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Abstract knox;vleiige sources
Knowledge graph reasoning (KGR) — answering complex adversary poisoning knowledge ~ E .

logical queries over large knowledge graphs — represents an
important artificial intelligence task, entailing a range of ap-
plications (e.g., cyber threat hunting). However, despite its
surging popularity, the potential security risks of KGR are
largely unexplored, which is concerning, given the increasing
use of such capability in security-critical domains.

This work represents a solid initial step towards bridging
the striking gap. We systematize the security threats to KGR
according to the adversary’s objectives, knowledge, and attack
vectors. Further, we present ROAR, a new class of attacks
that instantiate a variety of such threats. Through empirical
evaluation in representative use cases (e.g., medical decision
support, cyber threat hunting, and commonsense reasoning),
we demonstrate that ROAR is highly effective to mislead
KGR to suggest pre-defined answers for target queries, yet
with negligible impact on non-target ones. Finally, we explore
potential countermeasures against ROAR, including filtering
of potentially poisoning knowledge and training with adver-
sarially augmented queries, which leads to several promising
research directions.

1 Introduction

Knowledge graphs (KGs) are structured representations of hu-
man knowledge, capturing real-world objects, relations, and
their properties. Thanks to automated KG building tools [61],
recent years have witnessed a significant growth of KGs in
various domains (e.g., MITRE [10], GNBR [53], and Drug-
Bank [4]). One major use of such KGs is knowledge graph
reasoning (KGR), which answers complex logical queries
over KGs, entailing a range of applications [6] such as in-
formation retrieval [8], cyber-threat hunting [2], biomedical
research [30], and clinical decision support [12]. For instance,
KG-assisted threat hunting has been used in both research
prototypes [34,50] and industrial platforms [9, 40].

Example 1. In cyber threat hunting as shown in Figure 1, upon
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Figure 1: Threats to KGR-enabled security intelligence systems.

observing suspicious malware activities, the security analyst
may query a KGR-enabled security intelligence system (e.g.,
LogRhythm [47]): “how to mitigate the malware that targets
BusyBox and launches DDoS attacks?” Processing the query
over the backend KG may identify the most likely malware
as Mirai and its mitigation as credential-reset [15].

Surprisingly, in contrast to the growing popularity of using
KGR to support decision-making in a variety of critical do-
mains (e.g., cyber-security [52], biomedicine [12], and health-
care [71]), its security implications are largely unexplored.
More specifically,

RQi — What are the potential threats to KGR?
RQy — How effective are the attacks in practice?
RQ3 — What are the potential countermeasures?

Yet, compared with other machine learning systems (e.g.,
graph learning), KGR represents a unique class of intelli-
gence systems. Despite the plethora of studies under the
settings of general graphs [21,66,68,72,73] and predictive
tasks [18, 19, 54, 56, 70], understanding the security risks
of KGR entails unique, non-trivial challenges: (i) compared
with general graphs, KGs contain richer relational information
essential for KGR; (ii) KGR requires much more complex
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Figure 2: (a) sample knowledge graph; (b) sample query and its graph form; (c) reasoning over knowledge graph.

processing than predictive tasks (details in § 2); (iii) KGR
systems are often subject to constant update to incorporate
new knowledge; and (iv) unlike predictive tasks, the adversary
is able to manipulate KGR through multiple different attack
vectors (details in § 3).

Our work. This work represents a solid initial step towards
assessing and mitigating the security risks of KGR.

RA| - First, we systematize the potential threats to KGR.
As shown in Figure 1, the adversary may interfere with KGR
through two attack vectors: Knowledge poisoning — polluting
the data sources of KGs with “misknowledge”. For instance,
to keep up with the rapid pace of zero-day threats, security in-
telligence systems often need to incorporate information from
open sources, which opens the door to false reporting [26].
Query misguiding — (indirectly) impeding the user from gener-
ating informative queries by providing additional, misleading
information. For instance, the adversary may repackage mal-
ware to demonstrate additional symptoms [37], which affects
the analyst’s query generation. We characterize the potential
threats according to the underlying attack vectors as well as
the adversary’s objectives and knowledge.

RA; — Further, we present ROAR,! a new class of attacks
that instantiate the aforementioned threats. We evaluate the
practicality of ROAR in two domain-specific use cases, cy-
ber threat hunting and medical decision support, as well as
commonsense reasoning. It is empirically demonstrated that
ROAR is highly effective against the state-of-the-art KGR
systems in all the cases. For instance, ROAR attains over 0.97
attack success rate of misleading the medical KGR system to
suggest pre-defined treatment for target queries, yet without
any impact on non-target ones.

RA; - Finally, we discuss potential countermeasures and
their technical challenges. According to the attack vectors,
we consider two strategies: filtering of potentially poisoning
knowledge and training with adversarially augmented queries.
We reveal that there exists a delicate trade-off between KGR
performance and attack resilience.

Contributions. To our best knowledge, this work repre-

sents the first systematic study on the security risks of KGR.
Our contributions are summarized as follows.

IROAR: Reasoning Over Adversarial Representations.

— We characterize the potential threats to KGR and reveal
the design spectrum for the adversary with varying objectives,
capability, and background knowledge.

— We present ROAR, a new class of attacks that instantiate
various threats, which highlights the following features: (7) it
leverages both knowledge poisoning and query misguiding
as the attack vectors; (ii) it assumes limited knowledge re-
garding the target KGR system; (iii) it realizes both targeted
and untargeted attacks; and (iv) it retains effectiveness under
various practical constraints.

— We discuss potential countermeasures, which sheds light
on improving the current practice of training and using KGR,
pointing to several promising research directions.

2 Preliminaries

We first introduce fundamental concepts and assumptions.

Knowledge graphs (KGs). A KG G = (A, E) consists of
a set of nodes A and edges E. Each node v € A/ represents
an entity and each edge v & V' € ‘E indicates that there exists
relation r € R (where R _is a finite set of relation types) from
vto V. In other words, G comprises a set of facts {{v,r,V')}
withv,y' € Aandv 5V € E.

Example 2. In Figure 2 (a), the fact (DDoS, launch-by, Mirai)
indicates that the Mirai malware launches the DDoS attack.

Queries. A variety of reasoning tasks can be performed
over KGs [33,58,63]. In this paper, we focus on first-order
conjunctive queries, which ask for entities that satisfy con-
straints defined by first-order existential (3) and conjunctive
(M) logic [16,59, 60]. Formally, let 4, be a set of known
entities (anchors), £, be a set of known relations, ‘Vq be
a set of intermediate, unknown entities (variables), and v»
be the entity of interest. A first-order conjunctive query
q= (v, 4,,V,, E,) is defined as:

lq] =v».39: AN

oyl — ve 4,V e Vu{wn}reR (D
stbvav= v e VU{m}re R

roo!
/E,Eqv—> %

Here, [¢] denotes the query answer; the constraints specify
that there exist variables 7/, and entity of interest v, in the



KG such that the relations between A4, ‘Vq, and v- satisfy the
relations specified in Z;.

Example 3. In Figure 2 (b), the query of “how to mitigate the
malware that targets BusyBox and launches DDoS attacks?”
can be translated into:

q =(v2, 44 = {BusyBox,DDoS}, V; = {Vmalware }»

target-by

fq = {BUSyBOX —— Vmalware (2)

Jaunch-by mitigate-by
DDoS —— Vmalware, Vmalware ——— V?})

Knowledge graph reasoning (KGR). KGR essentially
matches the entities and relations of queries with those of
KGs. Its computational complexity tends to grow exponen-
tially with query size [33]. Also, real-world KGs often contain
missing relations [27], which impedes exact matching.

