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Abstract. In this paper, we provide an optimal rate convergence analysis and error
estimate for a structure-preserving numerical scheme for the Poisson-Nernst-Planck-
Cahn-Hilliard (PNPCH) system. The numerical scheme is based on the Energetic Vari-
ational Approach of the physical model, which is reformulated as a non-constant mo-
bility gradient flow of a free-energy functional that consists of singular logarithmic
energy potentials arising from the PNP theory and the Cahn-Hilliard surface diffu-
sion process. The mobility function is explicitly updated, while the logarithmic and
the surface diffusion terms are computed implicitly. The primary challenge in the de-
velopment of theoretical analysis on optimal error estimate has been associated with
the nonlinear parabolic coefficients. To overcome this subtle difficulty, an asymptotic
expansion of the numerical solution is performed, so that a higher order consistency
order can be obtained. The rough error estimate leads to a bound in maximum norm
for concentrations, which plays an essential role in the nonlinear analysis. Finally, the
refined error estimate is carried out, and the desired convergence estimate is accom-
plished. Numerical results are presented to demonstrate the convergence order and
performance of the numerical scheme in preserving physical properties and capturing
ionic steric effects in concentrated electrolytes.
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1 Introduction

The well-known Poisson-Nernst-Planck (PNP) theory has been widely applied to de-
scribe the ion transport in many biological processes and technological applications, such
as ion channels, semiconductors, and electric double layer capacitors [2, 4,40, 60]. Al-
though it has achieved great success in many applications, the PNP theory has many
limitations due to its mean-field nature. In the mean-field approximation, ions are treated
as point charges that only interact with the background electric potential arising from the
charges in the system. As such, ionic steric effect and ion-ion correlation have been ig-
nored. However, such ignored effects could be crucial to description of ion transport in
some scenarios, e.g., charge dynamics in concentrated electrolytes and ions permeation
through ion channels.

To overcome the limitations, various modified PNP theories with steric effects have
been proposed recently. Based on a lattice gas model, ionic steric effect has been taken
into account through the incorporation of entropy of solvent molecules to the electrostatic
free energy [6,31-34,39,44,61]. Another approach is to consider steric effects via includ-
ing the Lennard-Jones potential for hard-sphere repulsions [18,30,36]. To avoid computa-
tionally inefficient integro-differential equations, local approximations of nonlocal terms
up to the leading order have been proposed to get reduced local models [28,30,36]. To
get more accurate models, regularization terms of concentration gradient energies can
be further included to describe the steric interactions [20-23]. The proposal of such con-
centration gradient terms follows the same spirit as the Ginzburg-Landau theory for the
description of phase separation in mixtures.

Considering an H~! gradient flow of the electrostatic free energy with the additional
concentration gradient energies, one can obtain the following Poisson-Nernst-Planck-
Cahn-Hilliard (PNPCH) system:

a_cl:Dlv.

o , 1=12,...,M,

M
v (zlgb—i—lncl + Zgl”c” —UZAcl>

n=1

M
—V-(xV¢)= Zzlcl—i—pf,
=1

where ¢ is the electrostatic potential, c! is the ion concentration for the I-th species, z!is

the valence, M is the total number of the ionic species, p/ is the fixed charge density, x
and D' are coefficients arising from nondimensionalization, G = (/") is the coefficient
matrix for steric interactions, and ¢’ is a gradient energy coefficient. Since its proposal
in the work [20], the PNPCH system has been applied to study the ion transport in ion
channels [22] and charge dynamics in room temperature ionic liquids [21,23].

In this work, we consider structure-preserving numerical methods and their error
estimates for the PNPCH system. For simplicity of presentation, we assume a homo-
geneous source term pf =0, and M =2, which corresponds to only two species of ions,
denoted as n and p. The analysis of this work could be easily extended to the case of
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multi concentrations and non-homogeneous source terms. In addition, we set D,, =1,
k=1, z"=—1, and zF =1, after a careful scaling process. In turn, the two-species PNPCH
system could be rewritten as

on=V-(nV(—¢+Inn+gun+gnp—o"An)), (1.1)
0ip=V-(DpV(p-+Inp+gnn+gnp—c’Ap)), (1.2)
—Ap=p—n, (1.3)

in which G=(g; ;) is a 2x 2 symmetric matrix. Periodic boundary conditions are imposed
for the PNPCH system (1.1)-(1.3). After nondimensionalization, the free energy of the
charged system is formulated as

' 1 1 1
E(n,p):/@{nlnn+plnp+(n,p)G(n,p)T+§cT”]Vn]2+§c7p|Vp]2}dx+§ In—p|3, (1.4)

and the PDE system (1.1)-(1.3) turns out to be the following conserved gradient flow:
omn=V-(nVu,), op=DV-(pViu,). (1.5)
In more details, 1, and i, are the dimensionless chemical potentials calculated as

pn =0 E=Inn+1+(=A)"" (n—p)+gun+gip—oc"An, (1.6)
up:=6,E=Inp+1+(—A)"(p—n)+gnn+gnp—o’Ap, (1.7)

and ¢ is the solution to —A¢ = p—n, with periodic boundary conditions. In fact, the
energy dissipation law could be derived as

th:—/Q{n]Vyn\2+Dp|Vyp|2}dx§O.

Recent years have seen great progress on the development of structure-preserving
numerical methods for the classical PNP-type equations [9, 10, 19, 27, 29, 37, 38, 48, 49].
For instance, a second-order accurate and energy dissipative finite difference method
based on a Slotboom transformation was proposed for the PNP equations in one di-
mension [38]. A positivity-preserving finite element scheme that uses the logarithm of
concentrations as unknowns was developed for the PNP-type equations [41]. Another
category of structure-preserving numerical methods was developed based on a gradient-
flow structure of the PNP equations. For instance, implicit numerical schemes that un-
conditionally ensure positivity, unique solvability, and energy dissipation were proposed
for a class of the Keller-Segel equations [47] and PNP equations [48]. Unconditional
structure-preserving finite difference schemes, along with convergence analysis, were
developed for the classical PNP equations [37].

The existing works of numerical methods for the PNPCH system (1.1)-(1.3) have been
very limited. It is worthy of mentioning a recent article [43], in which a finite differ-
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ence scheme is proposed. The mobility function is explicitly updated in the numerical
scheme, so that the unique solvability analysis has been facilitated. In the numerical ap-
proximation of chemical potentials, both the logarithmic and the surface diffusion terms
are computed implicitly, since these two terms turn out to be the gradient of convex na-
ture energy parts. For the steric interaction terms, a convex-concave decomposition is
available, and the convex splitting numerical approach is applied. The positivity pre-
serving property has been established at a theoretical level for the resulting numerical
algorithm, i.e.,, n>0and p>0, is satisfied at a theoretical level, so that the numerical solu-
tion is well-defined in the energetic variational formulation. Moreover, an unconditional
energy stability analysis has also been proved for the numerical scheme. Similar ideas
have been applied to the other gradient model with singular energy potential, such as
the Cahn-Hilliard equation with Flory-Huggins energy potential [7, 12-14], the Poisson-
Nernst-Planck system [37,43], liquid film droplet model [59], etc.

On the other hand, an optimal rate convergence analysis has been an open problem
for the PNPCH system (1.1)-(1.3), and we will provide such an analysis for the finite
difference scheme proposed in [43]. The primary challenge is associated with the non-
constant mobility in the variational structure, as well as the singular and nonlinear nature
of the logarithmic terms in the chemical potential expansions. In comparison, many ex-
isting works of convergence estimate for the PNP system [8,42, 50] has been based on
a perfect Laplacian operator; as a result, the variational structure is broken and an en-
ergy stability analysis is not available for these numerical approaches. To overcome the
difficulty in terms of non-constant mobility and singular logarithmic chemical potential
terms, we have to make use of several non-standard techniques to control the nonlin-
ear parabolic coefficients. A careful calculation reveals that, a uniform distance between
the numerical solution and the singular limit value is needed to pass through the error
estimate if a nonlinear mobility function is involved with a singular logarithmic energy
potential. In fact, such a phase separation property is available for the exact PDE solu-
tion, and we are able to obtain a similar property with an application of a-priori estimates.
Meanwhile, the leading order truncation error is not sufficient to establish the required
separation property, due to the first order temporal accuracy of the numerical scheme.
To avoid such an insufficiency, we apply the technique of higher order asymptotic ex-
pansion for the numerical solution, based on a careful linearization approach. In turn,
the constructed approximate solution satisfy the numerical scheme with a higher order
consistency order, up to the second order temporal accuracy. Subsequently, this higher
order consistency analysis, combined with the convex nature of the nonlinear logarithmic
terms, enables one to derive a rough error estimate. As a consequence of the rough error
estimate, the /> bound for both ion concentration variables could be derived, as well as
their discrete W bounds. These bounds play a crucial role in the refined error estimate,
in which the desired convergence result could be established afterward.

