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ABSTRACT
The emergence of evolving data privacy policies and regulations
has sparked a growing interest in the concept of “machine unlearn-
ing”, which involves enabling machine learning models to forget
speci�c data instances. In this paper, we speci�cally focus on edge
unlearning in Graph Neural Networks (GNNs), which entails train-
ing a new GNN model as if certain speci�ed edges never existed in
the original training graph. Unlike conventional unlearning scenar-
ios where data samples are treated as independent entities, edges
in graphs exhibit correlation. Failing to carefully account for this
data dependency would result in the incomplete removal of the
requested data from the model. While retraining the model from
scratch by excluding the speci�c edges can eliminate their in�u-
ence, this approach incurs a high computational cost. To overcome
this challenge, we introduce CEU, a Certi�ed Edge Unlearning
framework. CEU expedites the unlearning process by updating the
parameters of the pre-trained GNN model in a single step, ensuring
that the update removes the in�uence of the removed edges from
the model. We formally prove that CEU o�ers a rigorous theoretical
guarantee under the assumption of convexity on the loss function.
Our empirical analysis further demonstrates the e�ectiveness and
e�ciency of CEU for both linear and deep GNNs – it achieves
signi�cant speedup gains compared to retraining and existing un-
learning methods while maintaining comparable model accuracy
to retraining from scratch.
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1 INTRODUCTION
Legislation such as the General Data Protection Regulation (GDPR)
[31], the California Consumer Privacy Act (CCPA) [27], and the
Personal Information Protection and Electronic Documents Act
(PIPEDA) [28] has introduced requirements for companies to honor
user requests for the removal of private data. This has sparked
discussions around the concept of the “right to be forgotten” [22],
which empowers users to have more control over their data by
requesting its deletion from learned models. When a company
has already utilized user data to train their machine learning (ML)
models, these models must be appropriately manipulated to re�ect
data deletion requests.

In this paper, we study Graph Neural Networks (GNNs) as the
target model and edge removal as the unlearning request. To illus-
trate this scenario, let us consider an online social network platform
where users request the elimination of their sensitive social rela-
tions. The platform owner is legally bound to remove the edges
associated with these sensitive social relations from anyGNNmodel
trained on the graph containing those edges. This ensures that the
model no longer “remembers” those sensitive social relations.

Naively erasing edges from a GNN model by fully retraining can
be excessively time-consuming, particularly for complex GNNmod-
els trained on large graphs. As a result, recent e�orts have focused
on developing e�cient methods for exact unlearning [7, 10] as well
as approximate unlearning [9, 26] speci�cally tailored for GNNs.
In this paper, our emphasis is on approximate graph unlearning
methods that facilitate the removal of requested edges from the
model without retraining from scratch. Our approach is inspired by
the concept of in�uence function, which enables the estimation of
the impact of individual data samples on learning models [21]. To
prove that the resulting model has removed the information related
to the deleted edges, our goal is to provide a rigorously certi�ed
guarantee [15, 16] of the statistical indistinguishability between the
retrained model and the unlearning model.

Despite the plethora of research on machine unlearning for non-
graph datasets (e.g., [3–5, 23]), none of these approaches can be
directly applied to GNNs due to the presence of data dependency
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within graphs. Failing to carefully account for this data dependency
would result in an incomplete removal of the requested data from
the model. While recent e�orts have been made to develop exact
and approximate edge unlearning methods for GNNs [7, 9, 10],
exact unlearning methods su�er from potentially signi�cant loss of
model accuracy [7, 10]. On the other hand, the existing approximate
unlearning methods either lack a certi�ed guarantee [8] or are
limited to GNN models with speci�c structures [9].1

Our contributions.WedesignCEU, a Certi�ed EdgeUnlearning
algorithm that removes requested edges from GNNs without the
need for retraining while providing a provable guarantee of the
unlearning model. Our contributions are outlined as follows.

I Unlearning through in�uence analysis.We formulate the
unlearning problem as �nding a closed-form update on the model
parameters. To achieve this, we introduce a novel in�uence function
that e�ciently computes the necessary update, while also taking
into account the neighborhood of the removed edges. We address
several theoretical and practical challenges of deriving edge in�u-
ence by providing an in�uence estimator that is computationally
and memory e�cient.

I Certi�ed unlearning. We undertake in-depth theoretical anal-
ysis and present non-trivial �ndings. We provide formal proofs
demonstrating thatCEU can deliver a rigorous (n, X)-approximation
guarantee under the assumption of a strongly convex loss func-
tion. Additionally, we derive both worst-case and data-dependent
bounds for the statistical distance between the retrained model and
the model obtained through unlearning using CEU.

I Empirical analysis. Through extensive empirical study, we
showcase the e�ciency and e�ectiveness of CEU for both linear
and deep GNN models. Speci�cally, for linear GNNs, we demon-
strate that CEU achieves e�ective unlearning with a remarkable
16.2-fold speedup compared to retraining from scratch. Notably,
our method outperforms the exact graph unlearning approach [7]
in terms of both model accuracy and unlearning e�ciency, exhibit-
ing a 63% improvement in model accuracy and a 3.7-fold speedup.
Additionally, it surpasses the existing certi�ed graph unlearning
method [9] in terms of unlearning e�ciency, achieving a speedup
of at least two orders of magnitude. Moving on to deep GNNs, our
empirical results highlight the high e�ciency of CEU, providing a
speedup of up to 5 times compared to retraining while maintain-
ing similar model accuracy. Furthermore, we quantitatively assess
the e�cacy of unlearning by conducting a link membership infer-
ence attack [19] on unlearning models. We demonstrate that the
attack accuracy of inferring the removed edges from the unlearning
model is comparable to that from the retrained model, indicating
the successful removal of the targeted edges.

