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Abstract 

Three typical types of defects, i.e., keyholes, lack of fusion (LoF), and gas-entrapped pores 
(GEP), characterized by various features (e.g., volume, surface area, etc.), are generated under 
different process parameters of laser beam powder bed fusion (L-PBF) processes in additive 
manufacturing (AM). The different types of defects deteriorate the mechanical performance of L-
PBF components, such as fatigue life, to a different extent. However, there is a lack of recognized 
approaches to classify the defects automatically and accurately in L-PBF components. This work 
presents a novel hierarchical graph convolutional network (H-GCN) to classify different types of 
defects by a cascading GCN structure with a low-level feature (e.g., defect features) layer and a 
high-level feature (e.g., process parameters) layer. Such an H-GCN not only leverages the multi-
level information from process parameters and defect features to classify the defects but also 
explores the impact of process parameters on defect types and features. The H-GCN is evaluated 
through a case study with X-ray computed tomography (CT) L-PBF defect datasets and compared 
with several machine learning methods. H-GCN exhibits an outstanding classification 
performance with an F1-score of 1.000 and reveals the potential effect of process parameters on 
three types of defects. 

Keywords: Laser beam powder bed fusion, X-ray CT, Hierarchical graph convolutional 
network, Defects classification. 

Introduction 

As a promising disruptive technology, additive manufacturing (AM), which creates 
lightweight 3D components with intricate geometries using layer-wise strategy directly from solid 
digital models, is evolving from rapid prototyping to revolutionary digital manufacturing 
technology [1-3]. Laser beam powder bed fusion (L-PBF) is one of the metal AM processes that 
has enormous potential to fabricate parts with complex geometry for functional and structural 
applications in different industries, such as aerospace and automotive [4, 5]. However, the complex 
dynamics such as high dynamic molten pool, ultra-high solidification/cooling rate, or large thermal 
gradient caused by the variability of process parameters like laser power, scanning speed, hatch 
spacing, and layer thickness [6] will inevitably generate defects in the inner structure of L-PBF 
components. These different types of defects, such as keyhole porosity, lack of fusion (LoF) pores, 
and gas entrapped pores (GEP), can serve as crack initiation sites under cyclic loading [7-9] of 
fatigue life, which can lead to failure of L-PBF components [10-12]. Therefore, it is important to 
identify such critical defects and prevent crack initiation to reduce the chance of fracture in L-PBF 
components. 
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Moreover, research on defect classification of L-PBF components with new defect 
characterization has gained tremendous traction. Defect features, such as volume, surface area, 
aspect ratio, and sphericity, extracted from X-ray computed tomography (CT) 3D data are of great 
help to understand different types of defects in L-PBF components. A novel classification method 
is urgently needed to automatically classify defects of L-PBF components for high accuracy and 
efficiency with a massive amount of data available [13]. In summary, there are three critical issues 
to be resolved in this paper: (1) How to utilize multi-level information to explore process 
parameters' impact on different types of defects in the L-PBF components? (2) How to characterize 
the property or features of different types of defects in the L-PBF components? (3) How to 
automatically classify defects of L-PBF components to avoid a complicated manual classification 
process? The rest of this paper is organized as follows: the proposed H-GCN for defect 
classification is detailed in Section methodology; further experiment of H-GCN with a real case 
study on the defect classification of L-PBF components in Section case study; finally, conclusions 
and future research topics are summarized in the final Section. 

Methodology 

This work aims to develop a novel hierarchical graph convolutional network (H-GCN) for 
automatic defects classification in L-PBF components and quantify the impact of process 
parameters on the generation of different types of defects in L-PBF components. This model 
incorporates process parameters into a GCN unit on its high level and then combines the defect 
features extracted by content-based image retrieval (CBIR) technique from 3D X-ray CT data and 
output of the high-level GCN unit into a low-level GCN to classify three types of defects, i.e., 
keyhole porosity, LoF pores, and GEP of L-PBF components. Meanwhile, the hierarchical 
structure can also shed some light on the impact of process parameters on the generation of 
different defect types. The framework of the overall research methodology is summarized in 
Figure 1. 

Figure 1. Overall method of H-GCN for defect classification of L-PBF components.
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Defect features extraction 

Content-based image retrieval (CBIR) is one of the computer vision techniques which can 
characterize defects on 2D fractography images [14, 15] and 3D X-ray CT scans. All the extracted 
defect features are summarized in Table 1 with their corresponding descriptions. Apart from 
traditional features such as volume, surface area, and major axis length, other "untraditional" 
features can also reveal defect characteristics. For example, solidity can be used to measure 
whether the shape of a defect is convex and compact with an irregular shape; sphericity is the ratio 
of the surface area of a sphere to the surface area of the particle [16]; sparseness is the ratio between 
the volume of ellipsoid and volume of the object. The illustration of defect features for keyhole, 
LoF, and GEP can be seen in Figure 2. These defect features can be used as one of the input 
components of the proposed H-GCN in this study. 

