
Big Data, Transmission Errors, and the Internet

Susmit Shannigrahi

Computer Science Department

Tennessee Tech

sshannigrahi@tntech.edu

Craig Partridge

Computer Science Department

Colorado State University

craig.partridge@colostate.edu

Abstract—A cursory look at the Internet protocol stack shows
error checking capability almost at every layer, and yet, a slowly
growing set of results show that a surprising fraction of big
data transfers over TCP/IP are failing. As we have dug into this
problem, we have come to realize that nobody is paying much
attention to the causes of transmission errors in the Internet.
Rather, they have typically resorted to file-level retransmissions.
Given the exponential growth in data sizes, this approach is
not sustainable. Furthermore, while there has been considerable
progress in understanding error codes and how to choose or
create error codes that offer sturdy error protection, the Internet
has not made use of this new science. We propose a set of new
ideas that look at paths forward to reduce error rates and better
protect big data. We also propose a new file transfer protocol
that efficiently handles errors and minimizes retransmissions.

Index Terms—big data, error checking, file transfer protocol

I. INTRODUCTION

The advent of “big data” has led to an explosion in large

datasets. These datasets, either in their entirety or in part, are

regularly transferred over networks. These data transfers use

the Internet protocol suite, referred to as TCP/IP.

The error check mechanisms in the typical Internet stack,

from Ethernet or WiFi up through IP and TCP, were all

designed in an era where a 1 MB file transfer was considered

big. A small but growing number of studies have found modern

(1GB or larger) transfers failing at alarming rates. When they

encounter failures, current file transfer protocols discard what

has been transferred and retransmit the entire file. In the soon-

approaching Exabyte era, throwing away partially good data

and starting over will soon be infeasible. Scarier is that back-

of-the-envelope calculations suggest that we are fast reaching

the point where errors will slip through, and users will be

using bad data without knowing it.

At this moment, what we know is that there is a reliability

problem, but we neither fully understand its extent and nor

know what errors processes are responsible for the problem.

The existing tools used to detect the failures unfortunately

do not identify the source of the failures. Yet finding and

understanding the source of the failures is essential to make

big file transfers (which are an increasing share of the Internet

and data center traffic) more reliable.

This paper briefly summarizes the studies that point to

problems in large data transfer and their implications. We

then discuss few possible paths forward, including a new file

transfer protocol that minimizes file-level retransmissions by

creating smaller segments and performing error detection and

selective retransmission of the corrupted segments.

II. PUZZLING ERRORS

A handful of recent studies and some informal reports

from major data centers suggest there is a serious problem

transferring large (c. 1GB and larger) data files in the Internet.

A study analyzing server logs at Lawrence Livermore

National Laboratory (LLNL) [1] showed that the majority of

large file transfers failed. Of 18.5 million file transfer requests,

approximately 13 million requests failed to transfer a file. We

performed a similar internal study of the logs of the German

Climate Computing Center (DRKZ), with similar results.

Another study of four years of files transferred on the

Energy Science Network (ESnet) found that 1 in every 121 file

transfers (.8%) delivered a file whose file checksum did not

match that of the original file [2]. Other studies point to similar

problems at different scales [3] [4]. Our discussions with

researchers in large cloud providers point to similar anecdotal

evidence. Errors have been seen in data center networks where

a large number of file transfers fail on specific paths.

These numbers are disturbing. If we use a typical 32-

bit integrity check on each file, then a back-of-the-envelope

calculation suggests about 1 in every 520 billion file transfer

could result in an inaccurate file that slips past the integrity

check. While 520 billion may sound large, we looked at a

recent CDN log from a large cloud provider where users

requested 10 million files in a 2-hour period. These files were

requested from one HTTP server at one point of presence

(translating to approximately 44 Billion files per year per

server). Given this large number of files transferred every year,

we are already at the risk of transferring incorrect data in

critical scientific and measurement applications.

A. Possible Causes

The simplest explanation that explains all the reported

cases of frequent errors is that something in the network

path (a router, a firewall, a switch, a transmission link, etc.)

is generating errors that the TCP checksum fails to detect.