2 RELATEDWORK
Machine unlearning [2, 17, 25] refers to a process that aims to
remove the impact of a set of data samples in the training set from
a trained model. From the certainty of unlearning, the existing

1Both theoretical analysis and algorithmic techniques of [9] are closely tied to linear
GNNs such as simple graph convolutions (SGC) and their generalized PageRank (GPR)
extensions.

machine unlearning methods can be divided into two categories:
exact unlearning and approximate unlearning.

Exact machine unlearning. In exact unlearning, a model is
naively retrained from scratch after removing certain data sam-
ples from the dataset. This is generally computationally expensive.
Several attempts have been made to make unlearning more e�-
cient than retraining from scratch. An earlier study converts ML
algorithms to statistical query (SQ) learning so that unlearning
only needs to retrain the summation of SQ learning [4]. The SISA
(sharded, isolated, sliced, and aggregated) approach [2] trains a
set of constituent models on disjoint data shards. Only the shards
a�ected by the unlearning requests and their constituent models
are retrained. Some recent works [7, 10] extend exact unlearning
to the graph setting. In particular, GraphEraser [7] adapts the SISA
approach to graph unlearning. It splits graphs into disjoint parti-
tions. Upon receiving an unlearning request, only the model on
the a�ected shards is retrained. However, as shown in our empiri-
cal studies later (Section 6), GraphEraser su�ers from a signi�cant
loss of model accuracy, as splitting the training graph into disjoint
partitions damages the original graph structure. GraphEditor [10]
designs an exact unlearning solution of linear GNNs. However, it
is restricted to the linear structure only. It also cannot deal with
e�cient batch removal of a large number of edges.

Approximate machine unlearning. Approximate unlearning
relaxes the requirement for exact unlearning by requiring that the
removed data is statistically unlearned with the guarantee that the
unlearning model cannot be distinguished from an exact deletion
model [16], where the indistinguishability is de�ned in a similar
manner as di�erential privacy [12]. Certi�ed unlearning can be
realized by adding noise either on the weights [14, 15, 25, 32, 39]
or on the loss function [16]. In the context of graph unlearning,
Chien et al. [9] provide the �rst certi�ed GNN unlearning solution.
However, their approach is restricted to GNN models of certain
structures such as Simple Graph Convolution (SGC) and its gener-
alized PageRank (GPR). And their implementation cannot be easily
adapted to general GNNs. Furthermore, their approach cannot sup-
port batch edge removal. Our empirical results show that CEU is
much faster than [9] in batch edge unlearning, with a speed-up
of at least two orders of magnitude. Their follow-up work [26]
extends to a particular type of nonlinear GNN models based on
Graph Scattering Transform (GST). However, [26] considers node
unlearning not edge unlearning. On the other hand, the approxi-
mate edge unlearning solution proposed by Cheng et al. [8] cannot
provide any certi�ed guarantee.

3 PROBLEM FORMULATION

Problem setup. Let G be a set of graphs. In this paper, we only
consider undirected graphs. Let ⇥ be the parameter space of GNN
models. A learning algorithmAL is a function that maps an instance
⌧ (+ , ⇢) 2 G to a parameter \ 2 ⇥. Let \OR be the parameters of
AL trained on⌧ . Any user can submit an edge unlearning request
to remove speci�c edges from⌧ . In practice, unlearning requests
are often submitted sequentially. For e�ciency, we assume these
requests are processed in a batch. Let ⇢UL denote the batch of edges
that are requested to be removed. As a response to these requests,
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AL has to erase the impacts of ⇢UL on AL and produce an unlearn-
ing model. A straightforward approach is to retrain the model on
⌧ (+ , ⇢\⇢UL) from scratch and obtain the model parameters \RE.
However, due to the high computational cost of retraining, an al-
ternative solution is to apply an unlearning process AUL that takes
⇢UL and \OR as input and outputs an unlearning model.

Certi�ed guarantee. Approximate unlearning requires some
format of guarantee that the information related to the deleted
data has been removed from the model. Intuitively, if the result
of unlearning is likely to be obtained by retraining, then the un-
learning algorithm has successfully eliminated the in�uence of the
removed data points from the model. Following this intuition, we
adapt the concept of certi�ed removal [16, 25] to our setting to mea-
sure the di�erence between the retrained model and one obtained
by unlearning. Broadly speaking, certi�ed removal de�nes the in-
distinguishability between the retrained model and the unlearning
model in a similar manner as (n, X)-di�erential privacy [12]. In par-
ticular, it de�nes the notion of (n, X)-approximate unlearning which
is formalized as follows.

D��������� 1 ((n, X)-ApproximateUnlearning). Given a learn-
ing algorithmAL and two constants n, X > 0, an unlearning algorithm
AUL performs (n, X)-certi�ed unlearning for AL if

%
�
AUL (⇡, I,AL (⇡))

�
 4n%

�
AL (⇡\I)

�
+ X, (1)

and

%
�
AL (⇡\I)

�
 4n%

�
AUL (⇡, I,AL (⇡))

�
+ X, (2)

where I is the sample to be removed.

