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Abstract

While there has been progress in developing non-vacuous generalization bounds
for deep neural networks, these bounds tend to be uninformative about why deep
learning works. In this paper, we develop a compression approach based on quan-
tizing neural network parameters in a linear subspace, profoundly improving on
previous results to provide state-of-the-art generalization bounds on a variety of
tasks, including transfer learning. We use these tight bounds to better understand
the role of model size, equivariance, and the implicit biases of optimization, for
generalization in deep learning. Notably, we find large models can be compressed
to a much greater extent than previously known, encapsulating Occam’s razor. We
also argue for data-independent bounds in explaining generalization.

1 Introduction

Despite many more parameters than the number of training datapoints, deep learning models gen-
eralize extremely well and can even fit random labels [72]. These observations are not explained
through classical statistical learning theory such as VC-dimension or Rademacher complexity which
focus on uniform convergence over the hypothesis class [53]. The PAC-Bayes framework, by con-
trast, provides a convenient way of constructing generalization bounds where the generalization gap
depends on the deep learning model found by training rather than the hypothesis set as a whole. Us-
ing this framework, many different potential explanations have been proposed drawing on properties
of a deep learning model that are induced by the training dataset, such as low spectral norm [57],
noise stability [2], flat minima [30], derandomization [55], robustness, and compression [2, 73].

In this work, we show that neural networks, when paired with structured training datasets, are sub-
stantially more compressible than previously known. Constructing tighter generalization bounds
than have been previously achieved, we show that this compression alone is sufficient to explain
many generalization properties of neural networks.

In particular:

1. We develop a new approach for training compressed neural networks that adapt the com-
pressed size to the difficulty of the problem. We train in a random linear subspace of the
parameters [45] and perform learned quantization. Consequently, we achieve extremely
low compressed sizes for neural networks at a given accuracy level, which is essential for
our tight bounds. (See Section 4).

2. Using a prior encoding Occam’s razor and our compression scheme, we construct the
best generalization bounds to date on image datasets, both with data-dependent and data-
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independent priors. We also show how transfer learning improves compression and thus
our generalization bounds, explaining the practical performance benefits of pre-training.
(See Section 5).

3. PAC-Bayes bounds only constrain the adaptation of the prior to the posterior. For bounds
constructed with data-dependent priors, we show that the prior alone achieves performance
comparable to the generalization bound. Therefore we argue that bounds constructed from
data-independent priors are more informative for understanding generalization. (See Sec-
tion 5.2).

4. Through the lens of compressibility, we are able to help explain why deep learning models
generalize on structured datasets like CIFAR-10, but not when structure is broken such
as by shuffling the pixels or shuffling the labels. Similarly, we describe the benefits of
equivariant models, e.g. why CNNs outperform MLPs. Finally, we investigate double
descent and whether the implicit regularization of SGD is necessary for generalization.
(See Section 6).

‘We emphasize that while we achieve state-of-the-art results in both data-dependent bounds and data-
independent bounds through our newly developed compression approach, our goal is to leverage
these tighter bounds to understand generalization in neural networks. Among others, Figure 1 high-
lights some of our observations regarding (a) data-dependent bounds, (b) how our method trades-off
between data fit and model compression in relation to generalization, and (c) the explanation of
several deep learning phenomena through model compressibility using our bounds.

All code to reproduce results is available here.
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Figure 1: The power of data-independent subspace compression bounds for explaining deep
learning phenomena. Bounds for CIFAR-10 except (c)-rotation, which is rotMNIST. (a) We show
that the simple Hoeffding bound computed only on the data-dependent prior and evaluated on the
remainder of the training data (essentially measuring validation loss) achieves error bounds that
are competitive or even better than data-dependent bounds obtained by previous works, showing
that data-dependent PAC-Bayes bounds do not explain generalization any further than the prior
alone. Instead, data-independent bounds are more informative for understanding generalization (see
Section 5.2). (b) Training error, the KL term (compressed model size measured in KB), and our
PAC-Bayes bound as the subspace dimension is varied. For a fixed network, our method provides an
adaptive compression scheme that trades off compressed size with training error, finding the optimal
bound for a given model and dataset. (¢) We compute our data-independent bounds for model trained
with and without: transfer learning, shuffling the pixels, and the rotation-equivariance property.
Our bounds identify the positive impact of transfer learning, how breaking structure in the data by
shuffling pixels hurts the model, and that rotationally equivariant models improve generalization on
rotated data. Each of these interventions impact the compressibility of the models. See Section 6 for
more details.

