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AN ENERGY STABLE FINITE DIFFERENCE SCHEME FOR THE

ERICKSEN-LESLIE SYSTEM WITH PENALTY FUNCTION AND ITS

OPTIMAL RATE CONVERGENCE ANALYSIS∗

KELONG CHENG† , CHENG WANG‡ , AND STEVEN M. WISE§

Abstract. A first-order-accurate-in-time, finite difference scheme is proposed and analyzed for
the Ericksen-Leslie system, which describes the evolution of nematic liquid crystals. For the penalty
function to approximate the constraint |d|=1, a convex-concave decomposition for the corresponding
energy functional is applied. In addition, appropriate semi-implicit treatments are adopted for the
convection terms, for both the velocity vector and orientation vector, as well as the coupled elastic
stress terms. In turn, all the semi-implicit terms can be represented as a linear operator of a vector
potential, and its combination with the convex splitting discretization for the penalty function leads
to a unique solvability analysis for the proposed numerical scheme. Furthermore, a careful estimate
reveals an unconditional energy stability of the numerical system, composed of the kinematic energy
and internal elastic energies. More importantly, we provide an optimal rate convergence analysis and
error estimate for the numerical scheme. In addition, a nonlinear iteration solver is outlined, and the
numerical accuracy test results are presented, which confirm the optimal rate convergence estimate.

Keywords. Ericksen-Leslie system with the penalty function; convex-concave decomposition;
unique solvability; energy stability; staggered mesh points; optimal rate convergence analysis.
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1. Introduction

In this article, we examine the following macroscopic hydrodynamical model of
nematic liquid crystals for materials with isotropic elastic energies, derived by Ericksen
and Leslie [16, 21]:

∂tu+u ·∇u+∇p−ν∆u−λ∇·
(
−(∇d)T∇d

+β(∆d−f(d))dT +(β+1)d(∆d−f(d))T
)
=0, (1.1)

∇·u=0, (1.2)

∂td+u ·∇d+(β∇u+(1+β)(∇u)T )d=γ(∆d−f(d)), (1.3)

with initial and boundary conditions

u |t=0=u0, d |t=0=d0, u ·n|∂Ω= d ·n|∂Ω=0,
∂(u ·τ)
∂n

∣∣∣∣
∂Ω

=
∂(d ·τ)
∂n

∣∣∣∣
∂Ω

=0. (1.4)

The vector u=(u,v,w)T represents the velocity of the liquid crystal flow; p is the
pressure; d=(d1,d2,d3)

T is the orientation of the liquid crystal molecules; β∈ [−1,0]
is a constant; the parameter ν >0 is the fluid viscosity coefficient constant; λ>0 is an
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elastic constant; and γ >0 is a relaxation time constant. The vector function f(d) may
be viewed as a penalty function to approximate the constraint |d|=1:

f(d)=ε−2(|d|2−1)d. (1.5)

This penalty term is physically meaningful and stands for a possible relaxation of
molecules from the strict unit-length constraint. Such an approach could also be viewed
as a regularization method when compared with the limit system, where |d|=1 is rigidly
imposed.

Here, the chemical potential µ=f(d)−∆d=(µ1,µ2,µ3)
T is a column vector, with

the following components:

µi=ε
−2(|d|2−1)di−∆di, i=1,2,3. (1.6)

Let us recall the following identity,

∇·
(
(∇d)T∇d

)
=

3∑

i=1

3∑

j=1

∂

∂xj

(
3∑

k=1

∂dk
∂xi

∂dk
∂xj

)
êi (1.7)

=∆d1∇d1+∆d2∇d2+∆d3∇d3+
1

2
∇(|∇d|2)

=d1∇µ1+d2∇µ2+d3∇µ3+∇π (1.8)

=(∇µ)Td+∇π, (1.9)

where

π :=
1

2
|∇d|2+d ·∆d− 1

4
(|d|2−1)2− 1

2
|d|2.

Then we are able to rewrite the original PDE system as

∂tu+u ·∇u+∇p′−ν∆u+λ(∇µ)Td+λ∇·
(
βµdT +(β+1)dµT

)
=0, (1.10)

∇·u=0, (1.11)

∂td+u ·∇d+(β∇u+(1+β)(∇u)T )d=−γµ, (1.12)

where p′=p+λπ is a modified pressure. For simplicity, we will use the modified pressure
but drop the prime notation.

Now, let us introduce a free energy for the orientation vector field d:

E(d)=

∫

Ω

ε−2
(1
4
|d|4− 1

2
|d|2

)
+

1

2
|∇d|2dx. (1.13)

We observe that dtE(d)=
∫
Ω
∂td ·µdx. Taking inner products of (1.10) with u and

(1.12) with λµ, we get the remarkable energy dissipation law:

∂tE(d,u)=−ν∥∇u∥2−γ∥µ∥2≤0, E(d,u) :=
1

2
∥u∥2+λE(d). (1.14)

A theoretical analysis for the coupled PDE system and its limit system has been
established in [32–34,51,52]; also see the related works [38–40,47], et cetera.

There have been extensive numerical works for the Ericksen-Leslie system, both for
the penalty formulation and the constraint formulation, in the existing literature [1, 7,
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8, 15, 18, 28, 29, 49, 53–55]. In particular, the energy stability property of the numerical
schemes has attracted a great deal of attention in recent years. Various semi-discrete
finite element schemes were analyzed in [35–37], with energy dissipation law established.
Among the fully discrete approaches, an energy stable time splitting method is proposed
and analyzed in [5], in which the coupled elastic stress terms were not considered in the
system. Further development of energy stability has been reported in more recent
works [56–58], in which both the first and second order accurate energy stable schemes
were studied for the full coupled system (1.1)-(1.3).

Meanwhile, it is observed that, an optimal rate convergence analysis for the full
Ericksen-Leslie system (1.1)-(1.3) has been a very challenging theoretical issue. Among
the existing theoretical works, it is worthy of mentioning [2], in which a fully dis-
crete finite element scheme to a simplified system (without the coupled elastic stress
terms, β(∇u)d and (1+β)(∇u)Td) is analyzed. The numerical convergence is proved
by establishing a uniform bound for the numerical solution (in terms of time step and
numerical mesh grid sizes) and taking a weak limit via certain compactness arguments,
while an optimal rate error estimate has not been reported. Moreover, the convergence
towards measure-valued solutions of the limiting Ericksen-Leslie model has been estab-
lished in [2], which turns out to be another significant theoretical result. As a further
development, a fully discrete, mixed finite element numerical scheme was proposed for
the penalized Ericksen-Leslie system in [26], in which the nonlinear terms are treat-
ment in a semi-implicit manner. In particular, an optimal rate convergence analysis
was reported in [26], with first order convergence rate in both time and space. It is
noticed that the standard L2 and H1 bounds for the numerical solution have been de-
rived, while an energy dissipation (in terms of the physical energy) was not reported.
In a subsequent work [27], a modified energy stability was proved for the mixed finite
element schemes, with an “initial estimate” constraint h≤Cε and the “stability” con-
straint ∆t=O(ε2h2). Also see the related works [1,35,37]. Furthermore, in some recent
works for related phase field models of nematic liquid crystal droplets [3, 18, 43, 44, 48],
the energy dissipation analysis has been reported for the finite element schemes, and the
Γ-convergence of global discrete energy minimizers of the numerical solution to global
minimizers of the continuous energy has been proved. Many deep and subtle techniques
have been included in these theoretical analyses.

In this paper we propose a finite difference scheme for the full Ericksen-Leslie sys-
tem (1.1)-(1.3), with the coupled elastic stress terms included, and we provide an optimal
rate convergence analysis, with first order accuracy in time and second order accuracy
in space. For the vector penalty function (1.5), a convex splitting algorithm is applied
to the corresponding elastic energy functional. Meanwhile, for all the coupled terms,
(∇µ)Td, ∇·(µdT ), ∇·(dµT ), u ·∇d, (∇u)d, (∇u)Td, we have to make use of appro-
priate semi-implicit discretization. All of these semi-implicit terms could be represented
as a linear operator of the vector potential µ at time step at tn+1. A combination of
such a linear operator representation and the convex splitting discretization for d in
the vector chemical potential µ results in a unique solvability analysis for the proposed
numerical scheme, with the help of Browder-Minty lemma, based on the monotonicity
property of the numerical system. In addition, an unconditional energy stability of the
numerical scheme could be derived, in which both the convex splitting treatment for d
and semi-implicit approximation for the coupled terms will play an important role in
the energy stability estimate.

In terms of the optimal convergence analysis, the primary challenge is associated
with the error estimates for these coupled terms, including the convection and elastic
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stress terms. Although the semi-implicit treatment makes a linear operator in terms of
µ, the corresponding error estimate turns out to be highly nonlinear. Furthermore, a
careful calculation implies that, the standard diffusion term for either the velocity or
the phase field is not able to control the numerical error associated with the nonlinear
coupled terms.

To overcome this subtle difficulty, we perform an L∞
∆t(0,T ;H

1)∩L2
∆t(0,T ;H

2) error
estimate for the phase variable d, combined with an L∞

∆t(0,T ;L
2)∩L2

∆t(0,T ;H
1) error

estimate for the velocity vector. Such an estimate in a higher order Sobolev norm
is necessary to make three nonlinear coupled inner products (with appropriate error
test function) be cancelled between the momentum and phase field error equations.
This observation could not be obtained through a standard L∞

∆t(0,T ;L
2)∩L2

∆t(0,T ;H
1)

error estimate for the phase variable. Similar techniques have been reported in the
convergence analysis for various Cahn-Hilliard-Fluid (such as Cahn-Hilliard-Hele-Shaw
or Cahn-Hilliard-Navier-Stokes) models [6, 9, 10, 17, 19, 41]; meanwhile, the technical
details presented in this work are much more complicated than the ones in these recent
works for the Cahn-Hilliard-Fluid models, since only one coupled term appears in the
phase field equation of the latter one, in comparison with three terms in the Eriksen-
Leslie system.

In addition, for the fully discrete scheme, the discrete Sobolev embeddings from
H1

h into L4
h and L6

h (in the finite difference space) will also play an important role in
the nonlinear error estimate. Such a discrete inequality could not be obtained via a
direct local calculation; instead, a discrete Fourier expansion for the test function (with
given boundary condition), combined with careful eigenvalue estimates, is needed for
the derivation. Also see the related recent works [12,14, 22–24].

This paper is organized as follows. In Section 2 we propose the fully-discrete nu-
merical method, outline the staggered finite difference spatial approximation, as well as
the temporal discretization, and prove the unique solvability of the scheme. The energy
stability analysis is provided in Section 3. An optimal rate convergence analysis is es-
tablished in Section 4. A nonlinear iteration solver is outlined, and numerical accuracy
test results are presented in Section 5. Finally, some concluding remarks are made in
Section 6.

2. The numerical scheme

2.1. Finite difference spatial discretization. For simplicity of presenta-
tion, we focus our discussions on the two-dimensional (2-D) case, with the computa-
tional domain given by Ω=(0,1)2. An extension to the three-dimensional (3-D) case is
straightforward, and the details are left to the interested readers.

It is assumed that N is a positive integer such that h= 1
N , which is called the spatial

step size. The orientation vector field d is evaluated at the cell-centered mesh points:
((i+1/2)h,(j+1/2)h), at the component-wise level. In turn, the discrete gradient of d is
evaluated at the mesh points (ih,(j+1/2)h), ((i+1/2)h,jh), respectively:

(Dxdk)i,j+1/2 =
(dk)i+1/2,j+1/2−(dk)i−1/2,j+1/2

h
,

(Dydk)i+1/2,j =
(dk)i+1/2,j+1/2−(dk)i+1/2,j−1/2

h
,

(2.1)

for k=1,2. The five-point Laplacian takes a standard form. The pressure field p and
chemical potential vector field µ are also evaluated at the cell-centered mesh points,
and the discrete gradient could be defined in the same way as in (2.1). Similarly, the
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wide-stencil differences for cell-centered functions could be introduced as

(D̃xµk)i+1/2,j+1/2 =
(µk)i+3/2,j+1/2−(µk)i−1/2,j+1/2

2h
,

(D̃yµk)i+1/2,j+1/2 =
(µk)i+1/2,j+3/2−(µk)i+1/2,j−1/2

2h
.

(2.2)

Meanwhile, in order to assure the divergence-free property of the velocity vector
at the discrete level, we choose a staggered grid for the velocity field, in which the
individual components of a given velocity, say, v=(vx,vy), are defined at the east-
west cell edge points (ih,(j+1/2)h), and the north-south cell edge points ((i+1/2)h,jh),
respectively. This staggered grid is also known as the marker and cell (MAC) grid and
was first proposed in [31] to deal with the incompressible Navier-Stokes equations, and
the detailed analyses have been provided in [20, 50]. Also see the related applications
to the primitive equations [45] and planetary geostrophic equations [46], et cetera.