Intuitively, Def. 1 guarantees that the unlearning model is “ap-
proximately” the same as the retrained model, where the di�er-
ence between the unlearning and retrained model is bounded by
the parameters of n and X . Smaller n and X indicate that the un-
learning model is closer to the retrained model. Trivially, a (0, 0)-
approximate unlearning model is equivalent to the retrained model.

We adapt the notion (n, X)-approximate unlearning to edge re-
moval, and formalize the edge unlearning problem as follows:

D��������� 2 ((n, X)-approximate Edge Unlearning). Given
a graph ⌧ (+ , ⇢), a set of edges ⇢UL ⇢ ⇢ that are requested to be
removed from ⌧ , a graph learning algorithm AL and its readout
function 5 , then an edge unlearning algorithm AUL performs (n, X)-
certi�ed unlearning for AL if:

%
�
AUL (⌧, ⇢UL,AL (⌧))

�
 4n%

�
AL (⌧UL)

�
+ X, (3)

and

%
�
AL (⌧UL)

�
 4n%

�
AUL (⌧, ⇢UL,AL (⌧))

�
+ X, (4)

where n, X > 0, and ⌧UL = ⌧ (+ , ⇢\⇢UL).

While Def. 1 is de�ned for a single data sample, we extend it to
the removal of a set of samples (edges) to handle batch edge removal.
Our goal is to seek the unlearning mechanismAUL that can remove
multiple edges at once with (n, X)-approximate guarantee while its
computational complexity is signi�cantly cheaper than retraining.

Original graph

After edge removal

CEU

!!": removed edges

GNN

! ∼ #(0, '!)
Random Noise

"##!"

Original model 
Θ%$%

Retrained model 
Θ%%#

Unlearning model 
Θ%!" = Θ%$% + &

' "##!"
!!"

Figure 1: The framework of CEU. Orange lines indicate the
process of retraining and green lines indicate unlearning.

4 METHODOLOGY
Given a graph⌧ (+ , ⇢) as input, we can �nd a model represented by
\ that �ts the data by minimizing an empirical loss. In this paper, we
consider cross-entropy loss [11] as our loss function. The original
model \OR is obtained by solving the following program:

\OR = argmin
\

1
|+ |

’
E2+

L(\ ; E, ⇢) . (5)

Assume a set of edges ⇢UL is deleted from ⌧ and let the new
graph after the deletion be ⌧UL = ⌧ (+ , ⇢\⇢UL), retraining the
model will obtain a new model parameter \RE on ⌧UL:

\RE = argmin
\

1
|+ |

’
E2+

L(\ ; E, ⇢\⇢UL). (6)

A major di�culty, as expected, is that obtaining \RE is prohibi-
tively slow for complex networks and large datasets. To overcome
this challenge, we will identify a closed-form update �⇢UL to \OR:

\UL ⇡ \OR � �⇢UL , (7)

where �⇢UL has the same dimension as the learning model \OR.
Intuitively, \UL approximates the retraining. Such approximation,
however, may not be able to provide any unlearning guarantee, as
the direction of the gradient residual of \UL may still be able to leak
information about the removed edges.

Overview of CEU. We design CEU as a two-step process. In
Step 1, CEU adds the perturbation to the loss function, aiming to
hide the real gradient residual and provide the certi�ed unlearning
guarantee. Let \̃OR be the parameters of the model trained with the
noisy loss function. In Step 2,CEU estimates the one-shot update on
the parameters \̃OR through in�uence analysis. Figure 1 illustrates
an overview of CEU. Next, we describe the details of the two steps.

4.1 Step 1: Adding Perturbation on Loss
Function

To enable unlearning with a certi�ed guarantee, we follow the same
idea of certi�ed data removal [16] and add a linear noise term to
the training loss, aiming to hide the real gradient residual. We use
L1 to denote the loss function with noise formalized as follows:

L1 = !(\ , ⇢) + _

2
| |\ | |2 + 1|\ , (8)
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where1 is drawn randomly from the Gaussian distributionN(0,f2).
The randomness in 1 will mask any potential information leaked
by the estimated edge in�uence. The resulting perturbed learning
problem can be solved using standard convex optimization methods.

4.2 Step 2: Unlearning through In�uence
Analysis

Intuitively, updating model parameters for unlearning can be in-
terpreted from the optimization perspective that the model forgets
⇢UL by “reversing” the in�uence \̃UL of ⇢UL from the model. The
challenge is how to estimate the in�uence of \̃UL on the model.

In�uence functions [21] enable e�cient approximation of the
e�ect of some particular training points on a model’s prediction.
Intuitively, the in�uence function computes the parameters after
the removal of I by upweighting I on the parameters with some
small Z :

\̂Z ,I = argmin
\

1
<

’
I8<I

L(\ ; I8 ) + ZL(\ ; I), (9)

where< is the number of data points in the original dataset, and
Z is a small constant. The in�uence function is not restricted to a
single point. We can de�ne a set of points / and compute \̂Z ,/ .

However, most of the existing in�uence functions cannot be
directly applied to the GNN setting, as removing one edge 4 (E8 , E 9 )
from the graph can a�ect not only the prediction of E8 and E 9 but
also those of neighboring nodes of E8 and E 9 , due to the aggregation
function of GNN models. To address this challenge, we design a
new in�uence function for GNNs that take the neighborhood into
consideration when estimating the in�uence of the neighborhood
of removing an edge on model parameters.