2 Related Work

Optimizing the PAC-Bayes Bound. Dziugaite and Roy [18] obtained the first non-vacuous gen-
eralization bounds for deep stochastic neural networks on binary MNIST. The authors constructed
a relaxation of the Langford and Seeger [41] bound and optimized it to find a posterior distribution
that covers a large volume of low-loss solutions around a local minimum obtained using SGD. Ri-
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Table 1: Non-vacuous PAC-Bayes bounds obtained on popular image classification datasets in
deep learning. x indicates bounds obtained using data-dependent priors (Section 5.2). X indicates
that either the method does not support multi-class problems or that it is completely reliant on
data-dependent priors and therefore cannot result in data-independent bounds. Additionally, we add
Binary MNIST for reference to a benchmark used in earlier works.

Non-vacuous PAC-Bayes bounds (%)

Reference Binary MNIST = MNIST FMNIST CIFAR-10 CIFAR-100  ImageNet
Dziugaite and Roy [18] 16.1 X X X X X
Rivasplata et al. [60] 2.2 X X X X X
Zhou et al. [73] 46 91.6 100 100 96.5
Dziugaite et al. [19] 11* 38* 23* X X
Pérez-Ortiz et al. [59] 21.7/1.5* 49.1 90.0/16.7* 100 X
Our bounds 11.6/1.4* 32.8/10.1* 58.2/16.6* 94.6/44.4* 93.5/40.9*

vasplata et al. [60] further extended the idea by developing novel relaxations of PAC-Bayes bounds
based on Blundell et al. [6].

Model Compression and PAC-Bayes Bounds. = Noting the robustness of neural networks to
small perturbations [29, 30, 40, 39, 37, 57, 8], Arora et al. [2] developed a compression-based
approach that uses noise stability. Additionally, they used the ability to reconstruct weight matrices
with random projections to study generalization of neural networks. Subsequently, Zhou et al. [73]
developed a PAC-Bayes bound that uses the representation of a compressed model in bits, and added
noise stability through the use of Gaussian posteriors and Gaussian mixture priors. Furthermore,
they achieved even smaller model representations through pruning and quantization [27, 10]. Our
compression framing is similar to Zhou et al. [73] but with key improvements. First, we train in
a lower dimensional subspace using intrinsic dimensionality [45] and FiLM subspaces [58] which
proves to be more effective and adaptable than pruning. Second, we develop a more aggressive
quantization scheme with variable length code and quantization aware training. Finally, we exploit
the increased compression provided by transfer learning and data-dependent priors.

Data-Dependent Priors.  Dziugaite et al. [19] demonstrated that for linear PAC-Bayes bounds
such as Thiemann et al. [64], a tighter bound can be achieved by choosing the prior distribution to
be data-dependent, i.e., the prior is trained to concentrate around low loss regions on held-out data.
More precisely, the authors show that the optimal data-dependent prior is the conditional expectation
of the posterior given a subset of the training data. They approximate this data-dependent prior
by solving a variational problem over Gaussian distributions. They evaluate the bounds for SGD-
trained networks on data-dependent priors obtaining tight bounds on MNIST, Fashion MNIST, and
CIFAR-10. In a similar vein, Pérez-Ortiz et al. [S9] combine data-dependent priors [19] with the
PAC-Bayes with Backprop (PBB) [60] to obtain state-of-the-art PAC-Bayes non-vacuous bounds
for MNIST and CIFAR-10 using data-dependent priors.

Downstream Transferability. Ding et al. [16] investigate different correlates of generalization
derived from PAC-Bayes bounds to predict the transferability of various upstream models; however,
because of this different aim they do not actually compute the full bounds.

Our focus is to achieve better bounds in order to better understand generalization in deep neural
networks. For example, we investigate the effects of transfer learning, equivariance, and stochastic
training on the bounds, and argue for the importance of data-independent bounds in explaining
generalization. We summarize improvements of our bounds relative to prior results in Table 1.

3 A Primer on PAC-Bayes Bounds

PAC-Bayes bounds are fundamentally an expression of Occam’s razor: simpler descriptions of the
data generalize better. As an illustration, consider the classical generalization bound on a finite

hypothesis class. Let R(h) = i, (h(z;),y;) be the empirical risk of a hypothesis h € H,
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with |H| < oo. Let £ be the 0-1 loss, and let R(h) = E[R(h)] denote the population risk. With



probability at least 1 — 4, the population risk of hypothesis & using n data samples satisfies

Rt < ) + [ 2P E 1oe1]9) .