Table 1. Defect features from X-ray CT data of L-PBF components. 

Representations Definition 

Basics for defect 
features 

Minor axis length 𝑎𝑎 
Major axis length 𝑏𝑏 

Length along z-axis 𝑐𝑐 
Convex area 𝑆𝑆𝑐𝑐 

Descriptors 
(Features) 

Volume 𝑉𝑉𝑉𝑉 
Surface area 𝑆𝑆𝑎𝑎 

Max axis length 𝐿𝐿 

Aspect ratio 𝑏𝑏
𝑎𝑎

Sphericity 𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆

Solidity 
𝑆𝑆𝑎𝑎
𝑆𝑆𝑐𝑐

Equivalent diameter 𝑑𝑑 = 2�3𝑉𝑉𝑉𝑉
4𝜋𝜋

3  [17] 

Roundness 𝑅𝑅 =  
4𝑆𝑆𝑎𝑎 
𝜋𝜋𝑏𝑏2

Extent 𝐷𝐷𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 

Sparseness 𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆𝑎𝑎

Elongation 
𝑎𝑎
𝑏𝑏

Flatness 𝑏𝑏
𝑐𝑐
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Figure 2. The procedure and illustrations of parts of defect features extraction from X-ray CT data via CBIR techniques. 

The basics of graph convolutional network 

Graph convolutional network (GCN) is a deep learning model [18], which can combine the 
feature information and the graph structure to learn better representations of graphs via feature 
propagation and aggregation [19]. GCN consists of three parts: input layer, hidden layer, and 
output layer. In the input layer, the initial node representation is to be given. The GCN update the 
parameters of hidden layers to learn a better node representation and embed over training. The 
output layer can be used for (1) node classification, where the goal is to learn a representation 
vector so that the label can be predicted; (2) graph classification, where the set of graphs 
{𝐺𝐺1, … ,𝐺𝐺𝑁𝑁} ⊆ 𝒢𝒢 is used to predict their labels {𝑦𝑦1, … ,𝑦𝑦𝑁𝑁} ⊆ 𝒴𝒴 of an entire graph [20]. Currently, 
GCN adopts a neighborhood aggregation strategy to iteratively update node representations by 
aggregating their neighborhood representations. GCN lays the foundation for investigating 
classification with the similarity information from features represented by the graph.  

Hierarchical graph convolutional network 

Hierarchical structure can incorporate various levels of information in the same structure 
for classification. We propose a hierarchical graph convolutional network (H-GCN) model for 
classification by a cascading GCN structure with a low-level and high-level features layer. GCN 
plays a significant role in building up our H-GCN model. Such an H-GCN leverages information 
from high-level and low-level features for classification and explores the impact of high-level 
features on low-level features and targets. In this model, we aim to learn representation vectors ℎ𝑣𝑣 
of a node 𝑣𝑣 such that its label can be classified as 𝑦𝑦�𝑣𝑣 = 𝐹𝐹(ℎ𝑣𝑣). Graph representation is a technique 
to organize data in a graph structure with the relational knowledge of interacting entities [21]. H-
GCN adopts the graph data structure to represent the relationship between different entities.  

Definition 1 (Graph): the graph can be denoted as 𝐺𝐺 = (𝑉𝑉,  𝐸𝐸), where 𝑉𝑉 is the set of 𝑛𝑛 nodes 
denoted as 𝑣𝑣𝑖𝑖  with 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉, 𝑖𝑖 = 1, … ,𝑛𝑛, and 𝐸𝐸 is the set of edges denoted as 𝑒𝑒𝑖𝑖𝑖𝑖  (the connection 
between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗) with 𝑒𝑒𝑖𝑖𝑖𝑖 = �𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗� ∈ 𝐸𝐸. For node 𝑣𝑣𝑖𝑖, it contains a corresponding feature vector 
as 𝒙𝒙𝒊𝒊 = �𝒙𝒙𝒊𝒊𝑯𝑯,𝒙𝒙𝒊𝒊𝑳𝑳� , where  𝒙𝒙𝒊𝒊𝑯𝑯 ∈ ℝ𝑒𝑒  is a e-dimensional high-level feature vector, 𝒙𝒙𝒊𝒊𝑳𝑳 ∈ ℝ𝑑𝑑  is d-
dimensional low-level feature vector. For convenience, we define high-level node feature matrix 
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𝑿𝑿𝑯𝑯 ∈ ℝ𝑛𝑛×𝑒𝑒 stacks 𝑛𝑛 high-level node feature on top of one another, 𝑿𝑿𝑯𝑯 = �𝒙𝒙𝟏𝟏𝑯𝑯, … ,𝒙𝒙𝒏𝒏𝑯𝑯�
𝑇𝑇
 and low-

level node feature matrix 𝑿𝑿𝑳𝑳 ∈ ℝ𝑛𝑛×𝑑𝑑  as 𝑿𝑿𝑳𝑳 = �𝒙𝒙𝟏𝟏𝑳𝑳, … , 𝒙𝒙𝒏𝒏𝑳𝑳�
𝑇𝑇

. Each node is labeled with a C-
dimensional vector 𝒚𝒚𝒊𝒊 ∈ {𝟎𝟎,𝟏𝟏}𝐶𝐶  via one-hot strategy. Two assumptions for H-GCN model are 
shown as: 