The rest of the article is organized as follows. In Section 2, we review the numeri-
cal scheme, and state the main theoretical results. The high order consistency analysis
is presented in Section 3, the rough error estimate is provided in Section 4, and the re-
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fined error estimate is established in Section 5. Some numerical results are provided in
Section 6. Finally, the concluding remarks are given in Section 7.

2 Numerical scheme and main theoretical results

2.1 The finite difference spatial discretization

The standard centered finite difference spatial approximation is applied. We present
the numerical approximation on the computational domain Q) = (0,1)% with a periodic
boundary condition, and Ax=Ay=Az=h=1/N with N €N to be the spatial mesh reso-
lution throughout this work. In particular, f; ;x stands for the numerical value of f at the
cell centered mesh points ((i+1/2)h,(j+1/2)h,(k+1/2)h), and we denote Cpe: as

Cper = { (fi,j,k) ’fi,j,k :fl'+ﬂcN,j+,BN,k+'yN/ Vi/j,k,“,ﬁ,’y S Z}

with the discrete periodic boundary condition imposed. In turn, the discrete average and
difference operators are evaluated at (i+1/2,j,k), (i,j+1/2,k) and (i,j,k+1/2), respec-
tively

1 1

Asfivyjni=5 ikt fijn), Dafipy =g (Firvjx—fijk),
1 1

Ayfijrin=5 (fijrrktfijn)r Dyfijpip= i (fijr1k—fijk),

1 1
Acfijiry =5 fijkrrtfijn) . Defijipyi=1 (fikr—fije)-
The corresponding operators at the staggered mesh points are defined as follows:

i et i) = ()

y . Y Y
W Fijr= <f11+ k f -2 ) ayf; Bk <f11+ k fl]—% )
1
Z P Z Z Z
“Zfi,j,k ) <fz',j,k+% +fz‘,]',k—%) ¢ Zfl] k= <f1] k+3 fzj,k—%) :

In turn, for a scalar cell-centered function g and a vector function ]? = (f%,fY,f5)T, with
f*, f¥ and f* evaluated at (i+1/2,j,k), (i,j+1/2,k), (i,j,k+1/2), respectively, the discrete
divergence is defined as

Vi gf)z]k (Axg f*)ijptdy (A yg‘fy)i,j,k+dz(Azg‘fz)i,j,k- (2.1)

In particular, if f= V¢ = (Dx¢,Dy¢p,D-¢p)" for certain scalar grid function ¢, the corre-
sponding divergence becomes

Vi (§Vn@); ; =x (Axg-Dxp); ;i +dy (Ayg-Dy¢), . +d=(Azg-D=9p); 1y (22)
(Bud)ijk =V (Vi) ik =0x (Dx@); ey (Dy@), x+=(D=00); (2.3)
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For two cell-centered grid functions f and g, its discrete L? inner product and the
associated ¢? norm are defined as

N 1
(f.8)a:=0"Y fiixije Ifll2:=(({f.fla)?.

ijk=1

In turn, the mean zero space is introduced as

O:?I ‘Q‘ Z _fl]k}

i,j,k=1

Coer = { f €Cper

Similarly, for two vector grid functions f = (f*,f¥,f*)7, = (¢%,¢%,¢%)T, with f*(g%),
fY(gY), f7(g%) evaluated at (i+1/2,j,k), (i,j+1/2,k), (i ,],k+1/2) respectively, the cor-
responding discrete inner product becomes

.8 =1 18”8, + 187,
8" )= (ax(f787) 1), [F.8Yy = (ay (f78¥),1),  [f%,87],:= (a=(£78°), 1)

In addition to the discrete || || norm, the discrete maximum norm is defined as

1 flleo:= max | fijkl-

1<i,jk<N

Moreover, the discrete H; and Hﬁ norms are introduced as

thfﬂg:: [Vif,Vifl=[Dxf,Dxfl+ [Dyf/Dyf]y+[sz/sz]Z/
AT = 1A 12+ f 2 (I = 1F 13 + IAnfI3.

The summation by parts formulas are recalled in the following lemma; the detailed proof
could be found in [26,55,57, 58].

Lemma 2.1 ([26, 55,57, 58]). For any ,$,8 € Cper, and any f: (F5, Y, £)T, with f~, fY, f*
evaluated at (i+1/2,j,k), (i,j+1/2,k), (i,j,k+1/2), respectively, the following summation by
parts formulas are valid:

WV f)==[Vit.fl, ($:Vi- (Vi) == Vi, Arg V], (24)
in which Ay, corresponds to the average operator given by Ay, Ay and A,.

A discrete Sobolev embedding from Hi into /> has been proved in [11]. This inequal-
ity will be useful in the later convergence analysis.

Lemma 2.2 ([11]). For any 3-D periodic grid function f (over cell centered mesh points), we have

flleo C(llfll2+ 1A f1l2)- (2.5)
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In addition, we denote C; as the constant associated with the discrete Poincaré in-
equality B
IVifll2>Ci|fll2 forany f with f=0. (2.6)

Remark 2.1. For ease of presentation, we consider periodic boundary conditions in the
numerical analysis. The numerical scheme and corresponding analysis can be extended
to homogenous Neumann boundary conditions. For non-homogeneous ones, the mass
conservation and energy dissipation properties should be accordingly modified and the
auxiliary functions can be introduced to deal with the non-homogeneous boundary data.
For more complicated boundary conditions, the convergence analysis is more mathemat-
ically involved and will be considered in our future work.

2.2 Review of numerical scheme and properties

The following finite difference scheme has been proposed in a recent work [43]: given
n™,p™ € Cper, find nmtl pmtle Cper such that

nm+l —pmn .
A= Ve (M), 27)
m+1__ ,m .
= (Mo, 28)
‘uzi+l zlnnm+l T (—Ah)fl (nm+1 _ pm+1) +g§1nm+l +g§2pm+l
—gn" = g5 p" =" Ay, (2.9)
‘uzz—&-l :lnpm+1 + (_Ah)—l (pm—H _nm—H) +g51nm+1 +g§2pm+l
— g " =85 p" — P A"t (2.10)

Here, we have used a convex-concave decomposition of the symmetric matrix G
G=G.—G,, (2.11)

in which both G.= (g7 ;) and G, = (g7 ;) are non-negative definite matrices. The mobility
functions at the face-centered mesh points are defined as

9

(M;n)pr%,j,k = Ax(M?)H%,j,k,
(M?)i,j+%,krZAy(M?)i,H%,k, (2.12)
<M:1n>i,j,k+% ::AZ<MZZ)1‘,j,k+%’

in which (M), =nl, (M})ijx = Dpf,. Similar definitions could be introduced
for M}
It is clear that the numerical solution to (2.7)-(2.10) is mass conservative, i.e.,

nm=n0:=pBy, pr=p0:=By with 0<pfy, Vm>1, (2.13)
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in which the average operator is given by f=(1/]Q|)(f,1). In addition, a few notations
need to be introduced, to facilitate the analysis in later sections. For any ¢ € Cper, the
weighted discrete norm is defined as

lollc =/ (oL (@), (214)
in which ¢ = L',J_\; ()€ éper is the unique solution that solves

L) ==V (MVyp)=¢. (2.15)

In a simplified case of M =1, it is obvious that £ () = =4y, and the discrete H, !
norm is introduced as

l@ll-1a=1/{e. (~A)"1(9)).

The positivity-preserving and unique solvability properties have been established in
our recent work [43].