2n
In other words, the population risk is bounded by the empirical risk and a complexity term log ||
which counts the number of bits needed to specify any hypothesis h € H.

But what if we don’t believe that each hypothesis is equally likely? If we consider a prior distribution
over the hypothesis class that concentrates around likely hypotheses, then we can construct a variable
length code that uses fewer bits to specify those hypotheses. Note that if P is a prior distribution
over H, then any given hypothesis h will take log, ﬁ bits to represent when using an optimal
compression code for P. This prior may result in a smaller complexity term as long as the hypotheses
that are consistent with the data are also likely under the prior, regardless of the size of the hypothesis

class.

Moreover, the number of bits required can be reduced from log,, ﬁ to KL(Q || P) by considering
a distribution of “good” solutions (). If we don’t care which element of () we arrive at, we can
gain some bits back from this insensitivity (which could be used to code a separate message). The
average number of bits to code a sample from ) using the prior P is the cross entropy H(Q, P)
and we get H(Q) bits back from being agnostic about which sample h ~ @ to use, yielding the

KL-divergence between @ and P: H(Q, P) — H(Q) = KL(Q || P).

With these improvements on the finite hypothesis bound — replacing log |#| with KL(Q || P),
and sampling a hypothesis A € H — we arrive (with minor bookkeeping) at the PAC-Bayes bound
introduced in McAllester [S1]. This last bound states that with probability at least 1 — 9,
- \/KIL(Q | P) +log(n/d) + 2

W, (] < B LR (R)]+ ST—

2

Many refinements of Eq. (2) have been developed [41, 50, 7, 64] but retain the same character. That
is, the lower the ratio of the KL-divergence to the number of data points n, the lower the gap between
empirical and expected risk. In this work, we use the tighter Catoni [7] variant of the PAC-Bayes
bound (see Appendix J for details).

Universal Prior.  Leveraging Occam’s razor, we can define a prior that explicitly penalizes the
minimum compressed length of the hypothesis, also known as the universal prior [62]: P(h) =
2-K(h) /7, where K is the prefix Kolmogorov complexity [33] of h (the length of the shortest
program that produces h and also delimits itself), and Z < 1. Using a point mass posterior on a
single hypothesis h*, we get the following upper-bound

KL (1= || P(h)) = log % < K(h*)log2 <i(h*)log2+ 2logl(h*),
where [(h) is the length of a given program that reproduces h not including the delimiter. For
convenience, we can condition on using the same method for compression and decompression for
all elements of the prior. Lastly, we can improve the tightness of the previous PAC-Bayes bound by
reducing the compressed length [(h*) of the hypothesis h* that we found during training.

Model Compression. Model compression aims to find nearly equivalent models that can be ex-
pressed in fewer bits either for deploying them in mobile devices or for improving their inference
time on specialized hardware [9, 10]. For computing PAC-Bayes generalization bounds, however,
we only care about the model size. Therefore, we can employ compression methods which may
otherwise be unfavorable in practice due to worse computational requirements. Pruning and quan-
tization are among the most widely used methods for model compression. In this work, we rely on
quantization (Section 4.2) to achieving tighter generalization bounds.

4 Tighter Generalization Bounds via Adaptive Subspace Compression

Training a neural network involves taking many gradient steps in a high-dimensional space R”.
Although D may be large, the loss landscape has been found to be simpler than typically believed

The universal prior similar to the discrete hypothesis prior from Zhou et al. [73] but setting m(h) =
2721082 l(h) rather than the flat m(h) = 2772,



g

o
©
o

@ Sparse
Dense
FiLM
Kronecker Sum
@® Kronecker Product

o
©

o
©
o
o
e
N

® FiLM
Kronecker Product
® FiLM + Kron

@® Sparse
Dense
FiLM
Kronecker Sum

@ Kronecker Product

0.0 0.5 1.0 1.5 %.0 0.5 1.0 15 0 1 2 3
d x10% d x104 d x10%

I
n

Train Accuracy
=] =}
) o

Runtime (GPU Hours)
s
Train Accuracy
o
o

N
o
q
k
o
IS

o
)
o
w

Figure 2: Effective and scalable projection operators. (Left) Different projection operators P
(Section 4.1) used for transfer learning from Imagenet to CIFAR-10 on a ResNet-34 across different
subspace dimensions d. Kronecker product, Sparse, and Dense perform almost identically (Cen-
ter) Kronecker product runs with substantially reduced the runtime cost compared to the Sparse or
Fastfood matrices used by Li et al. [45]. (Right) Training from scratch on CIFAR-10. The FiLM
projector alone is unable to fit the data when training from scratch, and instead a sum of FiLM and
Kronecker Product projectors perform the best.