Assumption 1: In graph 𝐺𝐺, each node 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 only denotes one sample and there is only one edge 
𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸  for every two nodes  𝑣𝑣𝑖𝑖  and  𝑣𝑣𝑗𝑗 . And the graph 𝐺𝐺  is undirected, i.e., all of edges are 
bidirectional, which indicates that the adjacency matrix 𝐴𝐴 is symmetric. 

Assumption 2: Self-loop is allowed for the nodes in graph 𝐺𝐺 which indicates that 𝐺𝐺 is a simple 
graph in graph theory [22].  

Definition 2 (Similarity matrix): the similarity matrix 𝑺𝑺 ∈ ℝ𝑛𝑛×𝑛𝑛  is adopted to measure the 
similarity between nodes 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 . In H-GCN, the similarity matrix 𝑺𝑺 = �𝑠𝑠𝑖𝑖𝑖𝑖�∀𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛} is 
calculated by the Euclidean distance as 

𝑠𝑠𝑖𝑖𝑖𝑖 =  �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2

 ∀𝑖𝑖, 𝑗𝑗 ∈ {1, 2, … ,𝑛𝑛}, (1) 

where 𝒙𝒙𝒊𝒊 and 𝒙𝒙𝒋𝒋 denotes the features of nodes 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 , respectively. For the similarity matrix, 
the smaller the distance between two nodes, the stronger the similarity among them. The Min-Max 
normalization is applied on the similarity matrix to obtain the normalized similarity matrix 𝑺𝑺� =
�𝑠̃𝑠𝑖𝑖𝑖𝑖�∀𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎 0 ≤ 𝑠̃𝑠𝑖𝑖𝑖𝑖 ≤ 1}  to facilitate the determination of edge connectivity. 
Additionally, in H-GCN model, the similarity matrixes of nodes with high-level features and low-
level features are 𝑺𝑺�𝑯𝑯 and 𝑺𝑺�𝑳𝑳, respectively. 

Definition 3 (Adjacency matrix): the adjacency matrix 𝑨𝑨 ∈ ℝ𝑛𝑛×𝑛𝑛  is a binary matrix which 
measures the connections between nodes 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗  with 1 means connection and 0 is 
disconnection. It can be defined as 𝑨𝑨 = �𝑎𝑎𝑖𝑖𝑖𝑖�∀𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛} where 𝑎𝑎𝑖𝑖𝑖𝑖 represents the connection 
between nodes 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 . The adjacency matrix 𝑨𝑨 is calculated as 

𝑎𝑎𝑖𝑖𝑖𝑖 = �
0, 𝑠̃𝑠𝑖𝑖𝑖𝑖 > 𝑇𝑇
1, 𝑠̃𝑠𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇 , (2) 

where 𝑇𝑇 is the threshold to determine whether the distance among two nodes is smaller or not. In 
H-GCN, the distance threshold 𝑇𝑇 among two nodes is given as the mid-point 0.5. Additionally, we
define the diagonal degree matrix 𝑫𝑫 = diag(𝑑𝑑1, … ,𝑑𝑑𝑛𝑛) where each value on the diagonal is the
row-sum of adjacency matrix 𝑨𝑨 as 𝑑𝑑𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗 . In H-GCN model, the adjacency matrix with self-
loop information is defined as 𝑨𝑨∗ = 𝑨𝑨 + 𝑰𝑰𝒏𝒏  and degree matrix is 𝑫𝑫� = diag(𝑑̃𝑑1, … , 𝑑̃𝑑𝑛𝑛), where 
𝑑̃𝑑𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖∗𝑗𝑗 . The adjacency matrix of nodes with high-level features denotes 𝑨𝑨𝑯𝑯∗  and with low-
level features is 𝑨𝑨𝑳𝑳∗ . Meanwhile, their degree matrixes are 𝑫𝑫�𝑯𝑯 and 𝑫𝑫�𝑳𝑳. 

The progress of graph representation of H-GCN can be seen in Figure 3. The data is split 
into high-level features and low-level features and then two normalized similarity matrixes are 
calculated via the normalized Euclidean distance. Furthermore, adjacency matrix can be obtained 
from normalized similarity matrixes based on the threshold 𝑇𝑇. Finally, the high-level and low-level 
graphs are built which can be treated as the inputs of H-GCN.  
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Figure 3. The progress of graph representations of H-GCN model. 