Theorem 2.1 ([43]). Given n™,p™ € Cper, with 0< nzzj,k,p?}/k, 1<i,j,k<N,and n" —p™ e éper,

there exists a unique solution (n™*1,p"*1) € [Cper]? to the numerical scheme (2.7)-(2.10), with

0< nzzjf,:l,pl’.,”j}:l, 1<i,j,k<N and "™ — p"+l € Cper.

The discrete energy is defined as
1 1
En(n,p):= (nlnn+plnp, 1)+ 2 [|n—pl|%, ,+ 5((n,p),G(n,p)")
1 1
+50" IVunl3+ 50" [ Vppl3. (2.16)

Theorem 2.2 ([43]). For the numerical solution (2.7)-(2.10), we have

Eh<nm+l,pm+l)+At< [M?Vh‘u;n—&-llvhy?—i—l} + [Mzzvh,u?—i—l/vhll?—i—l] )

<Ep(n",p"), (2.17)

so that Ep,(n™,p™) <Ej,(n°,p®) <Co, for all m €N, where Co >0 is a constant independent of h.

2.3 Main theoretical result: Optimal rate convergence analysis

Denote (N,P,®) as the exact PDE solution for the non-dimensional PNPCH system (1.1)-
(1.3). We are able to assume a regularity of class R for the exact solution

N,P € R:=H*(0,T;Cper(Q2)) NH (0, T;C3er (Q2)) ML= (0, T;Cper (V) (2.18)

if the initial data are regular enough. Moreover, the following separation property is
assumed for the exact solution:

N>ey, P>ey forsome ¢€p>0 atapoint-wiselevel. (2.19)
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Meanwhile, the Fourier projection of the exact solution is introduced
Nn (1) :==PnNN(-,t), Pn(-t):=PNP(-t)

with the projection into BX, the space of trigonometric polynomials of degree to and
including K (with N =2K+1). Subsequently, the projection approximation estimate is
standard

—k
H Ny —N ”L°°(0,T,~Hk) <Ch H N ||L°°(0,T;Hf)/ (2.20)
—k '
IPN =Pl o0, 7310 < CH P o0, 7;110)

for any 0 <k </, provided that (N,P) € Lw(O,T;Héer(Q)). In fact, the Fourier projec-
tion estimate (2.20) does not automatically ensure the positivity of the ion concentration
variables; however, by taking / sufficiently small, a similar phase separation property is
valid: NN > (3/4)60, PN > (3/4)60.

Meanwhile, a notation N% =Ny (-, t,,), PXi =Pn(-,tm) (with t,, =m-At) is introduced,
to facilitate the presentation. The mass conservative property is obvious at the discrete
level

_ 1 1
N ‘Q‘\/Q N(/Wl) X ’Q’/Q N(Im 1) X N 7

P =P%~!, ¥meN, (similar analysis),

(2.21)

due to the fact that (Ny,Pyn) € BX. On the other hand, the mass conservative identity
(2.13) of the numerical solution (2.7)-(2.8) is recalled. In turn, the following point-wise
interpolation is taken for the initial data in the numerical solution:

(1) :=NNn(pi,pj Pt =0),  (p°)ijx:=Pn(pi,pj,pr,t=0). (2.22)

For the exact electric potential ®, we denote its Fourier projection as ®y. Subsequently,
the following definition is introduced for the error grid function:

ey :=PuNy—n", e :=PyPNy—p", eg:=Pp®PN—¢", VmeN. (2.23)
The above analysis implies that ey =efy =0 for any m €N.
The following theorem is the main result of this article.

Theorem 2.3. Given initial data N(-,t=0),P(-,t=0) € Cger (Q)), suppose the exact solution for
the PNPCH system (1.1)-(1.2) is of reqularity class R. Then, provided At and h are sufficiently

small, and under the linear refinement requirement C1h < At < Cyh, we have

ey 12+ llep ll2+ <Atz <{|Ahe§{|§+ HAhe;H;)) + He$HH§ <C(At+h?) (2.24)
k=1

for all positive integers m, such that t,, = mAt <T, where C1, Cp, and C are positive constants
independent of At and h.
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3 Higher order consistency analysis of (2.7)-(2.10): Asymptotic
expansion of the numerical solution

The Taylor expansion in both time and space indicates a first order temporal accuracy
in time and second order spatial accuracy for the discrete equations (2.7)-(2.10), with
a substitution of the project solution Ny, Py. However, such a leading local truncation
error will not be sufficient to recover an a priori £* bound for the numerical solution
to establish the separation property. To deal with this theoretical challenge, we have to
perform a higher order consistency analysis, with the help of linearization technique,
which would be sufficient to derive such a bound in later analysis. In more details, we
construct two supplementary fields, namely N 1, Pat1, and define the following profiles:

N=Ny-+AtPyNpt1, P=PnN+AtPNPas1. (3.1)

In fact, a higher O(A#*+h?) consistency is satisfied with the given numerical scheme
(2.7)-(2.10). The constructed profiles, Na;1 and Pa1, P, 1 will depend solely on the exact
solution (N,P). In other words, a higher order approximate expansion of the exact solu-
tion is introduced to overcome the difficulty that a leading order consistency estimate is
not able to control the £ norm of the numerical solution. Instead of substituting the ex-
act solution into the numerical scheme, a careful construction of an approximate profile
is performed by adding O(At) correction terms, so that an O (At*-+h?) truncation error is
satisfied. In turn, we estimate the numerical error function between the constructed pro-
file and the numerical solution, instead of a direct comparison between the numerical so-
lution and exact solution. Such a higher order consistency enables one to derive a higher
order convergence estimate in the |[-||2 norm, which in turn leads to the ¢/* and ||- ”w,}A

bounds of the numerical solution, via an application of inverse inequality. This approach
has been reported for a wide class of nonlinear PDEs; see the related works for the in-
compressible fluid equation [16,17,45,46,52-54], various gradient equations [1,24,25,35],
the porous medium equation based on the energetic variational approach [15], nonlinear
wave equation [56], etc.

The following truncation error analysis for the temporal discretization can be ob-
tained by using a straightforward Taylor expansion in time, combined with the projection
estimate (2.20):

N%Jrl_NnI\iI 1 1 1 1 1
S =V (NG (NG (= 8) (NG PR N

5P — 5 N — gEoP Y — " AN )
+AHG " +O(AR) + O (™), (3.2)
Pr}(z,—&-l —pm

=V (DR (P + (—8) (PR - NE)) + g5 N

+ 80Pl — 85N — 8Pl — o7 8P
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+ALH G+ O (M) + O (™). (3.3)
The spectral accuracy order is given by my >4, and the spatial functions G,(qo), G;(?O) are
smooth enough in the sense that their derivatives are bounded.
Subsequently, the leading order temporal correction function (Na¢1,Pa¢1) turns out
to be the following equations:

diNay = V- (va (InNy+(=A) 7 (N —Pw) +g1Nn+g12Pn — " ANy )

1 _
+NyV <N—NNAt,1 +(—A) 1 (NAt,l — PAt’1)>
+NNV (811Nar1+812Par 1 —U”ANAt,1)> -GV, (3.4)

atPAtJ =V- (DPAMV <11’1PN+(—A)_l(PN—NN)"‘ngNN"’gZZPN_UﬂAPN)
1 -
+DPyV <P—NPAt,1+(—A) 1(PAt,1_NAt,l)>

+DPNV (g21Nat1+§22Pat1 —0P APas1) > - G;(;O)' (3.5)

Existence of a solution of the above linear PDE system is straightforward; see the related
textbook reference [51]. In fact, the solution depends only on the projection solution
(Nn,Pn), and the derivatives of (Nat1,Pat1) are bounded in various orders. Also, trivial
initial data Na¢1(+,t=0), Pat1(+,t =0) =0 could be imposed in (3.4)-(3.5). As a result, the
mass conservative property is valid for (Nat1,Pat1)

Nag1 () =Pasa (- t5) =0, Vk>0. (3.6)

An application of the semi-implicit discretization (as given by (3.2)-(3.3)) to (3.4)-(3.5)
implies that

Nm+1_Nm

At1 ~ Al v. (NTKuV (II’IN%—H + (—A)_l (an\;-l—l _ P%—H))

NG V(@5 NG T+ 5P — gl NR —giaPR — o NG )

