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Abstract

In this paper, ETD3-Padé and ETD4-Padé Galerkin finite element methods are pro-
posed and analyzed for nonlinear delayed convection-diffusion-reaction equations with
Dirichlet boundary conditions. An ETD-based RK is used for time integration of the
corresponding equation. To overcome a well-known difficulty of numerical instability as-
sociated with the computation of the exponential operator, the Padé approach is used
for such an exponential operator approximation, which in turn leads to the corresponding
ETD-Padé schemes. An unconditional L? numerical stability is proved for the proposed
numerical schemes, under a global Lipshitz continuity assumption. In addition, optimal
rate error estimates are provided, which gives the convergence order of O(k* 4 h") (ETD3-
Padé) or O(k* + h") (ETD4-Padé) in the L? norm, respectively. Numerical experiments
are presented to demonstrate the robustness of the proposed numerical schemes.

Mathematics subject classification: 65N08, 656N12, 65N15.
Key words: Nonlinear delayed convection diffusion reaction equations, ETD-Padé scheme,
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1. Introduction
A delayed partial differential equation (DPDE) is formulated as
u + Au = f(t, u(x,t),u(x,t — 1), Vu(x,t), Vu(x, t — 7)), (1.1)

in which 7 is a fixed time quantity and A is a linear operator. This equation has played an
important role in the simulation of many real-world problems, such as biological systems [1],
epidemiology [32,36], medicine, engineering control systems, climate models [9], etc. A variety
of phenomenon in the natural and social sciences could be described by such a model, so that
there have always been great significance and practical values to study it.

One distinguished feature of this model is associated with the fact that, the unknown quan-
tity u(x,t) depends not only on the solution at the present stage, but also on the solution at
some past stage. For a survey of early results, we refer the readers to [39] and references therein.
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Since the 1950s, theoretical research of delayed differential equations has been attracted more
and more attentions, with very rapid developments. The theoretical results on delay differential
equations have already been quite rich [4,19,20,22], while that for delayed partial differential
equation is still an active developing branch [17,34,40,41,43]. In [34] the global asymptotic sta-
bility of traveling waves was studied for delayed reaction-diffusion equations; a similar analysis
was carried out in [41] for Nicholson’s blowflies equation with diffusion; more stability analysis
have also been presented in [43]. A necessary and sufficient condition for oscillatory behav-
ior of neutral hyperbolic delay partial differential equations was provided in [40]; the delayed
reaction-diffusion model of the bacteriophage infection spread of bacteriophage infection was
studied by Gourley and Kuang [17].

On the other hand, it is well-known that, an analytical solution for most DPDEs is not
available [39]; even for some simple and specific equations, the theoretical solutions are often
piecewise continuous or even cannot be expressed in analytical expression. In turn, the nu-
merical investigation on DPDEs has attracted more attentions. For example, the Chebyshev
spectral collocation method with waveform relaxation was considered in [21] for nonlinear D-
PDEs. A local discontinuous Galerkin (LDG) method was proposed in [30] for reaction-diffusion
dynamical systems with time delay. Also see [31,33] and the related references.

Meanwhile, most existing numerical works have been focused on either first or second order
accurate (in time) schemes; the numerical study of temporally third order or even higher-order
numerical schemes for the delayed equation (1.1), as well as its theoretical analysis, has been
very limited. In this article, we propose and analyze (temporally) third order and fourth order
accurate numerical schemes for the delayed convection-diffusion-reaction equation, based on the
exponential time differencing (ETD) temporal algorithm, combined with finite element spatial
approximation. In general, an exact integration of the linear part of the PDE is involved in the
ETD-based scheme. For the nonlinear terms, the multi-step approach has been based on explicit
approximation of the temporal integral [2,11,18]. An application of such an idea to various
gradient models has been reported in recent works [5-7,12,13,23-25,38,46]. On the other hand,
in the extension of these ETD-based ideas to the delayed PDE, a higher order interpolation has
to be involved in the numerical evaluation of the physical variables at the staggered temporal
stencil mesh point around the delayed time instant. In addition, a direct computation of the
exponential operator may lead to numerical instability, as discussed in an earlier work [26]. To
overcome this well-known difficulty, the Padé approach is used for such an exponential operator
approximation, which in turn leads to the corresponding ETD-Padé scheme, with the third or
fourth order accuracy in the time discretization. The spatial discretization is the same as the
ones to deal with the non-delay problem. In addition, the ETD-Padé schemes can reach the
corresponding convergence order as the ETDRK schemes and the computational cost is less,
also see the related derivations in [14,27], etc.

A theoretical analysis of the third and fourth order accurate ETD-Padé schemes turns out
to be highly challenging, due to the nonlinear and multi-step nature, combined with the delayed
structure. An unconditional L? numerical stability is proved for the proposed schemes, under
a global Lipshitz continuity assumption. With that assumption, the nonlinear difference could
bounded by a linear growth term. In combination of the eigenvalue estimates for the operators
involved in the ETD-Padé scheme, the L? numerical stability is derived with the help of discrete
Gronwall inequality. In addition, an optimal rate convergence analysis and error estimate could
be established in the same manner, in which the stability of the difference between the exact
solution and numerical solution is analyzed. This in turn gives a convergence order of O(73+h")
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or O(7* + h") in the L? norm, respectively.

The rest of the article is organized as follows. In Section 2 we present the numerical schemes,
including the third and fourth order ones. Subsequently, an unconditional L? numerical stability
is established in Section 3. Moreover, the ¢°°(0,T; L?) convergence estimate is provided in
Section 4. Some fast implementation techniques are discussed in Section 5 and numerical
results are presented in Section 6. Finally, concluding remarks are given in Section 7.

2. The ETD-Padé Method for DPDE with Constant Delay

The following initial boundary value problem for the nonlinear delayed convection-diffusion-
reaction equation is considered

ug + Au = f(u(t — 7),u(t),t), xe€Q, te(0,T]=,
u(x,t) =0, x €00, t e, (2.1)
u(x,t) = uo(x,1), (x,t) € Q x [—1,0],

where Q C R? is a bounded domain with Lipschitz boundary and A is a uniformly elliptic
operator

0 0 0

A=— —(a; j(z) — bj(x)z— + bo(x). 2.2
D g s )+ bW o (2:2)
The coefficients a; ; and b; are assumed to be C°° (or sufficiently smooth) functions on Q x .J,
a;j = aj;, and the following inequality is valid for some ¢y > 0

d

3 w068 > colé?, on Q, Ve R (2.3)

ij=1
The initial value problem (2.1) is formulated in a Hilbert space X. Let A be a linear, self-
adjoint, positive definite closed operator with a compact inverse 7', defined on a dense domain
D(A) C X. For a general Q C R? we denote below by || - || the norm in L? = L2(Q) and by
[l - |l that in the Solobev space H" = H"(2) = W3 (2), so that for real-valued function ,

1

w4=wm=(éwmf, (2.4)

[ullr = llulla, = < > |D°‘UI2> ; (2.5)

jal<r

and, for r a positive integer,

where, with a = («y, ...aq), D* = (0/0x1)**...(0/dx4)* denotes an arbitrary derivative with
respect to x of order |a| = E?Zl aj. We assume there exists M > 1 such that