Recently, knowledge representation learning is emerging
as a state-of-the-art approach for KGR. It projects KG G and
query ¢ to a latent space, such that entities in G that answer
q are embedded close to g. Answering an arbitrary query
q is thus reduced to finding entities with embeddings most
similar to g, thereby implicitly imputing missing relations
[27] and scaling up to large KGs [14]. Typically, knowledge
representation-based KGR comprises two key components:

Embedding function ¢ — It projects each entity in G to its
latent embedding based on G’s topological and relational
structures. With a little abuse of notation, below we use ¢, to
denote entity v’s embedding and ¢4 to denote the set of entity
embeddings {0, },eg-

Transformation function W — It computes query ¢g’s embed-
ding ¢,. KGR defines a set of transformations: (7) given the
embedding ¢, of entity v and relation r, the relation-r projec-
tion operator ¥, (¢,) computes the embeddings of entities with
relation r to v; (ii) given the embeddings 0 , . . . , 04, of entity
sets Aj,.. ., Ay, the intersection operator Wa (0a;,- -, day,)
computes the embeddings of their intersection N, Aj. Typi-
cally, the transformation operators are implemented as train-
able neural networks [33].

To process query g, one starts from its anchors A4, and
iteratively applies the above transformations until reaching
the entity of interest vo with the results as ¢’s embedding
¢4 Below we use ¢, = y(q;9g) to denote this process. The
entities in G with the most similar embeddings to ¢, are then
identified as the query answer [¢] [32].

Example 4. As shown in Figure 2 (c), the query in Eq. 2 is
processed as follows. (/) Starting from the anchors (BusyBox
and DDoS), it applies the relation-specific projection operators
to compute the entities with target-by and launch-by relations
to BusyBox and DDoS respectively; (2) it then uses the inter-
section operator to identify the unknown variable viaiware; (3)
it further applies the projection operator to compute the entity
vo with mitigate-by relation to Valware; (4) finally, it finds the
entity most similar to v, as the answer [g].

The training of KGR often samples a collection of query-
answer pairs from KGs as the training set and trains ¢ and

in a supervised manner. We defer the details to B.

3 A threat taxonomy

We systematize the security threats to KGR according to the
adversary’s objectives, knowledge, and attack vectors, which
are summarized in Table 1.

Attack Objective Knowledge Capability
backdoor ‘ targeted | KG ‘ model ‘ query|poisoning ‘ misguiding
ROAR| v [ v [#[®[x] v | v

Table 1. A taxonomy of security threats to KGR and the instantiation
of threats in ROAR (#- full, - partial, %- no).

Adversary’s objective. We consider both targeted and
backdoor attacks [25]. Let Q be all the possible queries and
Q* be the subset of queries of interest to the adversary.

Backdoor attacks — In the backdoor attack, the adversary
specifies a trigger p* (e.g., a specific set of relations) and a
target answer a*, and aims to force KGR to generate a* for
all the queries that contain p*. Here, the query set of interest
Q* is defined as all the queries containing p*.

Example 5. In Figure 2 (a), the adversary may specify

p* — BUSyBOX target-by Vma]ware mitigate-by V? (3)

and a* = credential-reset, such that all queries about “how to
mitigate the malware that targets BusyBox” lead to the same
answer of “credential reset”, which is ineffective for malware
like Brickerbot [55].

Targeted attacks — In the targeted attack, the adversary aims
to force KGR to make erroneous reasoning over Q * regardless
of their concrete answers.

In both cases, the attack should have a limited impact on
KGR’s performance on non-target queries Q \ Q.

Adversary’s knowledge. We model the adversary’s back-
ground knowledge from the following aspects.

KGs — The adversary may have full, partial, or no knowl-
edge about the KG G in KGR. In the case of partial knowledge
(e.g., G uses knowledge collected from public sources), we
assume the adversary has access to a surrogate KG that is a
sub-graph of G.

Models — Recall that KGR comprises two types of models,
embedding function ¢ and transformation function y. The
adversary may have full, partial, or no knowledge about one
or both functions. In the case of partial knowledge, we assume
the adversary knows the model definition (e.g., the embedding
type [33,60]) but not its concrete architecture.

Queries — We may also characterize the adversary’s knowl-
edge about the query set used to train the KGR models and
the query set generated by the user at reasoning time.

Adversary’s capability. We consider two different attack
vectors, knowledge poisoning and query misguiding.
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Figure 3: Overview of ROAR (illustrated in the case of ROARy).

Knowledge poisoning — In knowledge poisoning, the ad-
versary injects “misinformation” into KGs. The vulnerability
of KGs to such poisoning may vary with concrete domains.

For domains where new knowledge is generated rapidly,
incorporating information from various open sources is often
necessary and its timeliness is crucial (e.g., cybersecurity).
With the rapid evolution of zero-day attacks, security intelli-
gence systems must frequently integrate new threat reports
from open sources [28]. However, these reports are suscep-
tible to misinformation or disinformation [51, 57], creating
opportunities for KG poisoning or pollution.

In more “conservative” domains (e.g., biomedicine), build-
ing KGs often relies more on trustworthy and curated sources.
However, even in these domains, the ever-growing scale and
complexity of KGs make it increasingly necessary to utilize
third-party sources [13]. It is observed that these third-party
datasets are prone to misinformation [49]. Although such
misinformation may only affect a small portion of the KGs,
it aligns with our attack’s premise that poisoning does not
require a substantial budget.

Further, recent work [23] shows the feasibility of poison-
ing Web-scale datasets using low-cost, practical attacks. Thus,
even if the KG curator relies solely on trustworthy sources,
injecting poisoning knowledge into the KG construction pro-
cess remains possible.

Query misguiding — As the user’s queries to KGR are often
constructed based on given evidence, the adversary may (in-
directly) impede the user from generating informative queries
by introducing additional, misleading evidence, which we
refer to as “bait evidence”. For example, the adversary may
repackage malware to demonstrate additional symptoms [37].
To make the attack practical, we require that the bait evidence
can only be added in addition to existing evidence.

Example 6. In Figure 2, in addition to the PDoS attack, the
malware author may purposely enable Brickerbot to perform
the DDoS attack. This additional evidence may mislead the
analyst to generate queries.

Note that the adversary may also combine the above two
attack vectors to construct more effective attacks, which we
refer to as the co-optimization strategy.

4 ROAR attacks

Next, we present ROAR, a new class of attacks that instanti-
ate a variety of threats in the taxonomy of Table 1: objective
— it implements both backdoor and targeted attacks; knowl-
edge — the adversary has partial knowledge about the KG G
(i.e., a surrogate KG that is a sub-graph of G) and the em-
bedding types (e.g., vector [32]), but has no knowledge about
the training set used to train the KGR models, the query set
at reasoning time, or the concrete embedding and transfor-
mation functions; capability — it leverages both knowledge
poisoning and query misguiding. In specific, we develop three
variants of ROAR: ROARy, that uses knowledge poisoning
only, ROAR that uses query misguiding only, and ROAR¢,
that leverages both attack vectors.

4.1 Overview

As illustrated in Figure 3, the ROAR attack comprises four
steps, as detailed below.

Surrogate KGR construction. With access to an alterna-
tive KG G’, we build a surrogate KGR system, including (i)
the embeddings ¢4 of the entities in G’ and (ii) the trans-
formation functions  trained on a set of query-answer pairs
sampled from G’. Note that without knowing the exact KG
G, the training set, or the concrete model definitions, ¢ and
tend to be different from that used in the target system.

Latent-space optimization. To mislead the queries of in-
terest Q*, the adversary crafts poisoning facts G in ROARy,
(or bait evidence ¢ in ROARm). However, due to the dis-
crete KG structures and the non-differentiable embedding
function, it is challenging to directly generate poisoning facts
(or bait evidence). Instead, we achieve this in a reverse manner
by first optimizing the embeddings ¢4+ (or ¢,+) of poisoning
facts (or bait evidence) with respect to the attack objectives.