1 1 -1 1 1
+NyV <WNZ+1 +(=4)" (N —Pait)
N

1 1 1
+NIEV (gﬁNZ;l +80PaT 811N — 81 P AL — 0" AN >>

— (G +AthI +O(A), (3.7)
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Pm+1 —_pm

At — Al _ . (DPKMV (IHP%JA_}_(_A)*](P%Jrl_N%Jrl))

+DP Y (85 NI +85Pl ! — g5 NK — 5P —o7 APY )

1 ~
+D(PN)”‘V<PmHPZ:11 (—A) 1(PK;1—NK;1)>
N
+D(Pn)"V (851'\'21514'852*)21#_851 Xt,l—ggzpft,l—UpApxﬁl)
— (G Athy +O(AP). (3.8)

Consequently, a combination of (3.2)-(3.3) and (3.7)-(3.8) leads to the second order tem-
poral truncation error for Ny := Ny +AtPNNat 1, P :=PnN+AtPy Pat1

NT+1_Nlm K Qym+1 1/Km+1_ pm+1
TzV-(NTV(lnNT +(=8) 7 (Rt — Pyt )
AP (g P g B —gaPT R ) )
+0O(A)+O(h™), (3.9)
[’jm+1_[’jm . . A e .
M :v-<DP;"v(1nP;"+1+(_A) e iofyt))
FDPY (g5 g5 P g - gl o aPT ) )
+O(A?)+O(h™). (3.10)

In the derivation of (3.9)-(3.10), the following linearized expansions have been utilized:

. AtPyN
IRy =1In(Ny+APyNs1) :1nNN+%+o<At2), (3.11)
N
A AtPNP
InPy =In(Py+AtPNPa 1) =1nPN+%+O(At2). (3.12)
N

Furthermore, an application of finite difference approximation, combined with the
Taylor expansion in space, yields the truncation error for (N, IS) (as given by (3.1))

N+ m . N N . R

7At = Vh' <A(|\|m)vh <lnNm+l + (_Ah)fl (Nm+l o Pm+1) +g§1Nm+l
+8LP" T gt N — g1, P —a”AN““)) +7 (3.13)

|Sm+1 _|5m . . . N A

7At =Vy- (DA(P’”)Vh (lnpm+l_|_ (_Ah)fl (Pm+1 _ Nm+l) _|_g§1Nm+1
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+85,P" —8§1Nm—8§2|3m—‘7pAh*sm+l>> +T;}n+1, (3.14)

where

HTZIH-&-l

AT, < (AP +h?).

Based on the mass conservative property (3.6), combined with similar arguments as
in (2.21), we conclude that

n’=NP, pOEISO, ﬁ:ﬁ, ?:ﬁ, Vk>0, (3.15)
~ 1 A 1 A — =~ —_—
Ne=— [ N(-t)dx=— [ N0dx=n0, Pk=p0, Vk>0. 3.16

In addition, since (N,IS) is mass conservative at a discrete level, we see that the local
truncation error T, and 7, have a similar property

ol =gtl=0, VYm>0. (3.17)

As another important feature, it is observed that the temporal correction functions
(Nat1,Par1) are point-wise bounded. A combination of this fact with the separation
property (2.19) (for the exact solution) leads to a similar lower bound for the constructed
profile (N,P)

“ R 1
N>e;, P>ep for 66:§€0>0, (3.18)

provided that At and h are sufficiently small, in which the projection estimate (2.20) has
been repeatedly used. This uniform bound will be used in the convergence analysis. In
addition, since the correction functions only depend on (Ny,Py) and the exact solution,
its WL norm will stay bounded. In turn, we are able to obtain a discrete WL bound for
the constructed profile (N,P)

Mo <Cr, [[PHlo<C, ViR <Cr, [ ViPlo<C*, VE>0.  (3.19)

The reason for such a higher order asymptotic expansion and truncation error esti-
mate is to justify an a priori £ bound of the numerical solution, which is needed to
obtain the separation property, similarly formulated as (3.18) for the constructed approx-
imate solution. With such a property valid for both the constructed approximate solution
and the numerical solution, the nonlinear error term could be appropriately analyzed in
the £(0,T;¢?) convergence estimate.

4 A rough error estimate

Instead of a direct analysis for the error function defined in (2.23), we introduce alternate
numerical error functions

A= PN ™, = PP M= (—Ay) NPT —A"), VYmeN.  (4.1)
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The advantage of such a numerical error function is associated with its higher order accu-
racy, which comes from the higher order consistency estimate (3.13)-(3.14). Because of the
fact that 1" =p" =0, for any m >0 (which comes from the identities (3.15)-(3.16)), it is clear
that the discrete norm ||-|| _; ;, is well defined for the error grid function (7#",™). In turn,
subtracting the numerical scheme (2.7)-(2.10) from the consistency estimate (3.13)-(3.14)
gives

et — " +1 1 +1
Tzvh-(nmvhﬁﬁ +a"V V) 4, (4.2)
prt—p 1 1 1

T:Vh' (mevhﬁ?—l_ —i—Dﬁmth;;H- )+T;n+ (4.3)

with the following expansions:

ﬁzﬂ—l _ lnNm—H _lnnm—H 4 (_Ah)—l (ﬁm—H _ ﬁm—&-l) +gilﬁm+1

+gLp" T g " — gL P — o A", (4.4)
V,T—H :lnNm—H + (_Ah)—l (Nm—l—l _ |5m+1) +gi1 N7l

+85, P — g N — g, P — o A, N, (4.5)
ﬁ?—l—l =In |5m+1 _lnpm—H + (_Ah)_l (ﬁm—&-l _ﬁm—H) +g§1ﬁm+l

8P — g5 " — g M — 0"y p Y, (4.6)
V;ﬂ+l :lnpm+l 4 (—Ah)fl (|5m+1 _ Nm+l) +g§l Nm+l

85 P — g5 N — g5, P — P Ay, P (4.7)

Since V"1 and V;TH only depend on the exact solution and the constructed profiles, it
is reasonable to assume a discrete W * bound

I e

12408 wim < C*. (4.8)

In addition, to proceed with the nonlinear analysis, we make the following a priori as-
sumption at the previous time step:

A" o417 ]2 S AES +15, | A" o+ D0 5™ |2 < AEF 415 (4.9)

This a priori assumption will be recovered by the optimal rate convergence analysis at the
next time step, as will be proved later. In turn, a discrete /* and Wi’oo bound is available
for the numerical error function at the previous time step, with the help of the discrete
Sobolev inequality (2.5) (in Lemma 2.2), as well as the inverse inequality

1
17l <C (A"l + A" 2) <C (¥ 41 ) < Ses <1, (4.10)

Cllawi™|, _ C(At? +h¥)

V"o <
H h HOO— h% = h%

gc(At§+h%) <1, 4.11)
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where the linear refinement constraint C11 <At <Cph has been used. A similar argument
gives

17"l < C (At% +h%) < %eg; <1, ||Vuf"|e<C (Ats +h8> <1. (4.12)

Subsequently, the following W;"’O bound is available for the numerical solution at the
previous time step, combined with the regularity assumption (3.19):

1™ [Joo < [N [loo + |2 [|oo < C5:=C* +1, 1P [0 < Cs, (4.13)
V™ leo < I ViN" o+ [Vt [l S C*+1=Cs, || Vip" ||l <=Cs. (4.14)
As a further bound, a combination of the £*° estimate (4.10), (4.12) for the numerical error

function and the separation estimate (3.18) leads to a similar separation property for the
numerical solution at the previous time step, at a point-wise level

* *

N € v
e A L =

The following proposition states the rough error estimate result.

(4.15)

Proposition 4.1. Under the regularity requirement assumption (4.8) for the constructed profiles
il V;,””, as well as the a priori assumption (4.9) for the numerical solution at the previous
time step, we have a rough error estimate

[ ™ 5+ | ™ < A (2.16)

Proof. Taking a discrete inner product with (4.2), (4.3) by ji" 1, yg“ respectively, gives

<m+1 m+1> <pm+l m+1>

,]/ln "uP
+At<<A( Vit Vi )+ DA™ Vi, Vhi‘m+1>)

_<~ /ﬁ?+l> <ﬁm,,ﬁ >—|—At<< i ~m+1>+< m+1,ﬁ?+1>>

In terms of the chemical potential diffusion terms, the following inequalities could be
derived, based on the point-wise separation estimate (4.15):

2

I

<.A( )vh‘un+l vh‘um+l> 0 Hv ~m—+1

(4.18)
(A(p™)Vyl L, Vit ) > HV L.