For instance, the Globus file transfers are done via FTP and

have no in-progress data checks above TCP. Sometimes, such

transfers are also done over UDP for performance, and UDP’s

checksum is optional. If the Globus transfer incorporates bad

data it is detected when the received file’s cryptographic hash

is found to be wrong. Conversely, the LLNL transfers are





In messages where the payload is affected, the CRC points

out that an error occurred during transmission. The parity bits

likely point out the location of the error (up to a certain number

of bit errors) in the message and the affected bits.

We will initially collect data by transferring large represen-

tative files between test machines to collect error statistics.

Once the software is tested and debugged, we will deploy the

software on various testbeds (e.g., NSF’s FABRIC testbed)

and inside different network providers’ infrastructure. We

will collect the errors from the traffic flowing through these

networks and store them at a central location. These logs will

allow us to determine the kinds of errors the networks are

allowing to get through.

B. Better Error Checks

We know more about error checks such as CRCs and

cryptographic hashes than we did when the Internet’s error

checks were designed. One possibility is to replace some of

the Internet’s error checks with more modern alternatives. In

this section, we discuss what has been learned and how it

might be leveraged.

A useful metric for an error check is how much strength

adding an additional bit to the check imparts to error checking.

In general, one expects an error check of length x+1 to catch

at least twice as many errors as an error check of length x.

Another way to think of the issue is that given a check function

c() giving a result of x bits and a packet p and a version p̂

generated by corrupting p with some random error process,

we expect that c(p) = c(p̂) with a chance of less than (or at

worst equal to) 1 in 2x.

Multiple studies have shown that the Internet checksum fails

this metric, often badly. It fails to detect transpositions of data

and insertions (or deletions) of 16-bit zeros. In certain cases

of combining portions of multiple packets, the 16-bit TCP

checksum was shown to behave like a 10-bit sum [5].

The useful discovery of recent years is that CRCs are

better than we realized. For any useful packet size (up to

248MB in length), there exist 32-bit CRCs that are robust

to errors of up to 4 bits (so a Hamming distance of 4),

including errors that include the CRC (i.e., the CRC is changed

by the error) [14]–[16]. CRCs are also invulnerable to any

contiguous bit error that is shorter than the bits in the CRC.

The implication is, in many environments, a large fraction

of errors will be deterministically detected by a 32-bit CRC.

An internal study of WiFi errors has shown that about 40%

of errors would always be caught by CRC-32.For errors not

caught deterministically, CRCs are guaranteed to miss random

errors with probability 1 in 2x.

Furthermore, the community has gotten better at computing

CRCs in software (see, for instance, Finkel’s parallel compu-

tation of CRC-64 and Engdahl’s table-free implementation of

CRC-16) so that the cost of computing a CRC in software is

close to that of a checksum, and far far less than the cost of

a cryptographic hash [17], [18].

Cryptographic hashes, which are designed to thwart at-

tempts by an adversary to alter a text, are mediocre error

checks. They have a consistent 1 in 2x chance of catching

any error. This makes them far inferior to CRCs, which can

be chosen to deterministically detect likely errors.

We observe that if the goal is to protect data from errors

(rather than an adversary’s attack), the preferred error check

is clearly a CRC, and the cost of computing a CRC is modest

enough that there is no reason to prefer a checksum such as

the Internet’s. A secondary observation is that if one revived

the now deprecated TCP option [19] to negotiate a checksum,

one could make TCP far more robust using a 32-bit or 64-bit

CRC at a little performance cost.

C. Robust File Transfer

In addition to trying to learn about the current sources of

errors in the Internet, it seems prudent to think about how to

create file transfer protocols that are more robust to errors. We

want a protocol that does not fail partway through a transfer

when a bit of bad data gets past TCP and recovers if the

delivered file fails validation.

Expressing this as a set of protocol requirements, we seek

a file transfer protocol that: (a) is robust to TCP failing to

detect errors (where by robust we mean continues along a path

to completing the transfer); (b) is robust to receiving bad file

data; (c) is robust to attacks by adversaries; and (d) delivers

files efficiently (where by efficiently we mean with a minimum

of retransmitted data and in a timely fashion).

The first three requirements are interconnected. If a protocol

is to be robust to TCP’s failure to detect errors, it must either

provide a mechanism to validate the received file or a layer

above TCP that catches errors in data in flight before data

is delivered to the file’s receiver (or both). One good way to

detect errors in flight above TCP is to add a security layer that

signs individual chunks of data and validates them. A security

layer also provides a measure of protection against adversaries.