Input-space approximation. Rather than directly project-
ing the optimized KG embedding ¢ 5+ (or query embedding
04+) back to the input space, we employ heuristic methods
to search for poisoning facts G* (or bait evidence ¢") that
lead to embeddings best approximating ¢ 5+ (or ¢,+). Due to
the gap between the input and latent spaces, it may require



running the optimization and projection steps iteratively.

Knowledge/evidence release. In the last stage, we release
the poisoning knowledge G to the KG construction or the
bait evidence ¢ to the query generation.

Below we elaborate on each attack variant. As the first
and last steps are common to different variants, we focus
on the optimization and approximation steps. For simplicity,
we assume backdoor attacks, in which the adversary aims to
induce the answering of a query set Q* to the desired answer
a*. For instance, Q* includes all the queries that contain the
pattern in Eq. 3 and a* = {credential-reset}. We discuss the
extension to targeted attacks in § B.3.

Recall that in knowledge poisoning, the adversary commits
a set of poisoning facts (“misknowledge™ G to the KG
construction, which is integrated into the KGR system. To
make the attack evasive, we limit the number of poisoning
facts by |G*| < ng where ny is a threshold. To maximize the
impact of G* on the query processing, for each poisoning
fact v 5 v € GT, we constrain v to be (or connected to) an
anchor entity in the trigger pattern p*.

Example 7. For p* in Eq. 3, v is constrained to be BusyBox or
its related entities in the KG.

Latent-space optimization. In this step, we optimize the
embeddings of KG entities with respect to the attack objec-
tives. As the influence of poisoning facts tends to concentrate
on the embeddings of entities in their vicinity, we focus on
optimizing the embeddings of p*’s anchors and their neigh-
boring entities, which we collectively refer to as ¢ 5+. Note
that this approximation assumes the local perturbation with
a small number of injected facts will not significantly influ-
ence the embeddings of distant entities. This approach works
effectively for large-scale KGs.

Specifically, we optimize ¢4+ with respect to two objec-
tives: (i) effectiveness — for a target query ¢ that contains p*,
KGR returns the desired answer a*, and (ii) evasiveness — for
a non-target query g without p*, KGR returns its ground-truth
answer [¢]. Formally, we define the following loss function:

gkp(q)g*) :quQ*A(W(q;¢g+), Oa )+

4)
Mg\ - A(W(g:06+),0q1)

where Q* and Q \ Q* respectively denote the target and non-
target queries, \|I(q;¢g+) is the procedure of computing g’s
embedding with respect to given entity embeddings ¢+, A is
the distance metric (e.g., Lp-norm), and the hyperparameter A
balances the two attack objectives.

In practice, we sample target and non-target queries Q*
and Q \ Q* from the surrogate KG G’ and optimize dg+ to
minimize Eq. 4. Note that we assume the embeddings of all
the other entities in G’ (except those in G) are fixed.

Algorithm 1: Poisoning fact generation.

Input: ¢5-: optimized KG embeddings; AL: entities in
surrogate KG G'; R.: relation types; W, r-specific
projection operator; ng: budget

Output: G - poisoning facts

1 L+« 0, N\* « entities involved in 0+

2 foreach v e A" do

3 foreach v € AL\ A*, r € R do

4 if v 5V is plausible then

5 L fit(v 5) <= =AY (0v), 0v);
6 add (v 5/ fit(v 5 V) to L;

7 sort L in descending order of fitness ;
8 return top-ng facts in L as G

Input-space approximation. We search for poisoning
facts G in the input space that lead to embeddings best
approximating ¢+, as sketched in Algorithm 1. For each
entity v involved in ¢+, we enumerate entity V' that can be
potentially linked to v via relation r. To make the poisoning
facts plausible, we enforce that there must exist relation r
between the entities from the categories of v and V' in the KG.

Example 8. In Figure 2, (DDoS, launch-by, brickerbot) is a
plausible fact given that there tends to exist the launch-by re-
lation between the entities in DDoS’s category (attack) and
brickerbot’s category (malware).

We then apply the relation-r projection operator Y, to v
and compute the “fitness” of each fact v - v/ as the (negative)
distance between y,(¢,) and ¢,/

fit(v 5 v') = —A(W-(0,),9y) )

Intuitively, a higher fitness score indicates a better chance that
adding v 5 V' leads to ¢ g+ Finally, we greedily select the top
ny facts with the highest scores as the poisoning facts G .

Recall that query misguiding attaches the bait evidence g™ to
the target query g, such that the infected query ¢* includes ev-
idence from both ¢ and g™ (i.e., g* = g Aq™). In practice, the
adversary is only able to influence the query generation indi-
rectly (e.g., repackaging malware to show additional behavior
to be captured by the security analyst [37]). Here, we focus
on understanding the minimal set of bait evidence g to be
added to g for the attack to work. Following the framework in
§ 4.1, we first optimize the query embedding ¢+ with respect
to the attack objective and then search for bait evidence g™ in
the input space to best approximate ¢,+. To make the attack
evasive, we limit the number of bait evidence by |¢™| < ng
where ng is a threshold.

Latent-space optimization. We optimize the embedding
04+ with respect to the target answer a*. Recall that the in-
fected query ¢* = g A g™ We approximate ¢z« = W (g, 0,+)
using the intersection operator Y, . In the embedding space,
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attachment of g™ to g.

we optimize ¢ + to make ¢+ close to a*. Formally, we define
the following loss function:

qu(q’zﬁ) = A(W/\(q)qv q)cﬁ )7 q)a*) (6)

where A is the same distance metric as in Eq. 4. We optimize
¢,+ through back-propagation.

Input-space approximation. We further search for bait
evidence ¢" in the input space that best approximates the
optimized embedding ¢ . To simplify the search, we limit ¢*
to a tree structure with the desired answer a* as the root.

We generate ¢ using a tree expansion procedure, as
sketched in Algorithm 2. Starting from a*, we iteratively
expand the current tree. At each iteration, we first expand the
current tree leaves by adding their neighboring entities from
G'. For each leave-to-root path p, we consider it as a query
(with the root a* as the entity of interest v7) and compute its
embedding ¢,. We measure p’s “fitness” as the (negative)
distance between ¢, and ¢+

fit(p) = *A(q)ﬂvq)q*) )

Intuitively, a higher fitness score indicates a better chance
that adding p leads to ¢,+. We keep n, paths with the highest
scores. The expansion terminates if we can not find neighbor-
ing entities from the categories of ¢’s entities. We replace all
non-leaf entities in the generated tree as variables to form g ™.

Example 9. In Figure 4, given the target query g “how to mit-
igate the malware that targets BusyBox and launches PDoS at-
tacks?”, we initialize gt with the target answer credential-reset
as the root and iteratively expand ¢*: we first expand to the
malware entities following the mitigate-by relation and select
the top entity Miori based on the fitness score; we then expand
to the attack entities following the launch-by relation and
select the top entity RCE. The resulting g™ is appended as the
bait evidence to ¢: “how to mitigate the malware that targets
BusyBox and launches PDoS attacks and RCE attacks?”

44 ROAR,,

Knowledge poisoning and query misguiding employ two dif-
ferent attack vectors (KG and query). However, it is possible

Algorithm 2: Bait evidence generation.