Since the local truncation error have zero mean, as given by (3.17), the following estimate
are available:

(4.19)

2 N
(A < N 9 < 2 e 90
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() S 19 1o gl DGl 420

D *
Similarly, an application of the Cauchy 1nequahty to (™, fi 1) and (p", fij ) leads to

2

1
() < 7 |0 g

, 4.21

) <HﬁmH_Lh'thﬁ?HHzSDegAtHf’mH_l,thgDeoAtHVhﬁMHHz- 422)

The last two terms on the right-hand side of (4.17) could be analyzed as follows:
_ <A(ﬁm)vhviiqﬂ+llvhﬁnm+l>
<l A 9 <l 9

2(C 2

< " (4.23)

I l3+3 et |V

2(c*

—D<v4(ﬁm)VhV?”thﬁ?“>S 7" |2+ D |vam e @2

For the two terms (ii"*1,i"+1) and (ﬁm“,ﬁ’;“), the detailed expansions in (4.4) and
(4.6) indicate the following inequalities:

(InN" 1 —Inp™ 1 "+ = (InN7 ! —Inp™ Rt — ) >0, (4.25)
(InP" 1 —Inp"*1, " 1) = (InP"+ 1 —Inp™*, P+t —p"+1) >, (4.26)
and
< - ~m+1 ﬁm+1) ~m+1>_|_<<_Ah)—l<r~)m+l_ﬁm+1),ﬁm+1>
—|@ sm+l ~m+1H W0, (4.27)
<ﬁm+,—Ahﬁm+1 = ||V 3, (=AY = || V" (4.28)
<ﬁm+1 g +g pm+l> <pm+l gclnm+l+gc ﬁm+l>>0 (4'29)
— (A", g "+ gL p")

==V, g + 85" |

> = [ = ) (5P + (8520271 ), (430)
— (" g5 " 485 ")
> —[|Vap" - || 85" + 85 5™ “1h

p
2 _07thf’m“H;-(U”)*l((851)2“77'”Hz_l,ﬁ(giz)z!!ﬁm\\2_1,,1), (4.31)
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where the positivities of (n”*1,p"*1) and (N"*1,P"+1) have been applied in the deriva-
tion of (4.25) and (4.26), as well as the application of positive-definite property of G¢ in
the derivation of (4.29). Then we conclude that

< m—l—l,‘u;n—&-l> <pm+1,ﬁzz+l>
0- ~m (7' ~11 2 ~m 2 m 2
Zj”vhn +1H2—|—7thp +1H2_QO(Hn H—1,h+HP H—l,h) (4.32)

with
Qo=max (") (51> +(0") " (52)% (")~ (852)2+ (o) (5527
Therefore, a substitution of (4.18)-(4.24) and (4.32) into (4.17) reveals that
n p
€°Af(|\V A DYV ) + T [V o+ SV
2At

2 _
< (0 ) 1" s (g + @0 1" P 1
2At
+ Bl 2 (66)’1At<IIﬁ’“II§+D’1Hﬁ’“H§). 43)

The right-hand side of (4.33) could be bounded in the following manner, based on the
a priori assumption (4.9):

2
() I o I B <C (o %), 434
2 2 u ou
(Bargr + @) 17" 1= g I = (ar ), (435
Sl I < co (e o e ) <car(ad o), @39
0

2(C)(ep) (|l 3+D 1P I3) <car (" B+ 13) <c (At +h%),  @37)

where the fact that || f|| 1 , <C|| f]|2, as well as the linear refinement constraint C11 <At <
Coh, have been repeatedly applied. Going back to (4.33), we arrive at

‘%ﬂ|yvhﬁm+1|y§+%p|yvhﬁm+1u§gC(At%wz%). (4.38)

This in turn reveals that
17 o+ V7™ o |57 o+ [V b < C (A% +1%) <ari 4, (439)
provided that At and h are sufficiently small, and the discrete Poincaré inequality (2.6)

has been applied. This inequality is exactly the rough error estimate (4.16). The proof of
Proposition 4.1 is finished. O
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As a direct consequence of the rough error estimate (4.16), an application of 3D in-
verse inequality leads to

1
e A P e L P A I S P A/

*
gc(At%Jrh%) g%o (4.40)

under the same linear refinement requirement, provided that At and h are sufficiently
small. In turn, the following separation is valid for the numerical solution at time step
tm+1:

€ 1orr €0 o €0 o omi €& .~

Egn’”* <C +E§C3, ?Spm §C*+?§C3. (4.41)

This uniform H . H « bound will play a very important role in the refined error estimate.

Meanwhile, by the rough error estimate (4.16), an application of inverse inequality

gives an ||+ ||s bound for ("1, +1)

ClIVu" 1 _ C(Ati+hi) -
hi - I3 = (4.42)
NG Hs <1, (similarly),

thﬁmHHSS

in which the linear refinement requirement C1# <At < Cyh has been applied. In turn, the

following ||-||s bound becomes available for (n*!,p"+1)
V™ g < [IVaN" g+ |V g < C'+1=Cs, Wiy
V™ Hlg < [IViP™ g+ ([ Vip™ |y < C*+1=Cs. |

5 A refined error estimate

The following preliminary results are needed in the refined analysis for the numerical
error functions. The proof of Lemmas 5.1 and 5.2 has been modified from the version
in [37]. We here present the rewritten proof of Lemma 5.1 in Appendix A and just cite the
result of Lemma 5.2 in this article.

Lemma 5.1 ([37]). Under the a priori |- ||c estimate (4.13), (4.15) for the numerical solution at
the previous time step and the rough ||-||c estimate (4.41) for the one at the next time step, we
have

(A(n™) V), (InN" T —Inp™+1), 7, 7" 1)

> ||V = MY [ = MR, (5.1)
D<A(p’”)Vh (11‘1 pm—&-l —lnp’”“),Vhﬁ’”” >
> [V |y = MY - MUk, (5.2)

where the constants 7,(10), 7;(70), M,SO), Ml(go), M,(f), M;(f) only depend on €f, C*, Cs, D and |QY].
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Lemma 5.2 ([37]). For ¢* (for any k>0) defined in (4.1), we have the estimate
[Vad*[l, < Calla* =], (5.3)
for some constant C4 > 0 that is independent of h.

Lemma 5.3. Under the a priori ||-||c estimates (4.13)-(4.14), (4.15) for the numerical solution
at the previous time step, we have

— " (A(n™) V" > oV HA A2 - M || Va1, (5.4)
- _ - 2
—Da? (A(p") V3" V") >0 | VA M|V, (5.5)
where the constants 'y,(ql), 'yél), M,(qz) and M;(,Z) only depend on €, C*, Cs, 0", 0P, D and |
Proof. An application of summation by parts implies that
—(AM™) VA 71", ") = (A", V- (A(n™) Vi), (5.6)

Meanwhile, at a fixed grid point (i,j,k), a detailed finite difference expansion reveals that

1
Vi (A(") VL) =l A (Dx "y D Dl Dxﬁ;”tljk)
1
4= 2 (Dynr, Dyl +Dynl’ Dyt 0
<Dz 1Jk+1DZ 1+Dz = 1Dz~mill> ®7)
Subsequently, an application of discrete Holder inequality leads to

_Un<A(nm)thhﬁm+llvhﬁm+l>
:U'n<Ah17lm+1,Vh'(A(Tlm)vhflm+l)>
>0 min(n")- | A" |3 =" [ V|| - Vi A

n %
> = Cao” | V™ -

o" €OHA ~m+1H2 C2 n( 1HV Sm+1 ; (5.8)

in which the |- || estimates (4.14) and the phase separation property (4.15) have been

applied in the derivation. As a result, we have proved inequality (5.4), by setting
o'e; ~ N
7 = 0 My = Clo" (eg) .