We define a graph neural network GCN1 with one hidden layer and one neuron in this layer 
to handle the high-level features to compress features and explore the impact of high-level features 
on low-level features and different classes of target. For the k-th graph layer in GCN1, we define 
matrix 𝑯𝑯𝑯𝑯

(𝑘𝑘−1) = [ℎ1
(𝑘𝑘−1), … ,ℎ𝑣𝑣

(𝑘𝑘−1)]𝑇𝑇 as the high-level input node representations or embedding 
of all nodes and 𝑯𝑯𝑯𝑯

(𝑘𝑘) as the low-level output node representations. The initial node representations 
can be expressed as  

𝑯𝑯𝑯𝑯
(𝟎𝟎) = 𝑿𝑿𝑯𝑯, (3) 

which serve as the input to the first GCN1 layer. Then the high-level features are input into the 
hidden layer of GCN1. The hidden layer is propagated layer by layer as: 

𝑯𝑯𝑯𝑯
(𝑘𝑘) = ReLU�𝑼𝑼𝑯𝑯𝑯𝑯𝑯𝑯

(𝑘𝑘−1)𝑾𝑾𝑯𝑯
(𝑘𝑘−1)�,𝑘𝑘 = 1, … ,𝐾𝐾, (4) 

where  𝑾𝑾𝑯𝑯
(𝑘𝑘−1) ∈ ℝ𝑒𝑒×𝑝𝑝 is a learned weight matrix in this hidden layer with 𝑝𝑝 neurons, and 𝑈𝑈𝐻𝐻 ∈

ℝ denotes the “normalized” adjacency matrix constant with added self-loops as 

𝑼𝑼𝑯𝑯 = 𝑫𝑫�𝑯𝑯
−12𝑨𝑨𝑯𝑯∗ 𝑫𝑫�𝑯𝑯

−12, (5) 

where 𝑫𝑫�𝑯𝑯 and 𝑨𝑨𝑯𝑯∗  are described in Definition 3. 

After processing the high-level features, the output from high-level GCN1 will be treated 
as the new input incorporated with low-level features 𝑿𝑿𝑳𝑳  into new input 𝑿𝑿 = �𝑿𝑿𝑳𝑳,𝑯𝑯𝑯𝑯

(𝐾𝐾)� ∈
ℝ𝑛𝑛×(𝑑𝑑+𝑝𝑝). We adopt GCN2 to train the low-level and new input features to explore the mixed 
impact of all features on different classes of targets. For the r-th graph layer in GCN2, the first 
input layer is 

𝑯𝑯𝑳𝑳
(𝟎𝟎) = 𝑿𝑿, (6) 

The learned representation can be processed into the hidden layer of GCN2 as 
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𝑯𝑯𝑳𝑳
(𝑟𝑟) = ReLU�𝑼𝑼𝑳𝑳𝑯𝑯𝑳𝑳

(𝑟𝑟−1)𝑾𝑾𝑳𝑳
(𝑟𝑟−1)�, 𝑟𝑟 = 1, … ,𝑅𝑅, (7) 

where  𝑾𝑾𝑳𝑳
(𝑠𝑠−1) ∈ ℝ(𝑑𝑑+𝑝𝑝)×𝑞𝑞 is a learned weight matrix in GCN2 hidden layer with 𝑞𝑞 neurons; 𝑼𝑼𝑳𝑳 is 

the normalized” adjacency matrix as 𝑼𝑼𝑳𝑳 = 𝑫𝑫�𝑳𝑳
−12𝑨𝑨𝑳𝑳∗𝑫𝑫�𝑳𝑳

−12. 

For both of GCN1 and GCN2, in order to obtain the best weight matrix, we train by 
minimizing the cross-entropy loss function: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −∑ ∑ 𝒚𝒚𝒊𝒊𝒊𝒊 ln𝒚𝒚�𝒊𝒊𝒊𝒊𝑛𝑛
𝑗𝑗=1𝑖𝑖∈𝑿𝑿 , (8) 

For classification, the last layer of GCN2 predicts the labels using a SoftMax classifier. We 
denote 𝒀𝒀�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∈ ℝ𝑛𝑛×𝐶𝐶  where 𝑦𝑦�𝑣𝑣 is the probability of node 𝑣𝑣 to type 𝑐𝑐. The class prediction 𝒀𝒀� of a 
R-layer GCN2 can be written as

𝒀𝒀�𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 = softmax�𝑼𝑼𝑳𝑳𝑯𝑯𝑳𝑳
(𝑅𝑅−1)𝑾𝑾𝑳𝑳

(𝑅𝑅)�, (9) 

where softmax(⋅) = exp(𝑥𝑥)/∑ 𝑥𝑥𝑐𝑐𝐶𝐶
𝑐𝑐=1  is a normalizer across all types of targets and 𝑾𝑾𝑳𝑳

(𝑅𝑅) ∈ ℝq×C 
is the weights between GCN2 layer and classification layer. In short, we can summarize the H-
GCN model for classification in Algorithm 1 below. 

