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Abstract

Many modern classification algorithms are formulated through the regularized em-
pirical risk minimization (ERM) framework where the risk is defined based on a loss
function. We point out that although the loss function in decision theory is non-
negative by definition, non-negativity of the loss function in ERM is not necessary in
order to be classification-calibrate and to produce a Bayes consistent classifier. We in-
troduce the leaky hinge loss, the first negatively divergent margin-based loss function.
We prove that the leaky hinge loss is classification-calibrated. When the hinge loss is
replaced with the leaky hinge loss in the EMR approach for deriving the kernel support
vector machine (SVM), the corresponding optimization problem has a well-defined so-
lution named the kernel leaky SVM. Under mild regularity conditions, we prove that
the kernel leaky SVM is Bayes risk consistent. In our theoretical analysis, we overcome
multiple challenges caused by the negative divergence of the leaky hinge loss that does
not exist in the analysis of the usual kernel machines. For a numerical demonstration,
we provide a computationally efficient algorithm to solve the kernel leaky SVM and
compare it to the kernel SVM on simulated data and fifteen benchmark real datasets.

Keywords: Bayes risk consistency, Classification-calibrated, Loss function, Majorization min-
imization principle, Margin maximizing

1 Introduction

This paper concerns binary classification where the task is to predict an unobserved binary
output value y ∈ {−1, 1} based on an observed input vector x ∈ Rp. The classifier is a
mapping from the input space X to {−1, 1} via a classification function f̂ , and the predicted
y value is sgn[f̂(x)]. The decision boundary is the set {x : f̂(x) = 0}. Suppose that data
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are generated from some underlying distribution P(X,Y), and let p(x) = P(Y = 1|X = x).
Under the standard 0-1 loss, the optimal classification rule is sgn [p(x)− 1/2] (a.k.a. Bayes
rule). Throughout the paper, we assume that p(X) 6= 1

2
almost surely. The optimal decision

boundary is {x : p(x) = 1/2}. Given training data, {(xi, yi), i = 1, . . . , n}, one aims to
develop a classifier that mimics the Bayes rule as closely as possible. Extensive research has
been devoted to classification, and many classification algorithms have been developed and
widely used in practice, ranging from the classical methods such as discriminant analysis and
logistic regression to modern techniques such as support vector machines (SVM) (Vapnik,
2013), boostings (Freund et al., 1996), random forests (Breiman, 2001), neural networks,
and deep learning (Goodfellow et al., 2016).

Regularized empirical risk minimization (ERM) is a fundamental framework for designing
a new classification algorithm and analyzing its statistical properties. The empirical risk is
defined as 1

n

∑n
i=1 L(yif(xi)), then a classification algorithm is derived by trying to minimize

the empirical risk via a regularized method. Many classification algorithms such as Kernel
SVM and 1-norm SVM (Zhu et al., 2003) can be cast in this framework. Also, boostings
can be viewed as minimizing the empirical risk with an `1 penalty (Rosset et al., 2004).
In the literature, yf(x) is called the margin and L is referred to as a margin-based loss
function. Obviously, the terms “risk” and “loss function” are borrowed from the statistical
decision theory where a loss function is naturally non-negative. Note that the loss function
in ERM is used to derive the classifier, while the loss function in the decision theory is used
to measure the theoretical performance of a statistical method. In classification, the loss for
measuring performance is usually the 0-1 loss as previously stated, whereas the loss function
in ERM can be far more flexible. For example, the SVM uses the hinge loss, the logistic
regression uses the logit loss, and AdBoost uses the exponential loss (Hastie et al., 2009;
Friedman et al., 2000). Of course, all these loss functions are non-negative, which make
them qualified as loss functions in decision theory. A really interesting question, which has
not been asked before in the literature, is that can we use a function that has negative values
in ERM for classification? In the ERM framework, a loss function being bounded from below
is equivalent to being non-negative because we can vertically lift the loss function without
changing the regularized ERM problem (as a constant does not affect the minimization).
Thus, the real question is whether we could use a negatively-divergent function in
ERM for classification.

In this paper, we provide an affirmative answer and the new function called the leaky
hinge loss. The expression of the leaky hinge loss is given in (1) and the picture of this loss
function is displayed in Figure 1.