Inequality (5.5) can be established in a similar manner, the technical details are skip-
ped for the sake of brevity. This finishes the proof of Lemma 5.3. O
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Now we perform the refined error estimate. Taking a discrete inner product with
(4.2), (4.3) by 27" +1, 2p™+1 respectively, leads to

1/ _ _ - _ -
o (I B = 3+ = 4 5 13— 1™ B+ 17+ — 1)

+2(<A YVt Vi £ D(A (™) Vit vhpm“))
:2(<Tnm4r1,ﬁm+l>+< m+l’r~)m+l>)
—2((AGE" )RV, V) 4 DIAF") TV, V). (5.9)

The local truncation error terms could be bounded with an application of Cauchy in-
equality
2z mm ) <[+ 510
2>y <l o+ [ |

For the nonlinear diffusion error inner product, we begin with the following expansion:
<A( )Vhﬂmﬂ v nm+1>
— (A1) V(N Ing™ 1), V) 4 (A (") V™, Vi
+ (A" V3 (517" 80P — g5y " =g P"), V")
— " (A(n™)V 07", (5.11)

The lower bound for the second part is straightforward
(A(n™)V, ", V"
> —Ca | Vi 2 V" 2
> = GGyl = p" 2 [ V"

v

(GG () A B 1D VA o (5.12)

The Cauchy inequality could be applied to bound the third part

(") (517" g P — g5y " —g5ap™), V")
> —[|n" || th 811”m+1+gczﬁm+l_g(i’1ﬁm_g§2ﬁm Hz'”vhﬁmﬂuz
> = Qu (| V" 5+ V™ [+ [ Vo™ 5+ V™[ 3) (5.13)
with 1.
Qn=5Ca (21811 |+ 8121+ g1 ]+ 1812,

in which the a priori ||- || estimate (4.13) has been applied. A substitution of (5.12) and
(56.13), into (5.11), combined with the preliminary estimates (5.1), (5.4) (given by Lem-
mas 5.1, 5.3), leads to
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<A<nm)vhﬁz1+lfvhﬁm+l>
3
> (—7;°>—M,<3~>) |12 = MO 2

—\4
=2(CoCa) (1) (1" I3+ B) — MR g
—Qn<HV (e A R v [re A ) (5.14)

A similar lower bound could be derived for the other nonlinear error inner product on
the left hand side; the details are skipped for the sake of brevity

D<.A vh,up+l vhpm+l>

> (3" =M ) 19 =M 11
~2(DCCa)* () (1A 134157113 ) = My B g
=Q (9™ G+ V0™ [+ V0™ 3+ 8" 1) (5.15)
with
Qp=5DCs (2ol +Ig51 | +Igtal + 1))

The last two nonlinear error inner product terms on the right-hand side could be bounded
by a direct application of Cauchy inequality

—2(AA")V VI Vit
<2 ViV o LA™ |- [[Var™ ],
<2CH | |- [ |, < 0 ([l 5+ [ 2aa™ ), (5.16)
—2D(A(P") ViV, v g ) <Dt (|57 5+ [ Vi 3), (5.17)
in which the regularity assumption (4.8) has been used. As a result, a substitution of
(5.10), (5.14)-(5.15) and (5.16)-(5.17) into (5.9) yields

1

At(ufzm“nz 1 B+ 17" B = 115" 13) +2” | V5™

e ok
< MO ([ B+ B) +MO) (13 + 15" ) + MR

MO ([ 3+ Vi 4 V" 5+ VP )

2

G+

(5.18)



366 Y. Qian, C. Wang and S. Zhou / CSIAM Trans. Appl. Math., 4 (2023), pp. 345-380

with the following constant representations:

M® =4(C5Cy)" (1) 7+ D2 () ) +2(M+ M) 41, (5.19)
M®) =2Cc*+2DC*, (5.20)
M® =2(M + M), (5.21)
M® =2(Q,+Q,+C*+DC*). (5.22)

Meanwhile, for k=m,m+-1, a careful application of Cauchy inequality indicates that

MO ||| < MO |||, || ani*]),
1 1 _
< Syt (345 (i) T MOk 3,
5 k112 2 5 k i (5.23)
MO ||, |5 < MO |||, - (| 0"

1 @ g2 1, -1 3
<51 | M (345 (1) (MO B.
Its substitution into (5.18) gives

1

Af
) 3 _ 3 -

1V 5 8™ o+ 57 4™

(I = 11+ 17 13— 1913) + 7 | 9™

1 1
e [ el PNV
<M ([ B+ 1) + MO ("3 417" 13) + M
MO (@ B B+ IR B 1) I o+l 629

with
1 1 1 -1
M© —-max(i(’y,gl)) (M(S))Z,E(’y;l)) (M(S))2>.

An application of discrete Gronwall inequality results in the desired higher order conver-

gence estimate

1

~m+1 ~m+1 el Sk |12 Sk (|2 ’ 2,12
1A |+ |77 |+ Atkz(HAhn L8t ]3) | <c(ar+i?), (5.25)
=1

in which the higher order truncation error accuracy, || 7"+ |l2, [ 752 <C (At*+h?), has
been recalled. This completes the refined error estimate.
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Recovery of the a priori assumption (4.9)

As a result of the higher order error estimate (5.25), we notice that the a priori as-
sumption in (4.9) is satisfied at the next time step "1

77 o+ 7" o < C (AP +17) <At ¥ +1F, (5.26)
C (A +h?)

I s < S

gC(At%+h%) <MY S, (527)

under the linear refinement requirement, Cih < At < Cyh, provided that At and h are
sufficiently small. Therefore, an induction analysis could be applied. This completes the
higher order convergence analysis.

As a result, the convergence estimate (2.24) for the variable (n,p) is a direct conse-
quence of (5.25), combined with the definition (3.1) of the constructed approximate solu-
tion (N,P), as well as the projection estimate (2.20).

In terms of the convergence estimate for the electric potential variable ¢, the definition
for ¢* in (4.1) implies that

. ~ C
187 3 < Cllangin |, < S p <C(a412). 529
As a consequence, we arrive at
67— e L < Cllan@ =), <C(at+12), 529

since
(=) (§" —elt) = At P (Pats —Nag) +15. (5.30)

In fact, the discrete elliptic regularity has been applied in (5.28), (5.29), and the truncation
error for ¢ is defined as 7' = (— Ay, )@y — (P —N™). Therefore, we obtain

leg 1l < 16" [ 2+ |7 =€ | o < C(AF+1) +C (A4 <C(At+H). (531)

This finishes the proof of Theorem 2.3.

Remark 5.1. For the classical PNP system studied in [37], the free-energy functional of the
system is convex with respect to concentrations. Meanwhile, the free-energy functional
(1.4) for the PNPCH system is non-convex due to the cross interactions described by the
matrix G, which could not be diagonally dominant. With regularization from high-order
Cahn-Hilliard terms, some tricky difference has appeared in the convergence analysis re-
ported in this work. The complicated nonlinear stability convergence analysis presented
in [37] can be partially circumvented by taking advantage of the high-order derivative
terms, while extra attention should be paid to the treatment of cross interaction terms.
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6 Numerical results

To find the numerical solution to the PNPCH system, we develop a Newton’s iteration
method to solve the fully nonlinear scheme (2.7)-(2.10) at each time step. Given the nu-
merical solution n™, p”, and ¢, we initialize the Newton’s iterations with n" 0 =pym
p" 10 =p™, and ¢" 10 =¢™. Based on the I-th iteration solution, we then obtain the
(I+1)-th iteration by solving a linearized system

nm+1,l+l —nh .
T Ar =V <Mz1vh;l/l;n+l’l+l) , (6.1)
+1,1+1 +1,1 pm A +1,1+1 +1,1+1
py T =Inn" T +7nm+l,l — 1= =g Ay
iy T g p U gt M — g™, (6.2)
pm+l,l+l _ pm . L1
b v, (Mgt 11), (6.3)
+1,1+1 +1,1 PmH'lH +1,1+1 +1,1+1
m , - m , m , m ,
Mp =Inp +W—1+¢ —a?Ayp
g5y T g p U g M — S p™, (6.4)
—V,,- (Vh4>m+l'l+l) _ pm+1,l+1 USRS VAR +p£, (6.5)

where the mobility functions are given in (2.12). Discrete periodic boundary conditions
are imposed for the difference equations. This is a linear system involving pmtLI+1
VL LI AL and ¢+ For simplicity, we present the linear system