Algorithm 1: The pseudo code of H-GCN
Input:   High-level feature matrix  𝑿𝑿𝑯𝑯 ∈ ℝ𝑛𝑛×𝑒𝑒 and Low-level feature matrix 𝑿𝑿𝑳𝑳 ∈ ℝ𝑛𝑛×𝑑𝑑; 
Output: 𝒀𝒀�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∈ ℝ𝑛𝑛×𝐶𝐶; 

1 Calculate normalized high-level and low-level similarity matrix 𝑺𝑺�𝑯𝑯 and 𝑺𝑺�𝑳𝑳 based on 𝑿𝑿𝑯𝑯 and 𝑿𝑿𝑳𝑳 in 
Equation (1). 

2 Obtain high-level adjacency matrix 𝑨𝑨𝑯𝑯∗  and low-level adjacency matrix 𝑨𝑨𝑳𝑳∗  based on the threshold 𝑇𝑇. 
3 Get high-level and low-level adjacency matrix operator as 𝑈𝑈𝐻𝐻 and 𝑈𝑈𝐿𝐿, respectively. 
4 Initialize the weights matrixes 𝐖𝐖𝐇𝐇

(k) ∈ ℝe×p, 𝐖𝐖𝐋𝐋
(𝑟𝑟) ∈ ℝ(d+p)×q and 𝐖𝐖𝐋𝐋

(𝑅𝑅) ∈ ℝq×C in GCN1, GCN2 and
classifier respectively; 

5 repeat 
6 Update 𝐖𝐖𝐇𝐇

(k), input  𝑿𝑿𝑯𝑯 to train GCN1 k-th hidden layer 𝑯𝑯𝑯𝑯
(𝑘𝑘) based on 𝑼𝑼𝑯𝑯  in Equation (4); 

7 Declare 𝑿𝑿 = �𝑿𝑿𝑳𝑳,𝑯𝑯𝑯𝑯
(𝐾𝐾)� ∈ ℝ𝑛𝑛×(𝑑𝑑+𝑝𝑝), incorporate the output of GCN1 𝑯𝑯𝑯𝑯

(𝐾𝐾) in K-th layer with 𝑿𝑿𝑳𝑳; 
8 Update 𝐖𝐖𝑳𝑳

(𝑟𝑟), input 𝑿𝑿 to train GCN2 r-th hidden layer 𝑯𝑯𝑳𝑳
(𝑟𝑟) based on 𝑼𝑼𝑳𝑳 in Equation (7);

9 Update 𝐖𝐖𝐋𝐋
(𝑅𝑅) and  𝒀𝒀�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, which is calculated by SoftMax function Equation (9);

10 until loss function Equations (8) converges 

Case study 

The proposed H-GCN is applied to the L-PBF components for defects classification with 
real data, as well as exploring the impact of process parameters on different types of defects. In 
Section data collection, we collect different types of defect data and set the experiment for the L-
PBF components. In Section L-PBF defect graph representations, we generate defect graphs via 
H-GCN based on defects data and process parameters in L-PBF. Finally, in Section analysis of H-
GCN for defects classification, we adopt H-GCN for defects classification and evaluate the
performance of H-GCN.
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Data collection 

In this case study, the effectiveness of the H-GCN model for defects classification of X-
ray CT L-PBF specimens is verified with different L-PBF specimens fabricated with plasma 
atomized Ti-6Al-4V Grade 5 powder (particle size range of 15 to 53 µm) in an EOS M290 machine 
supplied by AP&C - a GE Additive company. The geometry of the X-ray CT specimens used in 
this case study and printed specimens are shown in Figure 4. In the fabrication process, the process 
parameters (except layer thickness) were modified from the manufactured recommended values to 
induce different types of volumetric defects. The EOS recommended process parameters for Ti-
6Al-4V Grade 5 material are 280 W laser power, 1300 mm/sec laser speed, 40 µm layer thickness, 
and 120 µm hatch distance. The H-GCN model is validated by classifying three different types of 
defects, i.e., keyhole, LoF, and GEP of L-PBF specimens under eight combinations of process 
parameters shown in Table 2. Moreover, each specimen contains various defect samples for three 
types of defects in Table 3.  

Figure 4. The geometry of the X-ray CT specimens (a) and the printed specimens (b). 

Table 2. The different combinations of process parameters of specimens used in L-PBF experiments. 

It is noted that each defect sample used in this study has 12 size and morphology-related 
features. The total defect data used in this study is 612 with 97 keyholes, 373 LoF, and 142 GEP. 
Furthermore, the proportion of training and test set for H-GCN and benchmark methods is 7:3. 
Additionally, all data are normalized to range [0, 1] by min-max strategy before training and 
testing.  