(2 — A7 < M|z 71, ze{zeC:vy<larg(z)| <m z # 0}, (2.6)

in which + is a complex angle in the first quadrant, i.e., v € (0, %). It follows that —A is the
infinitesimal generator of an analytic semigroup {e_tA}tZO which is the solution operator for
(2.2) below, cf. [35]. A standard representation is given by

B(t) = ¢4 = QL e (2] — A)ldz, (2.7)
™ JA
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where A := {z € C : |arg(z)| = O}, oriented so that I'm(z) decreases, for any © € (v,%). By
the Duhamel principle the exact solution can be rewritten as

w(t) = E(t)uo(0) +/O Bt — 5)f(u(s — 7), u(s), 5)ds. (2.8)

The defining characteristic of DPDEs is that they admit solutions with derivative discontinuities
at initial time and high order derivative discontinuties at subsequent points. For the constant
delay 7, the potential discontinuous points are ¢t € {0,7,27,37,- - -}. At these points the
solution of a DPDE, regardless of how regular the given functions are, will in general exhibit
a low degree of regularity. The simplest approach uses a constrained mesh including these
discontinuous points. It is assumed that k=1, with L a positive integer and k a submultiple
of 7. Over the time interval J,, = [ty,, tn41], with ¢, = nk, 0 < n < N, the solution of DPDE
is assumed to have high degree of regularity in J,,. Replacing ¢ by ¢ + k, using basic properties

of F and by the change of variable s — t = ko, we arrive at
1
u(t +k) = E(k)u(t) + k/ E(k —ko)f(u(t + ko —7),u(t + ko), t + ok)do. (2.9)
0
In turn, the following recurrence formula is available:

1
u(tni1) = e *u(t,) + k/ e FAQ=S) £ (u(ty, + sk — 1), u(ty + sk), tn + sk)ds. (2.10)
0

2.1. The ETDRK method for the DPDE

The recurrence formula (2.10) for the exact solution forms a basis of different time-stepping
algorithms, depending upon how one could approximate matrix exponential function and in-
tegral. Various time-stepping schemes have been developed in [3,11,29] by using polynomial
formulas, which in turn gives a multi-step or Runge-Kutta type higher-order approximations.
This approach has an advantage of generating a family of high-order numerical schemes with
potentially good performance, as long as a few computational difficulties could be resolved, as
pointed out in [41]. Meanwhile, even the Kassam-Trefethen suggestion has left unresolved com-
putational issues, especially related to the practical implementation of the numerical contour
integration, as well as the contour choice as the numerical mesh is refined, since the spectrum
of A will grow larger with more refined mesh and the location of the spectrum cannot be au-
tomatically calculated. Several Runge-Kutta-based time stepping schemes were also developed
in [11,26].

In fact, formula (2.10) is exact, and the essence of the ETD methods is associated with an
approximation to the integral in this expression. We denote u™ as the numerical approxima-
tion to u(t,), u" "L as the approximation to u(t, — 7) = u(t,_rz), and F = %, = %,
respectively. The third-order accurate ETD-based scheme can be constructed in a similar way,
analogous to the classical third-order RK method (see, for example [11,45])

w(tnir) =e " u(tn)

+ k(kA) 3 (—k?A%e " — 3kAe ™ — 4™ — KA+ 4) f(u(tn — 7),u(tn), tn)
4 h(kA) 3 (AkAe A + 8¢ 4 AkA — 8) f(ultn + g — ) ultn + 2)7 b+ g)
+ k(kA) 3 (K* A% — 3kA — kAe " — 47" £ 4) f(u(tngr — 7), u(tns1), tns1)

k
—|—6ka/ e st ds. (2.11)
0
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In fact, unconditionally stable arbitrarily high-order Runge-Kutta algorithms have been recently
introduced for various gradient flows in [15]. Meanwhile, the following O(k*) interpolation
formula is applied to approximate wu(t,, + % —7):

k 1

b= —T)=——
u( +2 T) T

9
(unfol _|_un7L+2) + E(,UJnfL +unfL+1) +O(k4) (212)

Then, the following ETD3 numerical algorithm for (2.1) is available:
unJrl :ekaun

+ k(kA) 3 (—k2A%e™*A — 3k Ae ™M —de A — KA+ 4) f(u" L W ty)

k
+ k(kA) 3 (4kAe™F 4 8e™FA 1 Ak A — 8) f(an, bn,tn + =)

2
+ k(EA) 3 (K2 A% — 3kA — kAe ™ —de ™A L 4) F(u Y e tgn), (2.13)
in which
an = _i(unfol + unfL+2) + g(unfL + unfLJrl)
16 16 ’
by = e 24" + k(kA) NI — e 24 f(u"E um 1), (2.14)
k
en = € k(BA)THT = N2 F (an,bostn + 5) = F" 70" )]

The terms a,, b, and ¢,, are approximations of u(t, +% —7), u(t,+%) and u(t, +k), respectively.
The fourth-order ETD (ETD4) scheme can be constructed in a similar way, analogous to
the classical four-order RK method (see, for example, [11,44]).

un Tl kA
+ k(EA) 3 (—k2A%e R — 3k Ae ™ —de P — kA4 4) f(um T U ty)
+ k(kA) 3 (2kAe™ 4 1+ 4e™*A £ 2k A — 4) f(an, b, tn + g)
+ k(kA) 3 (2kAe™ 4 1+ 4e™ A £ 2k A — 4) f(an, cp,ytn + g)
+ k(kA) T3 (k2 A% — 3kA — kAe ™™ —de™F L 4) f (" dpy b)), (2.15)
in which
an = —i(u"_L_l +u i) ¢ g(u" By qyn=tthy,
16 16
by, = e 3" + k(kA) ™I - eiéA)f(unfL, u” ty),
Cn = 73" 4+ k(kA) "I — e 3 f(an, bn, tn + 5), (2.16)
d, = engbn + k(EA) NI - eng)[2f(an, Cnytn + g) — fu™E um ).

In the ETD3 and ETD4 schemes, there are many numerical challenges associated with the
operator A, since the computations of (—A)~!, (—A)72, (—A)~3, as well as e ¥4, are needed.
In fact, it may be accurate for small eigenvalues due to the cancellation error, while the above-
mentioned polynomial expansion may lead to a loss of accuracy for large eigenvalues. In [27],
it is pointed out that, these functions are higher-order matrix polynomials and cancellation
errors can affect the computations perhaps even worse. To avoid this problem, we introduce
the rational functions to approximate exponential operators.
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2.2. ETD-Padé schemes for PDEs

Replaced e=* and e~ 3 in (2.13) and (2.14) by Ros(z) and Ros(z), where Ros(2) is (0, 3)-Padé
approximation to e~* and Ro3(z) the approximation to e~ 3,

Lo a1 5 Loolo 1 5
N 1o 1 IR S N A 2.17
Roz(2) = (1+ 2+ 52 g2 )"y Ros(2) = (1+ 52+ g2+ g% ) (2.17)

Then we obtain the ETD3-Padé scheme:

k
u"t =Rog(kA)u™ + kP (kA) f(u" ", u™ t,) + 2k Po(kA) f(an, b tn + =)

2
+EP(RA) f(u" e, ), (2.18)
where
ay = _i(un—L—l 4 un—L+2) 4 g(un—L 4 un—L-i—l)
16 16 ’
b, = Rog(kA)u™ + kP(kA) f(u"F u™ t,),
cn = Ros(kA)u™ + kP(kA)[2f (an, by, tn + g) — fu L um ).

