Big Data, Transmission

Susmit Shannigrahi
Computer Science Department
Tennessee Tech
sshannigrahi @tntech.edu

Abstract—A cursory look at the Internet protocol stack shows
error checking capability almost at every layer, and yet, a slowly
growing set of results show that a surprising fraction of big
data transfers over TCP/IP are failing. As we have dug into this
problem, we have come to realize that nobody is paying much
attention to the causes of transmission errors in the Internet.
Rather, they have typically resorted to file-level retransmissions.
Given the exponential growth in data sizes, this approach is
not sustainable. Furthermore, while there has been considerable
progress in understanding error codes and how to choose or
create error codes that offer sturdy error protection, the Internet
has not made use of this new science. We propose a set of new
ideas that look at paths forward to reduce error rates and better
protect big data. We also propose a new file transfer protocol
that efficiently handles errors and minimizes retransmissions.

Index Terms—big data, error checking, file transfer protocol

I. INTRODUCTION

The advent of “big data” has led to an explosion in large
datasets. These datasets, either in their entirety or in part, are
regularly transferred over networks. These data transfers use
the Internet protocol suite, referred to as TCP/IP.

The error check mechanisms in the typical Internet stack,
from Ethernet or WiFi up through IP and TCP, were all
designed in an era where a 1 MB file transfer was considered
big. A small but growing number of studies have found modern
(1GB or larger) transfers failing at alarming rates. When they
encounter failures, current file transfer protocols discard what
has been transferred and retransmit the entire file. In the soon-
approaching Exabyte era, throwing away partially good data
and starting over will soon be infeasible. Scarier is that back-
of-the-envelope calculations suggest that we are fast reaching
the point where errors will slip through, and users will be
using bad data without knowing it.

At this moment, what we know is that there is a reliability
problem, but we neither fully understand its extent and nor
know what errors processes are responsible for the problem.
The existing tools used to detect the failures unfortunately
do not identify the source of the failures. Yet finding and
understanding the source of the failures is essential to make
big file transfers (which are an increasing share of the Internet
and data center traffic) more reliable.

This paper briefly summarizes the studies that point to
problems in large data transfer and their implications. We
then discuss few possible paths forward, including a new file
transfer protocol that minimizes file-level retransmissions by

Errors, and the Internet

Craig Partridge
Computer Science Department
Colorado State University
craig.partridge @colostate.edu

creating smaller segments and performing error detection and
selective retransmission of the corrupted segments.

II. PUuzzLING ERRORS

A handful of recent studies and some informal reports
from major data centers suggest there is a serious problem
transferring large (c. 1GB and larger) data files in the Internet.

A study analyzing server logs at Lawrence Livermore
National Laboratory (LLNL) [1] showed that the majority of
large file transfers failed. Of 18.5 million file transfer requests,
approximately 13 million requests failed to transfer a file. We
performed a similar internal study of the logs of the German
Climate Computing Center (DRKZ), with similar results.

Another study of four years of files transferred on the
Energy Science Network (ESnet) found that 1 in every 121 file
transfers (.8%) delivered a file whose file checksum did not
match that of the original file [2]. Other studies point to similar
problems at different scales [3] [4]. Our discussions with
researchers in large cloud providers point to similar anecdotal
evidence. Errors have been seen in data center networks where
a large number of file transfers fail on specific paths.

These numbers are disturbing. If we use a typical 32-
bit integrity check on each file, then a back-of-the-envelope
calculation suggests about 1 in every 520 billion file transfer
could result in an inaccurate file that slips past the integrity
check. While 520 billion may sound large, we looked at a
recent CDN log from a large cloud provider where users
requested 10 million files in a 2-hour period. These files were
requested from one HTTP server at one point of presence
(translating to approximately 44 Billion files per year per
server). Given this large number of files transferred every year,
we are already at the risk of transferring incorrect data in
critical scientific and measurement applications.