The requirement to deliver the file efficiently makes the

protocol more complicated. The requirement to deliver the file,

in spite of errors being found, means that it has to be possible

to restart at least part of the file transfer.

There are two possible scenarios due to an error. The first

possibility is the TCP connection breaks mid-transfer as a

result of the error (or the security layer shuts the connection

down on error) and the file transfer must be restarted with a

new TCP connection. Another possibility is it is found that

the received file is incorrect and the file needs to be fixed.

In either scenario, to deliver the file efficiently, the file

transfer protocol must be able to deal with a partial file at

the receiver and only request those parts that are missing or

in error. Transmitting substantial but already-received chunks

of a gigabit file is clearly wasteful and will be even more

wasteful as petabyte and exabyte files become more common.

Generally, when network bandwidth is modest (low

megabits), the best approach to delivering partial files or fixing

files with errors is to exchange checksums over small parts

of the file and transmitting the minimum amount of data

necessary to repair or complete the file. (A slightly more

sophisticated version is to use the checksums to find identical



chunks in the already received portions of the file and use

those to fill in the errors or gaps [20].) In today’s network,

bandwidth is substantial, and the design decisions instead point

to a “when in doubt, send the data” approach.

We are currently pursuing an approach based on SSH and

assuming the presence of a long-term security association (e.g.,

via ssh-agent), so a new SSH connection can be invoked with-

out user participation. Whenever an SSH connection breaks

(e.g., because TCP has passed bad data to SSH), we start a

new one and restart the file transfer at an appropriate point in

the file. Files are also validated with a hash once transferred

and repaired if in error. The challenge of figuring out the size

of the unit of recovery (and, indeed, whether to determine it

dynamically) remains open.

D. File Manifests

One consequence of errors in file transfers is that scientists,

who want to be sure the data they copy is correct, avoid

replicated copies. Rather they make sure to copy their data

(sometimes more than once) from the site where the data

originated, the data publisher. Clearly, this behavior scales

poorly, and we would like to increase confidence in the ability

to use replicated copies for data transfer.

One possibility is to use a manifest. Before the actual

transfer begins, the server and the client exchange information

including chunk sizes, additional metadata, and a CRC of indi-

vidual chunks. The data publisher cryptographically signs this

manifest. By creating a manifest of file chunks and providing

individual CRCs, we are making an important improvement to

current file transfer protocols. By making the CRCs available

at the beginning of the transfer and signing the manifest, we

can detach the file transfer protocol from a particular source.

The same file located at two locations should have the same

CRCs for the individual file chunks. This enables downloading

files in parallel from multiple sources without compromising

the file’s integrity. This protocol assumes that the data or the

manifest may not change during transmission. If such changes

occur, the protocol must periodically check if the checksum

of a fetched chunk matches the checksum in the manifest.

IV. CONCLUSIONS

Recent studies have found a disturbingly high number

of errors in large data transfers. This study presents a few

hypotheses about why these errors might be happening. While

several studies have investigated disk and memory errors, the

last large-scale study on Internet error was performed 20 years

ago. This work describes how we are creating an infrastructure

to address this gap systematically and plan to identify and

measure errors, and perform better error checks. We propose

a robust file transfer protocol that not only works around the

errors but also provides novel properties such as a checksum

manifest and selective retransmission of content chunks that

benefits the users and reduce resource usage in the network.

ACKNOWLEDGMENTS

This work has been supported by National Science Foun-

dation Awards 2019163, 2126148, and 2019012.

REFERENCES

[1] S. Shannigrahi, C. Fan, and C. Papadopoulos, “Request aggregation,
caching, and forwarding strategies for improving large climate data
distribution with ndn: a case study,” in Proc. 4th ACM Conf. Information-

Centric Networking, 2017, pp. 54–65.
[2] Z. Liu, R. Kettimuthu, I. Foster, and N. S. V. Rao, “Cross-geography

scientific data transferring trends and behavior,” in Proc. 27th Intl.