Ro3(kA) = 6(61 4+ 6kA + 3k%A% + k3 A3) 71,

P(kA) = (6 + 3kA + k2 A?)(61 + 6kA + 3k A% + k3A3)~ Y
Pi(kA) = (I — kA)(6] + 6kA + 3k>A% + k3A43%)~1,

Py(kA) =2(I + kA)(61 + 6kA + 3k>A% 4+ k3A3)~1,
Py(kA) = (I + k*A?)(61 + 6kA + 3k*A? + k3A3%)~1,

(2.19)

Ros(kA) = 48(481 + 24k A + 6k>A2? + k3 A3) 1
P(kA) = (241 + 6kA + k2A2)(481 + 24k A + 6k2A% + k3 A3) L.

In the ETD4 scheme, we denote Rgo(z) and Ras(2) for (2,2)-Padé approximations of =2
and e~ 3 respectively.

11 11 ,\ 7"
Roso(z) = <1 — 3% + EZQ) (1 + 37 + EZ2> ,

~ 11 11 ,\ "
Ras(z) = (1 Ve EZQ) 1+ 17T Ezz) . (2.20)

Then the ETD4-Padé scheme for (2.1) becomes

u™ M =Roo(kA)u™ + kP (KA) f(u" L u", t,) + EPy(EA) f(an, by, tn + §>

k
+kPy(kA)f(an, Cnrtn + 5) + kPs(kA)f(u ™ dystsn), (2.21)
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where
a, = _i(unfol + unfLJrQ) + g(unfL + unfLJrl)
16 _ 16 ’
b, = Roa(kA)u™ + kP(EA) f(u™ L u" t,),
k

en = Rog (kA" + kP(kA) f(an, bn, tn + 3

~ ~ k
dp = Roa(kA)by, + kP (kA)[2f (an, Cn,tn + 5) — fuE um ).
Roa(kA) = (121 — 6kA + k2 A%) (121 + 6kA + k2 A?) 71,

P(kA) = 12121 + 6kA + K2A%) 1, (2.22)
Pi(kA) = (21 — kA)(12] + 6kA + k2A?)~Y
Py(kA) = 4(12 + 6kA + k2 A%) 7,
P3(kA) = (21 + kA)(12] + 6kA + k2A%)~ Y
Roa(kA) = (481 — 12k A + k2 A?) (481 4+ 12k A + k2A%)~ 1,
P(kA) = 24(481 + 12kA + k2 A%)~1.
The following preliminary estimates will be useful in the later analysis.
Lemma 2.1 ([27,28]). The following estimates are available:
1 1
[Ros(kA)| <1, [P (kA <1, [[Po(kA)| < 5, IP3(RA)] < 3,
2.23)
_ _ | (
[Ros(kA)| <1, [IP(RA)] <1, [[P(RA)I] < 5.

Lemma 2.2 ([42] Discrete Gronwall inequality). Suppose a, 3 > 0 are arbitrary con-
stants, the sequence {n,} satisfies

n—1

Il < B+ ok |njll, nk <T, (2.24)
j=0
in which k is the step size, then
1| < €T (B + ake||moll)- (2.25)

Lemma 2.3 ([37] Continuous Gronwall inequality (Differential form)). Suppose the
nonnegative continuous function n(t) satisfies

() < ¢(t)n(t) + (1), t€[0,T], (2.26)

where ¢(t) and p(t) are non-negative integrable functions, then we have

n(t) gefo“i’(S)dS[n(O)+/Otga(s)ds], vt € [0,T). (2.27)
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Lemma 2.4 ([14,28]). The following estimates are available:
le™* = Ros(kA)[| < C*, [le™* — Ros(kA)| < CKY,

[ (k(kA) 3 (—k2A%e™ 4 — 3kAe ™ 4 — de™ 4 — kA +4) — kP (KA))|| < CK*,
[ (k(kA) 3 (4kAe™ 4 4+ 8e "4 + 4k A — 8) — 2k Py (kA))| < CK*,

2.28
| (k(kA) 73 (k2 A% — 3kA — kAe ™ — 4% 1 4) — kP3(kA))|| < Ok, (2.28)

I(k(kA)~H(I — e 24) — kP(kA))| < CK*,
I(k(A) (I = e7*4) = kP(kA))| < CE",

Remark 2.1. Tt is observed that, in the case of an elliptic operator A (formulated as (2.2)) with
constant coefficients, an FFT-based fast solver could be efficiently applied in the numerical ap-
proximation of the Padé operators Ros(kA), Raa(kA), as well as P;(kA) (1 < j < 3), Ros(kA),
E22(kA), ﬁ(kA) Of course, if variable-dependent coefficients are included in the elliptic opera-
tor A, such an FFT-based fast solver is not directly available. Meanwhile, even in this case, the
ETD3-Padé and ETD4-Padé schemes have provided a great convenience in the numerical ap-
proximation, since the inverse of the polynomial operators, such as (61 +6kA+3k2 A% +k3A3)~1
in Ro3(kA), (121 + 6kA + k2A%)~! in Rga(kA), could be efficiently obtained by careful finite
element solvers. Even if the non-constant coefficient functions are included in the elliptic oper-
ator A, an FFT could be used as a preconditioning tool, which leads to an acceleration of the
numerical solver.

Remark 2.2. Other than the ETD3 and ETD4 algorithms, there have been other numerical
approaches of third and fourth order accuracy with a numerical stability preserved, such as the
Adams-Moulton approximation to the diffusion term with a prolonged temporal stencil [8,16].
In fact, a careful analysis reveals that some higher order artificial diffusion has been included
in these approaches. In comparison, the ETD3 and ETD4 methods do not contain artificial
regularization in the diffusion part, and this feature is a prominent advantage of the ETD
approach.

3. Stability Analysis of ETD-Padé Scheme

In this section, we analyze the stability of the ETD3-Padé scheme. The analysis for stability
of ETD4-Padé scheme is similar and we omit here and leave it to the interested readers. Suppose
Q2 is a bounded domain in R? with Lipschitz boundary, f(u1,us,t) is a smooth function on R3,
and the following Lipschitz continuity is assumed:

|f(ur,ug,t) = f(vr,v2,8)] < B(lug — vi| + |ug —va]), for (u1,uz,t) € R?. (3.1)

Theorem 3.1. The ETDS3-Padé scheme is stable. In more details, for two different initial data
= {uFut=l W uf) and 0 = {v 0l TR 02 L W0), the two different ETD3-
Padé solution {u™} and {v"} satisfy

L
la ="l < Ol F = o, (3.2)

=0

where the constant C is independent of the time step size k, u™ and v™.