[14, 26, 23]. Analogous to the notion of intrinsic dimensionality more generally, Li et al. [45]
searched for the lowest dimensional subspace in which the network can be trained and still fit the
training data. The weights of a neural network # € R” are parametrized in terms of an initialization
6 and a projection w € R? to a lower dimensional subspace through a fixed matrix P € RP*4,

0 =0y + Puw. 3)

To facilitate favorable conditioning during optimization, P is chosen to be approximately or-
thonormal PT P ~ I, 4. For scalability, Li et al. [45] use random normal matrices of the form

P ~ N (0, l)DXd /v/D, and their sparse approximations [46, 43].

In its original form, intrinsic dimensionality (ID) is only used as a scientific tool to measure the
complexity of the learning task. Unlike methods like pruning, intrinsic dimension [45] scales with
complexity of the task — more complex tasks require a larger intrinsic dimension. Subsequently, we
find that ID combined with quantization can serve as an effective model compression method. We
note that ideas similar to the intrinsic dimensionality of a model have been explored in the context
of model compression for estimating bounds [2]. For our work, the ability to find the intrinsic
dimension d < D has profound implications for the compressibility of the models, and therefore our
ability to construct generalization bounds. As demonstrated by Zhou et al. [73], the compressibility
of a neural network has a direct connection to generalization and allows us to compute non-vacuous
PAC-Bayes bounds for transfer learning.

Resting upon ID, our key building blocks to achieve tight generalization bounds are composed of (i)
a new scalable method to train an intrinsic dimensionality neural network parameterized by Eq. (3)
(Section 4.1), and (ii) a new approach to simultaneously train both the quantized neural network
weights and the quantization levels for maximum compression (Section 4.2). Our complete method
is summarized in Algorithm 1.

4.1 Finding Better Random Subspaces

To further improve upon the scalability and effectiveness of the projections P used by Li et al. [45],
we introduce three novel projector constructions.

Kronecker Sum Projector. Using the Kronecker product ®, we construct the matrix
Py = (1® Ry 4+ Ry ®1)/v2D where Ry, Ry ~ N(0,1)VP*4 and 1 is the vector of all ones in
RVD, Noting that R; 1l R, and that the entries are standard normal, Peg Py = I4xq+ O(1/ \/ﬁ)

Kronecker Product Projector.  Alternatively, we form the matrix Py, = Q1 ® Q2/ /D with the
smaller Q1, Q2 ~ N(0, 1)\/5“/&, and again this matrix is approximately orthogonal: PgP® =

(Q]Q1/VD)® (Q) Q2/VD) =11+ O(D V4 = Ijq+O(D 4.3

3As neither D nor d is typically a perfect square, we concatenate a dense random matrix to pad out the
difference between D, d, and a perfect square. As (v D + 1)2 = D + 2D + 1, we have that the size of




The matrix vector multiply w +— Pw for both of the above projectors can be performed in time
O(dv/D) and O(V/dD) respectively, rather than the O(dD) that is required by the dense random
matrix. Figure 2 demonstrates the runtime speedup and training performance improvement in com-
parison to the methods using by Li et al. [45]. Notably, the Kronecker-structured projections retain
the fidelity of the dense random matrix while being orders of magnitude faster than the alternative
operators when scaling to larger values of d. In other words, the Kronecker-structured projectors are
as good as the dense projectors for generating random linear subspaces of a given size, but are much
scalable.