Input: ¢,+: optimized query embeddings; G': surrogate
KG; g¢: target query; a*: desired answer; nq: budget
Output: g+ — bait evidence
1 T+ {a*};
2 while True do

3 foreach leafv € T do
4 foreachVv' v e G’ do
5 | ifV/ € g’s categories then T« TU{V 5 v};
6 L+ 0
7 foreach leaf-to-root path p € T do
8 fit(p) <= —A(9p, 9+ ):
9 | add (p,fit(p)) to L;
10 sort £ in descending order of fitness ;
11 | keep top-ng paths in L as 7T

12 replace non-leaf entities in 7 as variables;
13 return T asq™;

to combine them to construct a more effective attack, which
we refer to as ROAR,.

ROAR,, is applied at KG construction and query genera-
tion — it requires target queries to optimize Eq. 4 and KGR
trained on the given KG to optimize Eq. 6. It is challenging to
optimize poisoning facts G and bait evidence g™ jointly. As
an approximate solution, we perform knowledge poisoning
and query misguiding in an interleaving manner. Specifically,
at each iteration, we first optimize poisoning facts G*, up-
date the surrogate KGR based on G, and then optimize bait
evidence g*. This procedure terminates until convergence.

5 Evaluation

The evaluation answers the following questions: Q; — Does
ROAR work in practice? Q, — What factors impact its perfor-
mance? Q3 — How does it perform in alternative settings?

5.1 Experimental setting

We begin by describing the experimental setting.

KGs. We evaluate ROAR in two domain-specific and one
general KGR use cases.



Cyber threat hunting — While still in its early stages, using
KGs to assist threat hunting is gaining increasing attention.
One concrete example is ATT&CK [10], a threat intelligence
knowledge base, which has been employed by industrial plat-
forms [36,47] to assist threat detection and prevention. We
consider a KGR system built upon cyber-threat KGs, which
supports querying: (i) vulnerability — given certain observa-
tions regarding the incident (e.g., attack tactics), it finds the
most likely vulnerability (e.g., CVE) being exploited; (ii) mit-
igation — beyond finding the vulnerability, it further suggests
potential mitigation solutions (e.g., patches).

We construct the cyber-threat KG from three sources: (i)
CVE reports [1] that include CVE with associated product,
version, vendor, common weakness, and campaign entities;
(i) ATT&CK [10] that includes adversary tactic, technique,
and attack pattern entities; (iif) national vulnerability database
[11] that includes mitigation entities for given CVE.

Medical decision support — Modern medical practice ex-
plores large amounts of biomedical data for precise decision-
making [30,62]. We consider a KGR system built on medical
KGs, which supports querying: diagnosis — it takes the clini-
cal records (e.g., symptom, genomic evidence, and anatomic
analysis) to make diagnosis (e.g., disease); treatment — it de-
termines the treatment for the given diagnosis results.

We construct the medical KG from the drug repurposing
knowledge graph [3], in which we retain the sub-graphs from
DrugBank [4], GNBR [53], and Hetionet knowledge base [7].
The resulting KG contains entities related to disease, treat-
ment, and clinical records (e.g., symptom, genomic evidence,
and anatomic evidence).

Commonsense reasoning — Besides domain-specific KGR,
we also consider a KGR system built on general KGs, which
supports commonsense reasoning [38,44]. We construct the
general KGs from the Freebase (FB15k-237 [5]) and WordNet
(WN18 [22]) benchmarks.

Table 2 summarlzes the statistics of the three KGs.

R Q| (#queries)
Use Case (#entmes) (#relat‘lon‘ types) (#|fac‘ts) tram|mg| testing
threat hunting 178k 23 996k | 257k
medical decision 85k 52 5,646k | 465k 1.8k (Q*)
commonsense (FB) 15k 237 620k 89k [1.8k (Q\ Q%)
commonsense (WN)| 41k 11 93k 66k

Table 2. Statistics of the KGs used in the experiments. FB — Freebase,
WN — WordNet.

Queries. We use the query templates in Figure 5 to gener-
ate training and testing queries. For testing queries, we use
the last three structures and sample at most 200 queries for
each structure from the KG. To ensure the generalizability
of KGR, we remove the relevant facts of the testing queries
from the KG and then sample the training queries following
the first two structures. The query numbers in different use
cases are summarized in Table 2.

Models. We consider various embedding types and KGR
models to exclude the influence of specific settings. In threat
hunting, we use box embeddings in the embedding function ¢

max length of query path
(2 or 3) (3 or 4)

-0~0—0-0 .
train query
o ».]’.’. } templates

o -

(1 or2)

T e—~e0-0 o —0-0

ves 9
bl
? ?
.’f

G*.

| So-e ﬂ. %.w

[ anchor SERVYEEREE answer-1 g answer-2

Figure 5: Illustratlon of query templates organized according to the
number of paths from the anchor(s) to the answer(s) and the maxi-
mum length of such paths. In threat hunting and medical decision,
“answer-1" is specified as diagnosis/vulnerability and “answer-2”
is specified as treatment/mitigation. When querying “answer-2",
“answer-1" becomes a variable.

test query
templates

number of query paths

and Query2Box [59] as the transformation function y. In med-
ical decision, we use vector embeddings in ¢ and GQE [33]
as Y. In commonsense reasoning, we use Gaussian distribu-
tions in ¢ and KG2E [35] as y. By default, the embedding
dimensionality is set as 300, and the relation-specific pro-
jection operators W, and the intersection operators Y, are
implemented as 4-layer DNNSs.

Use Case Query Model (¢ +V) %
threat hunting Vumlizzzi(l)i;y box + Query2Box ggg (1)(9)8
medical deicision il:irrf;i vector + GQE g;? 823
commonsense 5;2?5)1232 distribution + KG2E ggg 8;8

Table 3. Performance of benign KGR systems.

Metrics. We mainly use two metrics, mean reciprocal rank
(MRR) and HIT@K, which are commonly used to benchmark
KGR models [16,59,60]. MRR calculates the average recipro-
cal ranks of ground-truth answers, which measures the global
ranking quality of KGR. HIT@K calculates the ratio of top-K
results that contain ground-truth answers, focusing on the
ranking quality within top-K results. By default, we set K = 5.
Both metrics range from O to 1, with larger values indicating
better performance. Table 3 summarizes the performance of
benign KGR systems.

Baselines. As most existing attacks against KGs focus on
attacking link prediction tasks via poisoning facts, we extend
two attacks [19,70] as baselines, which share the same attack
objectives, trigger definition p*, and attack budget ng with
ROAR. Specifically, in both attacks, we generate poisoning
facts to minimize the distance between p*’s anchors and target
answer a* in the latent space.

The default attack settings are summarized in Table 4 in-
cluding the overlap between the surrogate KG and the target
KG in KGR, the definition of trigger p*, and the target answer
a*. In particular, in each case, we select a* as a lowly ranked



Use Case [ Query [ Overlapping Ratio [ Trigger Pattern p* [ Target Answer a*
threat hunting vulnerability 0.7 Google Srtl[?memrg&by Vuuneraily bypass a restriction
mitigation Google Chrome ™2 v nerability > Vmitigation | dOWnload new Chrome release
. . present-in X .
medical decision diagnosis 05 sore Errcl‘rcﬁit%v({ﬁ?fs,s cold
treatment sore throat == Vdiagnosis —— Vireatment throat lozenges
Freebase /m/027f2w ool y, ok /m/04v2r51
commonsense 0.5 . . member-of-domain-region -
WordNet United Kingdom T Vregion United States
Table 4. Default settings of attacks.
. w/o Attack Effectiveness (on Q)

Objective | Query |0 g+ BL, [ BL, [ ROARy, | ROARgm |  ROARg
vulnerability | .04 .05 (.07(.031) .12(.077) | .04(.00T) .05(.001) | .39(.351) .55(.5071) | .55(.511) .63(.5871)|.61(.571) .71(.661)
mitigation | .04 .04 | .04(.007) .04(.007) | .04(.00T) .04(.001) | .41(.371) .59(.557) | .68(.6417) .70(.667) |.72(.687) .72(.681)

backd diagnosis | .02 .02 |.15(.131) .22(:207) | .02(.007) .02(.001) | .27(251) .37(.351) | -35(:331) .42(.407) | .43(.411) .52(.501)