The discrete divergence of v, specifically,

∇h ·v=Dxv
x+Dyv

y,

is defined at the cell center points ((i+1/2)h,(j+1/2)h) as follows:

(∇h ·v)i+1/2,j+1/2 := (Dxv
x)i+1/2,j+1/2+(Dyv

y)i+1/2,j+1/2 .

One key advantage of the MAC grid approach is that the discrete divergence of the
unknown grid velocity will always be identically zero at every cell center point. Such
a divergence-free property at the discrete level comes from the special structure of the
MAC grid and assures that the velocity field is orthogonal to a corresponding discrete
pressure gradient at the discrete level; see also reference [20].

Moreover, we observe that the velocity component vx has zero boundary values at
mesh points (0,(j+1/2)h) and (Nh,(j+1/2)h, corresponding to the boundaries at x=0
and x=1. Similarly, the velocity component vy has zero boundary values at mesh points
((i+1/2)h,0) and ((i+1/2)h,Nh), so that the boundary condition of n ·v=0 is satisfied
at the point-wise (global) level at all four boundary faces.

A discrete cell-centered function ϕ is said to satisfy homogeneous Neumann bound-
ary conditions, and we write n ·∇hϕ=0 iff at the ghost points ϕ satisfies

ϕ−1/2,j+1/2 =ϕ1/2,j , ϕN+1/2,j+1/2 =ϕN−1/2,j+1/2,

ϕi+1/2,−1/2 =ϕi+1/2,1/2, ϕi+1/2,N+1/2 =ϕi+1/2,N−1/2.
(2.3)

A discrete function f =(fx,fy)T ∈ E⃗Ω is said to satisfy the homogeneous boundary con-
ditions n ·f =0 iff we have

fx−1/2,j+1/2+f
x
1/2,j+1/2 =0, fxN+1/2,j+1/2+f

x
N−1/2,j+1/2 =0, (2.4)

fyi+1/2,1/2+f
y
i+1/2,−1/2 =0, fyi+1/2,N+1/2+f

y
i+1/2,N−1/2 =0. (2.5)

For u=(ux,uy)T , v=(vx,vy)T , located at the staggered mesh points (xi,yj+1/2),
(xi+1/2,yj), respectively, and the cell-centered vector field d=(dx,dy)T , µ=(µx,µy)T ,
the following terms are evaluated as

u ·∇hv=

(
uxi,j+1/2D̃xv

x
i,j+1/2+Axyu

y
i,j+1/2D̃yv

x
i,j+1/2

Axyu
x
i+1/2,jD̃xv

y
i+1/2,j+u

y
i,j+1/2D̃yv

y
i+1/2,j

)
, (2.6)
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∇h ·(vuT )=

(
D̃x(u

xvx)i,j+1/2+D̃y(Axyu
yvx)i,j+1/2

D̃x(Axyu
xvy)i+1/2,j+D̃y(u

yvy)i+1/2,j

)
, (2.7)

(∇hµ)
Td=

(
(Dxµ

x ·Axd
x)i,j+1/2+(Dxµ

x ·Axd
y)i,j+1/2

(Dyµ
x ·Ayd

x)i+1/2,j+(Dyµ
y ·Ayd

y)i+1/2,j

)
, (2.8)

∇h ·(µdT )=
(
Dx(µ

xdx)i,j+1/2+AxD̃y(µ
xdy)i,j+1/2

AyD̃x(µ
ydx)i+1/2,j+Dy(µ

ydy)i+1/2,j

)
, (2.9)

∇h ·(dµT )=

(
Dx(µ

xdx)i,j+1/2+AxD̃y(µ
ydx)i,j+1/2

AyD̃x(µ
xdy)i+1/2,j+Dy(µ

ydy)i+1/2,j

)
, (2.10)

∇h ·(duT )=

(
Dx(Axd

xux)i+1/2,j+1/2+Dy(Ayd
xuy)i+1/2,j+1/2

Dx(Axd
yux)i+1/2,j+1/2+Dy(Ayd

yuy)i+1/2,j+1/2

)
, (2.11)

(∇hu)d=

(
(Dxu

x ·dx)i+1/2,j+1/2+(AxD̃yu
x ·dy)i+1/2,j+1/2

(AyD̃xu
y ·dx)i+1/2,j+1/2+(Dyu

y ·dy)i+1/2,j+1/2

)
, (2.12)

(∇hu)
Td=

(
(Dxu

x ·dx)i+1/2,j+1/2+(AyD̃xu
y ·dy)i+1/2,j+1/2

(AxD̃yu
x ·dx)i+1/2,j+1/2+(Dyu

y ·dy)i+1/2,j+1/2

)
, (2.13)

where the following averaging operators have been employed:

Axyu
x
i+1/2,j =

1

4

(
uxi,j−1/2+u

x
i,j+1/2+u

x
i+1,j−1/2+u

x
i+1,j+1/2

)
, (2.14)

(AxD̃yµ
x)i,j+1/2 =

1

2

(
D̃yµ

x
i−1/2,j+1/2+D̃yµ

x
i+1/2,j+1/2

)
, (2.15)

Axd
y
i,j+1/2 =

1

2

(
dyi−1/2,j+1/2+d

y
i+1/2,j+1/2

)
, (2.16)

(AxD̃yu
x)i+1/2,j+1/2 =

1

2

(
D̃yu

x
i,j+1/2+D̃yu

x
i+1,j+1/2

)
. (2.17)

A few other average terms, such as Axyu
y
i,j+1/2, (AyD̃xµ

y)i+1/2,j , Axd
x
i,j+1/2,

Ayd
x
i+1/2,j , Ayd

y
i+1/2,j , (AxD̃y(µ

xdy)i,j+1/2, (AyD̃xµ
ydx)i+1/2,j , (AxD̃y(µ

ydx)i,j+1/2,

(AyD̃xµ
xdy)i+1/2,j , (AyD̃xu

y)i+1/2,j+1/2, could be defined in the same manner.

2.2. The fully discrete numerical scheme and some further notation.

Regarding the temporal approximation, we consider the following convex splitting treat-
ment for the chemical potential vector:

µn+1=(µn+1
1 ,µn+1

2 )T =ε−2(|dn+1|2dn+1−dn)−∆dn+1, (2.18)

with

µn+1
i =ε−2(|dn+1|2dn+1

i −dni )−∆dn+1
i , i=1,2. (2.19)

The fully discrete scheme for the PDE system is formulated, with finite difference ap-
proximation in space:

un+1−un

∆t
+

1

2
(un ·∇hu

n+1+∇h ·(un+1(un)T ))+∇hp
n−ν∆hu

n+1

+λ(∇hµ
n+1)Tdn+λ∇h ·

(
βµn+1(dn)T +(β+1)dn(µn+1)T

)
=0, (2.20)
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un+1−un+1

∆t
+∇h(p

n+1−pn)=0, (2.21)

∇h ·un+1=0, (2.22)

dn+1−dn
∆t

+∇h ·(dn(un+1)T )+(β∇hu
n+1+(1+β)(∇hu

n+1)T )dn=−γµn+1, (2.23)

ε−2(|dn+1|2dn+1−dn)−∆hd
n+1−µn+1=0, (2.24)

with the following discrete boundary conditions:

(un+1 ·n)
∣∣
∂Ω

= (dn+1 ·n)
∣∣
∂Ω

= (un+1 ·n)
∣∣
∂Ω

=0, (2.25)

(n ·∇h(u
n+1 ·τ)) |∂Ω=(n ·∇h(d

n+1 ·τ)) |∂Ω=0. (2.26)

For the initial data, u0, d0 are given, so that the initial chemical potential vector could
be computed as µ0=ε−2(|d0|2d0−d0)−∆hd

0, and the initial data for the pressure field
could be obtained through the following pressure Poisson equation

−∆hp
0=∇h ·

(1
2
(u0 ·∇hu

0+∇h ·(u0(u0)T ))

+λ(∇hµ
0)Td0+λ∇h ·

(
βµ0(d0)T +(β+1)d0(µ0)T

))
,

(n ·∇hp
0) |∂Ω=0.

(2.27)

Remark 2.1. An intermediate velocity vector un+1 is introduced in the numerical
scheme (2.20)-(2.23). The advantage of this numerical approach could be observed from
the fact that the Stokes solver is decoupled from the convection-diffusion part, since the
pressure gradient is explicitly updated. This feature would greatly improve the numer-
ical efficiency in the practical computation. In turn, the intermediate velocity vector
un+1 and the orientation vector dn+1 form a closed system in (2.20), (2.23), as will be
explained in the unique solvability analysis in the next subsection. Afterward, (2.21)
and (2.22) stand for a standard Helmholtz projection of un+1 into the divergence-free
space, at a discrete level. This projection is equivalent to a discrete Poisson equation,
which could be very efficiently implemented.

Definition 2.1. For any pair of variables ua, ub which are evaluated at the mesh
points (i,j+1/2), (such as u, Dxd, Dxµ, Dxp, et cetera.), the discrete L2

h-inner product
is defined by

⟨ua,ub⟩A=h2
N−1∑

j=0

N∑

i=0

γ
(0)
i uai,j+1/2u

b
i,j+1/2; γ

(0)
i =

{
1
2 , if i=0 or i=N,
1, otherwise,

(2.28)

for any pair of variables va, vb which are evaluated at the mesh points (i+1/2,j+1/2),
(such as v, Dyd, Dyµ, Dyp, et cetera.), the discrete L2

h-inner product is defined by

⟨va,vb⟩B =h2
N∑

j=0

N−1∑

i=0

γ
(1)
j vai+1/2,j v

b
i+1/2,j ; γ

(1)
j =

{
1
2 , if j=0 or j=N,
1, otherwise,

(2.29)

for any pair of variables µa, µb which are evaluated at the mesh points (i+1/2,j+1/2),
(such as µ, d, p, et cetera.), the discrete L2

h-inner product is defined by

⟨µa,µb⟩C =h2
N−1∑

j=0

N−1∑

i=0

µa
i+1/2,j+1/2µ

b
i+1/2,j+1/2. (2.30)
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In addition, for two velocity vectors u=(ux,uy)T and v=(vx,vy)T , we denote their
vector inner product as

⟨u,v⟩1= ⟨ux,vx⟩A+⟨uy,vy⟩B . (2.31)

Their L2
h norms, namely, ∥·∥2 norm, can be defined accordingly. Clearly all the

discrete L2
h inner products defined above are second order accurate. In addition to the

standard L2
h norm, we also introduce the Lp

h, 1≤p<∞, and L∞
h norms for a grid

function f ∈GN :

∥f∥∞ :=max
i,j

|fi+1/2,j+1/2|, ∥f∥p :=
(
h2

N−1∑

i,j=0

|fi+1/2,j+1/2|p
) 1

p

, 1≤p<∞. (2.32)

The following summation by parts formulas will be useful in the later analysis.

Lemma 2.1. For discrete grid functions u (evaluated at (xi,yj+1/2)), v (evaluated
at (xi+1/2,yj)), µ, p, d (evaluated at (xi+1/2,yj+1/2)) satisfying the discrete boundary
conditions

(u ·n) |∂Ω=(v ·n) |∂Ω=(d ·n) |∂Ω=0, (n ·∇h(v ·τ)) |∂Ω=(n ·∇h(d ·τ)) |∂Ω=0, (2.33)

the following identities are valid:

⟨v,u ·∇hv⟩1+⟨v,∇h ·(vuT )⟩1=0, (2.34)

⟨u,∇hp⟩1=0, if ∇h ·u=0, and (n ·u) |∂Ω=0, (2.35)

−⟨v,∆hv⟩1=∥∇hv∥22 :=∥∇hv
x∥21+∥∇hv

y∥22, (2.36)

⟨v,(∇hµ)
Td⟩1=−⟨µ,∇h ·(dvT )⟩C , (2.37)

⟨v,∇h ·(µdT )⟩1=−⟨µ,(∇hv)d⟩C , (2.38)

⟨v,∇h ·(dµT )⟩1=−⟨µ,(∇hv)
Td⟩C . (2.39)

For any discrete grid function d, the discrete version of the energy is defined as

Eh(d) :=ε
−2
(1
4
∥d∥44−

1

2
∥d∥22

)
+

1

2
∥∇hd∥22. (2.40)

2.3. Unique solvability analysis. We implicitly define a linear operator Lh

as follows. Assume that the fields un, dn, and pn are fixed. For each vector µ, v=Lhµ

is the unique solution of the following convection-diffusion equation:

v−un

∆t
+

1

2
(un ·∇hv+∇h ·(v(un)T ))+∇hp

n−ν∆hv

+λ(∇hµ)
Tdn+λ∇h ·

(
βµ(dn)T +(β+1)dnµT

)
=0. (2.41)

Thus, given the time level tn and fields (un,dn,pn), we can write un+1=Lh(µ
n+1).