in a two dimensional setting. We denote by

m-+1,1+1.__ nm+1,l+1 nm+1,l+1 nm+1,l+1 nm+1,l+1 nm+1,l+1 nm+1,l+1 T
T 11 77512 7 7TMIN 71021 7 712N 7 7'°NN

n
the column vector consisting of the unknowns involving n"+11+1 The vectors p,"t1/11,
pr ULy mt UL and @Mt are defined analogously. In addition, we denote by
the matrices A, and Ay, corresponding to the discrete operators V- M#V), and
Vi ~./\>l’;th, respectively. Also, we denote by the matrix 4, corresponding to the dis-
cretization of the discrete Laplacian Aj,. With such notations, the above linear system can
be rewritten in a matrix form

nmtLI+1 n"
M+1,l _ 1 __ 58 4 __ 58 4ot
P TIH Inn I—gin" —=g5np
m
K pm+l,l+l — y p ,
1,1+1 m—+11__1__ 56 54 _ 58 4
mrlir Inp I—gnn™ —gnp
¢m+1,l+1 f
Py
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where
I —At.AMn 0 0 0
U’HAA;,_gi]INZ_Dn INz —giZINz 0 INz
K= 0 0 I “AAy, 0|,
—$51In2 0 0P Apn, — 85 In2—Dp JING — I
JING 0 —I\p 0 —Aa,

and D, =diag{1/n"*'} and D, =diag{1/p™ 1!} are diagonal matrices with diagonal
elements being the column vectors 1/n"+1! and 1/p"*1/, respectively. The Newton’s it-
erations stop when the change between two consecutive iterations becomes smaller than
a prescribed stopping criterion.

In our numerical tests, we perform a series of numerical simulations to verify the ac-
curacy of the proposed scheme and confirm its performance in preserving the desired
properties, including positivity, mass conservation, and energy dissipation, at the dis-
crete level. For simplicity, we consider the dynamics of the ionic concentrations and elec-
tric potential of a charge system consisting of symmetric binary electrolytes with D =1.

6.1 Accuracy test

We test numerical accuracy of the proposed scheme in two dimensions. We choose a com-
putational domain Q= [—4,4], and take the steric interaction coefficient matrix G= (3 1)
and gradient energy coefficients ¢" =c” =0.01. We consider the PNPCH equations with
periodic boundary conditions

on=V-(nV(—¢p+Inn+gun+gup—oc"An))+f, (6.6)
ip=V-(DpV (p+Inp+gnn+gnp—0’Ap))+ fp, (6.7)
—Ap=p—n+p/, (6.8)

where the sources terms f;, f, o/, and the initial conditions are determined by the con-
structed exact solution

n=0.2¢"fcos (%) sin<%> +1,
0.2¢e~fcos <%) sin<%> +1,

p:
p=e"'cos(mx)sin(rmy).

We carry out a series of simulations on various mesh resolutions with At = h? and
compute the error with the exact solution. From Table 1, one can observe that the numer-
ical solutions of the ion concentrations and electric potential both converge to the exact
solution with a convergence order about 2, showing that the proposed numerical scheme
has the anticipated convergence accuracy.
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Table 1: The £* error and convergence order for numerical solutions of p,n, and ¢ at T=0.16 with a mesh
ratio At =h?.

N | £>errorinn | Order | {* errorin p | Order | {* errorin ¢ | Order
60 2.70e-3 - 2.70e-3 - 1.54e-2 -
80 1.50e-3 2.04 1.50e-3 2.04 8.10e-3 2.23
100 9.81e-4 1.91 9.81e-4 1.91 5.10e-3 2.07
120 6.85e-4 1.97 6.85e-4 1.97 3.50e-3 2.07

6.2 Properties test and steric effect

In this case, we assess the performance of our numerical scheme in maintaining the phys-
ical properties and capturing ionic steric effects. We consider a computational domain
Q= [—1,1]? with periodic boundary conditions and the charge distribution function
— 2 2 _ 2 _ 2
pf(X,]/) —e 100[(x+0.5)*+(y+0.5) ]_e 100[(x+0.5)*+(y—0.5)?]
. 67100[(x70,5)2+(y+0.5)2} + 67100[(x70,5)2+(y70,5)2]‘ (6.9)

We take the steric interaction coefficient matrix G=({ 1), the gradient energy coefficients
" =c? =0.0005. In our numerical simulations, we take the grid number N =100 and a
mesh ratio At=h/2.

Fig. 1 (left) displays the snapshots of concentrations and ¢ at different times. Starting
from a uniform initial distribution 7(0,x,y)=p(0,x,y)=0.1, the ions move along the gradi-
ent of the electrostatic potential generated by the fixed charges. At T=0.5, one can see that
ions are densely accumulated in the vicinity of oppositely charged fixed charges, with the
emergence of oscillations along the radial direction. Such an overscreening structure has

T=0.2 T=05 T=5 _8.48 0.4

0.5 N @ o 0.25 _8.51

—E, -~ Total Mass

_________________________________ 02
=+ ©f)O
— 015 854
osfi = % (® (@) o - 0
o
o5 @ o 0.05
001 £0.05
L A B 0
> 0
bt L2 LR . % 1 2 3 4 5
-0.01
05 05 -05 05 -05 05 T

Figure 1: Left: Snapshots on the dynamics of p,n and ¢ starting from a uniform initial ionic distribution
n(0,x,y) =p(0,x,y) =0.1. Right: The evolution of discrete energy Ej,, total mass, and minimum concentration
value of both cations and anions.
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been observed in the work [3]. As time evolves, the peaks of ion concentrations decrease
when the energy gradient terms that penalize large concentration gradients gradually
come into play. Meanwhile, the oscillation pattern emerges not only in the electric dou-
ble layer but also in the bulk. Overall, one can find that the electrostatic interactions
dominate the ion dynamics in the early stage, and the effect of phase separation comes
into effect later in the development of rich self-assembly nanostructuring patterns.

As revealed in Fig. 1 (left), electrodiffusion and phase separation come into play in
different stages of the pattern formation, displaying charge dynamics of multiple time
scales. This is further confirmed by the history of the free energy of the system, as shown
in the Fig. 1 (right). One can see that the free energy decays monotonically, indicating
that our numerical scheme is energy stable. Also, the free energy has a plateau in the first
stage and then relaxes eventually to an equilibrium that corresponds to the emergence
of self-assembly nanostructuring patterns in the bulk. Such a multi-phase free-energy
dissipation is reminiscent of the metastability phenomena [23]. Multi-phase free-energy
dissipation with metastability often requires long-time simulations, which stress the need
for robust, energy stable numerical schemes that allow large time stepping. Our numer-
ical tests demonstrate that the proposed numerical scheme is able to effectively capture
such multi-phase dynamics. In addition, one can see from the upper plot of Fig. 1 (right)
that the total mass of ions, shown in the dashed line, remains constant for all the time.
The lower plot depicts the evolution of cpin, the minimum value of #n and p on the com-
putational mesh, indicating that our numerical scheme can preserve positivity at discrete
level.

To understand ionic steric effects, we perform simulations with the classical PNP
model that is obtained by simply setting the matrix G =0 and the gradient energy co-
efficients ¢ = ¢” = 0. From Fig. 2 (left), one can see totally different dynamics. Both
the ionic concentrations and electrostatic potential are monotonically decreasing along
the radial direction without forming nanostructuring patterns. Furthermore, the Fig. 2
(right) demonstrates that the energy relaxes quickly and monotonically to the equilib-
rium. In contrast to Fig. 1, one can see that the ionic steric effects, modeled by the cross
interactions and energy gradient terms, are no longer negligible in the description of
charge dynamics of concentrated electrolytes [5,21,23].

