
1

Using growth transform dynamical systems for
spatio-temporal data sonification

Oindrila Chatterjee, Student Member, IEEE, and Shantanu Chakrabartty, Senior Member, IEEE
Washington University in St. Louis, Missouri 63130, USA.

I. ABSTRACT

Sonification, or encoding information in meaningful audio signatures, has several advantages in augmenting or
replacing traditional visualization methods for human-in-the-loop decision-making. Standard sonification methods
reported in the literature involve either (i) using only a subset of the variables, or (ii) first solving a learning
task on the data and then mapping the output to an audio waveform, which is utilized by the end-user to make
a decision. This paper presents a novel framework for sonifying high-dimensional data using a complex growth
transform dynamical system model where both the learning (or, more generally, optimization) and the sonification
processes are integrated together. Our algorithm takes as input the data and optimization parameters underlying the
learning or prediction task and combines it with the psychoacoustic parameters defined by the user. As a result,
the proposed framework outputs binaural audio signatures that not only encode some statistical properties of the
high-dimensional data but also reveal the underlying complexity of the optimization/learning process. Along with
extensive experiments using synthetic datasets, we demonstrate the framework on sonifying Electro-encephalogram
(EEG) data with the potential for detecting epileptic seizures in pediatric patients.

II. INTRODUCTION

With the multitude of high-dimensional data available today, the search for better techniques for perceptualizing
data before applying it to a learning/predictive task has emerged as an important research area. Though visualization
remains the modality of choice for most applications, sonification (representation of data using human-recognizable
audio signatures [1]) is gaining momentum as a complementary or alternative modality.

Some of the advantages of data sonification, that make it an ideal candidate for augmenting or replacing
visualization for analyzing the dataset’s properties, are as follows [1]–[3]:

1) Temporal resolution for auditory perception is better than that for visual perception. This makes it suitable for
perceptualizing time-varying data with complex patterns that visual displays might otherwise miss.

2) Audio is orientation-agnostic and has a wider spatial range since the user need not be oriented towards a
particular direction. In contrast, for visualization, objects need to be within the field of vision of the user.

3) Humans typically respond faster to auditory feedback when compared to visual feedback, making sonification
attractive for human-in-the-loop control applications.

4) In scenarios where the visual scene is crowded due to multiple displays or when attention is lacking, auditory
signals can be used as a means of drawing the user’s attention to a particular segment of the visual field.

5) Auditory perception provides a natural alternative to shrinking display sizes, especially for monitoring and
alerting applications.

6) Auditory perception and auditory memory remain resilient to many neurodegenerative diseases, as a result
sonification is an attractive choice for rehabilitation technologies.

The most common sonification scheme used in literature involves mapping only a subset of the most important
variables in the data directly within the audible range [4], [5]. A second strategy involves using a machine learning
algorithm to perform a classification task and then sonifying the output of the classifier [6]. While the first approach
does not utilize the entire information available at hand, the second approach lacks a human-in-the-loop component
that might be crucial for tasks involving monitoring and feedback. In this paper, we propose a novel sonification
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technique that incorporates both the learning task at hand, as well as psychoacoustic parameters defined by the
end-user in the form of constraints placed on the task. The algorithm finally produces an audio signature that
can be utilized by the end-user for identifying both spatial and temporal patterns in the dataset. The scope of the
paper is illustrated in Fig 1. At the core of the approach is a variant of the complex growth transform dynamical
system, proposed in our previous work [7], [8] based on Baum-Eagon growth transforms [9]. Effectively, the high-
dimensional space encompassed by the learning task is projected into a network of interacting limit cycle oscillators
that form a set of complex basis functions encoding the low-dimensional space of the audio signal. The main model
along with its properties is presented in Section IV, while Section IV-A shows the effects of the learning task on
the sonified signal. Section IV-B presents the effects of the psychoacoustic parameters and sonification strategies
that can be adopted for the sonification module. Section V presents the application of the sonification framework
on synthetic datasets to highlight the role of different parameters and sonification strategies in the process. Section
VI, finally, shows how our model can be applied to the CHB-MIT scalp EEG dataset [10], [11] for the real-time
detection of epileptic seizures.

Data Psychoacoustics

Sonification

Cost function, gradients, 
constraints etc.

Sampling frequency, bandwidth, 
maximum loudness etc.

Sonified Signal

Figure 1: Proposed approach for data sonification. The proposed sonification module takes as input (i) a
generic optimization/learning problem defined by a cost function, gradients, and constraints on one hand, and (ii)
psychoacoustic parameters like sampling frequency etc. on the other. It then outputs a single or dual-channel audio
waveform that encodes the underlying optimization problem.

In summary, the key contributions of the paper can be highlighted as follows:
1) The proposed method inherently maps high-dimensional data into a lower-dimensional single-channel or dual-

channel audio signal. This is particularly suitable when dealing with low throughput systems having limited
capacity/ bandwidth.

2) The method utilizes the whole spectrum of information available for a task and enables the end-user to arrive
at a decision instead of relying on a machine learning model.

3) The algorithm automatically combines the learning and sonification stages into a single module. This is unlike
the sonification-based decision-making algorithms existing in literature, that typically involve learning the
decision parameters and then mapping the same to different sound parameters in subsequent stages.

4) The method is versatile and can be tailored to accommodate various learning models, problem dimensionality,
and dataset sizes. Additionally, the complex growth transform dynamical system provides a wide range of
tunable parameters which can be customized for different applications.

III. BACKGROUND AND RELATED WORK

1) Visualization of High-Dimensional Data: Elementary visualization schemes use different visual attributes like
color, shape, size, spatial location, etc., for representing information. However, almost all the standard visualization
techniques typically use these attributes after mapping the data to a lower-dimensional (usually two or three-
dimensional) space. Some of the most commonly used mapping techniques include linear methods like PCA, LDA
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and their variants [12] that only preserve the global structure of the data. In contrast, nonlinear methods like Locally
Linear Embedding, [13], Isomap [14], Laplacian EigenMap [15], tSNE [16], PHATE [17] etc, have been designed
to preserve both global and local information.

However, these techniques are more suitable for time-invariant or static data, and analysis of time-varying, high-
dimensional data using these methods would involve frame-wise visualization in a lower-dimensional space. Several
visualization methods based on variants of the techniques discussed earlier have been proposed, e.g., m-tSNE [18].
However, they lack interpretability and suffer from a similar limitation of being restricted to only three dimensions
for representing the data. Moreover, though other visual attributes like color, size, shape, etc., can be used in
conjunction with the three spatial dimensions, these may not be sufficient for complex datasets with very high
dimensionality. This can thus potentially lead to information overload of the visual system, thereby pushing the
users to the limits of comprehension. Additionally, complex, time-varying patterns in the data are sometimes difficult
to capture using only the visual faculties. Hence, employing sonification might help users interpret the data more
effectively or draw their attention to the most important aspects of the data that can then be monitored/analyzed
by visual inspection [1].