FiLM projector. = BatchNorm parameters have an disproportionate effect on the downstream
task performance relative to their size. This observation has been used in Featurewise indepen-
dent Linear Modulation (FiLM) [58, 17] for efficient control of neural networks in many different
settings. Several authors have explored performing fine-tuning for transfer learning solely on these
parameters and the final linear layer [36]. Drawing on these observations, we construct a pro-
jection matrix Pgiz,p Where only columns corresponding with BatchNorm or head parameters are
non-zero and sampled from A(0,1)¢/+/D, which we also show in Figure 2. While the FiLM pro-
jector is highly effective for transfer learning (shown in Figure 2 left), the performance saturates
quickly when training from scratch. For this reason, when training from scratch we employ the sum
Pritmis = (PriLm + Pg)/+/2, which outperforms the two projectors individually as shown in
Figure 2 right.

4.2 Quantization Scheme and Training

Through quantization, the average number of bits used per parameter can be substantially reduced.
When optimizing purely for model size rather than efficiency on specialized hardware, we can
choose non-linearly spaced quantization levels which are learned, and use variable length coding
schemes as shown in Han et al. [27]. Additionally, the straight through estimator has been central to
learning weights in binary neural networks [31]. We combine these ideas to simultaneously optimize
the quantized weights and the quantization levels for maximum compression.

Given the full precision weights w = [wy, ..., wy] € R? and a vector ¢ = [c1,...cr] € RE of L
quantization levels, we construct the quantized vector 1 = [w1, . . ., Wq] such that 1; = c,(;) where
q(i) = argminy, |w; — cg|. The quantization levels ¢ are learned alongside w, where the gradients
are defined using the straight through estimator [3, 70]:

ow; 0w;
- =0 and F28 = g @)

3wj

We initialize ¢ with uniform spacing between the minimum and maximum values in parameter vector
w or k-means [11]. To further compress the network, we use a variable length code in the form of
arithmetic coding [49], which takes advantage of the fact that certain quantization levels are more
likely than others. Given probabilities p;, (empirical fractions) for cluster cg, arithmetic coding of w
takes at most [d x H(p)]| + 2 bits, where H(p) is the entropy H(p) = — >, pi log, p.. For a small
number of quantization levels, arithmetic coding yields better compression than Huffman coding.

In summary, we use [d x H(p)| + 2 bits for coding the quantized weights w, 16L bits for the
codebook ¢ (represented in half precision), and additional L x [log, d] bits for representing the
probabilities py, arriving at [(w) < [d x H(p)]+Lx (16+log, d])+2. As we show in Appendix B,
we optimize over the subspace dimension d and the number of quantization levels L and any other
hyperparameters, by including them in the compressed description of our model, contributing only
a few extra bits.

4.3 Transfer Learning

For transfer learning, we replace 6y with a learned initialization fp that is found using the pretraining
task and data D. With the ID compression, the universal prior P(h | 0p) oc 2-K(*92) will place
higher likelihood on solutions 6 that are close to the pre-training solution 6p.

this padding is at most v/ D x /d, so it does not increase the asymptotic cost of performing the matrix vector
multiplies.



Algorithm 1 Compute PAC-Bayes Bound.

1: Inputs: Neural network fy, Training dataset {xi,yi};”zl, Clusters L, Intrinsic dimension d,
Confidence 1 — 9, and Prior distribution P.

2: function COMPUTE _BOUND(fy, L, d, (x4, ;)7 , 3, P)

3 w 4 TRAIN_ID(fy, d, (i, ¥i)1—y) > (Section 4.1)
4 W < TRAIN_QUANTIZE(w, L, (x;,y:)5 ;)

5: Compute quantized train error R ().
6.
7
8

KL (Q, P) < GET KL(w, P) > (Section 3)
return GET_CATONT _BOUND(R (), KL (Q, P), 8, n) > (Section 3)
: end function

9: function TRAIN_QUANTIZE(w, L, (z;,vi);—;) > (Section 4.2)

10: Initialize ¢ + GET_CLUSTERS(w, L)

11: for i = 1 to quant_epochs do

12: céc—pVL(w,c)and w < w — pV,, L (w, )

13: end for

14: return w

15: end function

16: function GET_KL((, P))

17: ¢, count < GET_UNIQUE_VALS_COUNTS(w)

18: message_size <— DO_ARITHMETIC_ENCODING(w, ¢, count)

19: message_size <— message_size + hyperparam_search > (Appendix B)
20: return message_size + 2 x log (message_size)

21: end function

5 Empirical Non-Vacuous Bounds

Combining the training in structured random subspaces with our choice of learned quantization, we
produce extremely compressed but high performing models. Using the universal prior, we bound the
generalization error of these models and optimize over the degree of compression via the subspace
dimension and other hyperparameters as summarized in Algorithm 1. We additionally describe
hyperparameters, architecture specifications for each experiment, and other experimental details in
Appendix E. In the following subsections, we apply our method to generate strong generalization
bounds in the data-independent, data-dependent, and transfer learning settings.