358 H.S. DAI, Q.M. HUANG AND C. WANG

Proof. We substitute the two different initial data u and v into the ETD3-Padé scheme
(2.18), and obtain

" =Ros (kA" 4+ kP (kA) f(u™ L u™ t,) + 2k Py (kA) f(a, b2, t, + E)

n» - n’ 2
+ kPs(RA) f(u™ " 6l 1),
A (3.3)
0" =Ros (kA" + kPy(kA) f (0" 5 0" t,) + 2kPay(KA) f(al, bY, t, + 5)
+ kP (EA) (0" e 1),
Then
u’ﬂ+1 - Un+1 :R03(kA)(un - ,U’ﬂ) + kPl(kA)(f(un_Lvunvtn) - f(vn_La vna t’n«))
@ a k 55 k
+ 2kp2(kA)(f(an7 bn7tn + 5) - f(a’vw bn7tn + 5))
+ kP3(kA)(f(un_L+lv CZ, tn+1) - f(vn_L+1= CZ);, tn+1))' (3'4)
From (2.19) and Lemma 2.1, it is easy to verify that,
S = 1
lan — apll < E(HU"_L_1 — "B 4 fJu B2 o B
9
g (" ™F = o TE | T B, (3.5)
163 = 31| < | Ros(RA)|[[lu™ — o™ || + K[ PRAf ("5 u™, ) = f0" 5 0™, )],
Bk n n Bk n— n—
§(1+7)||U —v ||+7||U Loty (3.6)

mn o n n [ k U 10 k
llen = enll < 1| Ros (kA u" — o™ + 2k P(RA)[1f (an, b, tn + 5) = Flan, by, ta + 2))]
+ k[ PRA)|f (™5 u™ tn) — f(0" 5 0™ )|
< (14 BE)|u™ —v"|| + Bk|u"~" —v" || + 2Bk([laj; — ap || + b5 = by l).  (3.7)
From Lemma 2.1 and the Lipschitz continuity of f, we get
Ju™ = <[l = o™ 4 R u ) — fTE 0" )|
2 @ a k 55 k
+ gk”f(an?bn?tn + 5) - f(afwbn?t" + 2)”
1 n— m n— T
+ §k||f(u L+1vcn7tn+1) - f(’U L+lvcn7tn+l)”
<Ju™ = o[ + B([Ju"F = 0" 4 [Ju” — o™ )

2 @ % @9

1 n— n— N 0)
+ 3 Bh(lu EHEL— oI e = en ) (3.8)
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A substitution of (3.5), (3.6), and (3.7) into (3.8) results in
1
[l = "] <[lu” = o™+ B(ju" " = 0" 4 Ju” = ")) + g B[t = on

2 g 5 a o 1
+ g Bh(llan — apll + 116y, = bnll) + 5 BR(1 + Bk)[lu® — v"|

1 _ N L
+ < Bk(BRlju"~" — "% || + 2Bk(|a;; - a}| + 6] — b))

4 1 1
<(1+ 3Bk + §BQk2)||u” —"|| + (Bk + gB21<:2)|\u"*L —" L
1 n— n— 2 2 u v u v
+§Bkllu B — L“H+(§Bk+532k2)(l\an—anl\+||bn—bn||)

4 1
<(1+ 2Bk + §B2k2 + §B3k3)||u" |

11 25 1
+ (5 Bk+ ﬂBW + §B3k3)||u"_L —o" L
17 3 . .
—I—(ﬂBk—l—ngkQ)Hu L+1_,U L+1H
1 1 n—L— n—L— n— n—
+ (ﬂBk + ﬂB2k2)(Hu E=1 _pn= L3 4 |jun =42 — n 212, (3.9)

Under a reasonable assumption Bk < %, (3.9) becomes

" " 33 " 95 n— - 52 . _
[l =™ <L+ S BR) | = o™ + (g BR) " R S (g BRIlu" P

1 n—L— n—L— 1 n— n—
+ (g BRI =0 (e BR) T -0 (3.10)

In turn, an application of discrete Gronwall inequality (given by Lemma 2.2) leads to the
following stability result of the ETD3-Padé scheme:

L
= o) < T (Ilu® = o0 + kDl — 03 E] ).
j=0

This completes the proof of Theorem 3.1. O

The numerical stability for the ETD4-Padé scheme can be obtained in similar ways. We
omit here and leave the proof to the readers.

4. Convergence Analysis of ETD-Padé Finite Element Method

4.1. The semidiscrete ETD-Padé scheme

Theorem 4.1. Let u(t) € C*(J;C?(Q)) (m > 3) be the exact solution for DPDE (2.1), u™ be
the semi-discrete ETD3-Padé approzimation determined by (2.18), then we have the following
semi-discrete error estimate

u(tn) — u™|| < Ck3eCT. (4.1)
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Proof. From (2.11), a careful Taylor expansion reveals the following O(k*) local truncation
error of the ETD3RK scheme (see Theorem 3.5 in [45] for details):

u(tni1) = Fu(t,)
+ k(EA) 3 (—k2A%e R — 3k Ae ™ —de M — KA+ 4) f(ulty — 7),u(tn), tn)

+ k(EA) 3 (4kAe ™™ + 8™ A 1 4k A — 8) f(u(t, + g —7), bt 4 g)
+ k(kA) 3 (k2 A% — 3kA — EAe ™ —de ™A L 4) fu(ty + k —7), ) 1, 14)
+ Ck*, (4.2)

in which
butn) == 34 (t,) + k(kA) T (I — e 2 ) f(u(tn — 7), ultn), tn),
) —e=kAy(t,) 4+ k(kA) (I — e™*4) (4.3)
(2f (u(ty + g — 7, b4t 4 g) — flu(tn — 7),u(ty), tn))-
Subtracting (4.2) from (2.18), we obtain the error evolutionary equation

u(tni1) — = Ro3(kA) (u(tn) —u")
+ kP (kA) (f(u(tn — 7),utn), tn) — """ 0", 1))
+ 2kPy(kA) (f (tn + = _T) putn) ¢ 4 ’;) Flam, bt + ;)
+/€P3 kA (f tnt1 —7' ,Co w(tn) tn+1) - f(u"_L+ Cn,, n+1)) +g(k)
g(k)" = (7" — Ros(kA))u(t,)

- (k(kA)—3(—k2A2e—’fA —3kAe M — 4o kA +4) — kPl(kA)>
F(ultn = 7),ultn),tn) + (k(kA)3(4kAekA + 8¢k 4 4kA —8) — 2kP2(kA)>

k k
Mo u(tn) i
f(u(tn+ B T)vbn yln + 2)
Fultnsr — 1), ) t0) + CEL (4.4)

Let " = u(t,) — u™, then we get

- (k(kA)3(k2A2 —3kA — kAe R —deFA 4 4) — kPg,(kA))

le™ M| <[ Ros (kA) | lle” || + kBIIPL(RA)|(lle" =] + lle™])
k
+ 26 B[ Po(kA) | (fu(tn + 5 = 7) = anl| + 03 = bn)
+ kB Ps(kA) [ (le"E ]+ en®™) = eal) + g (k)] (4.5)

By Lemma 2.4, it is easy to verify that [|g(k)"|| < Ck*. From (2.12), we have |ju(t, + & —7) —
an|| < Ck*. Furthermore, from (2.19) and (4.3), we see that

b2tn) — b, =Ros(kA) (u(t,) — u") + (e~ 34 — Roz(kA))ul(t,)
+ kP(EA) (f(ulty, — 1), ultn),tn) — f" L um 1))
+ (k(kA) NI — e™ %) — kP(EA) f(u(ty — 7), u(tn), tn). (4.6)
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By Lemmas 2.1, 2.4 and Lipschitz continuity property of f, the following inequality is available:

165 = ba| < || Ros(RA) e[| + kB PERA) ([l || + fle"]]) + Ck*

(4.7)
< (1+ gB)He"H + gBHe”*LH + Ck.
Similarly,
) = Ros(kA) (u(tn) — u™) + (e ** — Ros(kA))u(ty,)
o (R(EA) (T = &) — KP(RA)) (2 (i + & =), B2t 5) = futn — 7)), )
T RP(RA) (2f (ultn + g — )b g 4 g) — 2f (an b b + g))
+ kP(kA) (f(u7“L7 u" tn) = f(ultn —7),u(ts), tn))7 (4.8)

and
U n k U
lleattn) — en|| <||Ros(kA)|[le™|| + 2kB|| P(kA)|| (Ilan —ultn + 5 =)l + [[bn — bn(t")l\)

+EB|PRA)(le" (| + e[| + Ok
<(1+43kB + k*B?)||e"|| + (kB + k*B?)||e" % + Ck*. (4.9)

Substituting (4.7) and (4.9) into (4.5), we obtain

4k%B? 2k?B?  k2B?
le" M <1+ 2kB + + BB e + (kB + =5— + == )lle" |
kB
+ ?He”*“ln + Ck*. (4.10)
Under a reasonable assumption Bk < %, (4.10) becomes
35 3 .. kB, .
[0 < (14 SokBle"| + GRB) ™ + 2 e 2 okt (@)

An application of discrete Gronwall inequality (given by Lemma 2.2) leads to the desired error
estimate for the ETD3-Padé method:

em| < Ck3eCT. O

4.2. The semidiscrete Galerkin finite element method

Let {o; }jj\ihl be a family of quasi-uniform subdivisions of €2, and denote S} as the finite-
dimensional space of continuous functions on € which reduce to polynomials of degree < r — 1
on each o;:

Sn=1{x € C(Qixlo, € M1}, (4.12)

where II; denotes the set of polynomials of degree at most s. For v € H" N H}, the following
standard O(h") approximation is satisfied (cf. [35] or [10]):

Anf {[lv=x]+ 2V =0} < Ch[Jv]]r. (4.13)
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The semidiscrete finite element solution u, € S, C H™ N H(} is defined by

{ (unt, X) + Aun, X) = (f (un(t = 7),un(t),£),X),  Vx € Sn, t € J, (4.14)

uh(xat) :u()h('rvt)a (Iat) €I x [_7-70]7
where ugp,(t) stands for some approximation of ug(t) such as uop, (t) = Pruo(t), Vt € [—7,0], and

P, is denoted as the orthogonal projection of ug(t) onto S;, with respect to the inner product
in L2. With suitable regularity assumptions on ug, the following error estimate is valid:

[luo(t) — Prhuo(t)|| < Ch"||uo(t)]|r, t € [—T,0]. (4.15)

It is easy to verify that the semilinear system of delayed ordinary differential equations (4.14)
has a unique solution. Let Rpu be the elliptic Ritz projection in Sj of the exact solution u,
ie., A(lu — Rpu,x) =0, Vx € Sp, t > 0. For u € H"(Q) N H}(Q), the following error estimate
is available (see [35] for details):

| R = ull + B[ A(u — Ryw)

| < O ull- (4.16)

Theorem 4.2. Assume uy, € Sy, is the solution of (4.14), and uw € H" N H} is the solution of
(2.1). Then we have
0

t
ot [ s+ 022 [ fuo(s) ). (17

-7

lun(®) = u(®)]| < Ch” (€27"]Juo(0)

Proof. We split e(t) := up(t) — u(t) into two parts:

e(t) = up(t) — u(t) = up(t) — Rpu(t) + Rpu(t) — u(t) :== 0(t) + p(¢), (4.18)

where
oD = | Rru(t) — u(t)|| < CR"|[ul, (4.19)
o]l = [ Rhue — uell < Ch”[[ugl],- (4.20)

The exact solution u also satisfies the weak form:
(ur; ) + (Au, x) = (f(u(t = 7),u(t), 1), X), VX € S (4.21)
The error equation is then obtained by subtracting (4.21) from (4.14):
(une — v, X) + (A(un — w), x) = (f(un(t = 7), un(t),t) — fu(t —7),u(t), t),x).  (4.22)
By (4.18), we have
(unt = Rpug, x) + (Ruur — u, X) + (A(un — Rau), x) + (A(Rru —u), x)

=(f(un(t = 7),un(t), ) — f(u(t = 7),u(t),t), x), (4.23)
that is,
(02, x) + (A0, x) = =(p1, x) + (f (un(t = 7), un(t), ) — f(u(t —7),u(t), t), x)- (4.24)
Subsequently, we choose x = in (4.24) and get
(0:,0) + (A0,0) = —(pi, 0) + (f (un(t = 7), un(t),t) — f(u(t —7),u(t), t),0). (4.25)
By the fact that c[|0]|*> < (A6,60), ¢ > 0, we have
210112 < llpall61 + Bllun(t — 7) — u(t — 716 + Blolllol + BloJ (4.26)

2dt
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As a consequence, we arrive at
d
L1011 < llpel + Bllunt — ) —u(t =) + Blol + Blo]. (4.27)
Integrating (4.27) from 0 to ¢ leads to
t t t t
161l <[16(0) | + / loellds + B / lun(s — ) — u(s — 7)|ds + B / lollds + B / 16]1ds
0 0

t—T

0
<01+ [ Nordds +3 [ fun(s) = uslas +8 [ unts) (o)

+B/ ||p|\ds+B/ 10]|ds

<[16(0 ||+/ |\pt||ds+B/ lun(s) — uo(s >||ds+2B/ |\p||ds+2B/ lollds.  (4.28)

Setting 7 (¢ fo [|6]|ds, we then have

1 (t) < 2Bn(t) + 0(0)| + / lolds + B /

-7

[[un(s) —uo(s )||d5+2B/ Iplids.— (4.29)

An application of the continuous Gronwall inequality (given by Lemma 2.3) results in the
following error estimate

0
t) <t 000} + 8 [ uns) = ua(s)ds

-7

t s t s
+623t/ (/ ||pt||dl)ds+2BeQBt/ (/ ||p|dl>ds
0 0 0 0

0 t
<te2B10(0) | + tBeP! / lun(s) — uols)|ds + 2Bte*®! / loelds
—T 0

t
+4B%e?Bt/O llpllds. (4.30)

Substituting (4.30) into (4.28), we conclude that
0
0] <(2Bte*Bt 4 1)]|16(0)|| + (2B*te?B" + B)/ lun(s) — uop(s)||ds
T (4.31)

t t
28 [ (o) ds + 2B + 482 [ ()] ds,
0 0

Combing that fact that up(t) = Pruo(t), —7 <t <0, [|[6(0)]| = ||un(0) —u(0)+u(0) — Rpu(0)]| <
Ch™||up(0)]], (4.19), and (4.20), we see that the above estimate can be rewritten as

t 0
o1 < n (2 o @)+ ¢ [ (el + ulpds + 16 [ uo(s)l,ds). (432)