2) Data Sonification and its Applications: Sonification, similar to its visual counterpart, provides several attributes
that can be used for representing information, like pitch, loudness, timbre, rhythm, duration, harmonic content, etc.
Broadly, two different sonification methods exist in the literature depending on how the data is mapped into an audio
signal: (i) parameter mapping sonification and (ii) model-based sonification [1]. Of these, the parameter mapping
method, where variables can be mapped into different attributes of the sound signal to create a sonified signature,
is the most commonly used. Parameter mapping based sonification has been used in a wide range of applications,
ranging from sonifying astronomical data like gravitational waves [19] and photons emitted by the Higgs bosons
[20], to synthesizing novel protein structures [21], [22] and detecting anomalies in medical data (e.g., CT scans of
Alzheimer’s patients [23], EEG [24] and ECG [4] signals, skin cancer detection [25], epileptic seizure detection [5]),
detection of anomalous events [26] etc. Sonification based techniques have also been used for intrusion detection
in networks [27] and network traffic flow [28], analysis of stock market data [29], and in therapeutic treatment of
freezing of gait in Parkinson’s patients [30]. More recently, sonification has been applied to the analysis of RNA
sequences in different strains of the Covid19 virus [31]. Unlike the visualization schemes, sonification offers a
much wider parameter space for the variables to be mapped into. For example, humans can perceptualize sound
signals anywhere from 20 to 20kHz, and frequency differences as low as 3 Hz are easily discernible by the human
auditory system [1]. In contrast, the model-based sonification technique involves using a virtual model whose sonic
responses are altered according to the data provided. This might involve first passing the data through a machine
learning or optimization module which learns the manifold the data resides in, and then mapping the output to
different properties of the sound signal. While the parameter mapping based method is restricted in terms of the
dimensionality of the data it can handle, the model-based approach uses the entire data available, but does not rely
on the end user for the decision-making [1].

IV. SONIFICATION FRAMEWORK USING COMPLEX GROWTH TRANSFORMS

In this section, we introduce a novel framework for sonifying high-dimensional data using a variant of the complex
domain dynamical system model proposed in our previous work [8]. Our method utilizes the entire information
available at hand to perform a combination of feature extraction and dimensionality reduction. Finally, it allows
the human user to arrive at a decision based on the output sound signature. The sonification algorithm has been
summarized in Table 2, while the proof has been outlined in VIII-B. The inputs to the sonification process are: (i)
the learning parameters and data under consideration; and (ii) the psychoacoustic parameters defined by the user.
We then develop a time-evolution operator U that depends on both the learning task and the psychoacoustics by
incorporating the latter as additional constraints on the learning/optimization process. U is chosen to be a nonlinear
unitary transformation that ensures that the total energy of the sonified signal remains conserved over time. This
effect mimics an automatic gain control mechanism observed in bioacoustics [32].

Our proposed technique is thus a blend of both the parameter mapping-based and model-based sonification
strategies. This is because the entire range of the data is mapped to different parameters of the output sound signal
based on a dynamical system model. However, the end-user takes the decision, as illustrated in Fig 1. Within the
framework, each variable or data point is mapped to a set of complex growth transform limit cycle oscillators
globally coupled together by the conservation constraint on the signal energy. The oscillators can be thought of
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as complex basis functions defining the lower-dimensional space of the audio output to which we want to project
our high-dimensional data, and are dictated by the psychoacoustic parameters. This is illustrated in Fig 2 for a
group of K oscillators represented by complex oscillator variables or waveforms ψ1(t), . . . , ψK(t) having different
frequencies and amplitudes. The variables involved are assigned both baseline and relative frequencies as outlined
in Appendix VIII-B. As a result of the time evolution of the complex dynamical system, both the amplitudes and
frequencies of the oscillators get modulated during the optimization process. For example, if all the variables get
mapped to the same constant value of baseline and relative frequencies, each oscillator frequency drifts from this
constant value during the transient phase, following which it again returns to the original trajectory. The frequency
deviation during the transient phase should ideally encode the complexity of the optimization problem. The output
sonified signal is thus a complex single or dual-channel waveform obtained by a superposition of all the oscillator

waveforms, ie., ψsum(t) =
K∑
k=1

ψk(t), as. illustrated in Fig 3.
Visualization
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Figure 2: Illustration of the sonification process. K oscillator waveforms ψ1, . . . , ψK , representing the set of
complex basis functions defined by the user, based on psychoacoustics. Both amplitude and frequency of the
basis set oscillators get modulated over time based on the learning task. The sonified output is created by the

superimposition of all the oscillator signals, i.e., ψsum(t) =
K∑
k=1

ψk(t).

A. Effect of the learning problem on sonified output

In this section, we will show how the learning problem affects the sonified signal. Any statistical learning
task can be expressed in terms of an objective function H that we are trying to minimize over a constraint
space. We will therefore investigate the role of the objective function on the sound signature. Considering default
temporal constraints on the total signal energy, the complex growth transform-based sonification technique (please
see Table 2) provides a natural framework for optimizing the cost function H subject to constraints defined by the
psychoacoustics. Without loss of generality, in this section, we will focus only on the effect of H and keep the
psychoacoustic parameters constant for all the experiments. In particular, we will consider here that (a) the total
energy of the sonified signal remains conserved over time, and (b) all the oscillators or basis waveforms in the
network have identical baseline frequencies for better visualization of the network dynamics. The sonified output
signal for all cases, as stated earlier, is obtained by the superposition of the wave functions generated by all the

oscillators, i.e., Ψsum,n =
K∑
k=1

Ψk,n.
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Figure 3: Illustration of the superimposition of oscillators. Each multidimensional variable/data vector is mapped
into an individual growth transform limit cycle oscillator. Local and global couplings lead to a constant phase
difference between each pair of oscillators in a steady-state. This results in a sudden shift of the frequency of
the superimposed waveform ψsum(t) from the baseline frequency during the transient state, following which the
frequency is restored to its baseline value in the steady-state.

Algorithm 2: Sonification using complex growth transform dynamical system (Proof in Appendix VIII-B)

• Learning task: Consider a statistical learning task defined by a cost function and gradients.
• Psychoacoustics: Consider a set of complex basis functions Ψ = [ψ1, . . . , ψK ] ∈ CK defined by the user
using psychoacoustic parameters like sampling frequency Fs, bandwidth (f1, f2), frequency mapping strategy
etc.
• Sonification module: The growth transform-based sonification method produces an output signal of the
following form in steady-state:

ψsum,n =

K∑
k=1

ψk,n =

K∑
k=1

ψk,n−1 exp

(
j(ωn + ξk,n)

1

Fs

)
, (1)

where ωn and ξk,n are the instantaneous baseline and relative frequencies of the kth oscillator variable ψk,n ∈ C
at the nth time step respectively.
• Update rule: The corresponding instantaneous time evolution equation for the oscillators is given by the
following equation:

Ψn ← Un(Ψn−1)�Ψn−1, (2)

where the mathematical form of Un is given in Appendix VIII-B.
• Conservation of signal power: The operator Un : CK → CK represents an instantaneous nonlinear unitary
transformation that ensures that the total signal energy remains conserved over time and thus imposes a
temporal constraint brought about by the psychoacoustics as well, i.e.,

K∑
k=1

|ψk,n|2 = γ ∀n, γ > 0. (3)

Example 1: Consider the following one-dimensional quadratic optimization problem:

minimize
p∈R

H′1(p) = 8p2 − 2p

s.t. |p| ≤ γ (4)
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We can map the above to the sonification framework in Table 2 by taking p = |ψ1|2−|ψ2|2, where ψ1, ψ2 ∈ C are
complex waveforms. (Please see Appendix VIII-B for a detailed outline of the mapping procedure.) The equivalent
optimization problem in the complex domain thus becomes:

minimize
Ψ∈C2

H1(Ψ) = 8(|ψ1|2 − |ψ2|2)2 − 2(|ψ1|2 − |ψ2|2)

s.t. |ψ1|2 + |ψ2|2 = γ, (5)

where Ψ = [ψ1, ψ2]. For this simple problem, the expression for the unitary operator U using the procedure outlined
in Table 2 (please see Appendix VIII-B for a detailed derivation) is given by:

Un =

(
d1,n
d2,n

)
,

dk,n =
[

cos
(ωn
Fs

)
+ j sin

(ωn
Fs

)
σk,n−1

]
exp

(
j
ξk,n
Fs

)
,

σk,n−1 =

√√√√√√√
(
− ∂H

∂ψk,n−1
+ λψ∗k,n−1

)
ψ∗k,n−1

K=2∑
l=1

ψl,n−1

(
− ∂H
∂ψl,n−1

+ λψ∗l,n−1

) , k = 1, 2. (6)

Fig 4 shows the polar coordinate evolution plots of the waveforms ψ1 and ψ2 respectively, for two different choices
of the parameter γ: (a) γ = 1 and (b) γ = 0.01. It can be seen that the oscillators corresponding to ψ1 and
ψ2 converge to steady limit cycle oscillations for larger values of γ. However, for very small γ values, only the
oscillator with the maximum amplitude shows sustained oscillations, while the other converges to the fixed point
of zero and stops oscillating. The coupled oscillator network can thus be thought of as some form of a frequency
tuner for sufficiently small γ.