In turn, un+1 becomes the discrete Helmholtz projection of un+1 into divergence-free
space, which we express as un+1=Phu

n+1. Subsequently, a substitution of un+1=
Lh(µ

n+1) into (2.23) leads to the following system of equations for dn+1 and µn+1:

dn+1−dn
∆t

=−∇h ·(dn(Lh(µ
n+1))T )−(β∇h(Lh(µ

n+1))−(1+β)(∇h(Lh(µ
n+1)))T )dn
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−γµn+1, (2.42)

µn+1=ε−2(|dn+1|2dn+1−dn)−∆hd
n+1. (2.43)

We now rewrite (2.42) as

dn+1−dn
∆t

=−Gh(µ
n+1), (2.44)

Gh(µ) :=∇h ·(dn(Lhµ)
T )+(β∇h(Lhµ)+(1+β)(∇h(Lhµ))

T )dn+γµ. (2.45)

Notice that Gh : (R
N2

)2→ (RN2

)2 is a linear operator (with the discrete boundary
condition imposed). Furthermore, this linear operator is invertible, as demonstrated by
the following lemma.

Lemma 2.2. The linear operator Gh satisfies the monotonicity condition:

⟨Gh(µ
(1))−Gh(µ

(2)),µ(1)−µ(2)⟩C ≥γ∥µ(1)−µ(2)∥22≥0, (2.46)

for any µ(1), µ(2). In addition, equality is realized if and only if µ(1)=µ(2). Therefore,
the operator Gh is invertible.

Proof. We define the difference µ̃ :=µ(1)−µ(2). Since Gh is a linear operator, we
have

Gh(µ
(1))−Gh(µ

(2))

=Gh(µ̃)

=∇h ·(dn(Lhµ̃)
T )+(β∇h(Lhµ̃)+(1+β)(∇h(Lhµ̃))

T )dn+γµ̃. (2.47)

In turn, taking a discrete inner product with (2.47) by µ̃ yields

⟨Gh(µ̃),µ̃⟩C =−⟨(∇hµ̃)
Tdn,Lhµ̃⟩1−β⟨µ̃,∇h(Lhµ̃)d

n⟩C
−(1+β)⟨µ̃,(∇h(Lhµ̃)

Tdn⟩C+γ∥µ̃∥22. (2.48)

Meanwhile, we define v(i) :=Lh(µ
(i)), i=1,2, and ṽ :=v(1)−v(2)=Lhµ̃, using the lin-

earity of Lh. In addition, the definition of Lh in (2.41) implies that

ṽ

∆t
+

1

2
(un ·∇hṽ+∇h ·(ṽ(un)T ))−ν∆hṽ+λ(∇hµ̃)

Tdn

+λ∇h ·
(
βµ̃(dn)T +(β+1)dnµ̃T

)
=0. (2.49)

In turn, taking a discrete inner product with (2.49) by ṽ=Lhµ̃ leads to

1

∆t
∥ṽ∥22+ν∥∇hṽ∥22+λ⟨(∇hµ̃)

Tdn,Lhµ̃⟩1+λβ⟨µ̃,∇h(Lhµ̃)d
n⟩C

+λ(1+β)⟨µ̃,(∇h(Lhµ̃)
Tdn⟩C =0, (2.50)

in which we have made use of the following identities:

⟨un ·∇hṽ+∇h ·(ṽ(un)T ),ṽ⟩1=0, (2.51)

which follows the summation by parts formula, and

−(ṽ,∆hṽ)=∥∇hṽ∥22. (2.52)
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As a consequence of (2.50), we get

1

λ

( 1

∆t
∥ṽ∥22+ν∥∇hṽ∥22

)
=−⟨(∇hµ̃)

Tdn,Lhµ̃⟩1−β⟨µ̃,∇h(Lhµ̃)d
n⟩C

−(1+β)⟨µ̃,(∇h(Lhµ̃)
Tdn⟩C . (2.53)

Substitution of (2.53) into (2.48) yields

⟨Gh(µ̃),µ̃⟩C =
1

λ

( 1

∆t
∥ṽ∥22+ν∥∇hṽ∥22

)
+γ∥µ̃∥22. (2.54)

This is equivalent to

⟨Gh(µ
(1))−Gh(µ

(2)),µ(1)−µ(2)⟩C = ⟨Gh(µ̃),µ̃⟩C
≥γ∥µ̃∥22
=γ∥µ(1)−µ(2)∥22
≥0, (2.55)

so that (2.46) has been proved. In addition, it is clear that equality is valid if and only
if µ̃≡0, i.e., µ(1)=µ(2). The proof is complete.

Remark 2.2. The standard monotonicity condition for a linear operator Gh is given by
(Gh(µ),µ)≥0. On the other hand, since two non-homogeneous terms have been involved
in the definition (2.41) of Lhµ, namely u

n

∆t and ∇hp
n, such a monotonicity condition

is not precise. To avoid this non-homogeneous issue, we use an alternate monotonicity
condition, (Gh(µ

2)−Gh(µ
1),µ2−µ1)≥0, which turns out to be more precise.

Since the linear operator Gh maps (RN2

)2 into (RN2

)2, we see that the inverse

operator G−1
h also maps (RN2

)2 into (RN2

)2. As a direct consequence of Lemma 2.2,
the following result is available.

Corollary 2.1. The linear operator G−1
h also satisfies the monotonicity condition:

⟨G−1
h (d(1))−G−1

h (d(2)),d(1)−d(2)⟩C ≥γ∥G−1
h (d(1)−d(2))∥22≥0, (2.56)

for any d(1), d(2). In addition, the equality is valid if and only if d(1)=d(2).

Proof. We denote µ(i)=G−1
h (d(i)), i=1,2, which is equivalent to d(i)=Ghµ

(i),
i=1,2. An application of (2.46) reveals that

⟨G−1
h (d(1))−G−1

h (d(2)),d(1)−d(2)⟩C = ⟨Gh(µ
(1))−Gh(µ

(2)),µ(1)−µ(2)⟩C
≥γ∥µ(1)−µ(2)∥22
=γ∥G−1

h (d(1)−d(2))∥22
≥0. (2.57)

Clearly, the equality is valid if and only if d(1)=d(2). This finishes the proof for Corol-
lary 2.1.

The Browder-Minty lemma is needed in the unique solvability analysis.

Lemma 2.3 (Browder-Minty [4, 42]). Let X be a real, reflexive Banach space and
suppose X ′ is its dual. Let T :X→X ′ be (i) bounded; (ii) continuous; (iii) coercive,
that is,

⟨T (u),u⟩
∥u∥X

→+∞ as ∥u∥X →+∞; (2.58)
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and (iv) monotone. Then for any g∈X ′ there exists a solution u∈X of the equation
T (u)=g. Furthermore, if the operator T is strictly monotone, then the solution u is
unique.

Then we proceed into the proof of unique solvability.

Theorem 2.1. Given un, dn, and pn, the proposed numerical scheme (2.20)-(2.23)
is unconditionally uniquely solvable.

Proof. By (2.44)-(2.45), we have an alternate representation µn+1=

−G−1
h (d

n+1
−dn

∆t ). Meanwhile, with the formula (2.43), the numerical scheme (2.20)-
(2.23) is equivalent to

G−1
h (

dn+1−dn
∆t

)+ε−2(|dn+1|2dn+1−dn)−∆hd
n+1=0, (2.59)

which becomes a closed system for dn+1. In other words, the numerical solution (2.20)-
(2.23) is equivalent to the following nonlinear system:

Fh(d) :=G−1
h (

d−dn
∆t

)+ε−2(|d|2d−dn)−∆hd=0. (2.60)

It is clear that Fh maps (RN2

)2 into (RN2

)2, with the imposed discrete bound-

ary conditions. In turn, we set X=X ′=(RN2

)2, equipped with the discrete ∥·∥2
norm: ∥f∥X =∥f∥2, for any (RN2

)2 with the imposed discrete boundary conditions.
Next, we prove its continuity in the ∥·∥2 norm, with fixed values of ∆t and h. Con-

sider d(0),d(1)∈ (RN2

)2, satisfying the imposed discrete boundary conditions, with

∥d(1)−d(0)∥2= δ. In turn, we denote µ(i)=G−1
h (d

(i)
−dn

∆t ), i=0,1, respectively. By
the monotonicity estimate (2.56) (in Corollary 2.1), we see that

〈
µ(0)−µ(1),

d(0)−dn
∆t

− d
(1)−dn
∆t

〉

C
≥γ∥µ(0)−µ(1)∥22,

so that

γ

2
∥µ(0)−µ(1)∥22+

1

2γ∆t2
∥d(0)−d(1)∥22≥γ∥µ(0)−µ(1)∥22, (2.61)

which, in turn, leads to

∥µ(0)−µ(1)∥22≤
1

γ2∆t2
∥d(0)−d(1)∥22, ∥µ(0)−µ(1)∥2≤

1

γ∆t
∥d(0)−d(1)∥2. (2.62)

As a result, µ(1)→µ(0) as d(1)→d(0) in the discrete L2
h norm, for a fixed value of ∆t.

The continuity of Gh has been proved. The continuity analysis of the remaining two
terms in the expression of Fh is more straightforward:

ε−2∥(|d(0)|2d(0)−|d(1)|2d(1))∥2≤Cε−2(∥d(0)∥26+∥d(1)∥26)∥d(0)−d(1)∥6)
≤Cε−2h−3(∥d(0)∥22+∥d(1)∥22)∥d(0)−d(1)∥2),

(2.63)

and

∥∆hd
(0)−∆hd

(1)∥2≤Ch−2∥d(0)−d(1)∥2, (2.64)
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where a discrete Hölder inequality has been applied in the first step of (2.63), and
where the second step comes from a 3-D inverse inequality: h∥f∥6≤C∥f∥2. Therefore,
a combination of (2.62)-(2.63) reveals that, Fh(d

(1))→Fh(d
(0)) as d(1)→d(0) in the

discrete L2
h norm, for fixed values of ∆t and h. This finishes the continuity analysis of

Fh.
To establish the coercive property of Fh, we begin with the following expansion:

⟨Fh(d),d⟩C =⟨G−1
h (

d−dn
∆t

),d⟩C+ε−2⟨(|d|2d−dn),d⟩C+⟨−∆hd,d⟩C

=
1

∆t
(⟨G−1

h (d−dn),d−dn⟩C+⟨G−1
h (d−dn),dn⟩C)

+ε−2(∥d∥44−⟨dn,d⟩C)+∥∇hd∥22, (2.65)

with summation by parts formula applied. For the first part, we apply the monotonicity
estimate (2.56) and obtain

⟨G−1
h (d−dn),d−dn⟩C ≥γ∥G−1

h (d−dn)∥22,

⟨G−1
h (d−dn),dn⟩C ≥−γ

2
∥G−1

h (d−dn)∥22−
1

2γ
∥dn∥22, (2.66)

so that

⟨G−1
h (d−dn),d−dn⟩C+⟨G−1

h (d−dn),dn⟩C ≥ γ

2
∥G−1

h (d−dn)∥22−
1

2γ
∥dn∥22. (2.67)

For the second part of (2.65), we observe that an application of quadratic inequality
reveals that

∥d∥44≥2∥d∥22−|Ω|, −⟨dn,d⟩C ≥−1

2
(∥d∥22+∥dn∥22), (2.68)

so that

∥d∥44−⟨dn,d⟩C ≥∥d∥22−
1

2
∥dn∥22−|Ω|. (2.69)

As a result, a substitution of (2.67)-(2.69) into (2.69) leads to the following estimate:

⟨Fh(d),d⟩C
∥d∥2

≥
∥d∥22−( 12 +

1
2γ )∥d

n∥22−|Ω|
∥d∥2

=∥d∥2−
Q(0)

∥d∥2
→+∞, as ∥d∥2→+∞,

(2.70)
with Q(0)=( 12 +

1
2γ )∥d

n∥22+ |Ω|, a fixed constant. This finishes the coercive analysis of
Fh.

The remaining work is focused on establishing a monotonicity condition for the
nonlinear operator Fh(d). Given d(1), d(2), we denote d̃=d(1)−d(2), and a direct
calculation gives

Fh(d
(1))−Fh(d

(2))=G−1
h (

d(1)−d(2)
∆t

)+ε−2(|d(1)|2d(1)−|d(2)|2d(2))−∆hd̃. (2.71)

In addition, the following estimates are available:

〈
G−1
h (

d(1)−d(2)
∆t

),d(1)−d(2)
〉

C
≥0, (2.72)
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⟨|d(1)|2d(1)−|d(2)|2d(2),d(1)−d(2)⟩C ≥0, (2.73)

⟨−∆hd̃,d̃⟩C =∥∇hd̃∥22≥0, (2.74)

with equality in (2.72) and (2.73) iff d(1)=d(2). Note that we have applied (2.57) to
obtain (2.72). Then we arrive at

⟨Fh(d
(1))−Fh(d

(2)),d(1)−d(2)⟩C ≥0, (2.75)

for any d(1), d(2), with equality iff d(1)=d(2). Therefore, an application of the Browder-
Minty lemma implies a unique solution for (2.60), so that the unique solvability of
the numerical scheme (2.20)-(2.23) has been established. This finishes the proof of
Theorem 2.1.