Symp. High-Performance Parallel and Distributed Computing, ser.
HPDC ’18. New York, NY, USA: ACM, 2018, pp. 267–278. [Online].
Available: http://doi.acm.org/10.1145/3208040.3208053

[3] R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and
F. Cappello, “Transferring a petabyte in a day,” Future Generation

Computer Systems, vol. 88, pp. 191–198, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X18302280

[4] E. Arslan and A. Alhussen, “A low-overhead integrity verification for
big data transfers,” in 2018 IEEE Intl. Conf. Big Data (Big Data), 2018,
pp. 4227–4236.

[5] J. Stone, M. Greenwald, C. Partridge, and J. Hughes, “Performance of
checksums and crcs over real data,” IEEE/ACM Trans. on Networking,
vol. 6, no. 5, pp. 529–543, Oct 1998.

[6] J. Stone and C. Partridge, “When the crc and tcp checksum disagree,” in
Proc. Conf. on Applications, Technologies, Architectures, and Protocols

for Computer Communication, ser. SIGCOMM ’00. New York,
NY, USA: Association for Computing Machinery, 2000, p. 309–319.
[Online]. Available: https://doi.org/10.1145/347059.347561

[7] J. Postel, “Transmission control protocol,” Internet Re-
quests for Comments, RFC Editor, STD 7, September
1981, http://www.rfc-editor.org/rfc/rfc793.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc793.txt

[8] R. Braden, D. Borman, C. Partridge, and W. W. Plummer, “Computing
the internet checksum,” Internet Requests for Comments, RFC Editor,
RFC 1071, September 1988, http://www.rfc-editor.org/rfc/rfc1071.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc1071.txt

[9] A. Rijsinghani, “Computation of the internet checksum via incremental
update,” Internet Requests for Comments, RFC Editor, RFC 1624, May
1994.

[10] J. L. J. Hammond, J. Brown, and S. Liu, “Development of a trans-
mission error model and an error control model,” Georgia Institute of
Technology, Tech. Rep., 1975.

[11] B. Han, L. Ji, S. Lee, B. Bhattacharjee, and R. R. Miller, “Are all bits
equal? experimental study of ieee 802.11 communication bit errors,”
IEEE/ACM Trans. Netw., vol. 20, no. 6, p. 1695–1706, Dec. 2012.
[Online]. Available: https://doi.org/10.1109/TNET.2012.2225842

[12] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture
for large scale internet measurement,” IEEE Communications Magazine,
vol. 36, no. 8, pp. 48–54, 1998.

[13] S. Cheshire and M. Baker, “Consistent overhead byte stuffing,” in Proc.

ACM SIGCOMM ’97, ser. SIGCOMM ’97. New York, NY, USA:
Association for Computing Machinery, 1997, p. 209–220. [Online].
Available: https://doi.org/10.1145/263105.263168

[14] P. Koopman, “32-bit cyclic redundancy codes for internet applications,”
in Proc. Intl. Conf. Dependable Systems and Networks, 2002, pp. 459–
468.

[15] P. Koopman and T. Chakravarty, “Cyclic redundancy code (crc) poly-
nomial selection for embedded networks,” in Intl. Conf. Dependable

Systems and Networks, 2004, 2004, pp. 145–154.
[16] J. Ray and P. Koopman, “Efficient high hamming distance crcs for

embedded networks,” in Intl. Conf. Dependable Systems and Networks

(DSN’06), 2006, pp. 3–12.
[17] H. Finkel, “CRC64.h in include x2013; hpcrc64 — trac.alcf.anl.gov,”

https://trac.alcf.anl.gov/projects/hpcrc64/browser/include/CRC64.h?
rev=f9112258851e9d448ab1d138c87252ee5ddc6773, [Accessed 21-
Apr-2023].

[18] J. R. Engdahl and D. Chung, “Fast parallel crc implementation in
software,” in 2014 14th Intl. Conf. Control, Automation and Systems

(ICCAS 2014), 2014, pp. 546–550.
[19] J. Zweig and C. Partridge, “TCP alternate checksum options,” RFC 1145,

Feb. 1990. [Online]. Available: https://www.rfc-editor.org/info/rfc1145
[20] A. Tridgell and P. Mackerras, “The rsync algorithm,” The Australian

National University, Tech. Rep. TR-CS-96-05, 1996.