𝛾 = 0.01𝛾 = 1(a) (b)

Figure 4: Effect of γ. Dynamics of growth transform-based complex dynamical system consisting of two oscillators
for two different cases corresponding to problem H1: (a) both oscillators asymptotically reach their respective stable
limit cycles in steady-state (γ = 1) and (b) one reaches a stable limit cycle, while the other goes to a stationary
point (γ = 0.01).

Example 2: Consider a second quadratic optimization problem:

minimize
p∈RM

H′2(p) =
1

2
apTQp− cTp

s.t. |pi| ≤ γ ∀i = 1, . . . ,M, γ ∈ R+, (7)
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and c ∈ RM ,Q ∈ RM×M . a ∈ R+ is a parameter that controls the curvature of the optimization surface, and
hence controls the rate of convergence to the optimal solution. Taking pi = |ψi1|2− |ψi2|2, where ψi1, ψi2 ∈ C, we
can again follow the mapping procedure in Appendix VIII-C. The equivalent optimization problem in the complex
domain is given by:

minimize
Ψ1,Ψ2∈CM

H2(Ψ1,Ψ2) =
1

2
a(|Ψ1|2 − |Ψ2|2)TQ(|Ψ1|2 − |Ψ2|2) (8)

−cT(|Ψ1|2 − |Ψ2|2)
s.t. |ψi1|2 + |ψi2|2 = γ ∀i = 1, . . . ,M, γ ∈ R+, (9)

where Ψ1 = {ψ11, . . . , ψi1, . . . , ψM1} and Ψ2 = {ψ12, . . . , ψi2, . . . , ψM2}. Again, defining the unitary operator U
according to Appendix VIII-B, we have:

Un =


d11,n d12,n

...
...

di1,n di2,n
...

...
dM1,n dM2,n

 , Un : CM×2 7→ CM×2

dik,n =
[

cos
(ωi,n
Fs

)
+ j sin

(ωi,n
Fs

)
σik,n−1

]
exp

(
j
ξik,n
Fs

)
,

σik,n−1 =

√√√√√√√
(
− ∂H

∂ψik,n−1
+ λψ∗ik,n−1

)
ψ∗ik,n−1

K=2∑
l=1

ψil,n−1

(
− ∂H
∂ψil,n−1

+ λψ∗il,n−1

) , i = 1, . . . ,M ; k = 1, 2. (10)

The final sonified output is then given by ψsum,n =
M∑
i=1

[ψi1,n + ψi2,n].

Time evolution and phase portrait of the sonified signal: Fig 5 shows the time evolutions and phase portrait
for a one-dimensional problem (M = 1), with a = 1,Q = 1, c = 0.8 and γ = 2. The sampling and natural/ baseline
frequencies were considered to be Fs = 22kHz and ωn = 600Hz respectively, while the relative frequency was
considered to be ξik,n = ξk = 0 for all the oscillators. In the sonification framework, t = n∆t, where t seconds is
the time duration corresponding to the n−th time step, and each time step ∆t = (t+∆t)−∆t = (n+1)∆t−n∆t =
(1/Fs)s. The simulation duration was 0.1s, with the optimization onset being at 0.03s for same initial amplitudes
of ψ1 and ψ2, and zero initial phase difference between the waveforms. Fig 5(a) shows the time evolutions for the
waveforms ψ11 = ψ1, ψ12 = ψ2 and ψsum, along with their zoomed-in views during the initial (I), transient (T)
and steady-state (S) stages respectively. Fig 5(b) shows the phase portrait between the real parts of ψ1 and ψ2. It
can be seen that the two waveforms evolve over time from an initial state (I) of same amplitude and zero phase
difference, through a transient phase (T) of varying amplitudes and phase difference, to a final steady state where
ψ1 and ψ2 have constant values of amplitudes, and a constant phase difference between them. This indicates in a
non-zero phase shift of the final trajectory of ψsum(t) from the initial trajectory.

Effect of H and γ on the sonified signal: Next, we investigate the performance of the model for different values
of curvature of the optimization surface as shown in Fig 6, as well as different levels of total energy available to
the system at any instant of time. Fig 7 demonstrates the model behavior for a two-dimensional variant of Example
2 (i.e., M = 2). As before, we consider all the four oscillators in this case, namely, ψ11, ψ12, ψ21, ψ22 to have
the same value of natural frequency ω = 600 Hz and relative frequency ξik = ξk = 0. Simulations were carried
out with Q = I2 and c = 0.812. Figs 7(a)-(c) show the spectrograms for the waveform Ψsum(t), with a = 0.5, 1
and 2 respectively, and γ = 1. In all cases, the spectrogram was computed using a 1024-point Short Time Fourier
Transform (STFT) with a sliding Kaiser window of size 1024 and steepness parameter 5, with an overlap size
of 1023. Figs 7(d)-(f) show the zoomed-in versions of the instantaneous frequency shift computed using Hilbert
transform. Figs 7(g)-(l) show similar results for the same set of values for a and a higher value of γ = 2. The
simulation duration is 1.0s, and the optimization process starts 0.1s after the start of the simulation. From the figures,
we can conclude the following: (i) the duration of the transient phase as well as the magnitude of frequency shift
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Figure 5: Time evolution and phase portraits. Time evolution and phase portrait for ψ1, ψ2 and Ψsum corresponding
to a 1D variant of the optimization problem H2 :(a) Time evolution of the waveforms, with zoomed-in versions of
the initial(I), transient(T) and steady-state(S) regions respectively; (b) Phase portrait of ψ1 vs. ψ2. The oscillators
go from an initial state(I) of the same amplitude and no phase difference, through a transient state(T) of varying
amplitudes and varying phase difference, to a final steady-state(S) where they have constant amplitudes and a
constant phase difference as well.

during the same decreases with an increase in the value of a, (i.e., a steeper curve implies a faster optimization
process and hence smaller values of frequency deviation); (ii) higher value of the total energy γ leads to shorter
transient phases with smaller frequency drifts. Thus, the complexity of the optimization problem is encoded in the
final phase shift of the output signal from its initial phase.

a = 1

a = 2

a = 0.5

Figure 6: Quadratic optimization surface. Optimization surface for the 2D variant of the problem H2 for different
values of the parameter a.