3. Energy stability analysis

Theorem 3.1. Given un, dn, pn, and any ∆t>0, h>0, let un+1, dn+1, and pn+1 be
the unique solution triple of the proposed numerical scheme (2.20)-(2.23). The scheme

is unconditionally energy stable in the sense that Ẽh(d
n+1,un+1,pn+1)≤ Ẽh(d

n,un,pn),
where

Ẽh(d
n,un,pn) :=λEh(d

n)+
1

2
∥un∥22+

∆t2

2
∥∇hp

n∥22. (3.1)

Proof. Taking a discrete inner product of (2.23) with µn+1 gives

⟨dn+1−dn,µn+1⟩C+∆tγ∥µn+1∥22
=∆t⟨(∇hµ

n+1)Tdn,un+1⟩1−∆tβ⟨(∇hu
n+1)dn,µn+1⟩C

−∆t(1+β)⟨(∇hu
n+1)Tdn,µn+1⟩C , (3.2)

with repeated applications of summation by parts. Meanwhile, the convex splitting
treatment of the vector chemical potential (2.18)-(2.19) implies that

⟨dn+1−dn,µn+1⟩C ≥Eh(d
n+1)−Eh(d

n), (3.3)

which comes from the following energy inequalities:

⟨|dn+1|2dn+1,dn+1−dn⟩C ≥ 1

4
(∥dn+1∥44−∥dn∥44),

⟨−dn,dn+1−dn⟩C ≥−1

2
(∥dn+1∥22−∥dn∥22),

⟨−∆hd
n+1,dn+1−dn⟩C ≥ 1

2
(∥∇hd

n+1∥22−∥∇hd
n∥22). (3.4)

Taking a discrete inner product with (2.20) by un+1 leads to

1

2
(∥un+1∥22−∥un∥22+∥un+1−un∥22)+ν∥∇hu

n+1∥22+∆t⟨∇hp
n,un+1⟩1

=−λ∆t⟨(∇hµ
n+1)Tdn,un+1⟩1+λβ∆t⟨(∇hu

n+1)dn,µn+1⟩C
+λ(1+β)∆t⟨(∇hu

n+1)Tdn,µn+1⟩C , (3.5)

where the following identities have been used:

⟨un ·∇hu
n+1+∇h ·(un+1(un)T ),un+1⟩1=0, (by summation-by-parts) (3.6)
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⟨−∆hu
n+1,un+1⟩1=∥∇hu

n+1∥22. (3.7)

Regarding the term ⟨∇hp
n,un+1⟩1, the following identity is available:

⟨∇hp
n,un+1⟩1=−⟨pn,∇h ·un+1⟩C

=−⟨pn,∆t∆h(p
n+1−pn)⟩C

=∆t⟨∇hp
n,∇h(p

n+1−pn)⟩1

=
∆t

2
(∥∇hp

n+1∥22−∥∇hp
n∥22)−

∆t

2
∥∇h(p

n+1−pn)∥22

=
∆t

2
(∥∇hp

n+1∥22−∥∇hp
n∥22)−

1

2∆t
∥un+1−un+1∥22, (3.8)

where (2.22) has been applied in the derivation. A substitution of (3.8) into (3.5) yields

1

2
(∥un+1∥22−∥un∥22+∥un+1−un∥22)+ν∥∇hu

n+1∥22+
∆t2

2
(∥∇hp

n+1∥22−∥∇hp
n∥22)

=
1

2
∥un+1−un+1∥22−λ∆t⟨(∇hµ

n+1)dn,un+1⟩1+λβ∆t⟨(∇hu
n+1)dn,µn+1⟩C

+λ(1+β)∆t⟨(∇hu
n+1)Tdn,µn+1⟩C . (3.9)

Taking a discrete inner product with (2.22) by un+1 results in

∥un+1∥22−∥un+1∥22+∥un+1−un+1∥22=0, (3.10)

since ⟨un+1,∇h(p
n+1−pn)⟩1=0. A combination of the last identity with (3.9) reveals

that

1

2
(∥un+1∥22−∥un∥22)+ν∥∇hu

n+1∥22+
∆t2

2
(∥∇hp

n+1∥22−∥∇hp
n∥22)

≤−λ∆t⟨(∇hµ
n+1)Tdn,un+1⟩1+λβ∆t⟨(∇hu

n+1)dn,µn+1⟩C
+λ(1+β)∆t⟨(∇hu

n+1)Tdn,µn+1⟩C . (3.11)

Finally, a combination of (3.2), (3.3) and (3.11) yields the desired stability result:

λ(Eh(d
n+1)−Eh(d

n))+∆tγ∥µn+1∥22+
1

2
(∥un+1∥22−∥un∥22)

+ν∥∇hu
n+1∥22+

∆t2

2
(∥∇hp

n+1∥22−∥∇hp
n∥22)≤0, (3.12)

which in turn implies the desired unconditional energy stability result:

λEh(d
n+1)+

1

2
∥un+1∥22+

∆t2

2
∥∇hp

n+1∥22≤λEh(d
n)+

1

2
∥un∥22+

∆t2

2
∥∇hp

n∥22.

This completes the proof of the theorem.

Remark 3.1. In the decomposition (3.1) for the modified energy functional

Ẽh(d
n,un,pn), we see that λEh(d

n) is the standard phase field energy, 1
2∥un∥22 stands

for the kinematic energy, and ∆t2

2 ∥∇hp
n∥22 turns out to be an additional correction term

associated with the numerical scheme. In other words, the first two terms correspond
to the physical energy in the continuous version (1.14), while the additional correction
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term does not have any physical meaning; this additional correction term is of order
O(∆t2), and it appears because of the decoupled treatment of the Stokes solver.

As a result of this energy stability, we are able to derive a uniform-in-time H1
h,

L4
h and L6

h bounds for the numerical solution, which will be extensively used in the
convergence analysis. Before the statement of the desired result, we need the following
discrete Sobolev inequality; its proof will be provided in the appendix.

Lemma 3.1. For any grid function f , we have

∥f∥6≤C1∥f∥H1
h
, where ∥f∥2H1

h
:=∥f∥22+∥∇hf∥22, (3.13)

∥f∥4≤C2(∥f∥2+∥f∥
1
4
2 ·∥∇hf∥

3
4
2 ), (3.14)

∥∇hf∥4≤C2∥∇hf∥
1
4
2 ·∥∆hf∥

3
4
2 , (3.15)

∥f∥∞≤C3(∥f∥2+∥∇hf∥
1
2
2 ·∥∆hf∥

1
2
2 ), (3.16)

with Ci only dependent on Ω, 1≤ i≤3.

Corollary 3.1. Given initial data u0, d0, and p0, where p0 is obtained by the
discrete Poisson problem (2.27), the following H1

h, L
4
h and L6

h bounds for the numerical
solution are available:

max
1≤k≤M

∥dk∥H1
h
≤M (1)

0 , max
1≤k≤M

∥dk∥4≤M (4)
0 , max

1≤k≤M
∥dk∥6≤M (6)

0 , (3.17)

where M
(1)
0 , M

(4)
0 and M

(6)
0 are time independent. Moreover, M

(4)
0 is ε-independent,

M
(1)
0 and M

(6)
0 are order of O(ε−1).

Proof. By the energy stability estimate in Theorem 3.1, the following induction
could be made:

Eh(d
k)≤ Ẽh(d

k,uk,pk)≤ ...≤ Ẽh(d
0,u0,p0) :=M̃0, ∀k≥0, (3.18)

in which M̃0 is of order O(ε−2). In turn, by the definition (2.40), we get

1

4
∥dk∥44−

1

2
∥dk∥22+

ε2

2
∥∇hd

k∥22≤ε2M̃0. (3.19)

On the other hand, an application of quadratic inequality, 1
8 |d

k|4− 1
2 |d

k|2≥− 1
2 (at a

point-wise level), implies that

1

8
∥dk∥44−

1

2
∥dk∥22≥−1

2
|Ω|, (3.20)

and its combination with (3.19) leads to

1

8
∥dk∥44≤ε2M̃0+

1

2
|Ω|,

which implies that

∥dk∥4≤
(
8ε2M̃0+4|Ω|

) 1
4

:=M
(4)
0 , ∀k≥0. (3.21)

We also notice that M
(4)
0 =O(1), since ε2M̃0=O(1).
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Moreover, a more careful substitution of (3.20) into (3.19) reveals that

∥dk∥22+∥∇hd
k∥22≤2(M̃0+ε

−2|Ω|). (3.22)

Consequently, the following estimate is available:

∥dk∥H1
h
=
(
∥dk∥22+∥∇hd

k∥22
) 1

2 ≤
√
2(M̃0+ε

−2|Ω|) 1
2 :=M

(1)
0 , (3.23)

withM
(1)
0 =O(ε−1). Finally, an application of the discrete Sobolev inequality (3.13) (in

Lemma 3.1) indicates that

∥dk∥6≤C1∥dk∥H1
h
≤C1M

(1)
0 :=M

(6)
0 , ∀k≥0, (3.24)

with M
(6)
0 =O(ε−1). This completes the proof of Corollary 3.1.

4. Optimal rate convergence analysis

We denote D=de and P =pe as the exact solutions for the phase field d and the
pressure variable, respectively. For the velocity, we note that the exact velocity ue is
not divergence-free at the discrete level (∇h ·ue ̸=0). To overcome this difficulty, we
must also construct an approximate solution to the velocity vector (again through the
exact solution), which satisfies the divergence-free conditions at the discrete level. In
more details, for the exact velocity vector ue, there is an exact stream function vector
ψe=(ψ1e,ψ2e,ψ3e)

T so that ue=∇⊥ψe. Subsequently, we construct the U as

U =∇⊥
hψe=(Dyψ3e−Dzψ2e,Dzψ1e−Dxψ3e,Dxψ2e−Dyψ1e)

T , (4.1)

at the staggered mesh points. In turn, we have ∇h ·U =0 at a point-wise level. In
addition, we construct an approximate velocity vector U by

U
n+1

=Un+1+∆t∇h(P
n+1−Pn), (4.2)

at each time step. A careful Taylor expansion in time implies that

∥Un+1−Un+1∥W 2,∞
h

≤C∆t2, with ∥f∥W 2,∞
h

:=∥f∥∞+∥∇hf∥∞+∥∇h(∇hf)∥∞.
(4.3)

Furthermore, the cell-centered grid function Γ, a numerical approximation to the
chemical potential, is defined as

Γn+1 :=ε−2((Dn+1)3−Dn)−∆hD
n+1. (4.4)

Because of the O(∆t2) approximation of U
n+1

to Un+1, as given by (4.2), the
following local truncation error estimates for the PDE system are available:

U
n+1−Un

∆t
+

1

2
(Un ·∇hU

n+1
+∇h ·(U

n+1
(Un)T ))+∇hP

n−ν∆hU
n+1

+λ(∇hΓ
n+1)TDn+λ∇h ·

(
βΓn+1(Dn)T +(β+1)Dn(Γn+1)T

)
= τn+1

u , (4.5)

Un+1−Un+1

∆t
+∇h(P

n+1−Pn)=0, ∇h ·Un+1=0, (4.6)
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Dn+1−Dn

∆t
+∇h ·(Dn(U

n+1
)T )+(β∇hU

n+1
+(1+β)(∇hU

n+1
)T )Dn

=−γΓn+1+τn+1
d , (4.7)

with ∥τn+1
u ∥2,∥τn+1

d ∥H1
h
≤C(∆t+h2).

The numerical error functions are defined as

d̃
m
:=Dm−dm, µ̃m :=Γm−µm,

ũm :=Um−um, ũ
m
:=U

m−um, p̃m=Pm−pm.

Subtracting (4.5)-(4.7) from (2.20)-(2.23) yields

ũ
n+1− ũn

∆t
+

1

2
(un ·∇hũ

n+1
+ ũn ·∇hU

n+1
+∇h ·(ũ

n+1
(un)T +U

n+1
(ũn)T ))+∇hp̃

n

−ν∆hũ
n+1

+λ(∇hΓ
n+1)T d̃

n
+λ(∇hµ̃

n+1)Tdn

+λ∇h ·
(
β(Γn+1(d̃

n
)T + µ̃n+1(dn)T )+(β+1)(d̃

n
(Γn+1)T +dn(µ̃n+1)T )

)
= τn+1

u ,

(4.8)

ũn+1− ũn+1

∆t
+∇h(p̃

n+1− p̃n)=0, ∇h · ũn+1=0, (4.9)

d̃
n+1− d̃n

∆t
+∇h ·(d̃

n
(U

n+1
)T +dn(ũ

n+1
)T )+(β∇hU

n+1
+(1+β)(∇hU

n+1
)T )d̃

n

+(β∇hũ
n+1

+(1+β)(∇hũ
n+1

)T )dn=−γµ̃n+1+τn+1
d , (4.10)

for 0≤n≤M . We also observe that d̃
0≡0, ũ0≡0, and p̃0=O(h2).