In general, an ✓-layer GNN aggregates the information of the
✓-hop neighborhood of each node. Thus removing an edge 4 (E8 , E 9 )
will a�ect not only E8 and E 9 but also all nodes in the ✓-hop neigh-
borhood of E8 and E 9 . To capture such aggregation e�ect in the
derivation of edge in�uence, �rst, we de�ne the set of nodes (de-
noted as +4 ) that will be a�ected by removing an edge 4 (E8 , E 9 )
as: +4 = N(E8 ) [N(E 9 ) [ {E8 , E 9 }, where N(E) is the set of nodes
connected to E in ✓ hops. Furthermore, we de�ne the set of nodes
(denoted as +⇢UL ) that will be a�ected by removing a set of edges
⇢UL as +⇢UL =

–
42⇢UL +4 .

To revert the in�uence of ⇢UL on the target model, we compute
the new parameters \Z ,⇢UL after the removal of ⇢UL as follows:

\Z ,+⇢UL
= argmin

\

1
|+ |

’
E2+

L1 (\ ; E, ⇢) + Z
⇣ ’
E2+⇢UL

L1 (\ ; E, ⇢\⇢UL)

�
’

E2+⇢UL

L1 (\ ; E, ⇢)
⌘
. (10)

Eqn. (10) contains three terms. While the �rst term measures
the loss of the original model, the second and the third ones to-
gether compute the loss of the nodes a�ected by the removal of ⇢UL.
Following this reasoning, Eqn. (10) is equivalent to Eqn. (6) when
Z = 1

|+ | , where |+ | is the total number of nodes in the original
graph (the proof is included in our full version [38]). Following this
reasoning, instead of solving the problem in Eqn. (10), we formulate
the optimization problem as a closed-form update on the original

model \̃OR with the noisy loss function (by Step 1):

\̃UL = \̃OR + 1
|+ | �̃⇢UL , (11)

where �̃⇢UL is the in�uence of ⇢UL on the target model with noisy
loss. By utilizing this formulation, we can describe changes in the
training graph structure by edge removal as a one-shot update on
model parameters.

In this paper, we take a second-order update strategy that utilizes
second-order derivatives to calculate the closed-form update �̃⇢UL .
Our second-order update result is present in the following theorem.

T������ 3. Given the parameters \$' obtained by AUL on a
graph⌧ , and the loss functionL, assume thatL is twice-di�erentiable
and convex in \ , then the in�uence of a set of edges ⇢*! is:

�̃⇢UL = �� �1
\̃OR

⇣
r\

’
E2+⇢UL

L1 (\OR; E,⇢\⇢UL ) � r\

’
E2+⇢UL

L1 (\̃OR; E,⇢ )
⌘
,

(12)
where �\̃OR

:= r2 1
|+ |

Õ
E2+ L1 (\̃OR, E, ⇢), and ��1

\̃OR
is the inverse

Hessian of the loss at \̃OR.

The proof of Theorem 3 can be found in our full version [38].
Theorem 3 assumes the loss function is convex. Given the non-
convexity nature of GNN models, the Hessian matrix can be non-
invertible and thus there may not have a solution for the in�uence
estimation. To address this issue, we follow [21] and add a damping
term _1 to �\̃OR

(i.e., �\̃OR
+ _1� ) if �\̃OR

has negative eigenvalues,
where _1 is the same as the regularization rate _ in Eqn. (8). Our
empirical analysis (Sec. 6) will show this solution enables e�ective
unlearning in practice.

There are several practical and theoretical challenges in calcu-
lating the in�uence (Eqn. (12)). First, for large graphs, even storing
a Hessian matrix in memory is expensive: in our experiments, we
will show that Hessian matrices are huge, e.g. the Hessian matrix
on the CS dataset has a size of around 105 ⇥ 105 which would cost
50 GB memory. Second, even under the promise that the linear
system is feasible, computing the inverse of a matrix of huge size
is prohibitive. To address these two challenges, we design an algo-
rithm that approximates the inverse Hessian. Note that the existing
certi�ed graph unlearning method [9] did not use any in�uence
estimator. Instead, it computes the exact inverse Hessian.

The starting point of our algorithm is a novel perspective that
solving the linear system can be thought of as �nding a stationary
point of the quadratic function 5 : 5 (G) = argminG 1

2G
)⌫G � :) G ,

where ⌫ = �̃\OR , and

: = r\
’

E2+⇢UL

L1 (\̃$' ; E, ⇢\⇢UL) � r\

’
E2+⇢UL

L1 (\̃$' ; E, ⇢). (13)

The random noise 1 by Step 1 does not appear in ⌫ due to the
second-order derivation. It does not appear in : either because it
was contained in both terms in Eqn. (13) and thus was canceled. By
leveraging the stationary point, a convergence guarantee can be
established using gradient-descent-type algorithms [1].

We employ the implementation [24] that combines Hessian-
vector product (HVP) [29] and the conjugate gradient (CG) [35]
to approximate the inverse Hessian. CG exhibits promising com-
putational e�ciency for minimizing quadratic functions [30]. It
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is well-known that, as long as some regularity conditions (e.g.,
the objective function is Lipschitz and bounded) are met, the CG
asymptotically converges to a stationary point. This stationary
point corresponds to a solution of �̃⇢UL (Eqn. (12)). Hence, we have
the following convergence guarantee of in�uence estimation.