A. Possible Causes

The simplest explanation that explains all the reported
cases of frequent errors is that something in the network
path (a router, a firewall, a switch, a transmission link, etc.)
is generating errors that the TCP checksum fails to detect.
For instance, the Globus file transfers are done via FTP and
have no in-progress data checks above TCP. Sometimes, such
transfers are also done over UDP for performance, and UDP’s
checksum is optional. If the Globus transfer incorporates bad
data it is detected when the received file’s cryptographic hash
is found to be wrong. Conversely, the LLNL transfers are

TABLE I
ERROR CHECKS AT DIFFERENT LAYERS

Layer Error Checking Typical Error Cause
Transport 16-bit Internet checksum on the entire packet (UDP checksums | Hardware error in router/firewall data path; error in firewall
are optional) packet rewriting logic and/or failure to preserve end-to-end
checksum; errors in host network adapters or their drivers
P 16-bit Internet checksum on packet header Error in rewriting headers in firewalls
Link 32-bit IEEE CRC of entire frame (only in some Link layers) RF interference; poor RF receivers/filters

File Transfer

Protocol
olQcol | __

] File

File Transfer
Protocol

a7
200 File bon
4 1 .
1 Manifest 182

Sender

Receiver*

Payload

ile Chunk [File Chunk] [File Chunk] [File Chunk] [File Chunk] [File Chunk]

Fig. 1. Proposed File Transfer Protocol. (1) A new error-checking mechanism,
(2) Error-checking capability and robustness, and (3) Performance.

done over SCP/SSH and so there is a security layer that will
immediately detect errors TCP fails to detect and abort the
transfer, which is the pattern the LLNL transfers exhibit.
This explanation assumes that there is a single source of
errors. If we admit to multiple possibilities, then disk errors
become a serious risk (and our understanding is the Globus
community believes such changes may cause these errors).

B. Error Checking in the TCP Stack

For the rest of this paper we will assume the problem
lies in errors slipping past TCP’s checksum. This explanation
has merit since it explains all the previously mentioned error
studies. Furthermore, it has been known for over two decades
that the TCP checksum is a poor error check [5], [6].

Table I shows the different forms of error checking that
take place in TCP and the layers below it in the network
stack. The table also lists the most likely causes of errors.
A central message of Table I is that error checking in the
Internet depends heavily on two error checks developed in the
1970s, for 1970s networks. The Internet checksum was chosen
for its ease of computation on the 16-bit computers of the day
and has limited error detection capabilities. [5]-[9]. Joseph
Hammond developed IEEE CRC-32 based on studies of RF
devices in the 1970s [10]. It is an excellent error check but
is vulnerable to longer burst errors which have become more
likely as IEEE 802 packet sizes have increased, as shown by
[11] et al. and corroborated by an internal study.

II1. PATHS FORWARD

In this section, we outline possible paths forward. Figure 1
shows the high-level overview that integrates the four different
components needed to create a robust and performant file
transfer protocol. The directions indicated by the numbers
provide individual functions that form the foundation of a

next-generation file transfer protocol. Direction 1 proposes a
new message header that allows us to identify and measure
the errors that might go past regular error checks. Direction
2 provides better error-checking functions through the intro-
duction of new CRC algorithms. Thrusts 3, along with file
segmentation, provides a performant file transfer protocol.

A. Error Measuring Messages

To determine if the TCP checksum is missing errors and if
so, which errors are being missed, we need to know what kinds
of errors are happening in the Internet and whether TCP’s
checksum is protecting bits against them. No one has looked
at this problem in over 20 years [6], and the methods used
then (capturing TCP traces and looking for errors) are hard to
use at scale as it requires (oft-refused) permission to examine
actual traffic on various networks.

Rather, we take another well-known approach, send known
data between endpoints, and see what TCP errors we can
observe. We take advantage of the fact that measurements from
edge nodes scale as n?, so a modest number of measurement
points can reveal quite a bit about the Internet [12].

Specifically, we do an instrumented file transfer, using a
customized file transfer protocol that breaks files into messages
containing multiple error checks. The protocol opens a TCP
connection between two endpoints and sends a sequence
of large files. Each file is broken into messages which are
encoded using Consistent Overhead Byte Stuffing (COBS).
COBS is a highly efficient byte-stuffing algorithm that also
ensures swift recovery from transmission errors that overwrite
either the COBS encoding or the message delimiters [13].
Using COBS allows us to catch multiple errors in one test.

In our message format, data is wrapped by a header, a trailer,
and a parity section containing both horizontal and vertical
odd parity. The header and the trailer mirror each other and
contain the message length, a 64-bit CRC, a message identifier
and information on how to extract the parity information.