—T

Therefore, we arrive at

t 0
o (0) = )] < CB (o)l + £62* [* (] + s 162 [ uo(o)ls). (433)

-7

O

4.3. The fully discrete ETD3-Padé finite element method

We now turn to the discussion of the fully discrete ETD3-Padé Galerkin finite element
method for (2.1). Let Aj be the discrete elliptic operator, Vx € Sy, t, € J, U be the
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fully discrete ETD3-Padé Galerkin finite element approximation of u(t,), with U}» = Pyuo(ty),
t, € [—7,0], such that

(U x) = (Roa(RARUR, x) + k(P (kAR) f(U; 5, UR 8), X) (4.34)
k _
+ 2k (Pa(kAn) (@n, b tn + 5),X) + F(Ps (kAR f (U] B s tngn), X),
in which a,, b,, and ¢, are calculated by the following formula
1 9
an = _E(U,’;*L*1 + U ) 4 E(U,’;*L +UpTih),
bn = Roz (kAU + kP(kAR) f(UPEUR 1), (4.35)

k
cn = Rog(kARUR, + KQ2P(kAR)f (an, by, tn + 5) = P(RAR) fU" 5, U™, 1)),
Theorem 4.3. Let U’ and u be the solution of (4.34) and (2.1), with U]} = Pruo(ty), tn €
[-7,0]. The following global error estimate is valid:

tn 0
07 = u(t)] < CKT +n (luo@+ [ (e + ull s+ [ o))
Proof. We write U' — u(ty) = (U — up(tn)) + (un(tn) — u(ty)).
By Theorem 4.2, the second term can be bounded. In fact,

tn
) = (e ) < (27 o O) ) + 6 [ (] + s
0
e [ uo(s) | ds)
0

<0 (ol + [l + )i + [ Juos)lods)- (@30

—T

By Theorem 4.1, the first term can be bounded.
U = un(tn)]| < Ck*e“T.
Then we get

NUP — u(ta) | < UF — un(ta)| + un(tn) — ulta)]
tn 0

< R 4 O (Jlun(0) ], + / (laelly + [l )ds + / luo(s)]ds ).

0

-7

This completes the convergence proof. O

5. Fast Numerical Implementation

For the high-order ETD3-Padé and ETD4-Padé schemes outlined above, the inverse of high-
order matrix polynomials needs to be solved. In fact, the computation of b,, ¢,, d, and u™*!
may lead to a loss of computational accuracy and roundoff errors. Motivated by the works [28],
we deal with this problem by partial fraction decomposition and extend this fast algorithm
technique to the nonlinear delayed convection-diffusion reaction equation.

Denote SR(x + iy) by the real part of a complex number x + iy.
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In the detailed numerical implementation of the proposed ETD3-Padé method, the following
partial decomposition can be applied to reduce the computational complexity (see [27] for more
descriptions)

Roz(kA) = wy (kA — e 1) + 2R (wo (kA — coI) ™),
Pi(kA) = wyy (kA — 1 1) 7Y + 2R (wia (kA — c1) ™),
Py(kA) = way (kA — c11) 71 + 2R (waa (kA — c1) ™),
Py(kA) = wy1 (kA — 1) ™" + 2R (ws2 (kA — c21)71),
Ros(kA) = @1 (kA — & 1)1 + 208(wa (kA — & 1)1,
P(kA) = Qu(kA — & 1) + 2R(Qo (kA — GI) ™),

P(kA) = wy1 (kA — c1 1)1 4+ 2R (waa (kA — coI) ™),

in which the coefficients have been accurately computed as

c1 = —1.5960716379833215231, co = —0.7019641810083392384 — 1.80733949445202185357,
wi = 1.4756865177957207165,  wo = —0.7378432588978603582 + ¢0.36501784080102847244,
w1y = 0.6384979859006401044, w2 = —0.3192489929503200522 — 70.11871432867482273937,
way = —0.2932049599374663978, waz = 0.14660247996873319890 4 70.480773884550331127044,
w3y = 0.87248604623675318388, w3z = 0.06375697688162340805 — ¢0.41993757775015971496,
wyqy = 0.924574112, wyo = 0.037712944 + i0.422895863,

¢1 = —3.19214327596664304622, ¢ = —1.40392836201667847688 —i3.61467898890404370715,
wy = 2.95137303559144143303, wq = —1.475686517795720716519+40.730035681602056944888,
Q1 = 0.924574112262460492691, Q = 0.037712943868769753654+i0.4228958626756797997442.

1. The fast algorithm of computing b,,.
Substituting the partial fraction decomposition of Rg3(kA) and P(kA) to obtain by,:
by =1 (kA — &1.1) '™ 4 2R (W (kA — GI) " ™ + kQy (kA — & 1)~ f (™2 u™ t,)

+ 2R (Qo (kA — S 1)) fu™F um, ty).
By setting
Nby =y (kA — & 1) """ + kQy (kA — & 1)~ f (w5 u™, ),

Nby = o (kA — &)~ u" + kQo (kA — &)~ f (w5 u™, ),
we have

2. The fast algorithm of compétime Np1 + 2R(Nbs).
Substituting the partial fraction decomposition of Rg3(kA) and P(kA) to obtain ¢,,.
k
Cn = 2R (wo (kA — coI) "N u™ + 2kR (wan (kA — col) ™) [2f (an, byt + 5) — fu"E um )]
k
twy (kA — er D)7 " + kway (kA — e )7 2 (an, bu, tn + 5) — fuE u™ ).
By setting

k
Nep = wy (kA — e 1) 7™ + kway (kA — e11) 7 2f (an, b,y tr +

2) = St ),

k

_) - f(uniLa un; tn)]v

Neg = wo (kA — o) u™ + kwao (kA — col) " 2f (an, b,y tn + 5
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we get

3. The fast ETD3-Padé schemén = Vo1 20N e2).
Substituting the partial fraction decomposition of Ros(kA), Pi(kA), Py(kA), Ps(kA) and
ap,, b, ¢, into (2.18), we get the following fast ETD3-Padé scheme:

u" = wy (kA — e D)7 ™ 4 2R (w2 (kA — coI) ™ )u™ 4 kw1 (EA — cﬂ)flf(u"*L, u”,ty)

k
+2kR (wia (kA — coI) ™Y f(u™ L um t,) + 2kway (KA — 1) " f (an, by B + 5)

+4kR (waz (kA — coI) ™) flan, by, tn + g) + kwzy (kA — o )7L f (™5 ey tni)
+2kR (w3a (kA — col) ™) fF(u™ L e i),
By setting
Nup = wy (kA — e )" u™ + kwyy (A — e D)L f(u™ L um, t,,)

k
+2kway (kA — c1 )7 f(an, b, te + 5) + kwsy (kA — e )7 f(u™E e b)),

Nug = 2kR(waz (kA — coI) ™) f(an, by, tn + g) + ER (w2 (kA — o)™ f(u" 5 ey tngn)
+R (w2 (kA — col) " Hu™ + kR (w2 (kA — co )™ f(u™ 5 u™ t,),
we get
u" ™ = Nuy + 207 (Nus).
Similarly, for ETD4-Padé method, the following decomposition is available
Roa(kA) = 14 2R(wy (kA — & 1)7Y),  P(kA) = 28( (kA — & 1)),
Raa(kA) =14 2R(w1 (kA —arD)™h),  Pi(kA) = 2R(w11 (kA — e 1)),