Effect of cost function-induced frequency perturbations on the sonified signal: Next, we examine the effect of
variations in the relative frequencies on the system’s performance. Fig 8 shows the spectrogram and instantaneous
frequency plots for different choices of time evolution of the relative frequency ξk(t) ∀k, for the optimization
problem in Example 2 and same parameter settings as used in the simulations in Fig 7. The baseline frequency
was chosen to be ωn = 100 Hz for all the oscillators. Additionally, the total simulation duration and the onset of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7: Effect of H and γ. Variation of Ψsum(t) with different values of curvature (a) and total energy available
(γ) for a 2D variant of the optimization problem H2: (a)-(c) show the spectrograms; (d)-(f) show the zoomed-in
versions of the instantaneous frequency shift computed using Hilbert transform, for a = 0.5, 1 and 2 respectively,
and γ = 1; (g)-(l) show similar plots for γ = 2.

optimization were 1s and 0.2s, respectively, in all of the following experiments.
Case 1 (Constant relative frequency): For the first set of simulations, the relative frequencies are chosen to be
ξk = ξ = 500 Hz for all the oscillators, and no amplitude modulations or frequency modulations were added to
the relative frequency trajectories. The plot of Re(exp(jξkt)), which is a unit amplitude sinusoid with a constant
frequency for all the oscillators in this case, is shown in Fig 8(a). Figs 8(b) and (c) show the corresponding
spectrogram and instantaneous frequency shift (computed using Hilbert transform) of the superimposed waveform
ψsum(t).
Case 2 (Relative frequency modulation): Figs 8(d)-(f) show similar results for the case when each relative frequency
trajectory ξk is modulated by the corresponding value of σk, where σk → 1 in steady state, i.e., ξk,n = ξσk,n. This
type of frequency modulation thus incorporates information about the optimization process in the output signal,
and leads to faster convergence and larger frequency deviation compared to the output in Case 1.
Case 3 (Amplitude decay and constant relative frequency): In this case, a varying amplitude term constant for each
oscillator was added to the relative frequency term, and no frequency modulation was added. The multiplicative
term in the update equation is thus replaced by exp(jξk,n∆t) ← exp((−ρ + jξ)∆t), where ρ = 1 was chosen
for the experiment. Figs 8(g)-(i) show the relative frequency modulations, spectrogram, and frequency deviation
respectively for this case.
Case 4 (Amplitude decay and frequency modulation): In the last set of experiments, both the amplitude and
frequency of the relative frequency trajectories were modulated for all the oscillators, i.e., exp(jξk,n∆t) ←
exp((−ρ+ jξσk,n−1)∆t). Figs 8(j)-(l) show the relative frequency modulations, spectrogram, and frequency devia-
tion respectively for this case. In both Cases 3 and 4, the relative frequencies were applied only during the transient
phase of the simulation, and set to zero both during the initial stage as well as after convergence to a steady-state.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Effect of frequency perturbations induced by H. Variation of Ψtotal(t) for a 2D variant of the
optimization problem H2, for different choices of the relative frequency ξk(t): (i) Case 1:(a) ξk is constant ∀k, t,
(b) spectrogram of the output waveform, (c) instantaneous frequency shift using Hilbert transform ; (ii) Case 2: (d)
value of ξk(t) depends on the convergence rate of each variable ψk(t), (e) spectrogram of the output waveform,
(f)instantaneous frequency shift using Hilbert transform; (iii) Case 3: (g) ξk(t) exists only during the optimization
stage and is an exponentially decaying function which is the same for all ψk, (h) spectrogram of the output
waveform, (i)instantaneous frequency shift ; (iv) Case 4: (g) ξk(t) exists only during the optimization stage and is
an exponentially decaying function which depends on the convergence rate of each variable ψk, (h) spectrogram
of the output waveform, (i)instantaneous frequency shift.

It can be seen that the frequency shift during the transient phase in Case 4 is significantly higher than all the other
stages.

Based on the above experiments, we can infer the following:
• The framework can encode information about the optimization problem’s complexity and the total energy

available to the network.
• Different encoding strategies can be employed by exploiting the relative frequencies of the oscillators.
• Frequency selectors/tuners can also be implemented by assigning sufficiently lower levels of energy to the

oscillator network, such that only the oscillator with the maximum energy content is sustained.

B. Effect of Psychoacoustics on Sonified Output

On the psychoacoustics side, we can incorporate both temporal and spatial attributes, as well as different choices
of the sampling frequency, frequency mapping schemes, bandwidth, etc. Table 1 presents a summary of the various
psychoacoustic parameters at our disposal. A temporal constraint is imposed on the sonified output by default
because of the inherent power normalization provided by the growth transform framework. The temporal constraint
thus imparts an automatic gain control feature [32] on the sonified signal. Since the output signal is inherently
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complex, spatial constraints can be imposed on the model using the left and right channels of the audio for the
real and imaginary parts respectively, or vice versa. Finally, different sonification strategies can be adopted by
considering different mapping schemes for both the baseline frequencies ωi’s, and the relative frequencies ξk’s. In a
sense, the sonification process can be thought of as projecting high-dimensional data into a low-dimensional basis
space created by predetermined frequency trajectories. We will present here three different sonification strategies:
(a) using frequencies equally spaced on the Bark-scale, (b) creating chords based on a musical scale of choice, and
(c) extracting dominant frequency trajectories from a chosen musical piece and mapping the basis set of frequencies
to these trajectories. For generating human recognizable auditory signatures, all the baseline and relative frequencies
should lie within the range of human perception, i.e., 20 Hz-20 kHz. Furthermore, the largest frequency assigned
to a variable should be less than the Nyquist frequency to avoid aliasing.

Table 1: Psychoacoustic Parameters

Constraint Parameters

Temporal Power normalization

Spatial Binaural hearing

Frequency Sampling frequency, frequency mapping, bandwidth

Some of the desirable characteristics of a candidate sonification strategy are as follows:
1) Different data distributions can be encoded by different sound signatures, depending on the underlying opti-

mization task.
2) The complexity of the dataset or the underlying optimization problem affects the output sound signature.
3) For time-varying data, drift in the data distribution over time would lead to a drift in the sonified signal as

well.
For example, if we consider clustering as the underlying optimization problem, where the number of allowable

clusters (K) is fixed apriori, then we would ideally want the sonified output to give an indication of (a) the
instantaneous cluster densities, (b) the orientation of the clusters and (c) the time it takes for the optimization
problem to converge to the optimal cluster assignments.

1) Bark scale-based sonification: This method involves mapping the relative/baseline frequencies to equally
spaced frequencies on the Bark scale. Any number of frequency trajectories can be selected if masking is acceptable
in the end application. However, if we want to eliminate masking effects from the output sonified signal, the Bark
scale frequencies should be chosen in a way such that the critical bands around these frequencies do not overlap
with each other. Since the Bark scale has 24 critical bands, this implies that the number of frequencies in the
basis set is limited to a maximum of 24 if we want to avoid masking. Additionally, the sonification module should
be designed so that each frequency trajectory remains within its critical band on the Bark scale, even during the
transient phase. This method’s advantage is that changes in each frequency trajectory (i.e., each sonified variable)
can be discerned unambiguously since there is no mixing of trajectories throughout the duration of sonification.

2) Musical chord-based sonification: This approach is similar to the Bark scale-based approach, with the relative
(or baseline) frequencies being mapped to a predetermined musical scale, e.g., the equally-tempered Western scale.
Depending on the user requirements, we may create a chord by choosing notes in a single octave as the basis
set. We can also select notes over multiple octaves, associating a different timbre to each, giving the impression
of multiple different instruments being played. For example, we can map the frequencies to every other note in a
diatonic scale such that they form a triad (e.g., the notes C, E, and G form the C major triad in the equally-tempered
scale around A4 = 440 Hz). Similarly, four or more random notes from the same octave create a generic chord. The
method also allows for the creation of arpeggios (or a broken chord being played multiple times in succession) by
suitably defining periodic repetitions of the set of chords. Overlapping of the frequency trajectories corresponding to
different sonification variables may or may not occur, depending on (a) the pairwise distances between the frequency
trajectories and (b) the maximum extent of frequency perturbation caused by the sonification module. Additionally,
since humans are more adept at recognizing time-varying audio signatures than static tones, a small, slowly varying
sinusoidal variation may be added on top of the original frequency trajectories. The amplitudes and frequencies of
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these sinusoidal variations may be either (a) kept constant, or made to vary based on (b) the convergence properties
of the optimization problem, or on (c) the instantaneous statistical properties of the sonification variables.