5.1 Non-Vacuous PAC-Bayes Bounds

We present our bounds for the data-independent prior in Table 2. We derive the first non-vacuous
bounds on FashionMNIST, CIFAR-10, and CIFAR-100 without data-dependent priors. These results
have particular significance, as we argue in Section 5.2 that using data-dependent priors are not
explanatory about the learning process. In particular, we improve over the compression bound results
obtained by Zhou et al. [73] on MNIST from 46% to 11.55% and on ImageNet from 96.5% to 94.1%.
In terms of compression, we dramatically improve the rates as we reduce the compressed size for
the best MNIST bound by 94% bringing it down from 6.23 KB to 0.38KB with LeNet5 and, on
ImageNet, by 87% bringing it down from 358 KB to 46.3 KB with MobileViT. Since we perform
transfer learning with an ImageNet-trained checkpoint, we omit transfer learning experiments on the
ImageNet (downstream) dataset. The tightness of our SOTA subspace compression bounds allows
us to improve the understanding of several deep learning phenomena as discussed in Section 6. See
Appendix E.1 for model architectures and Appendix A for additional results.

5.2 Data-Dependent PAC-Bayes Bounds

So far, we demonstrated the strength of our bounds on data-independent priors, where we con-
siderably improve on the state-of-the-art. However, a number of recent papers have considered
data-dependent priors as a way of achieving tighter bounds [59, 19]. In this setup, the training data
D = {(x;,y;)}, is partitioned into two parts, D, and Dy, with length n — m and m. The first
dataset is used to construct a data-dependent prior P(h | D,), and then the bound is formed over



Table 2: Our PAC-Bayesian subspace compression bounds compared to state-of-the-art (SOTA)
bounds. All results are with 95% confidence, i.e. § = .05. The sign { refers to data-independent
SOTA numbers that we computed using [59], which we run on the additional datasets.

Dataset Data-independent priors Data-dependent priors
Err. Bound (%) SOTA (%) Err. Bound (%) SOTA (%)

MNIST 11.6 21.7[59] 1.4 1.5 [59]
+ SVHN Transfer 9.0 16.17

FashionMNIST 32.8 46.57 10.1 38 [19]
+ CIFAR-10 Transfer 28.2 30.17

CIFAR-10 58.2 89.97 16.6 16.7 [59]
+ ImageNet Transfer 35.1 54.21

CIFAR-100 94.6 1007 44.4 -
+ ImageNet Transfer 81.3 98.17

ImageNet 93.5 96.5 [73] 40.9 -

the remaining part of the process: the adaptation of the prior P(h | D,) to the posterior Q(h) using
the data D;,. The empirical risk is computed over Dy, only. Intuitively, using dataset D, it is possible
to construct a much tighter prior over the possible neural network solutions. In our setting, simi-
lar to transfer learning, we use the prior Pp, (0) = 27K (0192.) / 7 where for compression we use
0 = 0p, + Pw, and Op, is the solution found by training the model (without random projections)
on the data D, rather than initializing randomly. With these data-dependent priors, we achieve the
best bounds in Table 2.

However, our adaptive approach exposes a significant downside of data-dependent priors. To the
extent that PAC-Bayes bounds can be used for explanation, data-dependent bounds only provide
insights into the procedure used to adapt the prior Pp, (6) to the posterior ) using Dy,: any learning
that is done in finding Pp_ (¢) is not constrained or explained by the bound. Given the ability to
adapt the size of the KL to the difficulty of the problem, it is possible to squeeze all of the learning
into Pp_ (¢) and none in this adaption to Q. This phenomenon happens as the KI. — 0, which we
find happens empirically (or very nearly so) across splits of the data, and especially when n — m
is large. Setting Q(0) = 1j9—g,, ], the KL has only the contribution from the optimization over
d: KL(Q||Pp,) < logD. We find that the bound is nothing more than a variant of the simple

Hoeffding bound where D, is the validation set R (0p,) < Rp, (0p,) + 1/ %.