L���� 4 (T������ 2.1 �� [30]). The CG method generates a
sequence of iterates {GC }C�1 such that limC!+1 5 (GC ) = 0. In addi-
tion, the per-iteration time complexity is $ (|G |) where |G | denotes the
dimension of G .

We note, however, that an appealing feature of Eqn. (12) is that
it does not need to �nd a solution with an exact-zero gradient. This
enables us to terminate CG early by monitoring the magnitude of
the gradients. Our empirical study also shows that CG can get a
good approximation in a small number of iterations.

Besides time e�ciency, we have the following lemma showing
that the CG method is memory-e�cient.

L���� 5. The CG method can be implemented using$ (|\ |) mem-
ory.

The proof of Lemma 5 can be found in our full version [38].

5 CERTIFIED UNLEARNING GUARANTEE
As the unlearning model by CEU approximates the retrained model,
ideally it should provide the theoretical guarantee that the unlearn-
ing model is statistically indistinguishable from the retrained one.
Next, we derive conditions under which the second-order update
by CEU can provide the (n, X)-approximate unlearning guarantee.
To construct theoretical guarantees for our approach, we make the
following assumptions on the GNN models.

A��������� 6. For the given GNN model and its loss function !:
(1) ! is a strictly convex loss function that is twice di�erentiable; (2)
| |r! | |2  21; (3) r2! is W1-Lipschitz; (4) r! is W2-Lipschitz; and (5)
the node features GE is bounded: | |GE | |2  1, 8E 2 + . Here 21, W1, W2
are positive constants.

These assumptions can be satis�ed by a wide range of GNNs such
as Simple Graph Convolution (SGC) [6, 37] and Graph Linear Net-
work (GLN) [36] which can achieve the comparable performance
compared with deep GNNs [13, 36, 37]. It is important to note that,
although our theoretical analysis relies on the assumption of strictly
convex loss function, our algorithmic techniques are generic and
can be applied to various GNN models, including non-convex ones.
We will show that CEU can achieve notable empirical performance
on both linear and deep GNNs (Section 6).

Following the state-of-the-art certi�ed removal work [16], we
utilize the gradient residual | |rL||2 for the proof of certi�ed guar-
antee. Intuitively, for strongly convex loss functions, the gradient
residual is zero as the optimum is unique. Hence, the norm of the
gradient residual | |rL||2 can re�ect the distance between the re-
trained and the unlearning models. Based on this,CEU can establish
the (n, X)-approximation guarantee by following Theorem 7.

T������ 7 (T������ 3 ���� [16]). Let AL be the learning
algorithm that returns the unique optimum of the lossL1 and letAUL
be the unlearning mechanism. Suppose that | |rL1 | |2  n0 for some
computable bound n0 > 0. If 1 ⇠ N(0, 2n0/n)3 with some constants

2, n > 0, where 3 is the parameter dimension, then AUL provides
(n, X)-approximation guarantee for AL, where X = 1.54�2

2/2.

Intuitively, Theorem 7 requires the gradient residual norm | |rL1 | |2
to be bounded appropriately in order to provide the approximation
guarantee. Thus, our theoretical analysis mainly focuses on �nding
the bound of | |rL1 | |2. First, we present the worst-case bound of
| |rL1 | |2 in Theorem 8.

T������ 8 (Worst-case Bound). Assume Assumption 6 holds.
Then we have the following worst-case bound of | |rL1 | |2:

| |rL1 (\̃*!, ⇢\⇢UL) | |2 
W1W222

2
1

_4 |+ |
⇣ ’
E2⇢UL

=E
⌘2
, (14)

where =E is the number of neighbors of node E , _ is the regularization
rate (Eqn. (8)), and |+ | is the number of nodes in the training graph.

The proof of Theorem 8 is provided in our full version [38].
As 1

_4 in Theorem 8 can be large, the worst-case bound can be
impractically loose. Therefore, next, we derive the data-dependent
bound on | |rL1 | |2 in Theorem 9.

T������ 9 (Data-dependent Bound). Suppose Assumption 6
holds. Then we have the following data-dependent bound of | |rL1 | |2:

| |rL1 (\̃UL, ⇢\⇢UL) | |2  W1
1

|+ |2 | |�̃
�1
\OR

�| |22, (15)

where

� = r\
’

E2+⇢UL

L(\̃OR; E, ⇢) � r\
’

E2+⇢UL

L(\̃OR; E, ⇢\⇢UL).

The proof of Theorem 9 can be found in our full version [38].
The data-dependent bound can be computed e�ciently by using the
in�uence estimator (Sec. 4.2). We will show that the data-dependent
bound is much tighter than the worst-case bound in Section 6.

6 EXPERIMENTS
In this section, we empirically verify the e�ciency and e�ectiveness
of CEU. The code and datasets are publicly available 2.

6.1 Experimental Setup
All experiments are executed on a GPU server with NVIDIA A100
(40G). All the algorithms are implemented in Python with PyTorch.
Each experiment is repeated 10 times and the average is reported.

Datasets.Weuse three datasets, namelyCora [33],Citeseer [41],
andCS [34] datasets, that are popularly used for performance evalu-
ation of GNNs [34, 42]. The statistical information of these datasets
can be found in Appendix A.