L(yf) =

{
− log yf, yf > 1,

1− yf, yf ≤ 1,
(1)

Given the training data, the empirical leaky hinge risk is 1
n

∑n
i=1 L(yif(xi)). If we use the

notion from decision theory, the leaky hinge loss should not be called a loss function as its
values diverge to negative infinity as the margin approaches positive infinity. Nevertheless, we
still use loss in the name to follow the convention. A positive margin means the classification
is correct. When the margin is larger than 1, the leaky hinge loss becomes negative, meaning
that it actually gives a reward. The larger the margin, the bigger the reward. Intuitively, this
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(a) Hinge loss
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(b) Leaky hinge loss

Figure 1: Plot of the hinge loss and the leaky hinge loss

sounds reasonable. Of course, we need to provide formal theoretical and numerical evidence
for justifying the use of the leaky hinge loss in ERM, which is the main focus of this paper.

There have been a lot of studies on the choice of a loss function in ERM for classi-
fication. Lin (2004) proposed Fisher consistency which requires any global minimizer of
E[L(Yf(X))] has the same sign as the Bayes rule almost surely. Bartlett et al. (2006) pro-
posed a more-refined classification-calibration condition, requiring that a global minimizer of
E[L(Yf(X))|X = x] has the same sign as the Bayes rule almost surely. The two conditions
usually coincide for non-negative loss functions, and the two are used as the same condi-
tion. It is often easy to verify these conditions for non-negative convex loss functions, but
non-negative non-convex loss functions can also satisfy these conditions. A famous example
is ψ-learning loss (Shen et al., 2003). There is no result on whether a negatively-divergent
L can be classification-calibrated or Fisher consistent. In order to answer this question, we
first need to check whether a global minimizer of E[L(Yf(X))] or E[L(Yf(X))|X = x] is
well-defined in the sense that the minimizer is finite-valued and the minimum objective is
finite-valued. This technical issue is non-trivial to address when L is negatively-divergent.
For the leaky hinge loss, our analysis reveals that the global minimizer of E[L(Yf(X))|X = x]
is always well-defined and has the same sign as the Bayes rule, but the global minimizer of
E[L(Yf(X))] may not be well-defined unless some further conditions are imposed.

The fundamental justification for a loss function in ERM for classification is the Bayes
consistency, that is, the expected misclassification rate of the resulting classifier converges
to that of the Bayes rule as the sample size increases. When the leaky hinge loss is used in
the EMR approach to derive a classifier, the resulting classifier is named the kernel leaky
SVM. We establish the Bayes consistency of the kernel leaky SVM, which in turns offers
the most important justification of the leaky hinge loss. Therefore, we can claim that the
leaky hinge loss is the first negatively divergent margin loss function for classification. Bayes
consistency has been established for some kernel machines (Zhang, 2004; Steinwart, 2005),
but their studies are limited on non-negative loss functions. Specifically, they analyzed the
expected misclassification rate of the derived classifier by some quantities associated with

3



the loss function, but those quantities cannot be applicable in the case of the leaky hinge
loss. We use some new techniques to prove the Bayes consistency of the kernel leaky SVM.

The geometry of SVMs is best described in the linear space where its margin maximization
interpretation is clearly shown. Rosset et al. (2003) showed that this geometric interpretation
is in fact shared by a class of non-negative loss function that vanishes to zero quickly enough,
such as the hinge loss, the exponential loss and the binomial deviance loss (or the logit loss).
Their result provides the unified margin maximization view of many popular classification
algorithms. However, their theory does not cover the leaky hinge loss because the leaky
hinge loss violates their conditions. Nevertheless, we show that the linear leak SVM also has
an interesting and new margin maximization view. This result suggests that the linear leaky
SVM and the linear SVM can be very different, although their kernel versions approach to
the same limit (Bayes rule).

For a numerical demonstration, we develop an efficient algorithm to solve the leaky
SVMs. This allows us to compare the leaky SVM to the standard SVM. We do the extensive
comparison of the kernel leaky SVM and the kernel SVM using simulated data and 15
benchmark datasets from Dua and Graff (2017). The linear leaky SVM outperforms the
linear SVM on 10 out 15 benchmark datasets, and the kernel leaky SVM and the kernel
SVM have more similar performances.

The remainder of the paper is organized as follows. In Section 2, we prove that the
leaky hinge loss function is classification-calibrated. In Section 3, we prove that the linear
leaky SVM is well-defined given a training data. When the data is linearly separable, we
show the margin-maximization picture of the linear leaky SVM and compare it with the
margin-maximization picture of the linear SVM. In Section 4 we consider the kernel leaky
SVM in a reproducing kernel Hilbert space (RKHS). We first prove that the kernel leaky
SVM is well-defined on a training data. We then derive an efficient algorithm to solve the
kernel leaky SVM. In Section 5, we establish the Bayes risk consistency of the kernel leaky
SVM. Section 6 contains the numerical results. Technical details and proofs are provided in
a supplementary file to this paper.