This additional information allows us to identify a range
of damaged messages quickly. Due to the nature of COBS
encoding, errors that damage or insert message delimiters
cause partial or concatenated messages. Partial messages can
be detected due to mismatching lengths and sometimes can be
reassembled. Concatenated messages can be detected due to
mismatched message identifiers and message lengths, and by
using the trailer of the first message in the concatenation and
the trailer in the last message of the concatenation, it may be
possible to extract messages.

In messages where the payload is affected, the CRC points
out that an error occurred during transmission. The parity bits
likely point out the location of the error (up to a certain number
of bit errors) in the message and the affected bits.

We will initially collect data by transferring large represen-
tative files between test machines to collect error statistics.
Once the software is tested and debugged, we will deploy the
software on various testbeds (e.g., NSF’s FABRIC testbed)
and inside different network providers’ infrastructure. We
will collect the errors from the traffic flowing through these
networks and store them at a central location. These logs will
allow us to determine the kinds of errors the networks are
allowing to get through.

B. Better Error Checks

We know more about error checks such as CRCs and
cryptographic hashes than we did when the Internet’s error
checks were designed. One possibility is to replace some of
the Internet’s error checks with more modern alternatives. In
this section, we discuss what has been learned and how it
might be leveraged.

A useful metric for an error check is how much strength
adding an additional bit to the check imparts to error checking.
In general, one expects an error check of length x+ 1 to catch
at least twice as many errors as an error check of length x.
Another way to think of the issue is that given a check function
¢() giving a result of x bits and a packet p and a version p
generated by corrupting p with some random error process,
we expect that ¢(p) = ¢(p) with a chance of less than (or at
worst equal to) 1 in 2%.

Multiple studies have shown that the Internet checksum fails
this metric, often badly. It fails to detect transpositions of data
and insertions (or deletions) of 16-bit zeros. In certain cases
of combining portions of multiple packets, the 16-bit TCP
checksum was shown to behave like a 10-bit sum [5].

The useful discovery of recent years is that CRCs are
better than we realized. For any useful packet size (up to
248MB in length), there exist 32-bit CRCs that are robust
to errors of up to 4 bits (so a Hamming distance of 4),
including errors that include the CRC (i.e., the CRC is changed
by the error) [14]-[16]. CRCs are also invulnerable to any
contiguous bit error that is shorter than the bits in the CRC.
The implication is, in many environments, a large fraction
of errors will be deterministically detected by a 32-bit CRC.
An internal study of WiFi errors has shown that about 40%
of errors would always be caught by CRC-32.For errors not
caught deterministically, CRCs are guaranteed to miss random
errors with probability 1 in 2.

Furthermore, the community has gotten better at computing
CRCs in software (see, for instance, Finkel’s parallel compu-
tation of CRC-64 and Engdahl’s table-free implementation of
CRC-16) so that the cost of computing a CRC in software is
close to that of a checksum, and far far less than the cost of
a cryptographic hash [17], [18].

Cryptographic hashes, which are designed to thwart at-
tempts by an adversary to alter a text, are mediocre error

checks. They have a consistent 1 in 2¥ chance of catching
any error. This makes them far inferior to CRCs, which can
be chosen to deterministically detect likely errors.

We observe that if the goal is to protect data from errors
(rather than an adversary’s attack), the preferred error check
is clearly a CRC, and the cost of computing a CRC is modest
enough that there is no reason to prefer a checksum such as
the Internet’s. A secondary observation is that if one revived
the now deprecated TCP option [19] to negotiate a checksum,
one could make TCP far more robust using a 32-bit or 64-bit
CRC at a little performance cost.

C. Robust File Transfer

In addition to trying to learn about the current sources of
errors in the Internet, it seems prudent to think about how to
create file transfer protocols that are more robust to errors. We
want a protocol that does not fail partway through a transfer
when a bit of bad data gets past TCP and recovers if the
delivered file fails validation.

Expressing this as a set of protocol requirements, we seek
a file transfer protocol that: (a) is robust to TCP failing to
detect errors (where by robust we mean continues along a path
to completing the transfer); (b) is robust to receiving bad file
data; (c) is robust to attacks by adversaries; and (d) delivers
files efficiently (where by efficiently we mean with a minimum
of retransmitted data and in a timely fashion).