GNNmodels.We consider two types of GNNmodels: (1) Linear
models: We consider a simpli�ed GCN model that contains only
one layer and a softmax function (without normalization). (2) Deep
models: We consider three representative GNN models, namely
GCN [20],GraphSAGE [18], andGIN [40]. For these GNNmodels,
we consider various network complexity (up to four hidden layers)
in the experiments, with the same number of neurons as 32 at each
layer respectively. All GNNmodels are trained for 1,000 epochs with
2https://github.com/kunwu522/certified_edge_unlearning

https://github.com/kunwu522/certified_edge_unlearning
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an early stop condition that the validation loss does not decrease
for 20 epochs. We randomly split each graph into a training set
(70%), a validation set (10%), and a test set (20%). More details of
the setup of model parameters can be found in Appendix A.

Edges for removal.We randomly pick : = {200, 400, 600, 800,
1,000}) edges from Cora and CiteSeer datasets, and : = {2,000, 4,000,
6,000, 8,000, 10,000}) edges from CS dataset for removal. We pick
more edges from the CS dataset as its number of edges is orders of
magnitude higher than the other two datasets (Table 4).

Metrics. We evaluate the performance of CEU in terms of ef-
�ciency, e�cacy, and model accuracy: (1) Unlearning e�ciency
is measured as the running time of CEU; (2) Target model accu-
racy is measured as the accuracy of node classi�cation, i.e., the
percentage of nodes that are correctly classi�ed by the model; (3)
Unlearning e�cacy: We utilize StealLink [19], a SOTA edge mem-
bership inference attack, to empirically evaluate the extent to which
the model has forgotten the removed edges.3 StealLink predicts
whether particular edges exist in the training graph. We measure
the unlearning e�cacy as AUC of StealLink’s inference of whether
the removed edges were present in the original graph. Intuitively,
a higher AUC indicates lower unlearning e�cacy. AUC close to 0.5
indicates that the model has removed the requested edges.

Noise setup. We follow the same setting of [9] and set _ = 0.01
and f = 0.1 (Eqn. (8)). We use the same n (n = 0.1 - 10) as in [9].

Baselines.We consider three baselines of exact and approximate
GNN unlearning for comparison with CEU.
• Exact unlearning: We consider GraphEraser [2], the SOTA ex-
act edge unlearning method. GraphEraser has two partitioning
strategies denoted as balanced LPA (BLPA) and balanced em-
bedding :-means (BEKM). We consider both BLPA and BEKM
as the baseline methods as these two methods exhibit varying
performance in di�erent settings.

• Uncerti�ed unlearning (UEU): We estimate the in�uence of
the removed edges on the original model (i.e., no noise on the
loss function), and apply similar in�uence analysis (Section 4.2)
to derive the one-shot update on model parameters. More details
of UEU can be found in our full version [38].

• Certi�ed unlearning:We consider Certi�ed Graph Unlearning
(CGU) [9] as a baseline.4

Two retraining settings.AsCEU adds noise to the loss function
of the target model, we consider two di�erent retraining settings
denoted as “Retrain” and “R+N” respectively.

6.2 Tightness of Bounds
The tightness of both worst-case and data-dependent bounds of the
gradient residual norm determines the strictness of the certi�ed
guarantee. To evaluate the tightness of both bounds, we consider the
1-layer GCNmodel and measure the real gradient residual norm val-
ues (as the ground truth) as well as the two bounds. Figure 2 reports
the value of the two bounds as a function of the number of removed
edges. We have two main observations. First, as expected, the worst-
case bound is much looser than the data-dependent bound. It can be
3Implementation of StealLink: https://github.com/xinleihe/link_stealing_attack
4Implementation of CGU [9]: https://github.com/thupchnsky/sgc_unlearn

(a) Cora (b) CiteSeer

Figure 2: Tightness of bounds (GRN: Gradient residual norm).

Table 1:Model accuracy of CEU, retraining (Retrain andR+N),
and baselines (BLPA, BEKM, UEU) (Linear GCN, CS dataset).

Type Method Number of removed edges
0 2K 4K 6K 8K 10K

Retrain Retrain 0.93 0.93 0.93 0.93 0.93 0.93
R+N 0.91 0.91 0.91 0.91 0.90 0.90

Unlearn

BLPA 0.84 0.69 0.80 0.84 0.84 0.68
BEKM 0.64 0.80 0.56 0.83 0.77 0.67
UEU 0.93 0.93 0.93 0.93 0.93 0.93
CEU 0.91 0.91 0.91 0.91 0.90 0.90

several orders of magnitude larger than the data-dependent bound.
The looseness in the bound comes from 1

_4 in the bound. Second,
the data-dependent bound is close to the ground-truth gradient
residual norm, regardless of the growth in the number of removed
edges. Given the tightness of the data-dependent bounds, CEU is
expected to handle batch removal of a large number of edges.

6.3 Performance of Linear GCN Models
In this section, we only consider linear GCN models (i.e., 1-layer
GCN model), and evaluate the performance of CEU for this model
on three graph datasets in terms of model accuracy, unlearning
e�ciency, and unlearning e�cacy. The results of UEU show the
impact of noise on model performance compared with CEU.

Besides these results, we have additional results of the following
studies: (1) the impacts of types of removed edges on unlearning
performance; (2) the performance of sequential unlearning. These
results can be found in our full version [38].