With the assumed regularities for the exact solution, the constructed approximate
solutions Γm and U

m
obey the following estimates:

∥Γm∥∞+∥∇hΓ
m∥∞≤C∗, ∥Um∥∞+∥∇hU

m∥∞≤C∗, ∀m≥0. (4.11)

For the numerical solution, the uniform-in-time L4
h and L6

h bounds have been derived
in (3.17) in Corollary 3.1.

Before we proceed into the detailed error estimate, we take a more careful look at
the numerical error associated with the chemical potential. We begin with the following
expansion:

µ̃n+1=Γn+1−µn+1=Nn+1
1 −∆hd̃

n+1
, (4.12)

where

Nn+1
1 :=ε−2

(
|dn+1|2d̃n+1

+((Dn+1+dn+1) · d̃n+1
)Dn+1− d̃n

)
. (4.13)

Furthermore, the following preliminary results will be extensively utilized in the con-
vergence analysis.

Lemma 4.1. For the nonlinear error expansion (4.13), we have

∥Nn+1
1 ∥2≤

3

2
ε−2((M

(6)
0 )2+(C∗)2)(∥d̃n+1∥2+∥∇hd̃

n+1∥2)+ε−2∥d̃n∥2, (4.14)
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∥Nn+1
1 ∥3≤

3

2
ε−2((M

(6)
0 )2+(C∗)2)∥d̃n+1∥∞+ε−2∥d̃n∥3, (4.15)

∥∇hNn+1
1 ∥ 3

2
≤Cε−2

(
((M

(6)
0 )2+(M

(1)
0 )2+(C∗)2)(∥∇hd̃

n+1∥3+∥d̃n+1∥∞)+∥d̃n∥3
)
. (4.16)

Proof. Based on the nonlinear expansion (4.13), a careful analysis implies that

∥Nn+1
1 ∥2≤ε−2

(
∥dn+1∥26 ·∥d̃

n+1∥6+(∥Dn+1∥6+∥dn+1∥6)∥Dn+1∥6 ·∥d̃
n+1∥6+∥d̃n∥2

)

≤ε−2
(3
2
(∥dn+1∥26+∥Dn+1∥26)∥d̃

n+1∥6+∥d̃n∥2
)

≤ 3

2
ε−2((M

(6)
0 )2+(C∗)2)(∥d̃n+1∥2+∥∇hd̃

n+1∥2)+ε−2∥d̃n∥2, (4.17)

so that (4.14) is valid, in which the discrete Sobolev inequality (3.13) (in Lemma 3.1)
has been used in the last step.

For the discrete ∥·∥3 estimate, we apply an alternate discrete Hölder inequality and
obtain

∥Nn+1
1 ∥3≤ε−2

(
∥dn+1∥26 ·∥d̃

n+1∥∞+(∥Dn+1∥6+∥dn+1∥6)∥Dn+1∥6 ·∥d̃
n+1∥∞+∥d̃n∥3

)

≤ε−2
(3
2
(∥dn+1∥26+∥Dn+1∥26)∥d̃

n+1∥∞+∥d̃n∥3
)

≤ 3

2
ε−2((M

(6)
0 )2+(C∗)2)∥d̃n+1∥∞+ε−2∥d̃n∥3, (4.18)

so that (4.15) has been proved.

Similarly, for the gradient of Nn+1
1 , we carry out a local expansion and get the

following estimate:

∥∇hNn+1
1 ∥ 3

2
≤Cε−2

(
∥dn+1∥26 ·∥∇hd̃

n+1∥3+∥dn+1∥6 ·∥∇hd
n+1∥2 ·∥d̃

n+1∥∞

+(∥Dn+1∥6+∥dn+1∥6)∥Dn+1∥6 ·∥∇hd̃
n+1∥3

+(∥Dn+1∥6+∥dn+1∥6)(∥∇hD
n+1∥2+∥∇hd

n+1∥2) ·∥d̃
n+1∥∞+∥d̃n∥ 3

2

)

≤Cε−2
(
(∥dn+1∥26+∥Dn+1∥26)(∥∇hd̃

n+1∥3+∥d̃n+1∥∞)+∥d̃n∥3
)

≤Cε−2
(
((M

(6)
0 )2+(M

(1)
0 )2+(C∗)2)(∥∇hd̃

n+1∥3+∥d̃n+1∥∞)+∥d̃n∥3
)
,

(4.19)

so that (4.16) becomes available. This finishes the proof of Lemma 4.1.

4.1. The L∞
∆t(0,T ;L

2
h)∩L2

∆t(0,T ;H
1
h) error estimate for the phase field equa-

tion. Taking a discrete inner product with (4.10) by d̃
n+1

gives

∆t⟨τn+1
d ,d̃

n+1⟩C =
1

2
(∥d̃n+1∥22−∥d̃n∥22+∥d̃n+1− d̃n∥22)+γ∆t⟨µ̃n+1,d̃

n+1⟩C

−∆t⟨d̃n(Un+1
)T +dn(ũ

n+1
)T ,∇hd̃

n+1⟩1
+∆t⟨(β∇hU

n+1
+(1+β)(∇hU

n+1
)T )d̃

n
,d̃

n+1⟩C
+∆t⟨(β∇hũ

n+1
+(1+β)(∇hũ

n+1
)T )dn,d̃

n+1⟩C . (4.20)
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The bound for the local truncation error term is straightforward:

⟨τn+1
d ,d̃

n+1⟩C ≤ 1

2
(∥τn+1

d ∥22+∥d̃n+1∥22). (4.21)

For the term associated with the chemical potential dissipation, we make use of the
expansion (4.12), and arrive at

⟨µ̃n+1,d̃
n+1⟩C ≥−ε−2⟨d̃n,d̃n+1⟩C+∥∇hd̃

n+1∥22
≥−ε

−2

2
(∥d̃n∥22+∥d̃n+1∥22)+∥∇hd̃

n+1∥22. (4.22)

For the nonlinear terms, the following parts could be analyzed based on the regularity
estimates (4.11):

⟨d̃n(Un+1
)T ,∇hd̃

n+1⟩1≤C∗∥d̃n∥2 ·∥∇hd̃
n+1∥2

≤2(C∗)2γ−1∥d̃n∥22+
γ

8
∥∇hd̃

n+1∥22, (4.23)

−β⟨∇hU
n+1

d̃
n
,d̃

n+1⟩C ≤βC∗∥d̃n∥2 ·∥d̃
n+1∥2≤

βC∗

2
(∥d̃n∥22+∥d̃n+1∥22), (4.24)

−(1+β)⟨(∇hU
n+1

)T d̃
n
,d̃

n+1⟩C ≤ (1+β)C∗∥d̃n∥2 ·∥d̃
n+1∥2

≤ (1+β)C∗

2
(∥d̃n∥22+∥d̃n+1∥22). (4.25)

For the nonlinear term ⟨dnũn+1
,∇hd̃

n+1⟩1, the following analysis could be performed:

⟨dn(ũn+1
)T ,∇hd̃

n+1⟩1≤∥dn∥4 ·∥ũ
n+1∥4 ·∥∇hd̃

n+1∥2≤M (4)
0 ∥ũn+1∥4 ·∥∇hd̃

n+1∥2
≤4(M

(4)
0 )2γ−1∥ũn+1∥24+

γ

8
∥∇hd̃

n+1∥24. (4.26)

The two other nonlinear terms could be analyzed in a similar manner:

−β⟨∇hũ
n+1

dn,d̃
n+1⟩C

≤β∥∇hũ
n+1∥2 ·∥dn∥4 ·∥d̃

n+1∥4≤βM (4)
0 ∥∇hũ

n+1∥2 ·∥d̃
n+1∥4

≤ ν

8λ
∥∇hũ

n+1∥22+2β2(M
(4)
0 )2λν−1∥d̃n+1∥24, (4.27)

−(1+β)⟨(∇hũ
n+1

)Tdn,d̃
n+1⟩C ≤ (1+β)∥∇hũ

n+1∥2 ·∥dn∥4 ·∥d̃
n+1∥4

≤(1+β)M
(4)
0 ∥∇hũ

n+1∥2 ·∥d̃
n+1∥4

≤ ν

8λ
∥∇hũ

n+1∥22+2(1+β)2(M
(4)
0 )2λν−1∥d̃n+1∥24. (4.28)

Subsequently, a substitution of (4.21), (4.22), (4.23)-(4.25), (4.26)-(4.28) into (4.20)
results in

∥d̃n+1∥22−∥d̃n∥22+
5

4
γ∆t∥∇hd̃

n+1∥22−
ν

2
∆t∥∇hũ

n+1∥22

≤Dn
11∆t(∥d̃

n∥22+∥d̃n+1∥22)+Dn+1
2 ∆t∥ũn+1∥24+Dn+1

3 ∆t∥d̃n+1∥24+∆t∥τn+1
d ∥22, (4.29)
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where

Dn
11 :=ε

−2+4(C∗)2γ−1+(2β+1)C∗+1,

Dn+1
2 :=8(M

(4)
0 )2γ−1, (4.30)

Dn+1
3 :=4(2β2+2β+1)(M

(4)
0 )2λν−1.

4.2. The L∞
∆t(0,T ;L

2
h)∩L2

∆t(0,T ;H
1
h) error estimate for the momentum

equation. Taking a discrete inner product of (4.8) with ũ
n+1

gives

1

2∆t
(∥ũn+1∥22−∥ũn∥22+∥ũn+1− ũn∥22)+ν∥∇hũ

n+1∥22+⟨∇hp̃
n,ũ

n+1⟩1−⟨τn+1
u ,ũ

n+1⟩1

+
1

2
⟨un ·∇hũ

n+1
+ ũn ·∇hU

n+1
+∇h ·(ũ

n+1
(un)T +U

n+1
(ũn)T ),ũ

n+1⟩1

+λ⟨(∇hΓ
n+1)T d̃

n
,ũ

n+1⟩1+λ⟨Γn+1,
(
β(∇hũ

n+1
)+(β+1)(∇hũ

n+1
)T
)
d̃
n⟩C

+λ⟨(∇hµ̃
n+1)Tdn,ũ

n+1⟩1+λ⟨µ̃n+1,
(
β(∇hũ

n+1
)+(β+1)(∇hũ

n+1
)T
)
dn⟩C =0, (4.31)

in which the summation by parts formulas (2.34)-(2.39) have been repeatedly applied.
Similarly, the bound for the local truncation error term is standard:

⟨τn+1
u ,ũ

n+1⟩1≤
1

2
(∥τn+1

u ∥22+∥ũn+1∥22). (4.32)

For the pressure gradient term, the following analysis could be performed:

⟨∇hp̃
n,ũ

n+1⟩1=−⟨p̃n,∇h · ũ
n+1⟩C

=−⟨p̃n,∆t∆h(p̃
n+1− p̃n)⟩C =∆t⟨∇hp̃

n,∇h(p̃
n+1− p̃n)⟩1

=
∆t

2
(∥∇hp̃

n+1∥22−∥∇hp̃
n∥22)−

∆t

2
∥∇h(p̃

n+1− p̃n)∥22

=
∆t

2
(∥∇hp̃

n+1∥22−∥∇hp̃
n∥22)−

1

2∆t
∥ũn+1− ũn+1∥22, (4.33)

in which the numerical error Equation (4.8) has been repeatedly applied in the deriva-
tion. For the linearized fluid convection terms, we make the following observation;

⟨un ·∇hũ
n+1

+∇h ·(ũ
n+1

(un)T ),ũ
n+1⟩1=0, (4.34)

which comes from the summation by parts formula. The remaining two terms in the
fluid convection part could be controlled in a standard way:

−⟨ũn ·∇hU
n+1

,ũ
n+1⟩1≤C∗∥ũn∥2 ·∥ũ

n+1∥2≤
C∗

2
(∥ũn∥22+∥ũn+1∥22), (4.35)

−⟨∇h ·(U
n+1

(ũn)T ),ũ
n+1⟩1= ⟨Un+1

(ũn)T ,∇hũ
n+1⟩≤C∗∥ũn∥2 ·∥∇hũ

n+1∥2
≤2(C∗)2ν−1∥ũn∥22+

ν

8
∥∇hũ

n+1∥2, (4.36)

with an application of the regularity estimates (4.11).
The next three nonlinear inner product terms could be controlled via a similar

approach:

−λ⟨(∇hΓ
n+1)T d̃

n
,ũ

n+1⟩1≤C∗λ∥d̃n∥2 ·∥ũ
n+1∥2≤

C∗λ

2
(∥d̃n∥22+∥ũn+1∥22), (4.37)
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βλ⟨Γn+1,(∇hũ
n+1