We can see this phenomenon in Figure 1(a) where we compare existing data-dependent bounds to
the simple Hoeffding bound applied directly to the data-dependent prior which was trained on only
a small fraction of the data. We can consider the Hoeffding bound as the simplest data-dependent
bound without any fine-tuning so that the prior, a single pre-trained checkpoint, is directly eval-
uated on held-out validation data with no KL-divergence term. If another data-dependent bound
cannot achieve significantly stronger guarantees than the prior Hoeffding bound, then it only ex-
plains that neural networks generalize because the priors already have low validation error which is
no explanation for generalization at all. Indeed, we see in Figure 1 that the strength of existing data-
dependent bounds relies almost entirely on the a priori properties of the data-dependent prior rather
than constraining the actual learning process through compressibility. Similarly, from a minimum
description length (MDL) perspective, data-independent bounds can be used to provide a lossless
compression of the training data, whereas data-dependent bounds cannot (see Appendix H).

We also note that with data-dependent priors, optimization over the subspace dimension selects very
low dimensionality, even if the data does not have low intrinsic dimension. Because most of the data
fitting is moved into fitting the prior, the bound selects a low complexity solution with respect to the
prior without hurting data fit by choosing a low subspace dimensionality (Appendix D).

By contrast, data-independent bounds explain generalization for the entirety of the learning process.
Similarly, our transfer learning bounds meaningfully constrain what happens in the fine-tuning on
the downstream task, but they do not constrain the prior determined from the upstream task.



5.3 Non-Vacuous PAC-Bayes Bounds for Transfer Learning

By directly interpreting PAC-Bayes bounds through the lens of compression, we immediately see
the benefits of using an upstream dataset for transfer learning. Transfer learning allows us to con-
strain the prior P(6 | 6p,) around parameters consistent with the upstream dataset D, reducing the
KL-divergence between the prior and the posterior and leading to even tighter bounds as we show in
Table 2. Our tighter data-independent transfer learning bounds provide a theoretical certification that
transfer learning can improve generalization. Our PAC-Bayes transfer learning approach also indi-
cates that transfer learning can boost generalization whenever codings optimized on a pre-training
task are more efficient for encoding a downstream posterior than an a priori guess made before see-
ing data. By contrast, downstream tasks which greatly differ from the upstream task may only be
consistent with models that are not compressible under the learned prior, a scenario that describes
negative transfer. See Appendix C for more details.

6 Understanding Generalization through PAC-Bayes Bounds

The classical viewpoint of uniform convergence focuses on properties of the hypothesis class as a
whole, such as its size. In contrast, PAC-Bayes shows that the ability to generalize is not merely
a result of the hypothesis class but also a result of the particular dataset and the characteristics of
the individual functions in the hypothesis class. After all, many elements of our hypothesis class
are not compressible, yet in order to guarantee generalization, we choose the ones that are. Real
datasets actually contain a tremendous amount of structure, or else we could not learn from them as
famously argued by Hume [32] and No Free Lunch theorems [67, 25]. This high degree of structure
in real-world datasets is reflected in the compressibility of the functions (i.e. neural networks) we
find in our hypothesis class which fit them.

In this section, we examine exactly how dataset structure manifests in compressible models by ap-
plying our generalization bounds, and we see what happens when this structure is broken, for exam-
ple by shuffling pixels or fitting random labels. Corrupting the dataset degrades both compressibility
and generalization.

Standard Shuffled Pixels Shuffled Labels
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Figure 3: Breaking structure in the data and the model. Our PAC-Bayes bound computed using
various subspace dimensions for a fixed size CNN and MLP, both with 500k parameters. We train
on (left) CIFAR-10, (center) CIFAR-10 with shuffled pixels, (right) CIFAR-10 with shuffled labels.
Structure in the dataset induces structure in the model. As structure is removed from the dataset,
models which fit the data become much less compressible, hence generalize worse.

MLPs vs CNNs. It is well known that convolutional neural networks (CNNs) generalize much
better than standard multilayer perceptrons (MLPs) with alternating fully-connected layers and ac-
tivation functions on image classification problems, even when controlling for the number of pa-
rameters. In our generalization bounds, this is reflected in the improved compressibility of CNNs
when compared to MLPs. In Figure 3 (left), we see how on CIFAR-10 a we are able to find a lower
description length for a CNN than an MLP with the same number of parameters. See Appendix E.4
for experimental details.