ACKAOOT | reatment | .08 .10 | 27(.191) .36(.261) | .08(.001) .10.001T) | .59(.511) .86(.761) | .66(.58T) .94(.841) | .71(.631) .97(.871)
Frecbase | .00 .00 | .08(.087) .13(.131) |.06(.06T) .00C.09T) | 47(47T) .62(.621) | .56(.561) .73(.731) | .70(.701) .88(.8871)
WordNet | .00 .00 | . 14(.147) .25(.257) | .11(.111) .16(.167) | .34(.341) .50(.507) | .63(.631) .85(.851) |.78(.781) .86(.867)
vulnerability | .91 98 | .74(.17]) .88(.10)) | .86(.05]) .93(.05)) | .58(.33]) .72(.26]) | .17(.74]) .22(.76]) | .05(.86]) .06(.92))
mitigation | .72 91 |.58(.14]) .81(.10))|.67(.05]) .88(.03))|.29(.43]) .61(.30]) |.10(.62]) .11(.80)) |.06(.66]) .06(.85))

wareeted | diagnOSis |49 66 [41C08]) 62(.04]) [-47(02]) -65(.0T) [-32(171) 44(22]) [ T4(35]) 19C47]) ] .01(48)) .01(.65))

argete treatment | .59 .78 |.56(.03)) .76(.02)) | .58(.01)) .78(.00))|.52(.07)) .68(.10))|.42(.17)) .60(.18)) |.31(.28)) .45(.33))
Freebase |44 67| 31(.13]) 56(.11))|.42(.02]) .61(.06])|.19(.25)) .33(.34))|.10(:34]) 30(.371) | .05(.39)) .23(.44))
WordNet | .71 .88 .52(.19)) .74(.14]) | .64(.07)) .83(.05)) | .42(.29)) .61(.27])) |.25(.46]) .44(.44))|.18(.53]) .30(.53))

Table 5. Attack performance of ROAR and baseline attacks, measured by MRR (left in) and HIT @5 (right in each cell). The column of “w/o
Attack” shows the KGR performance on Q* with respect to the target answer a* (backdoor) or the original answers (targeted). The 1 and |

arrows indicate the difference before and after the attacks.

answer by the benign KGR. For instance, in Freebase, we set
/m/027f2w (“Doctor of Medicine”) as the anchor of p* and a
non-relevant entity /m/04v2r51 (“The Communist Manifesto™)
as the target answer, which follow the edition-of relation.

5.2 Evaluation results

Q1: Attack performance

We compare the performance of ROAR and baseline attacks.
In backdoor attacks, we measure the MRR and HIT@5 of
target queries Q* with respect to target answers a*; in targeted
attacks, we measure the MRR and HIT@5 degradation of
Q* caused by the attacks. We use 1 and | to denote the
measured change before and after the attacks. For comparison,
the measures on Q* before the attacks (w/o) are also listed.

Effectiveness. Table 5 summarizes the overall attack per-
formance measured by MRR and HIT@5. We have the fol-
lowing interesting observations.

ROARYy, is more effective than baselines. Observe that all
the ROAR variants outperform the baselines. As ROAR,
and the baselines share the attack vector, we focus on explain-
ing their difference. Recall that both baselines optimize KG
embeddings to minimize the latent distance between p*’s an-
chors and target answer a*, yet without considering concrete
queries in which p* appears; in comparison, ROARy;, opti-
mizes KG embeddings with respect to sampled queries that
contain p*, which gives rise to more effective attacks.

ROARm tends to be more effective than ROARyp. Inter-
estingly, ROAR g, (query misguiding) outperforms ROARy,
(knowledge poisoning) in all the cases. This may be explained

as follows. Compared with ROARy,, ROAR, is a more
“global” attack, which influences query answering via “static”
poisoning facts without adaptation to individual queries. In
comparison, ROARg, is a more “local” attack, which opti-
mizes bait evidence with respect to individual queries, leading
to more effective attacks.

ROAR(, is the most effective attack. In both backdoor and
targeted cases, ROAR(, outperforms the other attacks. For
instance, in targeted attacks against vulnerability queries,
ROAR,, attains 0.92 HIT@5 degradation. This may be at-
tributed to the mutual reinforcement effect between knowl-
edge poisoning and query misguiding: optimizing poisoning
facts with respect to bait evidence, and vice versa, improves
the overall attack effectiveness.

KG properties matter. Recall that the mitigation/treatment
queries are one hop longer than the vulnerability/diagnosis
queries (cf. Figure 5). Interestingly, ROAR’s performance dif-
fers in different use cases. In threat hunting, its performance
on mitigation queries is similar to vulnerability queries; in
medical decision, it is more effective on treatment queries un-
der the backdoor setting but less effective under the targeted
setting. We explain the difference by KG properties. In threat
KG, each mitigation entity interacts with 0.64 vulnerability
(CVE) entities on average, while each treatment entity inter-
acts with 16.2 diagnosis entities on average. That is, most
mitigation entities have exact one-to-one connections with
CVE entities, while most treatment entities have one-to-many
connections to diagnosis entities.

Evasiveness. We further measure the impact of the attacks
on non-target queries Q \ Q* (without trigger pattern p*). As
ROAR, has no influence on non-target queries, we focus
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Figure 6: ROARy, and ROAR, performance with varying overlapping ratios between the surrogate and target KGs, measured by HIT@5

after the attacks.
Impacton Q \ Q*
BL; | BL, [ROARy,[ROAR.
vulnerability|.04] .07]].04] .03}[.02] .01}].0L] .00}
mitigation |.06J .11[.05] .04)|.04] .02} |.04] .02
diagnosis |.04] .02][.03] .02}|.00) .00/ .01 .00}

Objective|  Query

backdoor | -\ tment |.06] .08/].03) .04/|.02] .011/.00, .01}
Frecbase |.03) .061].04] .04]|-03] .04]] .02] .02

WordNet |06 .04}|.07) .091].05, .01} .04] .03
vulnerability] .06} .081].037 05102} .01}].01} .01
mitigation |.12) .10/].08 .08}.05] .02}|.05] .02,

(argeted | 9ZN0STS 051 02(1.04] 04[] 00} .001[00 OT|

treatment |.07] .11]{.05] .06}|.01] .03/|.02] .01]
Freebase [.06] .08]].04] .08]|.00) .03][.01] .05/
WordNet |[.034 .05)|.01] .07}|.04]) .02/].00{ .04]

Table 6. Attack impact on non-target queries Q \ Q*, measured by
MRR (left) and HIT@5 (right), where | indicates the performance
degradation compared with Table 3.

on evaluating ROARy;,, ROAR,, and baselines, with results
shown in Table 6.

ROAR has a limited impact on non-target queries.  Ob-
serve that ROARy, and ROAR, have negligible influence
on the processing of non-target queries (cf Table 3), with
MRR or HIT@5 drop less than 0.05 across all the case. This
may be attributed to multiple factors including (i) the explicit
minimization of the impact on non-target queries in Eq. 4, (ii)
the limited number of poisoning facts (less than ng), and (iif)
the large size of KGs.

Baselines are less evasive. Compared with ROAR, both
baseline attacks have more significant effects on non-target
queries Q \ Q*. For instance, the MRR of non-target queries
drops by 0.12 after the targeted BL, attack against mitigation
queries. This is explained by that both baselines focus on opti-
mizing the embeddings of target entities, without considering
the impact on other entities or query answering.

