LeapAttack: Hard-Label Adversarial Attack on Text via Gradient-Based Optimiza-
tion. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. 2307–2315.

[29] Muchao Ye, Chenglin Miao, Ting Wang, and Fenglong Ma. 2022. TextHoaxer:
Budgeted Hard-Label Adversarial Attacks on Text. AAAI (2022).

[30] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level Convolu-
tional Networks for Text Classification. In NeurIPS. 649–657.

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP40000.2020.00045
https://doi.org/10.1109/SP40000.2020.00045
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/d14-1181
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.18653/v1/n19-1314
https://doi.org/10.18653/v1/n19-1314
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/p19-1103


PAT: Geometry-Aware Hard-Label Black-Box Adversarial Attacks on Text KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A APPENDIX
A.1 Pseudocodes
The pseudocode of the PAT framework, how it replaces original
words back, and how it selects replacement by prototype estima-
tion, are shown in Algorithm 1, Algorithm 2, and Algorithm 3,
respectively.

A.2 Attacking Real-World APIs
To verify the effectiveness of PAT, we further employ three widely
used real-world NLP APIs as victim models in the hard-label black-
box setting, including Google Cloud NLP, Amazon Comprehend,
and Microsoft Azure Text Analytics. Due to the limited service bud-
get provided for each free account, we only put 100 samples of the
MR dataset into each real-world NLP system to conduct adversarial
attacks, and the results are shown in Table 5. We can observe that
the accuracy before and after adversarial attacks changes dramati-
cally, which indicates that the majority of text samples correctly
classified by the real-world semantic classification APIs can be suc-
cessfully perturbed by PAT. Moreover, as measured by the semantic
similarity and perturbation rate, Table 5 illustrates that PAT can
attain adversarial examples with relatively high quality.

Furthermore, to illustrate, we list some generated adversarial
text examples against Google Cloud NLP, Amazon Comprehend,
and Microsoft Azure Text Analytics in Table 6, Table 7 and Table 8,
respectively. Even for real-world NLP APIs, PAT is able to fool
them by making small perturbations. For instance, for the first
adversarial example in Table 6, the victim model (Google Cloud
NLP) changes the prediction from positive to negative due to the
perturbation of changing “intense” to “forceful”. We can also verify
our observation with other instances such as the first adversarial
example in Table 7 as an instance. PAT changes the prediction of
Amazon Comprehend by just replacing the word “legendary” by
“memorable”, which shows the effectiveness of PAT in exploring
the robustness of real-world DNN systems in the text domain.

Algorithm 1: Hard-Label Black-Box Adversarial Attack by
PAT
Inputs: Text sample to be attacked 𝑥 = [𝑤1, · · · ,𝑤𝑛],
victim model 𝑓 , word embedding spaceH , iteration
number 𝑇 , and sample number 𝐾 .
Output: Adversarial example 𝑥∗.
Set 𝑥 ′0 ← 𝑥 , set the word counter 𝑖 ← 1;
while i ≤ n do

Randomly select a synonym𝑤
(0)
𝑖

in the synonym set
S(𝑤𝑖 ) and replace𝑤𝑖 by𝑤

(0)
𝑖

in 𝑥 ′0;
𝑖 ← 𝑖 + 1;
if 𝑓 (𝑥 ′0) ≠ 𝑓 (𝑥) then

Set the iteration counter 𝑡 ← 0;
while t ≤ T-1 do

Use Alogirthm 2 to replace original words back;
Use Algorithm 3 to select better replacements
for perturbation;

end
Return the adversarial example having the highest
semantic similarity with 𝑥 ;

end
end
Return Null;

Algorithm 2: Replacing Original Words Back

Inputs: Adversarial example 𝑥 ′𝑡 = [𝑤
(𝑡 )
1 , · · · ,𝑤 (𝑡 )𝑛 ], victim

model 𝑓 , semantic similarity calculation function Sim.
Output: Adversarial example 𝑥𝑡 .
for each word𝑤 (𝑡 )

𝑖
∈ 𝑥 ′𝑡 do

if 𝑤 (𝑡 )
𝑖

≠ 𝑤𝑖 then
Replace𝑤 (𝑡 )

𝑖
by𝑤𝑖 and obtain a temporary sample

𝑥
(𝑖 )
tem = [𝑤 (𝑡 )1 , · · · ,𝑤𝑖 , · · · ,𝑤 (𝑡 )𝑛 ];

if 𝑥 (𝑖 )tem satisfies 𝑓 (𝑥 (𝑖 )tem) ≠ 𝑦 then
Calculate the semantic similarity improvement
𝑠𝑖𝑚𝑖 = Sim(𝑥, 𝑥 (𝑖 )tem) − Sim(𝑥, 𝑥 ′𝑡 );

end
end

end
Rank the order for replacing each𝑤𝑖 back in the
corresponding descending order of set {𝑠𝑖𝑚𝑖 };
Initialize 𝑥𝑡 ← 𝑥 ′𝑡 ;
while replacing𝑤𝑖 back keeps 𝑥𝑡 adversarial do