2 The Classification-calibration Property

Lin (2004) proposed Fisher consistency as a necessary condition on a loss function. It is
defined to be that any global minimizer f̌ (if it exists) of E[L(Yf(X))], generally referred
to as a population minimizer, has the same sign function as the Bayes rule almost surely.
Later, Bartlett et al. (2006) defined classification-calibration. A loss function L is called
classification-calibrated if any global minimizer f̄ (if it exists) of E[L(Yf(X))|X = x] has
the same sign as the Bayes rule almost surely. For example, the hinge loss is classification-
calibrated, which can be directly shown by Theorem 2 of Bartlett et al. (2006).

An unspoken assumption in those two definitions is the existence of a global minimizer.
When f̄ exists (which can be easily checked) and |E[L(Yf̄(X))]| < ∞, then a population
minimizer f̌ exists. We further see that loss function L is classification-calibrated if and
only if it is Fisher consistent. If statement follows from the fact that any f̄ is also a pop-
ulation minimizer and the definition of Fisher consistency. Only if statement comes from
the fact that E[L(Yf̄(X))|X] = E[L(Yf̌(X))|X] almost surely and that for any δX such
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that sgn(δX) 6= sgn(p(X) − 1/2), E[L(Yf̄(X))|X] < E[L(Y · δX)|X] almost surely by the
definition of classification-calibration.

In the case of non-negative loss function L, E[L(Yf̄(X))] is always finite. However,
the leaky hinge loss does not guarantee the finitness of E[L(Yf̄(X))] (see Theorem 4 for
further information), thereby not ensuring the existence of a global minimizer that Fisher
consistency implicitly assumes. Instead, we verify that the leaky hinge loss is classification-
calibrated. The leaky hinge loss is the first negatively divergent loss function satisfying the
classification-calibration property.

Theorem 1. (Classification-calibration) Let L be the leaky hinge loss. For any x such that
p(x) ∈ (0, 1), a global minimizer of E[L(Yf(X))|X = x] uniquely exists and is,

f̄(x) =

{
− 1−p(x)

p(x)
, if p(x) < 1

2
,

+ p(x)
1−p(x), if p(x) > 1

2
.

Also, sgn[f̄(x)] = f ∗(x), where f ∗(x) = sgn
[
p(x)− 1

2

]
is the Bayes rule.

Remark A. In general, a global minimizer of E[L(Yf(X))|X = x] is allowed to take values
±∞ because what matters is only the sign of the minimizer (Lin, 2004). If we allow the
minimum objective to take values ±∞, Theorem 1 can be extended to include p(x) equals
to 0 and 1. It is because if p(x) = 0, then E[L(Yα)|X = x] = L(−α) → −∞ as α → −∞.
If p(x) = 1, then E[L(Yf(X))|X = x] = L(α)→ −∞ as α→∞.

3 The Linear Leaky SVM

Theorem 1 offers a justification for the leaky hinge loss with an infinite amount data. In
applications, the data size is always finite. Thus, we need to further study the properties of
classifiers using the leaky hinge loss. We first examine the linear leaky SVM to understand
the characteristics of the leaky hinge loss.

3.1 Existence of the global solution

When L is a non-negative continuous loss function, the existence of a global minimizer to the
regularized ERM problem is obvious. It is because the sublevel set of the objective function
L of the regularized ERM problem, {βββ : L(βββ) ≤ c}, is compact for any c ∈ R, and the global
minimizer of the continuous objective function on a compact set must exist by the extreme
value theorem.

In contrast, it is not trivial to show the existence of a global minimizer of the linear leaky
SVM because the loss term in the regularized ERM can diverge to negative infinity even if
the leaky hinge loss is convex and training data have finite samples. To show the existence,
we find a specific compact set D of βββ, so that the objective function of the linear leaky SVM
can have a global minimizer on D. Then, we show that the objective value at the global
minimizer on D is always smaller than any objective values on Dc.

5



Theorem 2. (Existence of global solution) Let (xi, yi) ∈ Rd × {−1,+1} for i = 1, . . . , n be
training data. Suppose there exist i, j with yi = +1 and yj = −1. Then, there exists a global
solution to,

minL(β0,βββ) = min
β0,βββ

[
1

n

n∑
i=1

L
(
yi(β0 + xTi βββ)

)
+ λβββTβββ

]
, (2)

where L is the leaky hinge loss and λ > 0 is a tuning parameter.

Remark B. (Uniqueness) The minimizer β̂ββ is uniquely determined because the leaky hinge
loss is convex and the `2 regularizer is strictly convex. However, β̂0 is not. Here is an
illustrative example. Let the data be

y1 = −1, y2 = −1, y3 = 1, y4 = 1,

x1 = 1, x2 = −1, x3 = 1, x4 = −1.