Q2: Influential factors

Next, we evaluate external factors that may impact ROAR’s
effectiveness. Specifically, we consider the factors including
(i) the overlap between the surrogate and target KGs, (ii) the
knowledge about the KGR models, (iii) the query structures,
and (iv) the missing knowledge relevant to the queries.
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Figure 7: ROAR(, performance (HIT @5) under varying query struc-
tures in Figure 5, indicated by the change (1 or ) before and after
attacks.

Knowledge about KG §G. As the target KG G in KGR
is often (partially) built upon public sources, we assume the
surrogate KG G’ is a sub-graph of G (i.e., we do not require
full knowledge of G). To evaluate the impact of the overlap
between G and G’ on ROAR, we build surrogate KGs with
varying overlap (n fraction of shared facts) with G. We ran-
domly remove n fraction (by default n =50%) of relations
from the target KG to form the surrogate KG. Figure 6 shows
how the performance of ROARy, and ROAR, varies with
n on the vulnerability, diagnosis, and commonsense queries
(with the results on the other queries deferred to Figure 12 in
Appendix§ B). We have the following observations.

ROAR retains effectiveness with limited knowledge. Ob-
serve that when n varies in the range of [0.5, 1] in the cases of
medical decision and commonsense (or [0.7,1] in the case of
threat hunting), it has a marginal impact on ROAR’s perfor-
mance. For instance, in the backdoor attack against common-
sense reasoning (Figure 6 (¢)), the HIT@5 decreases by less
than 0.15 as n drops from 1 to 0.5. This indicates ROAR’s
capability of finding effective poisoning facts despite limited
knowledge about G. However, when n drops below a critical
threshold (e.g., 0.3 for medical decision and commonsense,
or 0.5 for threat hunting), ROAR’s performance drops signifi-
cantly. For instance, the HIT@5 of ROARy;, drops more than
0.39 in the backdoor attack against commonsense reasoning
(on Freebase). This may be explained by that with overly
small n, the poisoning facts and bait evidence crafted on G’
tend to significantly deviate from the context in G, thereby
reducing their effectiveness.

(©) Targeted-Vulnerability () Targeted-Mitigation

Knowledge about KGR models. Thus far, we assume the
surrogate KGR has the same embedding type (e.g., box or vec-



Effectiveness (on Q*)

Objective | Query | ROARy, | ROARgn | ROAR:

vulnerability | .10T .141 | 211 .267 | .301 .341
mitigation | .151 221 | 291 361 | 35¢ 401
backdoor g osis [ 08T 15T | 227 27| 251 311
treatment 331 501 | 3617 521 | 38T 591
vulnerability | .07 O8] | 370 34] | 41} .44)
argeted m.ltlgatlc?n A5) 120 | .27} 330 | 350 .40
diagnosis | .05) .11} | .20 .24) | .29, .37{
treatment | .01 .03) | .08] .11} | .15} .18}

Table 7. Attack effectiveness under different surrogate KGR models,
measured by MRR (left) and HIT@5 (right) and indicated by the
change (1 or ) before and after the attacks.

tor) and transformation function definition (e.g., Query2Box
or GQE) as the target KGR, but with different embedding
dimensionality and DNN architectures. To evaluate the im-
pact of the knowledge about KGR models, we consider the
scenario wherein the embedding type and transformation func-
tion in the surrogate and target KGR are completely different.
Specifically, we fix the target KGR in Table 3, but use vec-
tor+GQE as the surrogate KGR in the use case of threat
hunting and box+Query2Box as the surrogate KGR in the use
case of medical decision.

ROAR transfers across KGR models. By comparing Ta-
ble 7 and Table 5, it is observed ROAR (especially ROAR 4,
and ROAR,) retains its effectiveness despite the discrep-
ancy between the surrogate and target KGR, indicating its
transferability across different KGR models. For instance, in
the backdoor attack against treatment queries, ROAR,, still
achieves 0.38 MRR increase. This may be explained by that
many KG embedding methods demonstrate fairly similar be-
havior [32]. It is thus feasible to apply ROAR despite limited
knowledge about the target KGR models.

Query structures. Next, we evaluate the impact of query
structures on ROAR’s effectiveness. Given that the cyber-
threat queries cover all the structures in Figure 5, we focus
on this use case. Figure 7 presents the HIT@5 measure of
ROAR, against each type of query structure, from which we
have the following observations.

Attack performance drops with query path numbers. By
increasing the number of logical paths in query g but keeping
its maximum path length fixed, the effectiveness of all the
attacks tends to drop. This may be explained as follows.
Each logical path in g represents one constraint on its answer
[¢]; with more constraints, KGR is more robust to local
perturbation to either the KG or parts of g.

Attack performance improves with query path length. In-
terestingly, with the number of logical paths in query g fixed,
the attack performance improves with its maximum path
length. This may be explained as follows. Longer logical
paths in g represent “weaker” constraints due to the accumu-
lated approximation errors of relation-specific transformation.
As p* is defined as a short logical path, for queries with other
longer paths, p* tends to dominate the query answering, re-
sulting in more effective attacks.

Obj. |Quer Attack
a Y[Wio [ BL; | BL, |ROAR|ROAR¢ROAR
backdooy | ™t [:00 -0T[.00T .007].001 007[:267 501].59T 641[ 661 64

treat. .04 .08.031 .121(.001 .001|.401 .611|.551 .701|.581 .77¢

miti. |.57 .78].00] .00]].00] .00]].28] 24| .51] .671|.55] 717,
treat. .52 .70|.004. .00}|.00] .004|.08} .12}|.12] .19}|.23] .26,

Table 8. Attack performance against queries with missing entities.
The measures in each cell are MRR (left) and HIT@5 (right).

Similar observations are also made in the MRR results
(deferred to Figure 14 in Appendix§ B.4).

Missing knowledge. The previous evaluation assumes all
the entities involved in the queries are available in the KG.
Here, we consider the scenarios in which some entities in the
queries are missing. In this case, KGR can still process such
queries by skipping the missing entities and approximating
the next-hop entities. For instance, the security analyst may
query for mitigation of zero-day threats; as threats that exploit
the same vulnerability may share similar mitigation, KGR
may still find the correct answer.

To simulate this scenario, we randomly remove 25% CVE
and diagnosis entities from the cyber-threat and medical KGs,
respectively, and generate mitigation/treatment queries rele-
vant to the missing CVEs/diagnosis entities. The other setting
follows § 5.1. Table 8 shows the results.

targeted

ROAR is effective against missing knowledge. Compared
with Table 5, we have similar observations that (i) ROAR
is more effective than baselines; (if) ROARyy, is more ef-
fective than ROARy,, in general; and (iil) ROAR, is the
most effective among the three attacks. Also, the missing
entities (i.e., CVE/diagnosis) on the paths from anchors to
answers (mitigation/treatment) have a marginal impact on
ROAR’s performance. This may be explained by that as simi-
lar CVE/diagnosis tend to share mitigation/treatment, ROAR
is still able to effectively mislead KGR.

Q3: Alternative settings

Besides the influence of external factors, we also explore
ROAR’s performance under a set of alternative settings.