)d̃
n⟩C ≤βC∗λ∥d̃n∥2 ·∥∇hũ

n+1∥2
≤4(βC∗λ)2ν−1∥d̃n∥22+

ν

16
∥∇hũ

n+1∥22, (4.38)

(1+β)λ⟨Γn+1,(∇hũ
n+1

)T d̃
n⟩C ≤ (1+β)C∗λ∥d̃n∥2 ·∥∇hũ

n+1∥2
≤4((1+β)C∗λ)2ν−1∥d̃n∥22+

ν

16
∥∇hũ

n+1∥22. (4.39)

For the remaining three nonlinear inner product terms, we have to make use of
the chemical potential error expansion (4.12) and apply the corresponding estimates in
Lemma 4.1. In more details, we begin with the following identity

−λ⟨(∇hµ̃
n+1)Tdn,ũ

n+1⟩1
=λ⟨(∇h∆hd

n+1)Tdn,ũ
n+1⟩1−λ⟨(∇hNn+1

1 )Tdn,ũ
n+1⟩1. (4.40)

For the second term on the right-hand side, the following analysis is undertaken:

−λ⟨(∇hNn+1
1 )Tdn,ũ

n+1⟩1
≤λ∥∇hNn+1

1 ∥ 3
2
·∥dn∥6 ·∥ũ

n+1∥6
≤C1λM

(6)
0 (∥ũn+1∥2+∥∇hũ

n+1∥2)∥∇hNn+1
1 ∥ 3

2

≤ C1λM
(6)
0

2
∥ũn+1∥22+

ν

16
∥∇hũ

n+1∥22+C5∥∇hNn+1
1 ∥23

2
, (4.41)

with C5=
C1λM

(6)
0

2 +4(C1λM
(6)
0 )2ν−1. Moreover, with an application of (4.16) in

Lemma 4.1, we obtain

−λ⟨(∇hµ̃
n+1)Tdn,ũ

n+1⟩1

≤λ⟨(∇h∆hd
n+1)Tdn,ũ

n+1⟩1+
C1λM

(6)
0

2
∥ũn+1∥22+

ν

16
∥∇hũ

n+1∥22

+C6ε
−4(∥∇hd̃

n+1∥23+∥d̃n+1∥2∞+∥d̃n∥23), (4.42)

with C6=CC5((M
(6)
0 )4+(M

(1)
0 )4+(C∗)4+1). Similarly, the last two nonlinear inner

product terms could be analyzed as follows:

βλ⟨Nn+1
1 ,(∇hũ

n+1
)dn⟩C

≤βλ∥Nn+1
1 ∥3 ·∥dn∥6 ·∥∇hũ

n+1∥2
≤βλM (6)

0 ∥Nn+1
1 ∥3 ·∥∇hũ

n+1∥2
≤2(βλM

(6)
0 )2ν−1∥Nn+1

1 ∥23+
ν

8
∥∇hũ

n+1∥22, (4.43)

βλ⟨µ̃n+1,(∇hũ
n+1

)dn⟩C
=−βλ⟨∆hd̃

n+1
,(∇hũ

n+1
)dn⟩C+βλ⟨Nn+1

1 ,(∇hũ
n+1

)dn⟩C
≤−βλ⟨(∇hũ

n+1
)dn,∆hd̃

n+1⟩+ ν

8
∥∇hũ

n+1∥22+2(βλM
(6)
0 )2ν−1∥Nn+1

1 ∥23

≤−βλ⟨(∇hũ
n+1

)dn,∆hd̃
n+1⟩+ ν

8
∥∇hũ

n+1∥22+ε−4(C7∥d̃
n+1∥2∞+C8∥d̃

n∥23), (4.44)

with C7=36(βλM
(6)
0 )2ν−1((M

(6)
0 )4+(C∗)4), C8=4(βλM

(6)
0 )2ν−1,

(1+β)λ⟨Nn+1
1 ,(∇hũ

n+1
)Tdn⟩C ≤ (1+β)λ∥Nn+1

1 ∥3 ·∥dn∥6 ·∥∇hũ
n+1∥2
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≤ (1+β)λM
(6)
0 ∥Nn+1

1 ∥3 ·∥∇hũ
n+1∥2

≤2((1+β)λM
(6)
0 )2ν−1∥Nn+1

1 ∥23+
ν

8
∥∇hũ

n+1∥22, (4.45)

(1+β)λ⟨µ̃n+1,(∇hũ
n+1

)Tdn⟩C
=−(1+β)λ⟨∆hd̃

n+1
,(∇hũ

n+1
)Tdn⟩C+(1+β)λ⟨Nn+1

1 ,(∇hũ
n+1

)Tdn⟩C
≤−(1+β)λ⟨(∇hũ

n+1
)Tdn,∆hd̃

n+1⟩C+
ν

8
∥∇hũ

n+1∥22+2((1+β)λM
(6)
0 )2ν−1∥Nn+1

1 ∥23

≤−(1+β)λ⟨(∇hũ
n+1

)Tdn,∆hd̃
n+1⟩C+

ν

8
∥∇hũ

n+1∥22+ε−4(C9∥d̃
n+1∥2∞+C10∥d̃

n∥23),
(4.46)

with C9=36((1+β)λM
(6)
0 )2ν−1((M

(6)
0 )4+(C∗)4), C10=4((1+β)λM

(6)
0 )2ν−1.

Meanwhile, for the other velocity error Equation (4.9), its discrete inner product
with ũn+1 implies that

∥ũn+1∥22−∥ũn+1∥22+∥ũn+1− ũn+1∥22=0, since ⟨ũn+1,∇h(p̃
n+1− p̃n)⟩1=0. (4.47)

Subsequently, we substitute (4.32), (4.33), (4.34)-(4.36), (4.37)-(4.39), (4.42), (4.44),
(4.46) into (4.31), in combination with (4.47), and obtain

∥ũn+1∥22−∥ũn∥22+∥ũn+1− ũn∥22+∆t2(∥∇hp̃
n+1∥22−∥∇hp̃

n∥22)+ν∆t∥∇hũ
n+1∥22

≤2λ∆t⟨(∇h∆hd̃
n+1

)Tdn,ũ
n+1⟩1−2λ∆t⟨(β∇hũ

n+1
+(1+β)(∇hũ

n+1
)T )dn,∆hd̃

n+1⟩C
+Dn

12∆t∥d̃
n∥22+Dn

4∆t∥ũn∥22+Dn+1
5 ∆t∥ũn+1∥22+∆t∥τn+1

u ∥22
+2ε−4∆t(C6∥∇hd̃

n+1∥23+(C6+C7+C9)∥d̃
n+1∥2∞+(C6+C8+C10)∥d̃

n∥23), (4.48)

with Dn
12=C

∗λ+8(2β2+2β+1)(C∗λ)2ν−1, Dn
4 =

C∗

2
+2(C∗)2ν−1,

Dn+1
5 =C∗(

1

2
+λ)+C1λM

(6)
0 +1. (4.49)

4.3. The L∞
∆t(0,T ;H

1
h)∩L2

∆t(0,T ;H
2
h) error estimate for the phase field

equation. Taking a discrete inner product with (4.10) by −∆hd̃
n+1

gives

1

2
(∥∇hd̃

n+1∥22−∥∇hd̃
n∥22+∥∇h(d̃

n+1− d̃n)∥22)−γ∆t⟨µ̃n+1,∆hd̃
n+1⟩C

−∆t⟨∇h ·(d̃
n
(U

n+1
)T ),∆hd̃

n+1⟩C+∆t⟨ũn+1
,(∇h∆hd̃

n+1
)Tdn⟩1

−∆t⟨(β∇hU
n+1

+(1+β)(∇hU
n+1

)T )d̃
n
,∆hd̃

n+1⟩C
−∆t⟨(β∇hũ

n+1
+(1+β)(∇hũ

n+1
)T )dn,∆hd̃

n+1⟩C =−∆t⟨τn+1
d ,∆hd̃

n+1⟩C . (4.50)

The term associated with the local truncation error could be bounded as follows:

−⟨τn+1
d ,∆hd̃

n+1⟩C = ⟨∇hτ
n+1
d ,∇hd̃

n+1⟩1≤
1

2
(∥∇hτ

n+1
d ∥22+∥∇hd̃

n+1∥22). (4.51)

For the term associated with the chemical potential dissipation, we recall the expan-
sion (4.12), as well as the estimate (4.14) (in Lemma 4.1), and arrive at the following
inequality:

−⟨µ̃n+1,∆hd̃
n+1⟩C
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=∥∆hd̃
n+1∥22−⟨Nn+1

1 ,∆hd̃
n+1⟩C

≥∥∆hd̃
n+1∥22−

1

8
∥∆hd̃

n+1∥22−2∥Nn+1
1 ∥22

≥ 7
8∥∆hd̃

n+1∥22−18ε−4((M
(6)
0 )2+(C∗)2)2(∥d̃n+1∥22+∥∇hd̃

n+1∥22)−4ε−2∥d̃n∥22. (4.52)

For the nonlinear term ⟨∇h ·(d̃
n
U

n+1
),∆hd̃

n+1⟩C , we begin with the following estimate

∥∇h ·(d̃
n
(U

n+1
)T )∥2≤C(∥U

n+1∥∞+∥∇hU
n+1∥∞) ·(∥d̃n∥2+∥∇hd̃

n∥2)
≤CC∗(∥d̃n∥2+∥∇hd̃

n∥2), (4.53)

in which the regularity estimates (4.11) have been utilized. Consequently, we get

⟨∇h ·(d̃
n
(U

n+1
)T ),∆hd̃

n+1⟩C ≤∥∇h ·(d̃
n
(U

n+1
)T )∥2 ·∥∆hd̃

n+1∥2
≤2γ−1∥∇h ·(d̃

n
(U

n+1
)T )∥22+

γ

8
∥∆hd̃

n+1∥22

≤C(C∗)2γ−1(∥d̃n∥22+∥∇hd̃
n∥22)+

γ

8
∥∆hd̃

n+1∥22. (4.54)

The two other terms, namely, β⟨∇hU
n+1

d̃
n
,∆hd̃

n+1⟩C and (1+

β)⟨(∇hU
n+1

)T d̃
n
,∆hd̃

n+1⟩C , could be handled in a more straightforward way:

β⟨∇hU
n+1

d̃
n
,∆hd̃

n+1⟩C ≤βC∗∥d̃n∥2 ·∥∆hd̃
n+1∥2

≤2(βC∗)2γ−1∥d̃n∥22+
γ

8
∥∆hd̃

n+1∥22, (4.55)

(1+β)⟨(∇hU
n+1

)T d̃
n
,∆hd̃

n+1⟩C ≤ (1+β)C∗∥d̃n∥2 ·∥∆hd̃
n+1∥2

≤2((1+β)C∗)2γ−1∥d̃n∥22+
γ

8
∥∆hd̃

n+1∥22. (4.56)

The three other nonlinear terms in (4.50) are kept in the current form, since they are
able to be cancelled with the nonlinear error terms in the velocity momentum equation.
Therefore, a substitution of (4.51), (4.52), (4.54)-(4.56) into (4.50) yields

∥∇hd̃
n+1∥22−∥∇hd̃

n∥22+
5

4
γ∆t∥∆hd̃

n+1∥22+2∆t⟨ũn+1
,(∇h∆hd̃

n+1
)Tdn⟩1

−2∆t⟨(β∇hũ
n+1

+(1+β)(∇hũ
n+1

)T )dn,∆hd̃
n+1⟩C

≤Dn
13∆t(∥d̃

n∥22+∥d̃n+1∥22)+Dn
6∆t(∥∇hd̃

n∥22+∥∇hd̃
n+1∥22)+∆t∥∇hτ

n+1
d ∥22, (4.57)

withDn
13=18ε−4((M

(6)
0 )2+(C∗)2)2+8ε−2+C(C∗)2γ−1+4(2β2+2β+1)(C∗)2γ−1,

Dn
6 =18ε−4((M

(6)
0 )2+(C∗)2)2+C(C∗)2γ−1+1. (4.58)

4.4. The convergence result. The following theorem is the main result of this
article.

Theorem 4.1. Given initial data d0,u
0∈C6(Ω), with homogeneous boundary condi-

tions, and p0 obtained by a discrete solver of (2.27), suppose the unique solution for the
Ericksen-Leslie system (1.10)-(1.12) is of regularity class R. Then, provided ∆t and h
are sufficiently small, for all positive integers n, such that ∆t ·n≤T , we have

∥d̃n∥2+∥∇hd̃
n∥2+∥ũn∥2+

(
∆t

n∑

m=1

∥∆hd̃
m∥22

) 1
2 ≤C(∆t+h2), (4.59)
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where C>0 is independent of ∆t and h.