3) Sonification using an existing musical piece: This method of sonification involves extracting a certain number
of dominant frequency trajectories (depending on the desired size K of the basis set) from an existing musical
piece. Additionally, the following steps need to be taken for extracting the dominant frequency trajectories from
the chosen musical piece:

1) Typically, a musical piece may be much longer in duration than the simulation duration and has a much higher
sampling rate (44 kHz). Thus we would need to extract a segment of the entire composition and compress its
time scale to ensure a proper mapping.

2) Next, we analyze the spectrogram of the time-scaled musical sample and extract K dominant frequency
components in each time window of the spectrogram, based on the power content of each in that window.

3) Finally, we carry out upsampling and interpolation to form continuous frequency trajectories that represent K
most dominant components of the musical composition.

The sonification variables are then mapped to these frequency trajectories. The trajectories undergo perturbations
in the transient phase during the sonification process, depending on the dataset complexity and the optimization
problem being solved. The baseline frequency perturbations may remain unmodified or can be made a function of the
convergence properties only. They can also be made to depend on certain statistical properties of the dataset or the
optimization variables. Finally, for better interpretability, the sonification module’s output can be treated as a “noise”
signal and superimposed on the original musical composition. The degree of deviation of this superimposed signal
from the original composition thus encodes the dataset’s complexity and the optimization process. Fig 9 shows an
overview of the musical composition-based sonification technique for a sample optimization problem, considering
a basis set of size 3.

(a) (b) (c)

(d) (e) (f)

Trajectory 
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Figure 9: Musical composition based sonification technique. (a) Illustration of the sonification process in this
technique; (b) Spectrogram of an original musical piece; (d) Raw frequency trajectories extracted from the music;
(d) Spectrogram of the sonified output; (e) Spectrogram of the distorted music, obtained by superimposing the
sonified output signal on the original music signal; and (f) Time evolution of the original musical composition, the
sonified output, and the distorted music signal.

V. EXPERIMENTS ON SYNTHETIC DATASETS

As a case study, we will consider a data clustering problem. The goal is to sonify the data by mapping each
cluster to a particular tone or frequency trajectory, with the amplitude of each trajectory being proportional to the
cluster density. Since the focus of the paper is on advocating a new sonification framework and not improving the
efficiency of the particular clustering algorithm chosen, for the sake of simplicity, we will consider a similarity-
based probabilistic clustering approach proposed in [33]. This involves solving a non-negative matrix factorization
problem that minimizes the distance between a similarity matrix computed pairwise between the data points, and
the actual likelihoods of the different data points to be clustered together in space. Consider a D−dimensional
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dataset X ∈ RM×D and a similarity matrix W ∈ RM×M+ computed using a pairwise distance metric between the
data points. Then the following optimization problem assigns to the i−th data point a K−dimensional vector pi
consists of probability values of the data point of belonging to each of K possible clusters:

minimize
P∈RM×K

+ ,β∈R+

H(P, β) = ||W − βPTP||22

s.t.
K∑
k=1

pik = 1 ∀i = 1, . . . ,M (11)

Thus, pik ∈ R+ denotes the probability of the ith data point of belonging to the kth cluster, and β denotes
a scaling factor such that βpTi pj represents the true likelihood of the ith and j−th data points to be clustered
together. In this approach, each wij is assumed to be normally distributed about its corresponding true likelihood
βpTi pj with a constant variance. Here, the similarity matrix W is chosen to be the RBF kernel computed pairwise
between the data points by mapping them to a high-dimensional space. We can use the procedure outlined in Table
2 by applying the mapping pik = |ψik|2, ψik ∈ C. Sonification of the clustering problem can then be achieved in
the following manner:
• We assign the same baseline frequency to all the subgroups (individual data points in this case), i.e., ωi = ω ∀i.
• Each cluster is assigned to a particular relative frequency trajectory according to the sonification strategy

chosen, i.e., ξik = ξk ∀i. Depending on the sonification strategy, the unperturbed version of the relative
frequencies ξk(t)’s may be chosen as follows:
(a) Bark scale based: Each of the K clusters is mapped to a distinct frequency on the Bark scale (with or
without masking effects, depending on the frequency spacing). A slow sinusoidal variation may be added about
each original frequency trajectory depending on the instantaneous cluster density, as well as the convergence
characteristics of the optimization problem. The relative frequencies are thus modulated over time governed
by the following equation:

ξk(t)← ξk(t)[1 + ak sin(2πbk∆fk(t)t)]sk, (12)

where ∆fk(t) = K
ck(t)− ck(0)

ck(0)
, sk =

1

N

M∑
i=1

σik.

ak, bk ∈ R+ are constants, ck(0) = M/K is the initial cluster density (assuming the data points to be uniformly

distributed among the clusters), and ck(t) =
M∑
i=1
|ψik|2 is the instantaneous cluster density of the k−th cluster.

(b) Musical chord-based: Each of the K clusters is mapped to a distinct frequency on a chosen musical scale.
In this case, too, a slow sinusoidal variation may be added about each original frequency trajectory depending
on the instantaneous cluster density and the convergence characteristics of the optimization problem. The
evolution equations for the ξk(t)’s are similar to those used for the Bark scale-based method.
(c) Using an existing musical composition: Each of the K clusters is mapped to a distinct frequency trajectory
extracted from a musical composition. The instantaneous statistical properties of each cluster and the conver-
gence properties of the optimization variables may be used as a scaling factor, to enhance the perturbations
caused by the growth transform optimization framework. In this case, the evolution equations may have a
sinusoidal variation as in the previous two approaches, or maybe of the following form:

ξk(t)← ξk(t)[1 + ak∆fk(t)]sk, (13)

where ak,∆fk(t) and sk have the same definitions as before. This is because the original frequency trajectories
vary over time, and hence an additional sinusoidal perturbation for recognizing the audio signature in the steady
state might not be necessary.

• The update equation for β is given by:

β ← Tr(WPTP)

||PTP||2
, (14)



14

while those of the complex waveforms ψik’s are obtained using the complex growth transform updates in Table
2 (please see Appendix VIII-B for details). The time evolution of ξk(t) ∀k occurs according to the update
rules in (12) or (13), depending on the chosen sonification strategy.

• The final output of the sonification module is obtained by superimposing the waveforms of all the oscillators,

i.e., ψsum(t) =
M∑
i=1

K∑
k=1

ψik(t).