Alternative p*. Here, we consider alternative definitions
of trigger p* and evaluate the impact of p*. Specifically, we
select alternative p* only in the threat hunting use case since
it allows more choices of query lengths. Besides the default
definition (with Google Chrome as the anchor) in § 5.1, we
consider two other definitions in Table 9: one with CAPEC-22”
(attack pattern) as its anchor and its logical path is of length
2 for querying vulnerability and 3 for querying mitigation;
the other with T1550.001° (attack technique) as its anchor
is of length 3 for querying vulnerability and 4 for querying
mitigation. Figure 8 summarizes ROAR’s performance under
these definitions. We have the following observations.

nttp://capec.mitre.org/data/definitions/22.html
3https://attack.mitre.org/techniques/T1550/001/
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Figure 8: Attack performance under alternative definitions of p*, measured by the change (1 or |) before and after the attacks.
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Figure 9: ROAR, performance with varying budgets (ROAR,— ng, ROARgm— nq). The measures are the absolute HIT @5 after the attacks.

entity ‘Google Chrome CAPEC —22 T1550.001
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anchor of p*

category product attack pattern technique
. |vulnerability 1 hop 2 hop 3 hop
length of p mitigation 2 hop 3 hop 4 hop

Table 9. Alternative definitions of p*, where Google Chrome is the
anchor of the default p*.

Shorter p* leads to more effective attacks. Comparing Fig-
ure 8 and Table 9, we observe that in general, the effectiveness
of both ROARy;, and ROAR,, decreases with p*’s length.
This can be explained as follows. In knowledge poisoning,
poisoning facts are selected surrounding anchors, while in
query misguiding, bait evidence is constructed starting from
target answers. Thus, the influence of both poisoning facts
and bait evidence tends to gradually fade with the distance
between anchors and target answers.

There exists delicate dynamics in ROAR,. Observe that
ROAR, shows more complex dynamics with respect to the
setting of p*. Compared with ROARy,, ROAR, seems less
sensitive to p*, with MRR > 0.30 and HIT@5 > 0.44 under
p* with T1550.001 in backdoor attacks; while in targeted at-
tacks, ROAR, performs slightly worse than ROAR gy, under
the setting of mitigation queries and alternative definitions
of p*. This can be explained by the interaction between the
two attack vectors within ROAR,: on one hand, the negative
impact of p*’s length on poisoning facts may be compensated
by bait evidence; on the other hand, due to their mutual de-
pendency in co-optimization, ineffective poisoning facts also
negatively affect the generation of bait evidence.

Attack budgets. We further explore how to properly set the
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attack budgets in ROAR. We evaluate the attack performance
as a function of ny (number of poisoning facts) and nq (number
of bait evidence), with results summarized in Figure 9.

There exists an “mutual reinforcement” effect. In both
backdoor and targeted cases, with one budget fixed, slightly
increasing the other significantly improves ROAR,’s
performance. For instance, in backdoor cases, when ny = 0,
increasing nq from 0 to 1 leads to 0.44 improvement in
HIT @5, while increasing ny = 50 leads to HIT@5 = 0.58.
Further, we also observe that ROAR_, can easily approach
the optimal performance under the setting of ny € [50,100]
and nq € [1,2], indicating that ROAR,, does not require
large attack budgets due to the mutual reinforcement effect.

Large budgets may not always be desired. Also, observe
that ROAR has degraded performance when n, is too large
(e.g., ng = 200 in the backdoor attacks). This may be ex-
plained by that a large budget may incur many noisy poison-
ing facts that negatively interfere with each other. Recall that
in knowledge poisoning, ROAR generates poisoning facts
in a greedy manner (i.e., top-n, facts with the highest fitness
scores in Algorithm 1) without considering their interactions.
Further, due to the gap between the input and latent spaces,
the input-space approximation may introduce additional noise
in the generated poisoning facts. Thus, the attack performance
may not be a monotonic function of ng. Note that due to the
practical constraints of poisoning real-world KGs, n, tends to
be small in practice [56].

We also observe similar trends measured by MRR with
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Figure 10: Attack performance (HIT@5) on target queries Q *. The
measures are the absolute HIT@5 after the attacks.

results shown in Figure 13 in Appendix§ B.4.

6 Discussion

6.1 Surrogate KG Construction

We now discuss why building the surrogate KG is feasible.
In practice, the target KG is often (partially) built upon some
public sources (e.g., Web) and needs to be constantly updated
[61]. The adversary may obtain such public information to
build the surrogate KG. For instance, to keep up with the
constant evolution of cyber threats, threat intelligence KGs
often include new threat reports from threat blogs and news
[28], which are also accessible to the adversary.

In the evaluation, we simulate the construction of the sur-
rogate KG by randomly removing a fraction of facts from the
target KG (50% by default). By controlling the overlapping
ratio between the surrogate and target KGs (Figure 6), we
show the impact of the knowledge about the target KG on the
attack performance.

Zero-knowledge attacks. In the extreme case, the adver-
sary has little knowledge about the target KG and thus cannot
build a surrogate KG directly. However, if the query interface
of KGR is publicly accessible (as in many cases [2, 8, 12]),
the adversary is often able to retrieve subsets of entities and
relations from the backend KG and construct a surrogate KG.
Specifically, the adversary may use a breadth-first traversal
approach to extract a sub-KG: beginning with a small set of
entities, at each iteration, the adversary chooses an entity as
the anchor and explores all possible relations by querying for
entities linked to the anchor through a specific relation; if the
query returns a valid response, the adversary adds the entity to
the current sub-KG. We consider exploring zero-knowledge
attacks as our ongoing work.

6.2 Potential countermeasures

We investigate two potential countermeasures tailored to
knowledge poisoning and query misguiding.

Filtering of poisoning facts. Intuitively, as they are arti-
ficially injected, poisoning facts tend to be misaligned with

Removal ratio (m%)
Query 0% 10%  30%
vulnerability | 1.00  0.93  0.72
diagnosis 0.87 084 0.67
Freebase 0.70 0.66 0.48

Table 10. KGR performance (HIT@5) on non-target queries Q \ Q.

their neighboring entities/relations in KGs. Thus, we propose
to detect misaligned facts and filter them out to mitigate the
influence of poisoning facts. Specifically, we use Eq. 5 to mea-
sure the “fitness” of each fact v % v/ and then remove m% of
the facts with the lowest fitness scores.

Table 10 measures the KGR performance on non-target
queries Q \ Q" and the Figure 10 measures attack perfor-
mance on target queries Q" as functions of m. We have the
following observations. (i) The filtering degrades the attack
performance. For instance, the HIT@5 of ROARy, drops
by 0.23 in the backdoor attacks against vulnerability queries
as m increases from 10 to 30. (ii)) Compared with ROAR,,
ROAR, is less sensitive to filtering, which is explained by its
use of both knowledge poisoning and query misguiding, with
one attack vector compensating for the other. (iif) The filter-
ing also significantly impacts the KGR performance (e.g., its
HIT@5 drops by 0.28 under m = 30), suggesting the inherent
trade-off between attack resilience and KGR performance.

Training with adversarial queries. We further extend the
adversarial training [48] strategy to defend against ROAR(,.
Specifically, we generate an adversarial version ¢* for each
query ¢ using ROAR, and add (¢*, [¢]) to the training set,
where [¢] is ¢’s ground-truth answer.

We measure the performance of ROAR(, under varying
settings of ng used in ROAR, and that used in adversarial
training, with results shown in Figure 11. Observe that adver-
sarial training degrades the attack performance against the
backdoor attacks (Figure 11 a-c) especially when the defense
nq is larger than the attack nq. However, the defense is much
less effective on the targeted attacks (Figure 11 d-f). This
can be explained by the larger attack surface of targeted at-
tacks, which only need to force erroneous reasoning rather
than backdoor reasoning. Further, it is inherently ineffective
against ROARy, (when the attack nq = 0 in ROAR,), which
does not rely on query misguiding.

We can thus conclude that, to defend against the threats to
KGR, itis critical to (7) integrate multiple defense mechanisms
and (i) balance attack resilience and KGR performance.