Table 3. The statistics for each type of defects for different specimens in L-PBF experiment. 

Data Total number 
of defects 

Specimens 
S23 S16 H24 H23 S11 K05 K03 K15 

# of keyhole 97 - - - - - 68 4 25 
# of LoF 373 74 92 36 69 77 25 - - 
# of GEP 142 2 - 3 7 2 122 6 - 

Total 612 76 92 39 76 79 215 10 25 

Process 
parameters Units Specimens 

S23 S16 H24 H23 S11 K05 K03 K15 
Laser power W 224 252 280 280 280 336 336 364 

Scanning speed mm/s 1300 1560 1300 1300 1560 780 910 780 
Hatch distance µm 120 120 132 144 120 120 120 120 
Layer thickness µm 40 40 40 40 40 40 40 40 
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L-PBF defect graph representations

To build the L-PBF defect graph, we consider two aspects: (1) nodes and (2) edge 
connections. The L-PBF defects graph 𝐺𝐺 is combined with two H-GCN graphs as a high-level 
graph 𝐺𝐺𝐻𝐻 and a low-level graph 𝐺𝐺𝐿𝐿. We first discussed the high-level graph 𝐺𝐺𝐻𝐻 consisting of high-
level nodes only with three process parameters features and edge’s connection. The edge’s 
connection is based on the similarity between different nodes. As for the high-level edge’s 
connection, the similarity of high-level defect nodes with process parameters features is calculated 
by Equation (1) and shown in Figure 5 (a). Based on this similarity, we apply the threshold of 0.5 
to build the connection among high-level defect nodes (similarity < 0.5). The adjacency matrix of 
high-level defect nodes and their graph representation is shown in Figure 5 (b) and (c). In Figure 
5, it is noted that the similarity within keyhole, LoF, and GEP is relatively large (the distance is 
small) compared with their cross area, which indicates that the defects with process parameters 
features have a potential relationship. It can also be reflected in its adjacency matrix and graph 
representation. We observe that almost all high-level defect nodes are connected with the same 
types of defects and only a few are associated with other types of defects. For example, the LoF 
defect nodes (green) in the middle of Figure 5 (c) are connected with LoF, GEP, and keyhole.  

Figure 5. The similarity of defect nodes with high-level features and graph representation. (a) The similarity of defects with 
high-level features; (b) the adjacency matrix of defect nodes with high-level features; (c) the graph representation of nodes with 
high-level features. 

The low-level graph 𝐺𝐺𝐿𝐿 consists of low-level nodes only with 12 defect features and edge 
connections. Figure 6 (a) and (b) show the similarity of low-level defect nodes and their 
distributions. Critically, the threshold of 0.5 cutoff several connections within the keyhole, LoF 
and GEP similarity based on the results of their distribution which indicates that a few defects 
show no strong relationship with other the same types of defects.  

Figure 6 demonstrates the adjacency matrix and low-level graph representation. It is noted 
that there are several connections among different types of defects in Figure 6 (a) which is reflected 
in Figure 6 (b). The number of connections between different types of defects is increased 
compared with the high-level graph. For example, there are more connections among keyhole, LoF 
and GEP in Figure 6 (b). The complete graph information for the high-level graph and the low-
level graph can be seen in Table 4. 
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Figure 6. The similarity of defect nodes with low-level features. (a) The similarity of defects with low-level features; (b) the 
distribution of similarity matrix of low-level features; (c) the adjacency matrix of defect nodes with high-level features; (d) the 
graph representation of nodes with high-level features. 

Table 4. The graph information of H-GCN for defects classification of L-PBF components. 

Analysis of H-GCN for defects classification 

As for the evaluation of H-GCN, three statistical metrics precision, recall and F1-score are 
used for evaluating the model classification performance. The proposed H-GCN is compared with 
GCN, neural network (NN), and support vector machine (SVM). The data used for comparison of 
H-GCN with other benchmark methods are as:

• H-GCN: adopts defect features + process parameters + similarity among defects.
• GCN: adopts defect features + similarity among defects.
• NN and SVM: adopt only defect features.