Next, we demonstrate the properties of the sonification technique when applied to the clustering problem for different
sonification strategies, the actual number of clusters in the dataset, dataset complexity (i.e., cluster alignments), and
the number of clusters assigned apriori (i.e., the size of the basis set of frequencies K).
Effect of different frequency mapping strategies: Fig 10 shows the results on the ‘Iris’ dataset (M = 150),
considering a basis of size K = 3, for all three types of sonification strategies discussed in Section IV-B. Fig 10(a)
shows a PCA plot of the data for reference, where the data points have been colored according to their cluster
assignments by the complex growth transform-based clustering algorithm. Fig 10(b) shows the frequency evolution
plots of the relative frequency trajectories are chosen according to the Bark scale, with added sinusoidal variations,
as discussed before. Fig 10(c) and (d) show the corresponding time evolution plot and the spectrogram respectively
of the sonified output signal ψsum(t). Figs 10(e)-(h) show similar results for the musical scale-based technique,
while Figs 10(i)-(l) show those corresponding to the musical composition-based sonification.
Effect basis set size and number of clusters: Fig 11 shows the results of the sonification approach on synthetic
Datasets I, II, and III, each containing M = 500 data points, but the number of underlying clusters being 2,3 and 5
respectively. The synthetic datasets are generated using a Gaussian mixture model consisting of 2, 3 and 5 different
clusters respectively, with a fixed cluster mean and variance associated with each cluster. We consider the basis
set to consist of 3 frequency trajectories (i.e., K = 3), and the musical composition-based sonification strategy
for our experiments. Fig 11(a) shows a scatter plot of Dataset I, with the points color-coded according to their
cluster assignment, Fig 11(b) shows the frequency evolutions, while Figs 11(c) and (d) show the time evolution and
spectrogram of the sonified output, respectively. Fig 11(e)-(h) show the corresponding plots for Dataset II, while
Fig 11(i)-(l) show those for Dataset III. Fig 12 shows similar results on Datasets I, II, and III, for a basis set of
frequencies of size K = 5.
Effect of different cluster alignments: Fig 13 shows the results of the experiments on Datasets III and IV, where
both have the same number of data points (M = 500) and 5 underlying clusters, but differ in the cluster alignments
and geometries (which represents different data complexities).

VI. EXPERIMENTS ON REAL DATASETS: SONIFICATION OF EEG RECORDINGS FOR EPILEPTIC SEIZURE

DETECTION

In this section, we demonstrate how our framework can be applied for sonifying non-invasive electro-encephalogram
(EEG) recordings for the detection of epileptic seizures. This is particularly useful in scenarios where trained
physicians may not be readily available for analyzing the patterns in the EEG waveforms, as in the case of
sub-clinical seizure onset. In instances of refractory epilepsy in particular, where patients are non-responsive to
anti-epileptic drugs, neurostimulation or surgery is an option if the epileptogenic focus/foci can be identified [34],
[35]. Sonification can be useful in such scenarios since it usually implies faster feedback than visualization, leading
to faster injection of the radiotracer for effective localization of the epileptogenic foci.

Traditional approaches for seizure detection from EEG recordings include a sliding window-based feature ex-
traction stage. This involves inferring network connectivities or frequency components of the EEG channels in
each window [36]. The feature extraction stage is usually followed by a classification stage formed by support
vector machine or neural network-based classifiers, and more recently, deeper architectures like CNNs [6]. This
is illustrated in Fig 14(c). On the other hand, sonification-based approaches for seizure detection usually adopt a
parameter mapping approach where the voltage values of a single channel of the EEG signal are mapped to the
auditory domain [5]. There exists a second approach for sonification of EEG signal. This involves mapping the
output of the binary classifier into two distinct audio waveforms representing the presence or absence of seizure.
While the first approach discards valuable information in terms of the network interactions during a seizure event,
the second approach conveys the decision of the classifier using sound [37]. It thus does not employ the end-user
(clinician or caregiver) in the decision-making process.
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Figure 10: Different sonification strategies for clustering the ‘Iris’ dataset. (a)-(d) show the PCA (labeled
according to cluster assignments), frequency trajectories, time evolution, and spectrogram of the sonified output
for the bark scale-based sonification; (e)-(h) show similar plots for the musical scale based sonification; and (i)-(l)
show the results for the musical composition based sonification.
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Figure 11: Musical composition based sonification on synthetic datasets with same number of points (M =
500) but different number of clusters, with a basis set size of 3. (a)-(d) show the scatter plot (colored according to
the cluster assignments), frequency trajectories, time evolution, and spectrogram of the sonified output respectively
for Dataset I; (e)-(h) show similar results for Dataset II; and (i)-(l) show the results for Dataset III.

In this section, we propose a novel sonification method that considers the interactions between all EEG channels
to detect a seizure event, and creates a sonified output that enables the listener to make a decision. The proposed
sonification module thus acts as a feature extractor in this case, and the task of detecting a seizure event still
lies with the human-in-the-loop. We applied the sonification strategy to scalp EEG recordings of pediatric patients
provided by the CHB-MIT database collected at the Children’s Hospital Boston [10], [11]. The recordings were
collected from 23 channels placed according to the International 10-20 system of electrode positions, and all signals
were sampled at 256 Hz. The original dataset contains EEG recordings from 23 patients (5 males aged 3-22 years,
17 females aged 1.5-19 years). Only the recordings that had one or more instances of the seizure (as marked by
domain experts in the dataset) were used for our purpose.

The first step in the sonification process involves (i) removing the baseline, (ii) re-referencing the electrodes to
the average potential, and finally (iii) applying a bandwidth filter with a passband of 0.5-50 Hz for noise reduction.
All of these operations were performed using the publicly available EEGLAB toolbox [38]. The EEG waveforms
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Figure 12: Musical composition based sonification on synthetic datasets with same number of points (M = 500)
but different number of clusters, with a basis set size of 5. (a)-(d) show the scatter plot (colored according to
the cluster assignments), frequency trajectories, time evolution, and spectrogram of the sonified output respectively
for Dataset I; (e)-(h) show similar results for Dataset II; and (i)-(l) show the results for Dataset III.

were then normalized channel-wise in the range [−1,+1]. Fig 14(a) shows a sample EEG recording with a seizure
event lasting from 1467-1494s. Fig 14(b) shows a zoomed-in version of the seizure event. The EEG channel signals
were then analyzed using a non-overlapping sliding window of 2s duration (denoted by the matrix E). Note that
2s sliding windows have been used extensively in literature for epileptic seizure detection from EEG signals since
they are short enough for retaining relevant information about the dynamics of the signal [10]. Fig 14(c) shows
the traditional supervised approach where the output of a classifier trained on features extracted from each of the
2s windows is converted to an audio waveform. In contrast, our proposed unsupervised approach (shown in Fig
14(d)) involves passing each such window through the sonification module to produce an audio signal. The output
signal is finally used by the user to decide whether the window belongs to a seizure or a non-seizure event. In this
framework, for each 2s epoch, we solve a quadratic optimization problem of the following form for inferring the
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(a) (b) (c)

(d) (e) (f)

Figure 13: Musical composition based sonification considering synthetic datasets with same number of points
(M = 500) and same number of clusters (K = 5), but with different cluster geometries, considering a basis
set of size 3. (a)-(c) show the scatter plot (colored according to the cluster assignments), frequency trajectories,
and spectrogram of the sonified signal respectively for Dataset III; and (d)-(f) show similar results for Dataset IV.

relationship between different EEG channels:

minimize
p∈D⊂Rnc

+

H(p) = pTQp (15)

s.t.
nc∑
k=1

pk = 1, pk ≥ 0 ∀k = 1, . . . , nc, (16)

where nc = 23 is the number of EEG channels under consideration. Q ∈ Rnc×nc represents a measure of the
pairwise connectivity between the EEG channels, and is computed as Q = f(EE′). Here, f(·) : Rnc×nc 7→ Rnc×nc

represents an element-wise square-root operator, and E represents the EEG data over the 2s window. Fig 14(e)
illustrates the proposed approach. We can apply the complex growth transforms to arrive at the optimal solution of
Eq (15)-(16). For the simulations presented in this section, the baseline frequency of all the oscillators is chosen to
be ωn = 300 Hz. The relative frequencies ξk,n’s of the oscillator variables ψk’s (where pk = ψkψ