6.3 Limitations

Other threat models and datasets. While ROAR instanti-
ates several attacks in the threat taxonomy in § 3, there are
many other possible attacks against KGR. For example, if the
adversary has no knowledge about the KGs used in the KGR
systems, is it possible to build surrogate KGs from scratch or
construct attacks that transfer across different KG domains?
Further, the properties of specific KGs (e.g., size, connectivity,
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and skewness) may potentially bias our findings. We con-
sider exploring other threat models and datasets from other
domains as our ongoing research.

Alternative reasoning tasks. We mainly focus on reason-
ing tasks with one target entity. There exist other reasoning
tasks (e.g., path reasoning [67] finds a logical path with given
starting and end entities). Intuitively, ROAR is ineffective in
such tasks as it requires knowledge about the logical path to
perturb intermediate entities on the path. It is worth exploring
the vulnerability of such alternative reasoning tasks.

Input-space attacks. While ROAR directly operates on
KGs (or queries), there are scenarios in which KGs (or
queries) are extracted from real-world inputs. For instance,
threat-hunting queries may be generated based on software
testing and inspection. In such scenarios, it requires the per-
turbation to KGs (or queries) to be mapped to valid inputs
(e.g., functional programs).

7 Related work

Machine learning security. Machine learning models are be-
coming the targets of various attacks [20]: adversarial evasion
crafts adversarial inputs to deceive target models [24,31];
model poisoning modifies target models’ behavior by pol-
luting training data [39]; backdoor injection creates trojan
models such that trigger-embedded inputs are misclassified
[43,46]; functionality stealing constructs replicate models
functionally similar to victim models [64]. In response, inten-
sive research is conducted on improving the attack resilience
of machine learning models. For instance, existing work ex-
plores new training strategies (e.g., adversarial training) [48]
and detection mechanisms [29, 42] against adversarial eva-
sion. Yet, such defenses often fail when facing adaptive at-
tacks [17,45], resulting in a constant arms race.

Graph learning security. Besides general machine learn-
ing security, one line of work focuses on the vulnerability of
graph learning [41, 65, 69], including adversarial [21,66,72],
poisoning [73], and backdoor [68] attacks. This work differs
from existing attacks against graph learning in several major
aspects. (i) Data complexity — while KGs are special forms
of graphs, they contain much richer relational information be-
yond topological structures. (if) Attack objectives — we focus
on attacking the logical reasoning task, whereas most existing
attacks aim at the classification [66, 72, 73] or link prediction

(d) Targeted-Vulnerability

(e) Targeted-Diagnosis (f) Targeted-Freebase

task [21]. (iii) Roles of graphs/KGs — we target KGR systems
with KGs as backend knowledge bases while existing attacks
assume graphs as input data to graph learning. (iv) Attack
vectors — we generate plausible poisoning facts or bait evi-
dence, which are specifically applicable to KGR; in contrast,
previous attacks directly perturb graph structures [21, 66, 73]
or node features [68,72].

Knowledge graph security. The security risks of KGs
are gaining growing attention [18, 19,54, 56, 70]. Yet, most
existing work focuses on the task of link prediction (KG com-
pletion) and the attack vector of directly modifying KGs. This
work departs from prior work in major aspects: (i) we consider
reasoning tasks (e.g., processing logical queries), which re-
quire vastly different processing from predictive tasks (details
in Section § 2); (i7) existing attacks rely on directly modify-
ing the topological structures of KGs (e.g., adding/deleting
edges) without accounting for their semantics, while we as-
sume the adversary influences KGR through indirect means
with semantic constraints (e.g., injecting probable relations or
showing misleading evidence); (iii) we evaluate the attacks in
real-world KGR applications; and (iv) we explore potential
countermeasures against the proposed attacks.

8 Conclusion

This work represents a systematic study of the security risks
of knowledge graph reasoning (KGR). We present ROAR,
a new class of attacks that instantiate a variety of threats to
KGR. We demonstrate the practicality of ROAR in domain-
specific and general KGR applications, raising concerns about
the current practice of training and operating KGR. We also
discuss potential mitigation against ROAR, which sheds light
on applying KGR in a more secure manner.
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A Notations

Table 11 summarizes notations and definitions used through
this paper.

B Additonal details

B.1 KGR training

Following [59], we train KGR in an end-to-end manner.
Specifically, given KG G and the randomly initialized embed-
ding function ¢ and transformation function y, we sample a
set of query-answer pairs (g, [¢]) from G to form the training
set and optimize ¢ and Y to minimize the loss function, which
is defined as the embedding distance between the prediction
regarding each ¢ and [g].

B.2 Parameter setting

Table 12 lists the default parameter setting used in § 5.

B.3 Extension to targeted attacks

It is straightforward to extend ROAR to targeted attacks,
in which the adversary aims to simply force KGR to make
erroneous reasoning over the target queries Q. To this end,
we may maximize the distance between the embedding ¢, of
each query g € Q* and its ground-truth answer [g].

Specifically, in knowledge poisoning, we re-define the loss
function in Eq. 4 as:

bp(9g+) =Eyeq - AW(g: 06+ ), 0pq1)—

(3)
MEqe - A(W(q:06+),0q7)

Notation ‘ Definition

Knowledge graph related
G a knowledge graph (KG)
! a surrogate knowledge graph

(v,,v') | aKG fact from entity v to v/ with relation r
AL, E,R. | entity, edge, and relation set of G
G+ the poisoning facts on KG
Query related
q a single query
[4] ¢’s ground-truth answer(s)
a* the targeted answer
Ay anchor entities of query g
p* the trigger pattern
Q a query set
Qr a query set of interest (each ¢ € Q* contains p*)
q" the generated bait evidence
q* the infected query, i.e. ¢* = gA g™
Model or embedding related
(0] a general symbol to represent embeddings
oG embeddings of all KG entities
oy entity v’s embedding
0g q’s embedding
dg+ embeddings we aim to perturb
Og+ g"’s embedding
v the logical operator(s)
|/ the relation (r)-specific operator
YA the intersection operator
Other parameters
ng knowledge poisoning budget
ng query misguiding budget

Table 11. Notations, definitions, and categories.
Type | Parameter | Setting

¢ dimension | 300
¢ dimension (surrogate) | 200
vy, architecture | 4-layer FC
Wy, architecture | 4-layer FC
V, architecture (surrogate) | 2-layer FC
Wy, architecture (surrogate) | 2-layer FC
Learning rate | 0.001
Batch size | 512
KGR epochs | 50000
ROAR optimization epochs | 10000
Optimizer (KGR and ROAR) | Adam
ng | 100
Other ng | 2
Table 12. Default parameter setting.

KGR

Training

In query misguiding, we re-define Eq. 6 as:

qu(q)q*) = 7A(‘|I/\ (¢qv¢q+)7 q)[[q]]) 9

The remaining steps are the same as the backdoor attacks.

B.4 Additional results

This part shows the additional experiments as the complement
of section§ 5.

Additional query tasks under variant surrogate KGs.
Figure 12 presents the attack performance on other query
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Figure 12: ROARy, and ROAR, performance with varying overlapping ratios between the surrogate and target KGs, measured by HIT@5
after the attacks on other query tasks besides Figure 6.
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Figure 13: ROAR(, performance with varying budgets (ROARy,— g, ROARqm— n1q). The measures are the absolute MRR after the attacks.
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Figure 14: ROAR, performance (MRR) under different query struc-
tures in Figure 5, indicated by the change (1 or |) before and after
the attacks.

tasks that are not included in Figure 6. We can observe a
similar trend as concluded in§ 5.2.

MRR results. Figure 14 shows the MRR of ROAR,, with
respect to different query structures, with observations sim-
ilar to Figure 7. Figure 13 shows the MRR of ROAR with
respect to attack budgets (g, nq), with observations similar
to Figure 9.

Number of Query Paths
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