The first three requirements are interconnected. If a protocol
is to be robust to TCP’s failure to detect errors, it must either
provide a mechanism to validate the received file or a layer
above TCP that catches errors in data in flight before data
is delivered to the file’s receiver (or both). One good way to
detect errors in flight above TCP is to add a security layer that
signs individual chunks of data and validates them. A security
layer also provides a measure of protection against adversaries.

The requirement to deliver the file efficiently makes the
protocol more complicated. The requirement to deliver the file,
in spite of errors being found, means that it has to be possible
to restart at least part of the file transfer.

There are two possible scenarios due to an error. The first
possibility is the TCP connection breaks mid-transfer as a
result of the error (or the security layer shuts the connection
down on error) and the file transfer must be restarted with a
new TCP connection. Another possibility is it is found that
the received file is incorrect and the file needs to be fixed.

In either scenario, to deliver the file efficiently, the file
transfer protocol must be able to deal with a partial file at
the receiver and only request those parts that are missing or
in error. Transmitting substantial but already-received chunks
of a gigabit file is clearly wasteful and will be even more
wasteful as petabyte and exabyte files become more common.

Generally, when network bandwidth is modest (low
megabits), the best approach to delivering partial files or fixing
files with errors is to exchange checksums over small parts
of the file and transmitting the minimum amount of data
necessary to repair or complete the file. (A slightly more
sophisticated version is to use the checksums to find identical

chunks in the already received portions of the file and use
those to fill in the errors or gaps [20].) In today’s network,
bandwidth is substantial, and the design decisions instead point
to a “when in doubt, send the data” approach.

We are currently pursuing an approach based on SSH and
assuming the presence of a long-term security association (e.g.,
via ssh-agent), so a new SSH connection can be invoked with-
out user participation. Whenever an SSH connection breaks
(e.g., because TCP has passed bad data to SSH), we start a
new one and restart the file transfer at an appropriate point in
the file. Files are also validated with a hash once transferred
and repaired if in error. The challenge of figuring out the size
of the unit of recovery (and, indeed, whether to determine it
dynamically) remains open.

D. File Manifests

One consequence of errors in file transfers is that scientists,
who want to be sure the data they copy is correct, avoid
replicated copies. Rather they make sure to copy their data
(sometimes more than once) from the site where the data
originated, the data publisher. Clearly, this behavior scales
poorly, and we would like to increase confidence in the ability
to use replicated copies for data transfer.

One possibility is to use a manifest. Before the actual
transfer begins, the server and the client exchange information
including chunk sizes, additional metadata, and a CRC of indi-
vidual chunks. The data publisher cryptographically signs this
manifest. By creating a manifest of file chunks and providing
individual CRCs, we are making an important improvement to
current file transfer protocols. By making the CRCs available
at the beginning of the transfer and signing the manifest, we
can detach the file transfer protocol from a particular source.
The same file located at two locations should have the same
CRC:s for the individual file chunks. This enables downloading
files in parallel from multiple sources without compromising
the file’s integrity. This protocol assumes that the data or the
manifest may not change during transmission. If such changes
occur, the protocol must periodically check if the checksum
of a fetched chunk matches the checksum in the manifest.

IV. CONCLUSIONS

Recent studies have found a disturbingly high number
of errors in large data transfers. This study presents a few
hypotheses about why these errors might be happening. While
several studies have investigated disk and memory errors, the
last large-scale study on Internet error was performed 20 years
ago. This work describes how we are creating an infrastructure
to address this gap systematically and plan to identify and
measure errors, and perform better error checks. We propose
a robust file transfer protocol that not only works around the
errors but also provides novel properties such as a checksum
manifest and selective retransmission of content chunks that
benefits the users and reduce resource usage in the network.

ACKNOWLEDGMENTS

This work has been supported by National Science Foun-
dation Awards 2019163, 2126148, and 2019012.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

for Computer Communication, ser.

REFERENCES

S. Shannigrahi, C. Fan, and C. Papadopoulos, “Request aggregation,
caching, and forwarding strategies for improving large climate data
distribution with ndn: a case study,” in Proc. 4th ACM Conf. Information-
Centric Networking, 2017, pp. 54-65.