Shuffled Pixels.  However, when the image structure is broken by shuffling the pixels, we find
that CNNs are no better at generalizing than MLPs. For this dataset, CNNs become substantially
less compressible and hence our bounds show them generalizing worse than MLPs, see Figure 3
(center). MLPs do not suffer when this structure is broken since they never used it in the first place.



Shuffled Labels. = When the structure of the dataset is entirely broken by shuffling the labels,
the compressibility of the models (both for CNNs and MLPs) which fit the random labels is lost.
Regardless of the subspace dimension used, our generalization bounds are all at 100% error as shown
in Figure 3 (right). It is not possible to fit the training data using low subspace dimensions, and when
using a large enough dimension to fit the data, the compressed size of the model is larger than the
training data and hence the generalization bounds are vacuous.

Equivariance. Designing models which are equivariant to certain symmetry transformations has
been a guiding principle for the development of data-efficient neural networks in many domains [12,
13, 65, 66, 22, 35]. While intuitively it is clear that respecting dataset symmetries severely improves
generalization, relatively little has been proven for neural networks [48, 21, 74, 4, 20]. We compress
and evaluate rotationally equivariant (C's) and non-equivariant Wide ResNets [66, 71] trained on
MNIST and a rotated version of MNIST. As shown in Figure 5, the rotationally equivariant models
are more compressible and provably generalize better than their non-equivariant counterparts when
paired with a dataset that also has the rotational symmetry. See Appendix F for further details.

Is Stochasticity Necessary for Generalization? It is widely hypothesized that the implicit biases
of SGD help to find solutions which generalize better. For example, Arora et al. [1] argue that there
is no regularizer that replicates the benefits of gradient noise. Wu et al. [68], Smith et al. [61],
and Li et al. [47] advocate that gradient noise is necessary to achieve state-of-the-art performance.
In comparison, recent work by Geiping et al. [24] shows that full-batch gradient descent can match
state-of-the-art performance, and Izmailov et al. [34] shows that full-batch Hamiltonian Monte Carlo
sampling generalizes significantly better than mini-batch MCMC and stochastic optimization.

We train ResNet-18 and LeNet5 models on CIFAR-10 and MNIST, respectively, using full-batch
and SGD with different intrinsic dimensionalities. We provide the training details in Appendix G.
For MNIST with LeNet5, the best generalization bounds that we obtain are 11.55% and 11.20%
using stochastic gradient descent (SGD) and full-batch training respectively. The best generalization
bounds that we obtain for CIFAR-10 with ResNet-18 are 74.68% and 75.3% using SGD and full-
batch training respectively. We also extend this analysis to SVHN to MNIST transfer learning
with LeNet5 and obtain PAC-Bayes bounds of 9.0% and 8.7% using SGD and full-batch training
respectively. These close theoretical guarantees on the generalization error for both SGD and full-
batch training suggest that while the implicit biases of SGD may be helpful, they are not at all
necessary for understanding why neural networks generalize well (see Appendix G).

Double Descent.  Our bounds are also tight enough to predict the double descent phenomenon
noted in Nakkiran et al. [54]. See Appendix I for a depiction of these experiments and a discussion
of their significance.

7 Discussion

In this work, we constructed a new method for compressing deep learning models that is highly
adaptive to the model and to the training dataset. Following Occam’s prior, which considers shorter
compressed length models to be more likely, we construct state-of-the-art generalization bounds
across a variety of settings. Through our compression bounds, we show how generalization relates
to the structure in the dataset and in the model, and we are able to explain aspects of neural network
generalization for natural image datasets, shuffled pixels, shuffled labels, equivariant models, and
stochastic training.

Limitations.  Despite the power of our compression scheme and the ability of our bounds to
faithfully describe the generalization properties of many modeling decisions and phenomena, we are
scratching the surface of explaining generalization. Our compression bounds prefer models with a
smaller number of parameters as shown in Appendix H, instead of larger models which actually tend
to generalize better. While we achieved better model compression than previous works, it is unlikely
that we are close to theoretical limits. Maybe through nonlinear parameter compression schemes we
might find that larger deep learning models are more compressible than smaller models. Moreover,
it is unclear how to relate the bounds of the compressed models to their uncompressed counterparts,
perhaps leveraging ideas from Nagarajan and Kolter [52] and others investigating this question.
Additionally, while our bounds show that the compressibility of our models implies generalization,
we make no claims about the reverse direction. However, we believe that model compression and
Occam’s razor have yet untapped explanatory power in deep learning.
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