Then both (0, 0) and (1, 0) are global minimizers. Non-uniqueness of the intercept term can
also occur in the linear SVM.

3.2 A geometric picture

The standard SVM has a well-known geometric interpretation when the training data are
linearly separable, i.e., when there exists w̄ such that mini yix

T
i w̄ > 0. In such a separable

case, it finds a decision boundary that maximizes the minimal margin. Rosset et al. (2003)
discussed a family of loss functions that shares the same margin picture as that of SVM.
Specifically, they investigated for which loss functions, the solution of the regularized ERM,

β̂ββλ = arg min
βββ

n∑
i=1

L(yix
T
i βββ) + λ‖βββ‖qq, (3)

where q ≥ 1, converges to the minimal margin maximizer as the regularizer disappears.
They found that if a loss function is non-negative and vanishes quickly enough to 0, then as

λ→ 0, every convergent point of β̂ββλ
‖β̂ββλ‖q

is

arg max
‖w‖q=1

min yiw
Txi. (4)

The family of loss functions covers the hinge loss, the exponential loss, and the binomial
deviance loss. Their result provides a unified view of popular classification algorithms in that
they converge to the same solution provided the same regularizer. For example, Boosting,
1-norm SVM (Zhu et al., 2003), and `1 penalized logistic regression give the same classifier
at the limit.

Interestingly, the leaky hinge loss violates their sufficient condition, and we find that the
leaky hinge loss optimizes a different margin at the limit. Still, the convergent point finds
the separating hyperplane that can perfectly separate the data.

Theorem 3. Assume training data, {(xi, yi)}ni=1, are separable, i.e., there exists w̄ such that

m̄ = mini yix
T
i w̄ > 0 with ‖w̄‖q = 1, q ≥ 1. Let β̂ββλ be the solutions to (3) with the leaky
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hinge loss and the `q regularizer. Then, as λ→ 0, any convergence point of β̂ββλ
‖β̂ββλ‖q

maximizes

the product of the positive part of margins,

n∏
i=1

yix
T
i w1{yixTi w ≥ 0},

where 1(·) is the indicator function. If the maximizer is unique, we can conclude that

β̂ββλ

‖β̂ββλ‖q
→ arg max

‖w‖q=1

n∏
i=1

yix
T
i w1{yixTi w ≥ 0}. (5)

We visualize the two different separating hyperplanes defined in (4) and (5) by using
data generated from the following model. Suppose that X ∈ R2 in each class is from the
mixture of three Gaussian distributions that X ∼ 1

3

∑n
i=1N(µ−i , 0.6 · I) if y = −1 and

X ∼ 1
3

∑3
i=1N(µ+

i , 0.6 · I) if y = +1, where I is an identity matrix. We randomly generate
µ−i , i = 1, 2, 3, from N

(
(1.8,−1.8)T , I

)
and µ+

i , i = 1, 2, 3, from N
(
(−1.8, 1.8)T , I

)
. In each

plot in Figure 2, we see the separable data of 20 drawn from the distribution. Since the
generating distribution is known for each class, the optimal decision boundary (solid line in
Figure 2) can be calculated exactly. Figure 2 (a)-(d) show the decision boundary from the
new margin maximizer defined in (5) (long-dashed line), along with that from the standard
margin maximizer defined in (4) (dashed line). The two boundaries are similar to each other
in (a) and (b) while they are noticeably different in (c) and (d).

4 The Kernel Leaky SVM

4.1 Formulation

The linear leaky SVM could be restrictive in practice when the Bayes rule is highly nonlinear.
In order to obtain a nonlinear classifier boundary with the leaky hinge loss, we consider a
nonparametric approach in a reproducing kernel Hilbert space (RKHS) by following the
statistical derivation of the kernel SVM (Hastie et al., 2009).

Let HK be the RKHS generated by a positive definite kernel K. We define kernel leaky
SVM as the classifier sgn{α̂0 + ĥ(x)} where (α̂0, ĥ) is the solution to

min
α0∈R
h∈HK

(
1

n

n∑
i=1

L (yi(α0 + h(xi))) + λ ‖h‖2HK

)
. (6)

While (6) is defined over an infinite dimensional space, it can be shown by the representer
theorem (Wahba, 1990) that the solution is finite dimensional and has the form,

ĥ(x) =
n∑
i=1

α̂iK(x,xi), and thus ||ĥ||2HK =
n∑
i=1

n∑
j=1

K(xi,xj)α̂iα̂j. (7)

We note that the representer theorem holds irrespective of whether a loss function is non-
negative or negatively divergent.