Model accuracy. Table 1 reports the results of GCN model ac-
curacy on the CS dataset. The results on Cora and Citeseer datasets
are similar and can be found in Appendix C.1. We have the follow-
ing observations. First, the model accuracy obtained by CEU stays
very close to that of the retrained model, regardless of the number
of removed edges. The di�erence in model accuracy between the
retrained and unlearning models remains negligible (in the range
of [0.01%, 0.11%]). Second, in terms of comparison with both exact
unlearning baselines (BEKM, BLPA), the model accuracy by CEU is
signi�cantly higher than these two baselines in all the settings. For
example, when removing 4,000 edges, both BEKM and BLPA only

https://github.com/xinleihe/link_stealing_attack
https://github.com/thupchnsky/sgc_unlearn
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(a) Cora (b) CiteSeer (c) CS

Figure 3: Time performance of CEU, retraining (Retrain and R+U), and baselines (BLPA, BEKM, UEU) for linear GCN model.

Table 2: Unlearning e�cacy of CEU, retraining, and UEU
(Linear GCN, Cora dataset).

|⇢UL | Original Retrain UEU R+N CEU

200 0.930 0.577 0.572 0.533 0.535
400 0.936 0.582 0.580 0.541 0.543
600 0.935 0.582 0.580 0.547 0.547
800 0.936 0.589 0.585 0.549 0.552
1,000 0.935 0.586 0.592 0.559 0.553

can deliver model accuracy of around 0.56 and 0.80, while CEU can
deliver a model accuracy of around 0.91 (63% and 14% improve-
ment). This demonstrates the weakness of the exact unlearning
through graph partitioning - breaking the graph structure can bring
non-negligible model accuracy loss. Third, regarding the compari-
son with the approximate unlearning baseline (UEU), CEU has very
similar model accuracy, although UEU does not add perturbation
to the model loss function. This demonstrates that CEU addresses
the trade-o� between privacy and model accuracy—it can deliver a
provable unlearning guarantee while requiring negligible sacri�ce
on model accuracy.

Unlearning e�ciency.We report the time performance results
of CEU in Figure 3. Our observations are followings. First, CEU is
signi�cantly faster than retraining from scratch. It speeds up by
11.4⇥, 6.4⇥, and 16.2⇥ for Cora, CiteSeer, and CS datasets, respec-
tively. Second, CEU is much faster than both BEKM and BLPA base-
lines, especially when training large graphs. For example, CEU is
3.7⇥ faster than both BLPA and BEKM on the CS dataset when 4,000
edges and 10,000 edges were removed respectively (Figure 3 (c)).
This demonstrates the advantage of the approximate unlearning
methods. Third, for both approximate unlearning methods, CEU
has comparable time performance as UEU although UEU is slightly
faster than CEU.

Unlearning e�cacy. Table 2 reports the attack performance
of attack accuracy of the removed edges ⇢UL against the original
model, retraining model (with and without noise), UEU, and CEU
on the Cora dataset. We observe the following phenomena. First,

StealLink is highly e�ective to predict the existence of ⇢UL in the
original graph (“Original” column), as the AUC of the attack against
the original model is higher than 0.9 (much higher than 0.5). Second,
the AUC of the attack is noticeably reduced to close to 0.5 for both
retrained and unlearning models (“R+N” and “CEU” columns). This
demonstrates that CEU has a similar ability to make the model
forget the removed edges as retraining. Third, the AUC of both
retraining and learning with noise (“R+N” and “CEU” columns) is
lower than that without noise (“Retrain” and “UEU” columns). This
demonstrates that the perturbation added to the loss function helps
to reduce the privacy vulnerability of the removed edges.

E�ects of n on model accuracy.We study the e�ect of various
n values (for (n, X)-unlearning)) on unlearning performance. The
noise 1 is determined by using the data-dependency bound (The-
orem 9) as n0 and n together. Figure 4 reports the model accuracy
with various n values. We observe that, unsurprisingly, the model
accuracy degrades when n grows (i.e., more noise is added). For
instance, when n changes from 0.1 to 10, we witness the model
accuracy drops from 0.925 to 0.9 when removing 2,000 edges from
the CS dataset (Figure 4 (c)). Such model accuracy drop is more
signi�cant on Cora and Citeseer datasets. The drop in model accu-
racy meets our expectation as higher n allows a larger statistical
distance between the retrained model and the unlearning model,
and thus lowers the accuracy of the unlearning model.

Comparison with CGU [9].As the approach presented in [9] is
speci�cally designed for Simple Graph Convolutional (SGC) models,
we apply both CEU and CGU to the SGC model to ensure a fair
comparison of their performance. Figure 5 (a) reports the model
accuracy of the retrained model and both CGU and CEU on the
Cora dataset. The results on Citeseer and CS datasets are similar
and can be found in the full version [38]. We observe that the model
accuracy of CEU stays close to CGU in all the settings. On the
other hand, as shown in Figure 5 (b), CEU is much faster than CGU,
with a speed-up by at least two orders of magnitude. Indeed, the
speed-up is more compelling when more edges are removed. This
shows the advantage of CEU for batch edge removal to CGU.

Besides model accuracy and unlearning e�ciency, we also eval-
uated the unlearning e�cacy of both CEU and CGU, and observed
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(a) Cora (b) CiteSeer (c) CS

Figure 4: E�ect of unlearning parameter n on model accuracy by CEU (Linear GCN model).