∗
k, ψk ∈ C) are

chosen according to the relative placements of the electrodes from which the corresponding channels are recorded.
For example, oscillators corresponding to channels recorded from the frontal, temporal, parietal, and occipital lobes
of the brain are can be mapped to the notes G, E, C, and A based on the equally-tempered Western musical
scale around A = 440 Hz. This mapping scheme based on the electrode locations is illustrated in Fig 15. Similar
mappings can also be achieved using the Bark scale-based and musical composition-based approaches. Note that
higher relative frequencies are assigned to the channels from the frontal and parietal lobes, as these brain regions
are affected more by epileptic seizure events in pediatric patients than in the other two regions [39]. Thus allocating
higher frequencies to the oscillators/channels mapping to these lobes would result in greater perturbation in the
corresponding frequency bands. This would potentially lead to better discrimination between seizure and non-seizure
events. The framework thus allows for incorporating spatial information about the electrode locations because of
the proposed mapping strategy, in addition to the temporal information captured by the sonification process. Spatial
information can also be embedded in the sonification process by utilizing a dual-channel audio representation
instead of the single-channel audio representation discussed until now in the paper. Since the output sonified signal
is inherently complex, we can use the left and right channels for outputting the real and imaginary part respectively
of the signal, or vice versa.
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Figure 14: Sonification of EEG recordings. (a) 1 hour EEG recording with a single seizure event between 1467-
1494s; (b) zoomed-in version of the seizure event; (c) An automatic seizure classification module which involves
(i) a supervised learning phase using 2s windows of EEG recordings (represented by the matrix E) along with the
corresponding labels, and (ii) a testing phase where the presence of seizure is determined by using the trained model
on a previously unseen 2s window; (d) Proposed approach, where features extracted from each 2s EEG window
are passed directly through a sonification module and presented to a human listener, who takes the decision; and
(e) Sonification module involves computing the pairwise connectivity matrix Q between all the nc EEG channels
in the window. Q thus interconnects nc globally coupled growth transform oscillators, and the final sonified output
is obtained by the superposition of all the oscillator outputs.

Fig 16 shows the results of applying our sonification technique to five different instances of seizure recordings
(recording #03, #04, #15, #16, and #18 respectively) for the same patient (Patient #01). Figs 16(a)-(e) show
spectrograms for 2s windows corresponding to non-seizure windows in each of the five recordings. Figs 16(f)-(j)
show similar figures for 2s windows corresponding to seizure events in the same five recordings. Based on the
above results, we can conclude that the spectrograms for the sonified windows corresponding to seizure events
seem to have a higher level of entropy than those corresponding to non-seizure events.

Fig 17, on the other hand, presents a comparison of the results of the sonification process between seizure
recordings across ten different patients (Patient #01, #03 #05, #08, #11, #14, #19, #20, #21 and #22 respectively).
Figs 17(a)-(j) show the spectrograms for 2s windows corresponding to non-seizure events. Figs 17(k)-(t) show similar
results for 2s windows corresponding to seizure events across the ten patients. The sonified signals corresonding
to seizure vs non-seizure windows thus show consistent patterns not only across different recordings for the same
patient, but also across patients. Our proposed sonification framework is thus capable of identifying both spatial
and temporal patterns in the time-varying EEG signal, which can be potentially used for real-time detection of
epileptic seizure events.

VII. DISCUSSION AND CONCLUSIONS

This paper presented a novel technique for the sonification of high-dimensional data that incorporates both learning
and sonification stages into the same module. The end-user then uses the sonified audio output for making a decision.
This is in contrast to existing sonification techniques that either involve (a) using a learning algorithm upstream
that inherently controls the decision-making process and maps the outcome to an audio signature, or (b) directly
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Figure 15: Illustration of relative frequency assignment to oscillators. Relative frequencies of oscillators were
assigned to notes A, C, E, or G of the equally-tempered musical scale around A=440 Hz. Frequencies are assigned
based on the electrode placement of the corresponding channel.
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Figure 16: Sonification results on arbitrary 2s windows for 5 different recordings of Patient #01 ( #03, #04,
#15, #16 and #18 respectively) . (i) Non-seizure events: (a)-(e): Spectrograms for arbitrary non-seizure windows
in each of the five recordings; (ii) Seizure events: (f)-(j): similar results for arbitrary seizure windows in each of
the five recordings.
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Figure 17: Sonification results on arbitrary 2s windows for a single recording of each of 10 different
patients (Patient #01, #03 #05, #08, #11, #14, #19, #20, #21 and #22 respectively). (i) Non-seizure events: (a)-(j):
Spectrograms for arbitrary non-seizure windows in each of the ten patients; (ii) Seizure events : (k)-(t): similar
results for arbitrary seizure windows in each of the ten patients.

mapping the underlying variables to different parameters of the sound wave, without accounting for the correlations
and patterns in the data. At the core of the framework lies the complex growth transform dynamical system,
which simultaneously utilizes the learning variables and psychoacoustic parameters defined by the user. Thus, our
proposed sonification module outputs a binaural audio signature that can be used for human-in-the-loop decision-
making. The output sonified signal encodes the high-dimensional space data, which might be particularly useful
for low throughput systems. Additionally, the method can be utilized for solving a range of learning problems of
varying dimensionality and provides several tunable parameters that can be customized to adapt different sonification
strategies. Experiments on synthetic and real data show encouraging results, proving that the method can be used for
real-time applications involving high-dimensional, temporally varying data. Future directions for this work involve
explore using sonification in multimodal perceptualization tasks [40], [41] with potential applications in visual
rehabilitation [42], neuroprosthesis [43], and for cohesive perception in autonomous robots [44].

VIII. APPENDIX

A. Nomenclature

Following are the notational conventions used in this paper:

B. Proof of Main Result

Theorem 1: Considering Ψ ∈ DC = {Ψ ∈ CM×K :
K∑
k=1

|ψik|2 = 1, ∀i = 1, . . . ,M} ⊂ CM×K , a time

evolution of the form given below converges to limit cycles corresponding to the optimal point of a Lipschitz
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Table 2: Notations

Variable Definition

R+ One-dimensional positive real vector space

RM M -dimensional real vector space

CM M -dimensional complex vector space

P a matrix

p a vector

|z| magnitude of a complex variable z

Re(z) real part of a complex variable z

Im(z) imaginary part of a complex variable z

z∗ complex conjugate of a complex variable z

z(t) a continuous-time complex variable at time t

zn a discrete-time complex variable at the nth time step

� Hadamard product of two matrices

continuous objective function H(Ψ):

ψik,n ← ψik,n−1[cos(θi,n) + j sin(θi,n)σik,n−1(Ψn−1)], (17)

where σik → 1 ∀i = 1, . . . , N, k = 1, . . . ,M , in steady state.
Proof: Consider a constrained optimization problem of the following form :

minimize
P∈D⊂RM×K

+

H′(P) (18)

s.t.
K∑
k=1

pik = 1, ∀i = 1, . . . ,M, pik ≥ 0 ∀i, k (19)

In [7], we used the Baum-Eagon inequality [9] to show that the optimal point of the optimization problem represented
by Eqs (18)-(19) for a generic Lipschitz continuous cost function H′(P)(P ∈ D ⊂ RM×K) corresponds to the
steady-state solution of a multiplicative update-based discrete-time growth transform dynamical system model given
by:

pik,n ← (1− αi,n)pik,n−1 + αi,npik,n−1gik,n−1(Pn−1), (20)

where gik,n−1(Pn−1) =

(− ∂H′

∂pik,n−1
+ λ)