7



−2 0 2 4

−4
−2

0
2

4

(a)

  

 Leaky SVM margin 

 SVM margin 

−2 0 2 4

−4
−2

0
2

4

(b)

   Leaky SVM margin  SVM margin 

−2 0 2 4

−4
−2

0
2

4

(c)

  

 Leaky SVM margin 

 S
VM

 m
ar

gi
n 

−2 0 2 4

−4
−2

0
2

4

(d)

   Leaky SVM margin 

 SVM margin 

Bayes Leaky SVM margin SVM margin

Figure 2: Decision boundaries of the optimal Bayes rule along with separating hyperplanes defined in (4)
and (5) which are labelled as SVM margin and leaky SVM margin, respectively.

In light of (7), (6) reduces to,

min
α0,ααα
LK(α0,ααα) = min

α0,ααα

[
1

n

n∑
i=1

L
(
yi(α0 + KT

i ααα)
)

+ λαααTKααα

]
, (8)

where K is the kernel matrix that [K]ij = K(xi,xj) and Ki is the ith column of K.

Remark C (Existence of global solution and uniqueness) Let (xi, yi) ∈ Rd × {−1,+1} for
i = 1, . . . , n be training data. Suppose there exist i, j with yi = +1 and yj = −1. Then
a global solution to the kernel leaky SVM (8) exists. The proof is omitted since it can be
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easily deduced from Proposition 2. ĥ is uniquely determined because the formulation (6) is
strictly convex in h, but α̂0 may not. Again, this also occurs in the case of the kernel SVM.

4.2 Algorithm

In this subsection we derive an algorithm based on the Majorization-minimization (MM)
principle (Hunter and Lange, 2004) to efficiently compute solutions of the kernel leaky SVM
for a sequence of tuning parameter λ. To simplify the notation, let θθθ = (α0,ααα

T )T . Let
θ̃θθ = (α̃0, α̃αα

T )T be the current value. First, we constructQK(θθθ|θ̃θθ) which majorizes the objective
function LK(θθθ) by a quadratic function (Böhning and Lindsay, 1988).

Lemma 1. The leaky hinge loss L has a quadratic upper bound,

L(u) ≤ L(ũ) + L′(ũ)(u− ũ) +
1

2
(u− ũ)2, u, ũ ∈ R,

and the equality holds only when u = ũ.

Let z̃ be an n× 1 vector with ith element yiV
′{yi(α̃0 −Kiα̃αα)}/n. By Lemma 1, we have

LK(θθθ) =
1

n

n∑
i=1

L
(
yi(α0 + KT

i ααα)
)

+ λαααTKααα

≤ 1

n

n∑
i=1

L (yi(α̃0 + Kiα̃αα)) + λα̃ααTKα̃αα

+ γ̃TK

(
α0 − α̃0

ααα− α̃αα

)
+

1

2n

(
α0 − α̃0

ααα− α̃αα

)T
PK,λ

(
α0 − α̃0

ααα− α̃αα

)
= QK(θθθ|θ̃θθ),

where

γ̃K =

(
1T z̃

Kz̃ + 2λKα̃αα

)
and PK,λ =

(
n 1TK

K1 KK + 2nλK

)
.

The equality holds only if θθθ = θ̃θθ. Second, we update θθθ by the minimizer of,(
α0

ααα

)
= arg min

α0,ααα
QK(θθθ|θθθm) =

(
α̃0

α̃αα

)
− nP−1K,λγ̃K. (9)

In practice, λ is unknown and we would rely on cross validation; from a sequence of λ
values such that λ1, . . . , λM , we choose the optimal value which minimizes the cross validation
error. The kernel leaky SVM would be computed on a sequence of λ values and, of course,
P−1K,λ has to be repeatedly evaluated for each λ. Unfortunately, inverting a matrix M times
would be expensive, as the inversion of a n× n matrix costs O(n3) operations.

We further introduce a computational technique only need to invert a matrix once. Com-
pute the eigen decomposition K = UΛUT and inverted PK,λ blockwise as follows.

P−1K,λ =

(
n 1TUΛUT

UΛUT1 UΠK,λU
T

)−1
= gK

(
1
−vK

)(
1 −vTK

)
+

(
0 0T

0 UΠ−1K,λU
T

)
,

(10)
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where ΠK,λ = Λ2 + 2nλΛ, gK = 1/(n− 1TUΛΠ−1K,λΛUT1), and vK = UΛΠ−1K,λU
T1.

Replacing P−1K,λ with (10), we see that the right hand side of (9) becomes(
α0

ααα

)
=

(
α̃0

α̃αα

)
− n

{
gK
(
1T z̃− vTKK(z̃ + 2λα̃αα)

)( 1
−vK

)
+

(
0

UΠ−1K,λΛUT (z̃ + 2λα̃αα)

)}
and the operation cost is reduced to O(n2).