Py(kA) = 2R(wa1 (kA — e )71, Py(kA) = 2R (w31 (kA — ¢ 1) 1),
with the corresponding coeflicient values
c1 = —3+141.73205080756887729352, wy = —6 —¢10.3923048454132637611,
wyp = —0.5 —41.44337567297406441127, woy = —11.15470053837925152901,
wsy; = 0.5+ 10.28867513459481288225, ¢1 = —6+4143.4641016151377545870548,

wy = —12 —i20.78460969082652752232935 Q = —i3.46410161513775458705.
1. The fast algorithm of computing b,,. N N
Substituting the partial fraction decomposition of Raa(kA) and P(kA) to obtain by,:
by = u™ + 2R (W1 (kA — &1.1) " Vu” 4+ 2kR(Qy (kA — & 1)) f(u™F um ty).
By setting
Nby = Wy (kA — & 1) + kQy (kA — & 1)~ f (5w, 1),
we obtain

2. The fast algorithm of compulgfhg: c%n + 2R(Nby).

Substituting the partial fraction decomposition of Rgs(kA) and P(kA) to obtain ¢,

~ k
en = u" +2R(W01 (kA — & 1) Hu™ 4+ 2kR(Q1 (kA — S0 ) fan, by, tn + 5).
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By setting

~ k
Nep = @y (kA — D)7 " + kQu (kA =G 1) 7 fan, bo, tn + 5),

we get
3. The fast algorithm of compu%fhg: (%Lnn T 29{(1\[01); N
Substituting the partial fraction decomposition of Raa(kA) and P(kA) into d:
dp, =bp, + 2R (w01 (kA — 1) by,
+ 2kR(Q (kA — & 1)) 2 (an, oy tn + g) — flu™ L um )]
By setting

Ndy = @y (kA — 1) by + kQu (kA — E.1) " [2f (an, Cn, tn + g) — fuE um )],

we obtain

4. The fast ETD4-Padé schemec.l” = by + 2R(Ndy).

Substituting the partial fraction decomposition of Rag(kA), Pi(kA), Py(kA), Ps(kA) and
any by, Cn dy into (2.21), we get the following fast ETD4-Padé scheme:

"t = w4 2R(w1 (kA — 1)U + 2kR(wi (kA — o)) fumE um ty)
+2kR (w1 (kA — 1)) (f (@, by, tn + g) + f(an, cn,tn + g))
+2kR (w31 (kA — 1 I) ™) f(u™ 2T dyyy o).
By setting
Nuy = wy (kA — cr 1) 7 u™ 4 kwyp (A — cJ)flf(u”*L, u”, ty,)
+kwoy (kA — c1 1)  f(ap, byt + g) + kwoy (kA — ¢ 1) 7L fan, Cny tn + g)
+kwsy (kA — e D)7 f(u L dy teya),
we have

u™t = u" 4+ 2R(Nuy).

6. Numerical Experiments

In this section, we use two examples to illustrate the theoretical results.
For simplicity, we introduce the notation:

error(k
order = logx, 7(1),
72 error(ksa)
where error(k) denotes the error in the discrete L? or L norm with time step size k. The

linear finite element (with r» = 2) is taken as the spatial discretization.

Example 6.1. We consider the Mackey-Glass-type equation (see [45] for details), which sim-
ulates a single-species population with age-structure and diffusion
bu(x,t — 1)

1+um(z,t—71)° (6.1)

Up = Ugy — au(z, t) +
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Table 6.1: The temporal convergence order of ETD3-Padé FEM scheme for problem (6.2), with N =
2000.

M k error(L?) order(L?) error(L>) order(L>)
20 0.025 1.48e-3 3.1e-3

40 0.0125 2.14e-4 2.79 4.665e-4 2.73

80 0.00625 3.01e-5 2.83 6.093e-5 2.92
160 0.003125  4.00e-6 291 7.796e-6 2.97
320  0.00156 4.89e-7 3.03 9.63e-7 3.01

Table 6.2: The spatial convergence order of ETD3-Padé FEM scheme for problem (6.2), with L = 32.

N h error(L?) order(L?) error(L*>) order(L>)
10 0.1 1.76e-3 0.0021

20 0.05 4.37e-4 2.01 5.28e-4 1.99
40  0.025 1.06e-4 2.03 1.32e-4 1.99
80 0.0125 2.42e-5 2.12 3.32e-5 1.99

Table 6.3: The temporal convergence order of ETD4-Padé FEM scheme for problem (6.2), with
N = 2000.

M k error(L?) order(L?) error(L>) order(L>)
10 0.05 3.199e-3 6.500e-3

20 0.025 1.609e-4 4.31 3.558e-4 4.19

40 0.0125 9.43e-6 4.09 2.147e-5 4.05

80  0.00625 5.53e-7 4.08 1.290e-6 4.05
160 0.003125  3.21e-8 4.10 6.097e-8 4.40

This problem is equipped with homogeneous Dirichlet boundary condition. We take a = 2,
b=1,m=2and 7 = 0.1 and solve the problem on [0, 1] x [0,0.5]. A source term g(z,t) is
added, so that the exact solution of the PDE

u(z,t—0.1)
1+ u?(z,t —0.1

ut:uww_2u(‘r7t)+ ) +g($’t)’

w(0) = u(1) = 0, (6-2)

u(z,t) = (1 — z)sin(50t — z),z € [0,1],¢ € [—0.1, 0],

is given by u(x,t) = (1 — z)sin(50t — ). We compute u(z,t) using the ETD3-Padé and
ETD4-Padé schemes, respectively, combined with linear finite element spatial discretization.
The time step size is taken as k = % = %, and the spatial resolution is set as h = %

The temporal and spatial numerical errors of the ETD3-Padé scheme (with linear finite
element spatial approximation) are presented in Tables 6.1 and 6.2, respectively. A third
order accuracy in time, and second order accuracy in space, have been clearly observed in the
tables. The corresponding numerical results of ETD4-Padé Galerkin finite element method
are presented in Tables 6.3 and 6.4. We also display the plots of the exact solution and the
numerical solution in Fig. 6.1.

Next, we examine the conditional stability of the ETD-Padé method. For this purpose, the

initial condition is replaced by its perturbation :

Oz, t) = 2(1 — 2)(sin(50t — z) +0.1), (x,¢) € [0,1] x [-0.1,0]. (6.3)
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Table 6.4: The spatial convergence order of ETD4-Padé FEM in space for problem (6.2) with L = 32.

N h error(L?) order(L?) error(L>) order(L>)
10 0.1 1.76e-3 2.1e-3

20 0.05 4.403e-4 2.00 5.28e-4 1.99
40  0.025 1.099e-4 2.14 1.32e-4 1.99
80 0.0125 2.74e-5 1.99 3.30e-5 1.99

Table 6.5: The temporal convergence order of ETD3-RK FEM scheme for problem (6.2), with N = 2000.