The mean and standard deviation of defect classification performance of the H-GCN and
other benchmark methods are summarized in Table 5. It is noted that H-GCN significantly 
outperforms GCN, NN, and SVM for precision, recall and F1-score with all 1.000 without 
variance. Furthermore, we can observe from the confusion matrix in Figure 7 that NN and SVM 
are typically failed to classify LoF and GEP with some data shown in Figure 7 (c) and (d), 

Graph type # Nodes # Edges 
Number of 

features for each 
node 

Average 
node degree 

Contains 
isolated 
nodes 

H-GCN 𝐺𝐺𝐻𝐻 612 180584 3 295.07 False 

H-GCN 𝐺𝐺𝐿𝐿 612 322574 12 527.08 False 

1577



respectively. Moreover, GCN is better than NN and SVM for classifying all three types of defects, 
especially for GEP, without misclassified data because it uses additional edge connection 
information. Critically, H-GCN can classify keyhole, LoF, and GEP better than other methods 
without misclassified data for all types of defects since it adopts not only defect features but also 
process parameters and their similarity.  
Table 5. The test classification results of H-GCN compared with other machine learning methods for L-PBF dataset (The values 
in the parenthesis are the standard deviation for all classes). 

H-GCN GCN NN SVM 
Precision 1.000 0.997 (0.0047) 0.970 (0.0216) 0.960 (0.0141) 
recall 1.000 0.993 (0.0094) 0.953 (0.0386) 0.930 (0.0712) 
F1-score 1.000 0.997 (0.0047) 0.963 (0.0236) 0.943 (0.0309) 

Figure 7. The comparison results of confusion matrix of H-GCN with other benchmark methods. 

Discussion on impacts of process parameters on defects of L-PBF components 

To explore the impact of process parameters on different types of defects of L-PBF 
specimens, we make further analyses for the weights of the H-GCN framework. The defects are 
typically correlated to the process energy and described by energy density 𝐸𝐸𝑣𝑣 as a ratio among 
laser power (𝑃𝑃), scanning speed (𝑣𝑣), hatch distance (ℎ), and layer thickness (𝛿𝛿) [23-26]: 

𝐸𝐸𝑣𝑣 = 𝑃𝑃
𝑣𝑣⋅𝛿𝛿⋅ℎ

,  [𝐽𝐽\𝑚𝑚𝑚𝑚3], (10) 

the layer thickness is a constant in this case study.   

From our experiment for the study of weights of H-GCN, we found that the laser power is 
positively correlated with keyhole since the weight path is (3.65) → (−2.8) → (−4.0) from laser 
power to keyhole. According to the Equation (10), we know that a higher laser power intends to 
inform keyhole defects. Additionally, LoF is induced by insufficient energy density defects which 

1578



is corresponded with the weight path of experimental result (3.65) → (−2.8) → (3.01) from laser 
power to LoF and less laser power (low energy density) tends to increase GEP in the inner structure 
of L-PBF specimens with two weight paths (3.65) → (−0.4) → (4.54) and (3.65) → (−2.8) →
(0.8) from laser power to GEP. 

Conclusion and future work 

This research develops a novel H-GCN model for defect classification of L-PBF 
components using a graph representation of data in a layer-by-layer GCN structure to build the 
multilevel multifactorial model. Specifically, H-GCN first incorporates process parameters and 
defect features observed from X-ray CT scans into high-level and low-level graphs, respectively, 
based on the similarity of defects. The similarity information considers the relationship among 
defects and improves the accuracy of defect classification. Furthermore, H-GCN adopts two GCNs 
for high-level and low-level graphs to make highly accurate defect classification. This hierarchical 
structure of H-GCN enables its flexible scalability. Multilevel information can be processed 
hierarchically by H-GCN to account for differences and interactions among different level data. 
This work achieves perfect defect classification of L-PBF components with a statistical F1-score 
of 1.000. Compared with other models such as SVM, its performance improves by about 6%. 

The future work of H-GCN includes: (1) to extend the hierarchical structure of H-GCN to 
cases with multilevel multifactorial modeling; (2) to apply H-GCN to other fields and find new 
applications in a broader range of disciplines, such as drug design in chemistry, cancer subtype 
classification in biology, and social relationship understanding in social media. 

References 

[1] S. Ford and M. Despeisse, "Additive manufacturing and sustainability: an exploratory study of the
advantages and challenges," Journal of cleaner Production, vol. 137, pp. 1573-1587, 2016.

[2] N. Guo and M. C. Leu, "Additive manufacturing: technology, applications and research needs,"
Frontiers of mechanical engineering, vol. 8, no. 3, pp. 215-243, 2013.

[3] S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, "Review of in-situ process
monitoring and in-situ metrology for metal additive manufacturing," Materials & Design, vol. 95,
pp. 431-445, 2016.

[4] M. Abdelwahed, "Development and L-PBF processing of structural low-alloy steels for automotive
applications," 2022.

[5] M. S. Kumar, H. Javidrad, R. Shanmugam, M. Ramoni, A. A. Adediran, and C. I. Pruncu, "Impact
of print orientation on morphological and mechanical properties of L-PBF based AlSi7Mg parts
for aerospace applications," Silicon, pp. 1-15, 2021.

[6] N. Ahmed, I. Barsoum, G. Haidemenopoulos, and R. A. Al-Rub, "Process parameter selection and
optimization of laser powder bed fusion for 316L stainless steel: A review," Journal of
Manufacturing Processes, vol. 75, pp. 415-434, 2022.