Z. Liu, R. Kettimuthu, I. Foster, and N. S. V. Rao, “Cross-geography
scientific data transferring trends and behavior,” in Proc. 27th Intl.
Symp. High-Performance Parallel and Distributed Computing, ser.
HPDC ’18. New York, NY, USA: ACM, 2018, pp. 267-278. [Online].
Available: http://doi.acm.org/10.1145/3208040.3208053

R. Kettimuthu, Z. Liu, D. Wheeler, 1. Foster, K. Heitmann, and
F. Cappello, “Transferring a petabyte in a day,” Future Generation
Computer Systems, vol. 88, pp. 191-198, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X18302280
E. Arslan and A. Alhussen, “A low-overhead integrity verification for
big data transfers,” in 2018 IEEE Intl. Conf. Big Data (Big Data), 2018,
pp. 4227-4236.

J. Stone, M. Greenwald, C. Partridge, and J. Hughes, “Performance of
checksums and crcs over real data,” IEEE/ACM Trans. on Networking,
vol. 6, no. 5, pp. 529-543, Oct 1998.

J. Stone and C. Partridge, “When the crc and tcp checksum disagree,” in
Proc. Conf. on Applications, Technologies, Architectures, and Protocols
SIGCOMM ’00. New York,
NY, USA: Association for Computing Machinery, 2000, p. 309-319.
[Online]. Available: https://doi.org/10.1145/347059.347561

J. Postel, “Transmission control protocol,” Internet Re-
quests for Comments, RFC Editor, STD 7, September
1981, http://www.rfc-editor.org/rfc/rfc793.txt. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc793.txt

R. Braden, D. Borman, C. Partridge, and W. W. Plummer, “Computing
the internet checksum,” Internet Requests for Comments, RFC Editor,
RFC 1071, September 1988, http://www.rfc-editor.org/rfc/rfc1071.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc1071.txt

A. Rijsinghani, “Computation of the internet checksum via incremental
update,” Internet Requests for Comments, RFC Editor, RFC 1624, May
1994.

J. L. J. Hammond, J. Brown, and S. Liu, “Development of a trans-
mission error model and an error control model,” Georgia Institute of
Technology, Tech. Rep., 1975.

B. Han, L. Ji, S. Lee, B. Bhattacharjee, and R. R. Miller, “Are all bits
equal? experimental study of ieee 802.11 communication bit errors,”
IEEE/ACM Trans. Netw., vol. 20, no. 6, p. 1695-1706, Dec. 2012.
[Online]. Available: https://doi.org/10.1109/TNET.2012.2225842

V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture
for large scale internet measurement,” IEEE Communications Magazine,
vol. 36, no. 8, pp. 48-54, 1998.

S. Cheshire and M. Baker, “Consistent overhead byte stuffing,” in Proc.
ACM SIGCOMM 97, ser. SIGCOMM °97. New York, NY, USA:
Association for Computing Machinery, 1997, p. 209-220. [Online].
Available: https://doi.org/10.1145/263105.263168

P. Koopman, “32-bit cyclic redundancy codes for internet applications,”
in Proc. Intl. Conf. Dependable Systems and Networks, 2002, pp. 459—
468.

P. Koopman and T. Chakravarty, “Cyclic redundancy code (crc) poly-
nomial selection for embedded networks,” in Intl. Conf. Dependable
Systems and Networks, 2004, 2004, pp. 145-154.

J. Ray and P. Koopman, “Efficient high hamming distance crcs for
embedded networks,” in Intl. Conf. Dependable Systems and Networks
(DSN’06), 2006, pp. 3-12.

H. Finkel, “CRC64.h in include x2013; hpcrc64 — trac.alcf.anl.gov,”
https://trac.alcf.anl.gov/projects/hpcrc64/browser/include/CRC64.h?
rev=f9112258851¢9d448ab1d138c87252ee5ddc6773, [Accessed 21-
Apr-2023].

J. R. Engdahl and D. Chung, “Fast parallel crc implementation in
software,” in 2014 14th Intl. Conf. Control, Automation and Systems
(ICCAS 2014), 2014, pp. 546-550.

J. Zweig and C. Partridge, “TCP alternate checksum options,” RFC 1145,
Feb. 1990. [Online]. Available: https://www.rfc-editor.org/info/rfc1145
A. Tridgell and P. Mackerras, “The rsync algorithm,” The Australian
National University, Tech. Rep. TR-CS-96-05, 1996.