Remark D. We defer the algorithm of linear leaky SVM to Section B of Supplementary
Material in the supplementary file as we take a similar procedure. The code for the linear
and kernel leaky SVM is available from the authors upon request.

5 Bayes Risk Consistency

In this section we establish the Bayes risk consistency of the kernel leaky SVM which, in our
views, provides the most important justification of this new loss function.

Let f̂n be a classification function of the kernel leaky SVM with sample size n,

f̂n = argmin
f∈HK

[
1

n

n∑
i=1

L (yif(xi)) + λn||f ||2HK

]
, (11)

and f ∗ is the Bayes rule. Let the expected misclassification rate of a classification function
f̂ be denoted as R(f̂) = P[Y 6= sgn{f̂(X)}]. We say the kernel leaky SVM is Bayes risk
consistent if R(f̂n)→ R(f ∗) in probability.

When a loss function L is non-negative and classification-calibrated, Bartlett et al. (2006)
showed that for any measureable function f̂ , R(f̂) − R(f ∗) can be bounded in terms of
E[L(Yf̂(X))] − E[L(Yf̄(X))], where f̄(x) is a global minimizer of E[L(Yf(X))|X = x].
It implies that if we obtain f̂n such that E[L(Yf̂n(X))] − E[L(Yf̄(X))] is small, then the
misclassification rate of f̂n is close to that of the Bayes rule. It extends Zhang (2004)’s result
under weaker conditions. Zhang (2004) gave a comparable result for a convex loss function
satisfying certain conditions, and used the leave-one-out analysis to obtain estimation error
resulted from using a finite sample size on kernel methods. It allows to establish the Bayes
risk consistency of a class of kernel machines equipped with the hinge loss, logistic regression
loss, and exponential loss.

This general approach is not applicable to the leaky hinge loss because it implicitly
assumes E[L(Yf̄(X))] is finite, which is ensured when the loss function is non-negative. The
analysis for the leaky hinge loss is more involved. We introduce g(δ) = P(p(X) ·(1−p(X)) ≤
δ
2
(1− δ

2
)). Intuitively, for a small δ, g(δ) can be understood as the probability of the random

variable X having negligible amount of information about the optimal decision boundary. It
turns out that E[L(Yf̄(X))] is finite when g(δ) is bounded above by δ up to a constant as
δ → 0.

Assumption 1. There exists δ′ such that g is continuous on (0, δ′).

Theorem 4. Consider the underlying distribution satisfying Assumption 1. Let L be the
leaky hinge loss and f̄(x) is defined in Theorem 1. E[L

(
Yf̄(X)

)
] is finite if and only if∫ δ′

0
g(δ)
δ
dδ <∞.
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Remark E. It is also necessary to prove E[L(Yf̂n(X))] is finite before further theoretical
discussion. Define B = supx,yK(x,y) < ∞ for any x,y. By the representer theorem and
the first-order optimality condition, we see that

f̂n(x) = − 1

2nλn

n∑
i=1

L′(yif̂n(xi))yiK(xi,x).

It indicates |f̂n| ≤ 1
2λn

B, and thus E[L(Yf̂n(X))] is finite.

This result motivates us to devise a different upper bound by taking account of the
amount of available information in x. We adopt the same bound when the information in x
is relatively large, and attempt a different bound otherwise.

Lemma 2. Let f ∗ be the Bayes rule and f̂n be the equation (11). Then for any 0 < δ ≤ 1,

R(f̂n)−R(f ∗) ≤ P[sgn{f ∗(X)} 6= sgn{f̂n(X)} and p(X)(1− p(X)) ≤ 2/δ · (1− δ/2)]

+ E{X:p(X)(1−p(X))>2/δ·(1−δ/2)}

[
L(Yf̂n(X))− L(Yf̄(X))

]
,

where L is the leaky hinge loss function.

If we can find a sequence of δn such that the bound in the above lemma converges to
0, the Bayes risk consistency can be shown. We consider the kernel K that is universal
(Steinwart, 2001) so that the corresponding RKHS can be rich enough. Let C(X ) be the
space of continuous bounded functions on compact domain X . A continuous kernel K on a
X is defined as universal if HK is dense in C(X ), i.e., for every function g ∈ C(X ) and every
ε > 0, there exists a function f ∈ HK with ‖f − g‖∞ ≤ ε. For example, the gaussian kernel
is universal.