M k error(L?) order(L?) error(L>) order(L>)
20 0.025 1.59e-4 2.28e-4

40 0.0125 9.35e-6 4.09 1.28e-5 4.16

80  0.00625  5.80e-7 4.02 7.86e-7 4.03
160  0.003125  3.96e-8 3.87 9.33e-8 3.88
320  0.00156 6.04e-9 2.71 7.86e-9 2.76

Table 6.6: The spatial convergence order of ETD3-RK FEM scheme for problem (6.2), with L = 32.

N h error(L?) order(L?) error(L>) order(L>)
10 0.1 1.57e-4 1.97e-04

20 0.05 3.96e-5 1.99 4.99e-5 1.98
40  0.025 9.93e-6 2.00 1.25e-5 2.00
80 0.0125 2.50e-6 1.99 3.16e-6 1.98

We obtain the corresponding numerical solution v™ and then compute ||u™ — v™|| 2 in different
time step. Fig. 6.2 displays the time evolutionary curve of ||u" — v™|| 2, computed the ETD3-
Padé and ETD4-Padé methods, with N = 2000. The numerical stability has been clearly
observed.

Moreover, we present the results computed by the ETD3-RK numerical algorithm (2.13)-
(2.14) in Tables 6.5 and 6.6. It is noticed that only constant coefficients have been included
in the elliptic operator A. And also, the elliptic operator A is self-adjoint, since there is no
convection term. Because of these two facts, we are able to apply FFT-based fast solvers.
The third order temporal convergence order and second order spatial convergence order have
also been observed for this numerical algorithm, as displayed in Tables 6.5 and 6.6. In fact,
the corresponding results are even sharper than that of the ETD3-Padé method, which comes
from the fact that e %4 could be exactly evaluated, with the help of FFT-based fast solvers,
in comparison with the Padé approximation, which has introduced an additional numerical
discretization. In terms of the numerical efficiency, the ETD3-RK and ETD3-Padé methods
are of a comparable level, because of the availability of the FFT-based fast solvers. Therefore,
we conclude that, for a symmetric and constant coefficient elliptic operator A, the ETD3-RK
has more advantages, with the help of FFT-based fast solvers. However, for a general elliptic
operator A with either variable coefficients or with a convection term, a direct evaluation of
e k4 turns out to be very complicated and computationally very expensive. In this more
general case, the ETD-Padé method becomes more preferred, in terms of numerical stability
and efficiency.



370 H.S. DAI, Q.M. HUANG AND C. WANG

L=32

0.018 T T T T T T T T T 0.018

®
0.016 —?q;m 0.016 1@

0014 P& 4 oote !

\ &
ootz [l & 1 ooi2fll | &
I

n_.n
W7,

|
0.004 0.004

|
0.002 # J 0.002 k

ZUTIrE ik
0 L L L L L L 0 L L L L L L
0 0.05 0.1 015 02 025 03 035 04 045 0 0.05 0.1 015 02 025 03 035 04 045 05
t t

Fig. 6.2. Time evolution curve of |[u™ — v"||2, computed by the ETD3-Padé (left) and ETD4-Padé
(right) method.

Example 6.2. We consider the DPDE in [42],
ur = Au+ uy + uy +u?(z,y,t — 0.5) + u?(z,y,t) + g(z,y,t), (z,y,t) € [0,1] x [0,1] x [0, 5],
uloo=0, te€]0,5],
u(x,y,t) = e tsin(2mz) sin(27y)  (z,y) € [0,1] x [0,1],¢ € [-0.5,0],

(6.4)
with exact solution u(z,y,t) = e !sin(27z)sin(2ry). In fact, this notation is consisten-
t with (2.1), by taking Au = —Au — uy — u, (an elliptic operator), f(u(t — 7)), u(t),t) =
u?(t — 1) + u?(t), (with 7 = 0.5). And also, g(x,y,t) is calculated as an external source term,
since the given exact solution u(x,y,t) does not satisfy the DPDE (2.1).

The temporal and spatial numerical errors of the ETD3-Padé scheme (with linear finite
element spatial approximation) are presented in Tables 6.7 and 6.8, respectively. In the temporal
accuracy check, we take h = 272k so that k3 = O(h?). In the spatial accuracy check, the time
step size is fixed as k = 0.0005, so that the numerical error is dominated by the spatial ones. A
third order accuracy in time, and second order accuracy in space, have been clearly observed in
the tables. The corresponding numerical results of ETD4-Padé Galerkin finite element method
are presented in Tables 6.9 and 6.10. Similarly, in the temporal accuracy check, we take h = 2k?
so that k* = O(h?). In the spatial accuracy check, the time step size is fixed as & = 0.0005,
so that the numerical error is dominated by the spatial ones. A fourth order accuracy in time,
and second order accuracy in space, have been clearly observed in the tables.
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Table 6.7: The temporal convergence order of ETD3-Padé FEM scheme for problem (6.4), by taking

h=2"7k%.
k h error(L?) order(L?)
0.5 2.5e-1 2.29e-3
0.25  8.33e-2  3.60e-4 2.67
0.125  2.77e-2  4.17e-5 3.10
0.0625 9.25e-3  4.65e-6 3.16

Table 6.8: The spatial convergence order of ETD3-Padé FEM scheme for problem (6.4), by fixing

k = 0.0005.
k h error(L?) order(L?)
0.0005  2.5e-1 2.29e-3
0.0005 1.25e-1 7.64e-4 1.58
0.0005 6.25e-2  2.06e-4 1.89
0.0005 3.12e-2  5.25e-5 1.97

Table 6.9: The temporal convergence order of ETD4-Padé FEM scheme for problem (6.4), by taking

h = 2k*.
k h error(L?) order(L?)
0.5 0.5 5.02e-3
0.25 1.25e-1 8.50e-4 2.56
0.125 3.12e-2  5.23e-5 4.02
0.0625  7.8e-3 3.30e-6 3.98

Table 6.10: The spatial convergence order of ETD4-Padé FEM scheme for problem (6.4), by fixing

k = 0.0005.
k h error(L?) order(L?)
0.0005 0.5 4.9e-3
0.0005  2.5e-1 2.29e-3 1.11
0.0005  1.25e-1 7.65e-4 1.58
0.0005  6.25e-2 2.06e-4 1.89
0.0005  3.125e-2 5.25e-5 1.97

7. Concluding Remarks

In this paper, the ETD3-Padé and ETD4-Padé Galerkin finite element schemes are con-
structed and analyzed for nonlinear delayed diffusion-reaction equations with Dirichlet bound-
ary conditions. This approach avoids a well-known difficulty of numerical instability caused
by ETD-based RK method. To simplify the computation efforts, the nonlinear terms are ap-
proximated by explicit extrapolation formulas and a fast numerical algorithm is implemented.
An unconditional L? numerical stability is proved for the proposed numerical schemes, under
a global Lipshitz continuity assumption. Moreover, an optimal rate convergence analysis and
error estimate are established in the same manner, which gives convergence order of O(k? + h")
and O(k* + h") in the L? norm, respectively. Two numerical experiments have demonstrated
the robustness of the proposed third and fourth order ETD-Padé methods.
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In our future work, we will focus on the following topics:
e Extend the ETD-Padé method to partial differential equations with time dependent delay.

e The maximal principle of parabolic equations with time-dependent delay.
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