Proof. A combination of (4.29), (4.48) and (4.57) reveals that

λ(∥d̃n+1∥22+∥∇hd̃
n+1∥22)−λ(∥d̃

n∥22+∥∇hd̃
n∥22)+∥ũn+1∥22−∥ũn∥22+∥ũn+1− ũn∥22

+
5

4
γλ∆t∥∆hd̃

n+1∥22+
ν

2
∆t∥∇hũ

n+1∥22

≤Dn
1∆t(∥d̃

n∥22+∥d̃n+1∥22)+Dn+1
2 λ∆t∥ũn+1∥24+Dn+1

3 λ∆t∥d̃n+1∥24+Dn
4∆t∥ũn∥22

+Dn+1
5 ∆t∥ũn+1∥22+Dn

6λ∆t(∥∇hd̃
n∥22+∥∇hd̃

n+1∥22)+Dn+1
7 ∆t∥∇hd̃

n+1∥24
+Dn+1

8 ∆t∥d̃n+1∥2∞+Dn
9∆t∥d̃

n∥24+∆t(λ∥τn+1
d ∥22+λ∥∇hτ

n+1
d ∥22+∥τn+1

u ∥22), (4.60)

with Dn
1 =λ(D

n
11+D

n
13)+D

n
12, Dn+1

7 =CC6ε
−4, Dn+1

8 =2(C6+C7+C9)ε
−4,

Dn
9 =C(C6+C8+C10)ε

−4, (4.61)

in which we have made use of the fact that ∥f∥3≤C∥f∥4, ∥∇hf∥3≤C∥∇hf∥4 in the
derivation. Furthermore, we notice that, the three highly nonlinear inner product terms,
namely,

2λ∆t⟨ũn+1
,(∇h∆hd̃

n+1
)Tdn⟩1,

−2βλ∆t⟨(∇hũ
n+1

)dn,∆hd̃
n+1⟩C ,

−2(1+β)λ∆t⟨(∇hũ
n+1

)Tdn,∆hd̃
n+1⟩C ,

exactly cancelled between (4.48) and (4.57). This crucial fact plays an essential role in
the convergence analysis.

Meanwhile, we observe that there are five terms involved with ∥·∥4 and ∥·∥∞ norms
on the right-hand side of (4.61). To deal with these terms, we recall the discrete Sobolev
inequalities in Lemma 3.1

∥dk∥4≤C∥dk∥6≤CC1(∥dk∥22+∥∇hd
k∥22)

1
2 , for k=n,n+1, (4.62)

Dn+1
2 λ∥ũn+1∥24≤2C2

2D
n+1
2 λ(∥ũn+1∥22+∥ũn+1∥

1
2
2 ·∥∇hũ

n+1∥
3
2
2 )

≤QC2,D
n+1
2 ,λ,ν∥ũ

n+1∥22+
ν

4
∥∇hũ

n+1∥22, (4.63)

Dn+1
7 ∥∇hd̃

n+1∥24≤2C2
2D

n+1
7 ∥∇hd̃

n+1∥
1
2
2 ·∥∆hd̃

n+1∥
3
2
2

≤QC2,D
n+1
7 ,λ,γ∥∇hd̃

n+1∥22+
γλ

4
∥∆hd̃

n+1∥22, (4.64)

Dn+1
8 ∥d̃n+1∥2∞≤2C2

3D
n+1
8 (∥d̃n+1∥22+∥∇hd̃

n+1∥2 ·∥∆hd̃
n+1∥2)

≤QC3,D
n+1
8 ,λ,γ(∥d̃

n+1∥22+∥∇hd̃
n+1∥22)+

γλ

4
∥∆hd̃

n+1∥22, (4.65)

in which Young’s inequality has been extensively applied. Consequently, a substitution
of (4.62)-(4.65) into (4.60) yields

λ(∥d̃n+1∥22+∥∇hd̃
n+1∥22)−λ(∥d̃

n∥22+∥∇hd̃
n∥22)+∥ũn+1∥22−∥ũn∥22+∥ũn+1− ũn∥22

+
3

4
γλ∆t∥∆hd̃

n+1∥22+
ν

4
∆t∥∇hũ

n+1∥22

≤ D̃n
1∆t(∥d̃

n∥22+∥d̃n+1∥22)+Dn
4∆t∥ũn∥22+D̃n+1

5 ∆t∥ũn+1∥22



KELONG CHENG, CHENG WANG, AND STEVEN M. WISE 1159

+D̃n
6∆t(∥∇hd̃

n∥22+∥∇hd̃
n+1∥22)+∆t(λ∥τn+1

d ∥22+λ∥∇hτ
n+1
d ∥22+∥τn+1

u ∥22), (4.66)

with D̃n
1 =D

n
1 +CC

2
1 (D

n+1
3 +Dn

9 )+QC3,D
n+1
8 ,λ,γ , D̃n+1

5 =Dn+1
5 +QC2,D

n+1
2 ,λ,ν ,

D̃n
6 =D

n
6λ+CC

2
1 (D

n+1
3 +Dn

9 )+QC2,D
n+1
7 ,λ,γ+QC3,D

n+1
8 ,λ,γ . (4.67)

To deal with the term ∥ũn+1∥22 on the right-hand side, we make use of the following
inequality

∥ũn+1∥22≤2(∥ũn∥22+∥ũn+1− ũn∥22), (4.68)

so that (4.66) could be rewritten as

λ(∥d̃n+1∥22+∥∇hd̃
n+1∥22)−λ(∥d̃

n∥22+∥∇hd̃
n∥22)+∥ũn+1∥22−∥ũn∥22+∥ũn+1− ũn∥22

+
3

4
γλ∆t∥∆hd̃

n+1∥22+
ν

4
∆t∥∇hũ

n+1∥22

≤ D̃n
1∆t(∥d̃

n∥22+∥d̃n+1∥22)+D̃n
4∆t∥ũn∥22+2D̃n+1

5 ∆t∥ũn+1− ũn∥22
+D̃n

6∆t(∥∇hd̃
n∥22+∥∇hd̃

n+1∥22)+∆t(λ∥τn+1
d ∥22+λ∥∇hτ

n+1
d ∥22+∥τn+1

u ∥22), (4.69)

with D̃n
4 =D

n
4 +2D̃n+1

5 . (4.70)

As a result, under the constraint that 2D̃n+1
5 ∆t≤1, we are able to apply the discrete

Gronwall inequality and obtain the desired convergence result (4.59). This finishes the
proof of Theorem 4.1.

Remark 4.1. In the classical Ericksen-Leslie system, if one denotes the left-hand side
of (1.3) for the director as d̂, the standard expression of the dissipative stress due to
the nematic (with a particular choice of the Leslie coefficients) becomes

Tv =βd̂⊗d+(β+1)d⊗ d̂.

This expression only involves first order derivatives; in particular, weak statements of
the equation for u only involve first order derivatives, and many existing finite element
numerical schemes have been based on such a classical formulation. On the other hand,
a theoretical justification of energy stability for these numerical formulations turns out
to be very challenging, due to the highly nonlinear nature of the system. Instead, we
make use of a non-standard reformulation (1.10)-(1.12), in which the vector chemical
potential µ has played a key role in both the momentum equation and the dynamical
equation for the director field. At a first glance, this reformulation has introduced a
term (∇µ)d, which is involved with the third order spatial derivative of d, and this fact
seems to make the corresponding system even more complicated. However, a careful
analysis reveals that, such an introduction of µ makes the proposed numerical scheme
(2.20)-(2.24) preserve the energy stability at the theoretical level, due to the cancellation
of the coupled terms involved with µ, and the semi-implicit treatment of these coupled
terms. In addition, the unique solvability and optimal rate convergence analysis have
been been provided in this work. As a result, the proposed numerical scheme (1.10)-
(1.12) preserves all three properties at a theoretical level.

In terms of the practical numerical implementation, such an introduction of third
order spatial derivatives, in the form of (∇µ)d, will not cause any essential difficulty,
either. In the finite difference spatial approximation, such an idea has been widely
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applied to the single-phase-variable gradient flow coupled with incompressible fluid mo-
tion, such as Cahn-Hilliard-Helle-Shaw model [9,10]; great successes have been reported
in these finite difference simulations, and the appearance of ∇hµ has not caused any
computational trouble, since an intermediate variable has been introduced to denote
µ. In the finite element spatial approximation, a mixed finite element approach has
been successfully applied for the corresponding numerical system, and many promis-
ing numerical results have been reported for both the Cahn-Hilliard-Helle-Shaw and
Cahn-Hilliard-Navier-Stokes system [17,19,25,41], et cetera.

For the proposed numerical scheme (2.20)-(2.24) to the Ericksen-Leslie system, the
detailed numerical solver and the accuracy test numerical results will be presented in
the next section. A very efficient iteration solver will be outlined, and the presented
numerical results will demonstrate great promises. In other words, an introduction of
third order spatial derivative does not cause any practical computational trouble, if the
iteration solver is carefully designed.

5. The numerical solver and the numerical results

5.1. A nonlinear iteration solver. Following the analyses in Section 2, the
fully discrete numerical system (2.20), (2.23) and (2.24) could be rewritten as

Fh(d) :=G−1
h

(
d−dn
∆t

)
+ε−2(|d|2d−dn)−∆hd=0, (5.1)

where the discrete operators Gh and Lh are defined as

Gh(µ) :=∇h ·(dn(Lhµ)
T )+(β∇h(Lh(µ))+(1+β)(∇h(Lh(µ)))

T )dn+γµ,

Lh(µ)−un

∆t
+

1

2
(un ·∇h(Lhµ)+∇h ·(Lhµ(u

n)T ))−ν∆h(Lhµ)

=−∇hp
n−λ(∇hµ)

Tdn−λ∇h ·
(
βµ(dn)T +(β+1)dnµT

)
. (5.2)

Notice that both Lh and Gh are non-symmetric linear operators, with positive eigen-
values, following the arguments in Section 2. In fact, the following linear iteration
algorithm could be applied to solve Gh(µ)=g (so that µ=G−1

h g):

(γ+ω)µ(k+1)=−∇h ·
(
dn
(
Lh(µ

(k))
)T)

+
(
β∇h

(
Lh

(
µ(k)

))
+(1+β)∇h

(
Lh

(
µ(k)

))T)
dn+ωµ(k)+g, (5.3)

where ω≥0 is an O(1) relaxation parameter and µ(k) and µ(k+1) stand for the kth and
k+1st iteration stages in the approximate solution of Gh(µ)=g, respectively. Extensive
numerical experiments have demonstrated that a four iteration loop is sufficient to
obtain an exact numerical solution to Ghµ=g (up to the machine precision), with the
initial guess for µ taken as the numerical solution at the previous time step. As a result,
the computation of G−1

h g only requires a few Poisson solvers (which are needed in the
update of Lh(µ)), and such a linear iteration turns out to be a very efficient algorithm.

Meanwhile, it is observed that the original numerical system (5.1) is nonlinear,
due to the nonlinear chemical potential part ε−2|d|2d. On the other hand, we also
notice that, the implicit part of the full chemical potential appearing in (5.1), namely
ε−2|d|2d−∆hd, corresponds to a discrete convex energy. Motivated by this fact, we
apply a preconditioned steepest descent (PSD) iteration algorithm to solve for (5.1).
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The essential idea of the PSD solver is to use a linearized version of the nonlinear
operator as a pre-conditioner. Specifically, the preconditioner, Jh is defined as

Jh[ψ] :=
1

∆t
G−1
h ψ+ε−2ψ−∆hψ, (5.4)

and is a linear operator with positive eigenvalues. Specifically, this “metric” is used to
find an appropriate search direction for the steepest descent solver. Given the current
iterate d(k), we define the following search direction problem: find q(k) such that

Jhq
(k)=r(k), r(k) :=Fh(d

(k)), (5.5)

where r(k) is the nonlinear residual of the kth iterate d(k). In fact, this equation can
be efficiently solved using the Fast Fourier Transform (FFT). Subsequently, the next
iterate is obtained as

d(k+1) :=d(k)+α(k)q(k)=(d
(k)
1 +α

(k)
1 q

(k)
1 ,d

(k)
2 +α

(k)
2 q

(k)
2 )T , (5.6)

where α(k)=(α
(k)
1 ,α

(k)
2 )∈R

2 is the unique solution to the steepest descent line problem

(
(Fh(d

(k)+α(k)q(k)))1,q
(k)
1

)
=0,

(
(Fh(d

(k)+α(k)q(k)))2,q
(k)
2

)
=0.

(5.7)

This is a nonlinear system for (α
(k)
1 ,α

(k)
2 ), in which the linear part corresponds to a

matrix with positive eigenvalues (analogous to estimate (2.46)), and the nonlinear part
has a positive definite Jacobian matrix (due to the convex energy for the nonlinear
implicit part). As a result, such a 2×2 nonlinear system could be very efficiently solved
by the Newton iteration.