Replace𝑤𝑖 back to 𝑥𝑡 ;
end
Return 𝑥𝑡 ;

Algorithm 3: Selecting Replacement by Prototype Estima-
tion
Inputs: Adversarial candidate 𝑥𝑡 = [𝑤̃ (𝑡 )1 , · · · , 𝑤̃ (𝑡 )𝑛 ], victim
model 𝑓 , word embedding spaceH , and sample number 𝐾 .

Output: Adversarial candidate 𝑥 ′
𝑡+1.

Initialize 𝑥 ′
𝑡+1 ← 𝑥𝑡 ;

for any word 𝑤̃ (𝑡 )
𝑗

≠ 𝑤𝑖 in 𝑥𝑡 do
Sample 𝐾 candidate words {𝑠 (1)

𝑗
, · · · , 𝑠 (𝐾 )

𝑗
} from the

synonym set 𝑆 (𝑤 𝑗 );
for each sampled word 𝑠 (𝑘 )

𝑗
do

Fix other words and replace 𝑤̃ (𝑡 )
𝑗

with 𝑠 (𝑘 )
𝑗

to attain

a temporary sample 𝑥 (𝑘 )tem;
end
if there are some 𝑥 (𝑘 )tem that satisfies 𝑓 (𝑥 (𝑘 )tem) = 𝑦 and
some that does not then

Calculate centers c( 𝑗 )𝑦 and c( 𝑗 )≠𝑦 from Eq. (4);

Select a new replacement𝑤 (𝑡+1)
𝑗

for 𝑤̃ (𝑡 )
𝑗

based on
the distance measured by Eq. (6) for 𝑥 ′

𝑡+1;
else

𝑤
(𝑡+1)
𝑗

← 𝑤̃
(𝑡 )
𝑗

end
end
Return 𝑥 ′

𝑡+1;
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Table 4: Number of queries for different methods to achieve convergence in optimization when attacking BERT.

Method MR AG Yahoo Yelp IMDB
TextHoaxer 800 1,400 1,500 1,381 1,416

HLGA 1,905 7,137 6,263 10,431 10,004
LeapAttack 750 2,572 1,812 2,908 2,795

PAT 750 2,607 1,932 3,360 3,354

Table 5: Results of attacking real-world semantic classification APIs with 100 samples randomly selected the MR dataset
(accuracy inside each bracket is the one before adversarial attacks).

Model Acc (%) Sim (%) Pert (%)
Google Cloud NLP 0.0 (← 74.0) 67.2 10.129

Amazon Comprehend 1.0 (← 69.0) 61.9 10.835
Microsoft Azure 6.0 (← 71.0) 63.9 11.235

Table 6: Generated adversarial text samples by PAT against Google Cloud NLP. The substituted original word is strikethroughed,
and the replacement is the following one.

Adversarial Example Prediction Change
An intense forceful and effective film about loneliness and the chilly anonymity of the
environments where so many of us spend so much of our time

Positive→ Negative

Broomfield is energized inflamed by Volletta Wallace’s maternal fury, her fearlessness, and
because of that, his film crackles

Positive→ Negative

The holes in this film remain stays agape holes punched through by an inconsistent unsound,
meandering, and sometimes dry plot

Negative→ Positive

Table 7: Generated adversarial text sample by PAT against Amazon Comprehend. The substituted original word is
strikethroughed, and the replacement is the following one.

Adversarial Example Change of Prediction
The first mistake, I suspect, is casting Shatner as a legendary memorable professor and Kunis as a brilliant
college student. Where’s Pauly Shore as the rocket scientist

Negative→ Positive

The central character vital persona isn’t complex enough to hold our interest Negative→ Positive
A formula design family tearjerker told with a heavy Irish brogue accentuating, rather than muting, the
plot ’s saccharine thrust

Negative→ Positive

Table 8: Generated adversarial text sample by PAT against Microsoft Azure Text Analytics. The substituted original word is
strikethroughed, and the replacement is the following one.

Adversarial Example Change of Prediction
A profoundly stupid goofball affair, populating its hackneyed and meanspirited storyline with cardboard
characters and performers who value cash above credibility

Negative→ Positive

The central character isn’t complex fraught enough to hold our interest Negative→ Positive
Parker holds true to wilde’s own vision of a pure comedy with absolutely no meaning, and no desire to be
anything but a polished, sophisticated entertainment that is in love sweetness with its own cleverness
acumen

Positive→ Negative
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