Theorem 5. (Bayes risk consistency) Assume that Assumption 1 holds and that −log(δ)g(δ)→
0 as δ → 0. Suppose that the input space X is compact and HK is the RKHS induced by a
universal kernel K on X . If 0 < infx,y∈X K(x,y) < supx,y∈X K(x,y) <∞, and as n→∞,

λn → 0 and λ−1n+1 − λ−1n → 0, then R(f̂n)−R(f ∗)→ 0 in probability.

6 Numeric Examples

This section compares the leaky SVM and the standard SVM in terms of classification
accuracy. Such a comparison will directly show the impact of using the leaky hinge loss.
Also, the SVM is one of the best classification algorithms in an extensive numerical study
conducted by Fernández-Delgado et al. (2014). Therefore, as long as the leaky SVM is better
than or similar to the kernel SVM in terms of classification accuracy, we can claim that the
leaky SVM is a worthy new classifier.

6.1 Simulation

We first compare the leaky SVM to the SVM on simulated data. A mixture gaussian
model is used for the simulation. Let µµµ+ = (1, . . . , 1,−1, . . . ,−1)T ∈ Rp and µµµ− =
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(−1, . . . ,−1, 1, . . . , 1)T ∈ Rp where the both have the half of components as 1s and the
other half as −1s. We draw µ+

k and µ−k , k = 1, . . . , K from

µ+
k ∼ N

(
µµµ+, Ip×p

)
if k ≤ 2

3
K, µ+

k ∼ N
(
µµµ−, Ip×p

)
if k >

2

3
K,

and µ−k ∼ N
(
µµµ−, Ip×p

)
if k ≤ 2

3
K, µ−k ∼ N

(
µµµ+, Ip×p

)
if k >

2

3
K.

Given µ+
k and µ−k , let (X,Y) be a random pair such that P(Y = −1) = P(Y = +1) = 0.5

and X ∈ Rp with

X|(Y = −1) ∼
K∑
k=1

1

K
N(µ−k , σ

2Ip×p), and X|(Y = +1) ∼
K∑
k=1

1

K
N(µ+

k , σ
2Ip×p),

so that the model can have a highly nonlinear optimal decision boundary.
We consider K = 3, p = 2, σ = 1/

√
10 with the Bayes error 11.13% in Example 1;

K = 10, p = 2, σ = 1/
√

50 with the Bayes error 11.51% in Example 2; and K = 3,
p = 10, σ = 1/

√
10 with the Bayes error 13.48% in Example 3. We vary sample size

n = 50, 90, 200, 900. We consider both linear classifiers and Gaussian kernel classifiers and
we select the best λ among 100 λ-values by five-fold cross-validation. We compute the SVM
classifier by the R package kernlab. The simulations are repeated for 100 times under the
above setting. We summarize the average of misclassification rates with the corresponding
standard error in Table 1.

We have several observations from Table 1. First, the SVM and the leaky SVM are
comparable to each other in general. The Gaussian leaky SVM slightly outperforms the
Gaussian SVM in Example 1, and the linear leaky SVM consistently outperforms the linear
SVM in Example 2 and Example 3. Second, the misclassification rates of both Gaussian
leaky SVM and Guassin SVM get closer to the Bayes error rate as the sample size increases,
although the convergence is relatively slower for more complicated models.

6.2 Real Data Example

We examine the performance of the leaky SVM compared to the SVM on 15 datasets from
University of California at Irvines Machine Learning Repository (Dua and Graff, 2017).
These datasets have various combinations of sample size and dimension. We randomly
sample 2/3 observations as the training set to fit and tune each model with five-fold cross-
validation for selecting an optimal λ from 100 λ-values. The remaining 1/3 observations
is set as the test set for calculating the misclassification rate. We repeat this process 100
times and report the average misclassifcation rates with the corresponding standard errors
in Table 2.

When comparing the linear leaky SVM and the linear SVM, we observe that the lin-
ear leaky SVM outperforms the linear SVM on 10 datasets. When comparing the kernel
classifers, the Gaussian leaky SVM outperforms the kernel SVM on 6 datasets.
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Table 1: Misclassification rates, averaged by 100 runs, under mixture gaussian distributed

data. The standard error is given in parentheses.

n Kernel
Misclassification rate (%)

Leaky SVM SVM

Example 1: K = 3, p = 2, Bayes error: 11.13%

50
Linear 34.63 (.05) 34.35 (.05)

Gaussian 17.11 (.04) 17.29 (.04)

90
Linear 33.16 (.05) 32.80 (.05)

Gaussian 14.40 (.04) 15.13 (.04)

200
Linear 31.62 (.05) 31.43 (.05)

Gaussian 12.80 (.03) 13.21 (.03)