Remark 5.1. The PSD iteration algorithm can be viewed as a quasi-Newton method,
with an orthogonalization (line search) step, and Jh may be viewed as an approximation
of the Jacobian. In fact, if G−1

h is a symmetric operator, the numerical system (5.1)
would correspond to the discretization of certain gradient flow, and such a numerical
system. could be recast as a minimization of a discrete convex energy functional. In this
case, a theoretical analysis ensures a geometric convergence of the iteration sequence; see
the related work in [23], and the applications of the PSD solver to various gradient flow
models [11, 13, 22, 24]. On the other hand, the operator G−1

h , as introduced in (5.2), is
not symmetric, while it is monotone, as stated in (2.46). For the numerical system (5.1)
reported in this work, the geometric convergence analysis for the PSD iteration sequence
is not directly applicable, while extensive numerical experiments have demonstrated
such a geometric convergence rate in the practical computations. Therefore, only five
to six iteration stages are needed for the proposed PSD iteration solver in the numerical
implementation of (5.1), and the overall computation cost turns out to be of the same
level as that for a standard Poisson solver. The theoretical justification of geometric
convergence rate for the PSD iteration sequence will be left to the future works, with
some technical details expected.

5.2. Convergence test for the proposed numerical scheme. In this subsec-
tion we perform a numerical accuracy check for the proposed numerical scheme (2.20)-
(2.24). The computational domain is chosen as Ω=(0,1)2, and the exact profiles for d,
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u, µ and p are set to be

de(x,y,t)=
1

2π

(

sin(2πx)cos(2πy),cos(2πx)sin(2πy)
)T

cos(t),

µe(x,y,t)=ε
−2(|de|

2
de−de)−∆de,

ue(x,y,t)=
1

2π

(

−sin(2πx)cos(2πy),cos(2πx)sin(2πy)
)T

cos(t),

pe(x,y,t)=
1

2π
cos(2πx)cos(2πy)cos(t).

(5.8)

The physical parameters are taken as: ε=0.5, ν=0.5, λ=1, β=−0.5, and γ=2. To make
(de,µe,ue,pe) satisfy the original PDE system (1.10)-(1.12), we have to add an artificial, time-
dependent forcing term. The proposed scheme (2.20)-(2.24) can be solved in the rewritten
form (5.1), based on the nonlinear PSD iteration algorithm (5.4)-(5.7), combined with linear
iteration method (5.3) to obtain G−1

h g.
In the accuracy check for the temporal accuracy, we fix the spatial resolution as N =256

(with h= 1

256
), so that the spatial numerical error is negligible. The final time is set as T =

1. Naturally, a sequence of time step sizes are taken as ∆t= T
NT

, with NT =100 : 100 : 1000.

The expected temporal numerical accuracy assumption e=C∆t indicates that ln |e|=ln(CT )−
lnNT , so that we plot ln |e| vs. lnNT to demonstrate the temporal convergence order. The
fitted line displayed in Figure 5.1 shows an approximate slope of -0.9861, which in turn verifies
a very nice first order temporal convergence order, for the physical variables: d1, d2, u and v,
in both the discrete L2

h and L∞
h norms.

In the accuracy test for the spatial accuracy, we set the time size as ∆t=h2, with h= 1

N
,

so that the second order spatial accuracy could be confirmed. Again, the final time is set as
T =1. A sequence of spatial resolutions are taken as N =48 : 8 : 120. The expected temporal
numerical accuracy assumption e=C(∆t+h2)=C′h2 (due to the fact that ∆t=h2) indicates
that ln |e|=lnC−2lnN , so that we plot ln |e| vs. lnN to demonstrate the temporal convergence
order. The fitted line displayed in Figure 5.2 shows an approximate slope of -2.0092, which in
turn verifies a perfect second convergence order in space, for the physical variables: d1, d2, u
and v.

The initial and final time contour plots for the field d=(d1,d2)
T are displayed in Figure 5.3.

Moreover, to illustrate the numerical convergence, we present a comparison between the
exact solution and the numerical solution at the final time T =1, for d1 at the y=0.5 cut, for
d2 at the x=0.5 cut, respectively, in Figure 5.4. A very nice agreement could be observed in
the plots.

Remark 5.2. The numerical approximation of the Ericksen-Leslie system has been intensely
studied over the past two decades. While weak statements involving second order derivatives
and various mixed formulations were initially considered, stable formulations with u and d in
H1(Ω) have been developed, and can be easily coded using the standard finite element spaces
available in most existing finite element softwares.

On the other hand, while these existing numerical works for the Ericksen-Leslie system
have shown great promise in terms of numerical performance, a theoretical justification of
the energy stability and convergence analysis has been very challenging. Among the exist-
ing works of theoretical analysis, it is worth mentioning [2], in which a fully discrete finite
element scheme to a simplified system is analyzed, without the coupled elastic stress terms,
β(∇u)d and (1+β)(∇u)Td. For the regularized system with a penalty approach, the energy
stability was proved, an unconditional convergence of finite element solutions towards weak so-
lutions of the continuum PDE model was established in [2], as well as the convergence towards
measure-valued solutions of the limiting Ericksen-Leslie model. As a further development, a
fully discrete, mixed finite element numerical scheme was proposed for the penalized Ericksen-
Leslie system in [26], with semi-implicit treatments for the nonlinear terms. In particular, an
optimal rate convergence analysis was reported in [26], with first order convergence rate in
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Fig. 5.1: The discrete L2
h and L∞

h numerical errors vs. temporal resolution NT for NT =100 :
100 : 1000, with a spatial resolution N =256. The numerical results are obtained by the computation

using the proposed scheme (2.20)-(2.24). The physical parameters are taken as: ε=0.5, ν=0.5, λ=1,
β=−0.5 and γ=2. The numerical errors for the four physical variables: d1, d2, u and v, are displayed.

The data lie roughly on curves CN−1
T , for appropriate choices of C, confirming the full first-order

temporal accuracy of the scheme.

both time and space. It is observed that the standard L2 and H1 bounds for the numerical
solution have been derived, while an energy dissipation (in terms of the physical energy) was
not reported. In a subsequent work [27], a modified energy stability was proved for the mixed
finite element schemes, with an “initial estimate” constraint h≤Cε and the “stability” con-
straint ∆t=o(ε2h2). In addition, a few recent works [3,18,43,44,48] have provided the energy
dissipation analysis for the finite element schemes for similarly related phase field model of
nematic liquid crystal droplets, and proved that global discrete energy minimizers Γ-converge
to global minimizers of the continuous energy, which turn out to be subtle theoretical results.
Meanwhile, a theoretical analysis for the Ericksen-Leslie system with the two coupled elas-
tic stress terms seems more complicated, and an optimal rate convergence analysis and error
estimate become even more challenging for the full system.

In our work, we make use of a reformulated system (1.10)-(1.12), which includes the highly
nonlinear and complicated coupled elastic stress terms. In turn, a fully discrete numerical
scheme (2.20)-(2.24) is proposed. This numerical system is linearly coupled, which seems com-
plicated at a first glance. However, a careful analysis reveals its rewritten form (5.1), and the
nonlinear PSD iteration algorithm (5.4)-(5.7), combined with linear iteration method (5.3) (to
obtain G−1

h g) could be applied to implement the fully discrete scheme (2.20)-(2.24). Extensive
numerical experiments have indicated a computational cost at the same level as the standard
Poisson solvers, which makes the numerical solver very efficient. In addition, perfect first order
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Fig. 5.2: The discrete L2
h and L∞

h numerical errors vs. spatial resolution N for N =48 : 8 : 120, and
the time step size is set as ∆t=h2. The numerical results are obtained by the computation using the

proposed scheme (2.20)-(2.24). The physical parameters are taken as: ε=0.5, ν=0.5, λ=1, β=−0.5
and γ=2. The numerical errors for the four physical variables: d1, d2, u and v, are displayed. The

data lie roughly on curves CN−2, for appropriate choices of C, confirming the full second-order spatial

accuracy of the scheme.
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Fig. 5.3: Contour plots of the computed orientation vector d=(d1,d2)T at the initial time T =0 and

final time T =1.

temporal accuracy and second order spatial accuracy have been reported in the numerical test,
and an optimal rate error estimate (in both time and space) has been established. All these
facts have demonstrated that, the proposed finite difference scheme (2.20)-(2.24) preserves
three perfect theoretical properties: unique solvability, unconditional energy stability, optimal
rate convergence estimate, and the formulated numerical solver is very efficient to implement
the numerical scheme, with the computational cost at the same level as that of the Poisson
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Fig. 5.4: Left: A comparison between the exact solution and the numerical solution at the final time

T =1, for d1 at the y=0.5 cut. Right: A comparison between the exact solution and the numerical

solution at the final time T =1, for d2 at the x=0.5 cut. The solid lines represent the plot of the exact

solution, while the star lines stand for the plot of the numerical solution.

solvers.

6. Concluding remarks

A semi-implicit numerical scheme is proposed and analyzed for the Ericksen-Leslie system
to model nematic liquid crystals. For the penalty function to approximate the constraint |d|=1,
a convex-concave decomposition for the corresponding energy functional is applied. Other than
this splitting approach, appropriate semi-implicit treatments are adopted to the convection
terms, for both the velocity vector and orientation vector, as well as the coupled elastic stress
terms. A careful analysis implies that all the semi-implicit terms could be represented as a
linear operator of a vector potential, and its combination with the convex splitting discretization
for the penalty function leads to a unique solvability analysis for the proposed numerical
scheme. A finite difference spatial approximation over staggered mesh points, in which the
velocity components and the chemical potential variables are located as different numerical
grid points, is applied. The summation by parts formulas and discrete Sobolev inequalities
have greatly facilitated the corresponding analysis. A detailed estimate reveals an unconditional
energy stability of the numerical system, composed of the kinematic energy and internal elastic
energies. Moreover, we provide an optimal rate convergence analysis and error estimate for
the fully discrete scheme. In addition, an efficient numerical solver is outlined, based on a
preconditioned steepest descent iteration algorithm, combined with a linear iteration method
to obtain a linear system solution. The numerical accuracy test results have demonstrated
perfect first order temporal accuracy and second order spatial accuracy, which confirm the
optimal rate convergence estimate.
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Appendix. Proof of Lemma 3.1. For simplicity of presentation, we assume that f
is the cell-centered grid function, with homogeneous Neumann boundary condition. Numerical
variables evaluated at other mesh points could be analyzed in a similar fashion. We set the
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grid f to have the discrete Fourier Cosine transformation as given by

fi+1/2,j+1/2,k+1/2 =

N−1
∑

ℓ,m,n=0

f̂
N
ℓ,m,n cos(ℓπxi+1/2)cos(mπyj+1/2)cos(nπzk+1/2). (A.1)

In addition, we denote its extension to a continuous function as

fF(x,y,z)=

K
∑

ℓ,m,n=−K

f̂
N
ℓ,m,n cos(ℓπx)cos(mπy)cos(nπz). (A.2)

The following estimates could be derived with the help of Parseval’s identity; also see the
related analysis in [14, 23, 24,30]:

∥f∥22=∥fF∥
2
L2 =

N−1
∑

ℓ,m,n=0

|f̂N
ℓ,m,n|

2
, (A.3)

2

π
∥∇fF∥≤∥∇hf∥2≤∥∇fF∥, (A.4)

4

π2
∥∆fF∥≤∥∆hf∥2≤∥∆fF∥. (A.5)

On the other hand, we recall a key estimate given by Lemma A.2 in an existing work [24]:

∥f∥p≤

√

p

2
∥fF∥Lp , in 2-D, p=4,6, .... (A.6)

In addition, such an analysis could also be extended to the 3-D case

∥f∥p≤ (
p

2
)3/4∥fF∥Lp , in 3-D, p=4,6, .... (A.7)

The discrete Sobolev inequality (3.13) is a direct consequence of (A.7) (by taking p=6),
combined with the following inequality in the continuous space: ∥fF∥L6 ≤C∥fF∥H1 , as well as
the following estimates (coming from (A.4), (A.5)):

∥fF∥L2 =∥f∥2, ∥∇fF∥≤
π

2
∥∇hf∥2, so that ∥fF∥H1 ≤

π

2
∥f∥H1

h
. (A.8)

Similarly, the discrete Sobolev inequality (3.14) is a direct consequence of (A.7) (by taking
p=4), combined with the following inequality in the continuous space:

∥fF∥L4 ≤C(∥fF∥+∥fF∥
1
4 ·∥∇fF∥

3
4 ), ∥∇fF∥L4 ≤C∥∇fF∥

1
4 ·∥∆fF∥

3
4 , (A.9)

as well as the estimates in (A.4), (A.5).
The discrete Sobolev inequality (3.16) is a direct consequence of an obvious fact that

∥f∥∞≤∥fF∥L∞ , combined with the following inequality in the continuous space:

∥fF∥L∞ ≤C(∥fF∥+∥fF∥
1
2 ·∥∆fF∥

1
2 ), (A.10)

as well as the estimates in (A.4), (A.5). This finishes the proof of Lemma 3.1.
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[26] V. Girault and F. Guillén-González, Mixed formulation, approximation and decoupling algorithm

for a penalized nematic liquid crystal model, Math. Comp., 80:781–819, 2011. 1, 5.2
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