[7] S. Bhat and R. Patibandla, "Metal fatigue and basic theoretical models: a review," Alloy steel-
properties and use, vol. 22, 2011.

[8] A. J. Sterling, B. Torries, N. Shamsaei, S. M. Thompson, and D. W. Seely, "Fatigue behavior and
failure mechanisms of direct laser deposited Ti–6Al–4V," Materials Science and Engineering: A,
vol. 655, pp. 100-112, 2016.

[9] U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami, "Defects as a root cause of fatigue
failure of metallic components. I: Basic aspects," Engineering Failure Analysis, vol. 97, pp. 777-
792, 2019.

1579



[10] W. H. Kan et al., "A critical review on the effects of process-induced porosity on the mechanical
properties of alloys fabricated by laser powder bed fusion," Journal of Materials Science, pp. 1-48,
2022.

[11] J. Pegues, M. Roach, R. S. Williamson, and N. Shamsaei, "Volume effects on the fatigue behavior
of additively manufactured Ti-6Al-4V Parts," in 2018 International Solid Freeform Fabrication
Symposium, 2018: University of Texas at Austin.

[12] E. Pessard, M. Lavialle, P. Laheurte, P. Didier, and M. Brochu, "High-cycle fatigue behavior of a
laser powder bed fusion additive manufactured Ti-6Al-4V titanium: Effect of pores and tested
volume size," International Journal of Fatigue, vol. 149, p. 106206, 2021.

[13] W. Cui, Y. Zhang, X. Zhang, L. Li, and F. Liou, "Metal additive manufacturing parts inspection
using convolutional neural network," Applied Sciences, vol. 10, no. 2, p. 545, 2020.

[14] Y. Mingqiang, K. Kidiyo, and R. Joseph, "A survey of shape feature extraction techniques," Pattern
recognition, vol. 15, no. 7, pp. 43-90, 2008.

[15] A. Li, S. Baig, J. Liu, S. Shao, and N. Shamsaei, "Defect Criticality Analysis on Fatigue Life of L-
PBF 17-4 PH Stainless Steel via Machine Learning," International Journal of Fatigue, p. 107018,
2022.

[16] H. Wadell, "Sphericity and roundness of rock particles," The Journal of Geology, vol. 41, no. 3,
pp. 310-331, 1933.

[17] H. Parameswaran, E. Bartolák-Suki, H. Hamakawa, A. Majumdar, P. G. Allen, and B. Suki,
"Three-dimensional measurement of alveolar airspace volumes in normal and emphysematous
lungs using micro-CT," Journal of Applied Physiology, vol. 107, no. 2, pp. 583-592, 2009.

[18] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks,"
arXiv preprint arXiv:1609.02907, 2016.

[19] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The graph neural network
model," IEEE transactions on neural networks, vol. 20, no. 1, pp. 61-80, 2008.

[20] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, "How powerful are graph neural networks?," arXiv
preprint arXiv:1810.00826, 2018.

[21] W. L. Hamilton, R. Ying, and J. Leskovec, "Representation learning on graphs: Methods and
applications," arXiv preprint arXiv:1709.05584, 2017.

[22] D. B. West, Introduction to graph theory. Prentice hall Upper Saddle River, 2001.
[23] H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, "Analysis of defect generation in Ti–6Al–4V

parts made using powder bed fusion additive manufacturing processes," Additive Manufacturing,
vol. 1, pp. 87-98, 2014.

[24] T. Vilaro, C. Colin, and J.-D. Bartout, "As-fabricated and heat-treated microstructures of the Ti-
6Al-4V alloy processed by selective laser melting," Metallurgical and materials transactions A,
vol. 42, no. 10, pp. 3190-3199, 2011.

[25] B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, "Heat treatment of Ti6Al4V produced
by Selective Laser Melting: Microstructure and mechanical properties," Journal of Alloys and
Compounds, vol. 541, pp. 177-185, 2012.

[26] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, "A study of the
microstructural evolution during selective laser melting of Ti–6Al–4V," Acta materialia, vol. 58,
no. 9, pp. 3303-3312, 2010.

[27] J. Xiong, Z. Xiong, K. Chen, H. Jiang, and M. Zheng, "Graph neural networks for automated de
novo drug design," Drug Discovery Today, vol. 26, no. 6, pp. 1382-1393, 2021.

[28] S. Rhee, S. Seo, and S. Kim, "Hybrid approach of relation network and localized graph
convolutional filtering for breast cancer subtype classification," arXiv preprint arXiv:1711.05859,
2017.

[29] Z. Wang, T. Chen, J. Ren, W. Yu, H. Cheng, and L. Lin, "Deep reasoning with knowledge graph
for social relationship understanding," arXiv preprint arXiv:1807.00504, 2018.

1580