900
Linear 30.65 (.05) 30.72 (.05)

Gaussian 11.47 (.03) 11.50 (.03)

Example 2: K = 10, p = 2, Bayes error: 11.51%

50
Linear 40.37 (.05) 40.78 (.05)

Gaussian 23.84 (.04) 24.13 (.04)

90
Linear 39.72 (.05) 40.46 (.05)

Gaussian 18.79 (.04) 19.62 (.04)

200
Linear 38.00 (.05) 38.58 (.05)

Gaussian 15.45 (.04) 16.38 (.04)

900
Linear 37.12 (.05) 38.11 (.05)

Gaussian 12.66 (.03) 13.00 (.03)

Example 3: K = 3, p = 30, Bayes error: 13.48%

50
Linear 32.87 (.05) 32.95 (.05)

Gaussian 31.36 (.05) 30.97 (.05)

90
Linear 28.80 (.05) 29.17 (.05)

Gaussian 26.39 (.04) 26.70 (.04)

200
Linear 25.26 (.04) 25.68 (.04)

Gaussian 22.61 (.04) 22.79 (.04)

900
Linear 22.42 (.04) 22.50 (.04)

Gaussian 18.07 (.04) 18.02 (.04)

7 Summary

In this paper we have introduced the first negatively divergent loss function named the leaky
hinge loss for margin-based classification. Despite some technical difficulties brought by
the negatively divergence of the loss function, we have proved the classification-calibration
property of the leaky hinge loss and established the Bayes risk consistency of the leaky kernel
SVM. We have further provided numeric evidence to show that the linear and kernel leaky
SVM is at least as competitive as the usual linear and kernel SVM. All of these provide a
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Table 2: Misclassification rates, averaged by 100 runs, on 15 datasets from University of

California at Irvines. The standard error is given in parentheses.

Dataset n p Kernel
Misclassification rate (%)

Leaky SVM SVM

Arrhythmia 68 233
Linear 21.39 (.84) 21.39 (.85)

Gaussian 20.13 (.82) 21.78 (.85)

Australian 690 14
Linear 13.59 (.23) 13.62 (.23)

Gaussian 13.89 (.23) 13.61 (.23)

Banknote 1372 4
Linear 1.07 (.05) 1.08 (.05)

Gaussian 0.23 (.02) 0.01 (.00)

Biodeg 1055 41
Linear 13.56 (.18) 13.23 (.18)

Gaussian 12.22 (.17) 12.28 (.17)

Bupa 345 6
Linear 31.59 (.77) 31.79 (.77)

Gaussian 31.16 (.77) 31.34 (.77)

Chess 3196 36
Linear 2.82 (.05) 3.25 (.05)

Gaussian 1.67 (.04) 0.93 (.03)

cle:Heart 297 13
Linear 16.15 (.37) 15.85 (.37)

Gaussian 16.47 (.37) 16.31 (.37)

Hepatitis 80 19
Linear 14.44 (.67) 16.19 (.70)

Gaussian 13.59 (.65) 13.89 (.66)

Hungarian 261 10
Linear 17.69 (.41) 18.52 (.41)

Gaussian 18.69 (.42) 17.90 (.41)

LSVT 126 310
Linear 14.31 (.53) 16.69 (.57)

Gaussian 15.10 (.55) 16.07 (.56)

Musk 475 166
Linear 17.08 (.30) 16.85 (.30)

Gaussian 10.27 (.24) 8.29 (.22)

Parkinsons 195 22
Linear 15.25 (.40) 14.14 (.43)

Gaussian 10.54 (.38) 8.97 (.35)

Sonar 208 60
Linear 23.39 (.51) 25.10 (.52)

Gaussian 17.91 (.46) 15.65 (.43)

Spectf 80 22
Linear 30.07 (.87) 31.19 (.88)

Gaussian 26.74 (.84) 28.04 (.85)

Vertebral 310 6
Linear 14.88 (.35) 15.18 (.35)

Gaussian 16.81 (.37) 15.83 (.36)

full justification for using such a loss function for margin-based classification. A by-product
of our theory offers a complementary result to Rosset et al. (2003).

The leaky hinge loss is not the only negatively divergent loss function for margin-based
classification, because we have found a second loss function with similar properties. We opt
to focus on the leaky hinge loss because it is directly linked to the hinge loss and it is the first
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one that we found. We conjecture that there should be infinite many negatively-divergent
loss functions.

The main purpose of this work is to carefully examine the roles of the loss function in
classification. Although the leaky SVM is as competitive as the SVM, this is only used to
justify the validity of our approach. We hope this paper will stimulate more interests in the
study of loss functions in machine learning.
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