K∑
l=1

pil,n−1(−
∂H′

∂pil,n−1
+ λ)

, ∀i = 1, . . . ,M , and 0 ≤ αi,n ≤ 1 ∀i. The constant

λ ∈ R+ is chosen to ensure that |− ∂H
′(P)

∂pik,n−1
+ λ| > 0, ∀i, k. Note that convergence to the optimal solution is

guaranteed even though αi,n’s are time-varying, since this would still ensure the invariance of the manifold D.
Taking gik,n−1(Pn−1) = σ2ik,n−1(Pn−1) ∀i, k and αi,n = sin2(θi,n), we get:

pik,n ← [cos2(θi,n)pik,n−1 + sin2(θi,n)pik,n−1σ
2
ik,n−1(Pn−1)] (21)
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Representing pik,n = ψik,nψ
∗
ik,n, ψik,n ∈ C, the update equations become:

ψik,nψ
∗
ik,n ← ψik,n−1[cos(θi,n) + j sin(θi,n)σik,n−1(Pn−1)]

×ψ∗ik,n−1[cos(θi,n) + j sin(θi,n)σik,n−1(Pn−1)]
∗ (22)

Considering H′(P) = H(Ψ) to be analytic in DC , since by Wirtinger’s calculus,

∂H
∂ψik,n−1

=
∂H

∂ψik,n−1ψ
∗
ik,n−1

.

(
∂ψik,n−1ψ

∗
ik,n−1

∂ψik,n−1

)
=

∂H
∂ψik,n−1ψ

∗
ik,n−1

.ψ∗ik,n−1, (23)

we have

σik,n−1(Ψn−1) =

√√√√√√√
(
− ∂H

∂ψik,n−1
+ λψ∗ik,n−1

)
ψ∗ik,n−1

K∑
l=1

ψil,n−1

(
− ∂H
∂ψil,n−1

+ λψ∗il,n−1

) (24)

The discrete time update equations for ψik,n is thus given by:

ψik,n ← ψik,n−1[cos(θi,n) + j sin(θi,n)σik,n−1(Ψn−1)], (25)

Now, let us define θi,n = ωi,n∆t, where ωi,n is the baseline frequency for the i−th group of oscillator variables at
the n−th time step, and ∆t is a unit time step. Eq (25) can then be rewritten as:

ψik,n ← ψik,n−1[cos(ωi,n∆t) + j sin(ωi,n∆t)σik,n−1(Ψn−1)], (26)

�
Theorem 2: Different oscillation frequencies can be assigned to each element in the dynamical system represented
by Eq (17) by adding an instantaneous relative phase term, i.e., the following dynamical system

ψik,n ← ψik,n−1[cos(ωi,n∆t) + j sin(ωi,n∆t)σik,n−1] exp(jξik,n∆t), (27)

converges to the same solution as that attained by the one described by Eq (17).
Proof: Considering ϕik,n to be the instantaneous relative phase of the ik−th element with respect to an absolute
reference at the n−th time instance, we have:

ψik,n ← ψik,n−1[cos(ωi,n∆t) + j sin(ωi,n∆t)σik,n−1] exp(jϕik,n), (28)

Let ϕik,n be the instantaneous relative phase of the ik-th oscillator variable. Then we can define ϕik,n = ξik,n∆t,
such that ξik,n is the corresponding relative frequency. The addition of the relative frequency term only alters
the oscillator dynamics without altering the instantaneous solution of the optimization problem. Additionally, we
can incorporate information about the instantaneous oscillator dynamics in the relative phase by using ϕik,n =
cikσik,nξik,n∆t, where cik’s are arbitrary scaling coefficients. Note that as before, this mapping only perturbs the
dynamics, without impacting the true solution. Eq (28) can be rewritten as

ψik,n ← ψik,n−1

√
cos2(ωi,n∆t) + sin2(ωi,n∆t)σ2ik,n−1

× exp

(
j
(

arctan(σik,n−1 tan(ωi,n∆t)) + ξik,n∆t
))

, (29)

Finally, in the steady state, since σik,n−1
n→∞−−−→ 1 ∀i, k, and taking ∆t =

1

Fs
(Fs is the sampling frequency), we

have:

ψik,n ← ψik,n−1 exp

(
j(ωi,n + ξik,n)

1

Fs

)
. (30)
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The output sonified signal in the steady-state is then obtained by the superposition of all the oscillator waveforms,
i.e.,

ψsum,n =

M∑
i=1

K∑
k=1

ψik,n =

M∑
i=1

K∑
k=1

ψik,n−1 exp

(
j(ωi,n + ξik,n)

1

Fs

)
(31)

In particular, when there is a single global constraint involving all the variables, i.e., when M = 1, then ψik,n =
ψk,n, ωi,n = ωn and ξik,n = ξk,n. The complex growth transform dynamical system for this special case can be
written as:

ψk,n ← ψk,n−1 exp

(
j(ωi,n + ξik,n)

1

Fs

)
(32)

ψsum,n =

K∑
k=1

ψk,n−1 exp

(
j(ωn + ξk,n)

1

Fs

)
. (33)

�
Theorem 3: The complex growth transform dynamical system follows a nonlinear unitary transformation.
Defining

Un =


d11,n−1

. . .
dik,n−1

. . .
dMK,n−1

 ,

where dik,n = [cos(ωi,n∆t) + j sin(ωi,n∆t)σik,n−1] exp(jξik,n∆t), (34)

and using Eq (28), we have:
Ψn ← Un(Ψn−1)�Ψn−1. (35)

Additionally, since
M∑
i=1

K∑
k=1

|ψik,n|2 =
M∑
i=1

K∑
k=1

|ψik,n−1|2, Un : CM×K 7→ CM×K can be thought of as an instantaneous

nonlinear unitary operator [45] that ensures that the signal energy is conserved over time.
For the special case of a single global constraint (M = 1), we have

Un =


d1,n

...
dk,n

...
dK,n

 , Un : CK 7→ CK ,

dk,n = [cos(ωn∆t) + j sin(ωn∆t)σk,n−1] exp(jξk,n∆t), ∀k = 1, . . . ,K (36)

and
K∑
k=1

|ψk,n|2 =

K∑
k=1

|ψk,n−1|2. (37)

�

C. Mapping procedure

Let us consider an optimization problem of the following generic form:

min
{pi∈R+}

H′({pi})

s.t. |pi| ≤ γ, γ ∈ R+ ∀i. (38)
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Considering pi = p+i − p
−
i ∀i = 1, . . . , N , where both p+i , p

−
i ≥ 0. Since by triangle inequality, |pi| ≤ |p+i |+ |p

−
i |,

enforcing p+i + p−i = γ ∀i would automatically ensure |pi| ≤ 1 ∀i. Thus we have,

argmin
{pi}

H′({pi}) ≡ argmin
{p+i ,p

−
i }
H′({p+i , p

−
i }) (39)

s.t. |pi| ≤ γ, pi ∈ R s.t. p+i + p−i = γ, p+i , p
−
i ≥ 0

Finally, we replace p+i ← |
p+i
γ
|, p−i ← |

p−i
γ
| to arrive at the following equivalent optimization problem over a

probabilistic domain:

min
{p+i ,p

−
i }
H′({p+i , p

−
i })

s.t. p+i + p−i = 1, ∀i. (40)

The above problem, in turn, can be mapped to the complex growth transform-based sonification framework by
considering p+i = |ψi1|2, p−i = |ψi2|2, and following the procedure in VIII-B.
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