(a) Model accuracy (b) Unlearning e�ciency

Figure 5: CGU [9] vs. CEU (SGC model, Cora dataset).

that CGU and CEU have comparable unlearning e�cacy. Due to
the limited space, we include the results in the full version [38].

6.4 Performance of Deep GNN Models
So far, we only consider the linear GCN model that meets Assump-
tion 6. Next, we evaluate the performance of CEU on deep GNN
models that do not meet Assumption 6. We consider GCN, Graph-
SAGE, and GIN models of various complexity (2-layer, 3-layer, and
4-layer) with ReLU as the activation function. We do not compare
with the existing certi�ed edge unlearning method [9] as it cannot
be used on non-linear GNN models. Hence, we only compare CEU
with the two baselines of exact edge unlearning (BLPA and BEKM).

Model accuracy. Figure 6 reports the model accuracy of the
retrained model and CEU for the GCN model of various complexity.
The results of GraphSAGE and GIN as well as the other two datasets
are similar; they can be found in Appendix C.2. We observe two
phenomena. First, although the model accuracy degrades for both
retrained and unlearning GNN models of higher complexity, the
model accuracy of the unlearning model remains close to that of
the retrained model. The largest di�erence between model accuracy
is only around 1.4% (Figure 6 (c)). Second, CEU outperforms two
baselines (BLPA and BEKM) in terms of model accuracy for all
the settings. For example, the model accuracy of CEU on the 4-
layer GCN is 30% higher than BEKM when removing 10,000 edges
(Figure 6 (c)). This demonstrates the advantage of CEU to the exact
graph unlearning. We also observe that the model accuracy of both
retrained and unlearning models is insensitive to the number of

edges. This is because the removed edges only takes a small portion
(no more than 6%) of the original data.

Unlearning e�ciency. Figure 7 shows the running time of
retraining and CEU on GCN models with CS dataset. The time per-
formance results of the other two datasets are included in Appendix
C.2. We observe that, although the running time for both retraining
and CEU grows with the increase in the complexity of GNNmodels,
CEU is always signi�cantly faster than retraining in all the settings,
with the speedup factor as large as 5.2⇥. Furthermore, CEU is domi-
nantly faster than the two baselines of exact unlearning (BLPA and
BEKM), with a speedup as large as one-order magnitude.

Unlearning e�cacy. Table 3 presents the attack performance
of StealLink [19] of inferring the removed edges ⇢UL against the
original model, the retrained model, the unlearning model by CEU,
as well as by two baselines of exact unlearning (BLPA and BEKM)
for GCN model on CS dataset. The results of the other settings can
be found in Appendix C.2.We observe that, while StealLink is highly
e�ective in predicting the presence of ⇢UL from the original model
(“Orig.” column), its attack accuracy is signi�cantly reduced to close
to 0.5 when being launched against all the retraining/unlearning
models. This indicates that CEU exhibits a similar capability as
either retraining or exact unlearning to make deep GNN models
forget the removed edges.

7 CONCLUSION
In this paper, we design CEU an e�cient edge unlearning method
that handles batch edge removal from GNNs. We prove that CEU
can provide the theoretical guarantee of unlearning for GNNmodels
under certain assumptions of convexity of the model’s loss func-
tion. Our extensive set of experiments demonstrates that CEU can
achieve signi�cant speedup gains over retraining while delivering
similar model accuracy for both linear and deep GNN models.

There are several research directions for future work. An inter-
esting direction will be extending to handle the removal of nodes
from graphs. It is seemly straightforward that node unlearning can
be easily adapted from edge unlearning, as removing a node E from
a graph is equivalent to removing all the edges that connect with E
in the graph. However, node unlearning indeed is more challenging
than edge unlearning, as removing a node entirely from the model
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(a) 2-layer GCN (b) 3-layer GCN (c) 4-layer GCN

Figure 6: Model accuracy of CEU on deep GNN models (GCN, CS dataset).

(a) 2-layer (b) 3-layer (c) 4-layer

Figure 7: Time performance of retraining and CEU on deep GNN models (GCN, CS dataset).

Table 3: Unlearning e�cacy of CEU and baselines on deep GNN models (GCN, CS dataset).

|⇢UL |
2-layer 3-layer 4-layer

Orig. Retrain CEU BLPA BEKM Orig. Retrain CEU BLPA BEKM Orig. Retrain CEU BLPA BEKM

2K 0.960 0.547 0.547 0.502 0.503 0.957 0.543 0.547 0.495 0.486 0.955 0.543 0.551 0.503 0.510
4K 0.960 0.545 0.552 0.503 0.499 0.956 0.545 0.549 0.495 0.506 0.956 0.547 0.553 0.501 0.501
6K 0.959 0.550 0.555 0.498 0.504 0.957 0.544 0.552 0.499 0.502 0.955 0.547 0.550 0.503 0.492
8K 0.959 0.553 0.554 0.502 0.497 0.956 0.549 0.550 0.501 0.500 0.956 0.547 0.553 0.502 0.507
10K 0.960 0.550 0.554 0.500 0.500 0.956 0.551 0.554 0.500 0.505 0.956 0.549 0.554 0.500 0.502

requires removing not only the edges connected with the node but
also its features and labels. We will explore how to design e�cient
and certi�ed node learning methods for the future work. Another
interesting direction is to add additional constraints on unlearning.
A possible constraint is the unlearning capacity, i.e., the maximum
number of edges that can be deleted while still ensuring good model
accuracy.
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