To further investigate nanostructuring patterns, we carry out simulations with the
same parameters as in Fig. 1, while starting from a random initial ionic distribution that
is rescaled to have the same total mass. From Fig. 3, one can see a comparison with Fig. 1
that, under random perturbations, the instability drives ions to develop labyrinthine pat-
terns extending into the bulk [23]. The non-convexity of the free-energy functional, due
to the cross interaction terms, is responsible for the different results displayed in Figs. 1
and 3, which share the same parameters but different initial conditions. It is of interest to
see that the free energy dissipation exhibits two clear stages. The first stage corresponds
to the quick smoothing of random initial ionic distributions. After passing a plateau, the
self-assembly labyrinthine pattern emerges in the second stage and the system reaches
an equilibrium eventually.
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Figure 2: Left: Snapshots on the dynamics of p,n and ¢ calculated by the classical PNP model starting from
a uniform initial ionic distribution 1(0,x,y) = p(0,x,y) =0.1. Right: The evolution of discrete energy Ej, total
mass, and minimum concentration value of both cations and anions.
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Figure 3: Left: Snapshots on the dynamics of p,n and ¢ starting from a random initial ionic distribution with
a given total mass. Right: The evolution of discrete energy Ej,, total mass, and minimum concentration value
of both cations and anions.

7 Concluding remarks

An optimal rate convergence analysis and error estimate has been presented for a struc-
ture-preserving finite difference scheme for the Poisson-Nernst-Planck-Cahn-Hilliard
(PNPCH) system, based on the Energetic Variational Approach (EnVarA) of the physi-
cal model. In such a numerical scheme, the mobility function has been explicitly treated
to ensure the unique solvability, while both the nonlinear singular logarithmic and the
surface diffusion terms have been implicitly updated. Such a treatment comes from the
convex nature of the corresponding energy parts. A convex splitting numerical method
has been applied to treat the steric interaction terms. The most distinguished challenge
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has been associated with the non-constant mobility nature of the physical system, nonlin-
ear parabolic coefficients in the gradient flow, as well as the singularity in the logarithmic
terms. To overcome this subtle difficulty, an asymptotic expansion of the numerical solu-
tion (in terms of the time step size) has been performed, so that a higher order consistency
order can be obtained. Subsequently, the rough error estimate has led to an ¢* bound for
ion concentrations, so that the phase separation property becomes available for the nu-
merical solution at both the previous and next time steps. Finally, a refined error estimate
has been performed, and the desired convergence estimate has been accomplished, in the
£*(0,T;¢?)N¢(0,T;H Z*) norm. Numerical tests have demonstrated that our numerical
scheme has expected convergence order and is capable of preserving mass conservation,
positivity, and free-energy dissipation at discrete level.

Appendix A. Proof of Lemma 5.1

Looking at a single mesh cell (7,j,k) — (i+1,j,k), we make the following observation:

Dx(lnlqerl —Inn™*1)

i+3,k
_1 lnNm+l —11’1Nm+1 _1 lnnerl _lnnm+1
- h i+1,j,k i,jk h i+1,7,k ijk
1o gm _Lp o mn
En bk g, i dik
1 1 - 1
I +1 i ~m-+1
_<‘§N gn DXNi+%'j'k+€anni+%/jfk’ (All)

in which the mean value theorem has been repeatedly applied, where

¢y isbetween N”1L,  and N1

i+1,, ijk 7 (A 2)

. 1 l .

&, is between ”ﬁt,j,k and n:”ﬁ( )
In turn, its product with Dxﬁ?ri}z, ik leads to
~m+1 NZER! m+1
Dxni+%,j’k-Dx(lnN —Inn )i+%,]',k

— i_i D Nm+l .D ﬁm+l _}_l D ﬁm+1 (A 3)

En Cn ) T ihik T gkt @ T ik '

For the second part, the rough |||« estimate (4.41) for n™ ! implies that 0<&, <C3, which
in turn gives
1 1 1

GG
For the first term on the right-hand side of (A.3), we begin with the following identity:
Qm+1 Q1 1 Q1Y Rt
1 lnNﬁq’j,k—lnN;@; In(1+ (N?fl’].,k— N;?j].fk )/NTJ{ )

C_N_ Rl Q] = RN+l _Qmtl : (A.5)

(A.4)

2
D ﬁm+l >i D ﬁm+l
ity ikl = G 1T i gk

i+1,7,k — Vijk i+1,7k Vi jk
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By setting : B
m+l  \m
£0) Ni+1,j,k i,jk
m+1 ’
i,k

the following Taylor expansion is available:
©)_,0 10\, 10y 1
ln<1+tN ) = {0 (tN ) +3 (tN ) 4(

2 tg\(’))>4+5(1+1171\])5 <t§\(’)))5

with 7y between 0 and tg\(;). Its substitution into (A.5) yields
Qym+1 Q-1 Q-1 Qm+1Y2 Q-1 Q4113
1 1 Nz‘—i—l,j,k_Nz',j,k (Ni+1,j,k_Ni,j,k ) (Ni+1,j,k_Ni,j,k )
N Q4112 qm+1\3 Qqm+1)4
on NGk 2(Ni,j,k ) 3(Ni,j,k ) 4(Ni,j,k )
m+1 Qm+1\4
L1 (NN
5(1+1n)° (m+1)°
(1+77n) (N7
A similar equality could be derived for 1/¢,
m+1 m+1 m+1 m+1\2 m+1 m+1)3
1 1 Mit1jk— Mijk (”i+1,j,k_ i,jk ) (ni+l,j,k_ ijk )
= m-+1)2 mi1\3 m+1)4
Gn ik 2(”i,j,k ) 3(”i,j,k ) 4(”i,j,k )
m+1 m+1\4
n 1 (”z‘+l,j,k_ni,j,k )
5(141,)° m+1)5
(1+17n) (”i,j,k )
with 7, between 0 and
nm—H _nm—l—l
(0 _ i1k Mk
no= m+1 :
ik

In addition, the following estimates are derived:

~m—+1
11 M |2 e
ym+1 m+1| " | Qm+1l,,m+1|—= (ex)2 1"k 7
NS mlt | [Nl (eg)
and
Qm+1 K+l m+1 _ m+1
N —Nije Mg Mgk
Qm+1) 2 m-+1\2
(Ni,j,k ) (”i,j,k )
~m+1  _ =m+1 Qm+1 K+l m+1  _ Qm+1\ zm+1
< M1, ik (Nz‘+1,j,k N7k )(”z‘+1,j,k NGk )”i,j,k
- m+1y2 Qm+1\2 ( m+1)2
(”i,j,k ) (Ni,j,k ) (”i,j,k )

(A.6)

(A7)

(A.8)

(A.9)
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* * ~
< 4 (‘~m+l‘+‘ﬁm+l D+2C (C*+GC3) | 2t

it T o
(68)2 i,jk i+1,j,k %(66)4 nl,],k
<Q® (| |+t (10

where ( )
4 8C*(C*+C3

Q(Z):: * + * ’

(€5)? (€5)*

and the rough ||- || estimate (4.41), the regularity assumption (3.19), and the separation
property (3.18) have been extensively applied. The two other difference terms could be
similarly analyzed

(Rt —N’.““)Z (i —n’.”“)z

i+1,j,k ik /o \Titljk  Tijk <Q(3)< AmL| g [l > (A11)
(N?j;l)s (nzzj}:l)s = | l,],k| | i+1,7,k
A A 3 3
OO )
Q N = ik i+1,5kl )7
(N?fj:ilzl)él (nzijjcl)zl i

where Q(3), Q(4) only depend on €j, C* and Cs. For the remainder terms, we observe that

[ =R | =h| DAL | <hIDA o <Ch, (A.12)
Nm—H = N m—llzl 1
0 i+1,, ij, _
10| = | | <C*(e) < QPn < > (A.13)
ik

where Q(® = C*(e) ™! and where we have used €} < N;”]J,Zl Furthermore |7n| <1/2, so

that

1 <32

1
1+ > <= A.14
Finally,
Qm—+-1 m—+1\4
[(R1);11 4] = 1 (N NG ) 32 (Cn) <Qpt (A.15)
i+35,)k 5(1‘|‘77N)5 (N:n]-il;l)S -5 (66)5 — .
with A
Q(6):32(C*)
5(e5)°
The other remainder term has a similar bound
1 1\4
1 (”Z-Tl,j,k—”ﬁ} )

‘(RZ) '+1,',k‘ - 5
i+ 5(141,)° (n:n]?)
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3 (than )4

i+3.k (7)7,4 m+1 ‘4
<_.—2 < .
=5 (1/32)(ef)° =Q"h ‘Dx”i+%,j,k (A.16)
with
1024

(7) _ 24 *
7 =5s

Meanwhile, by the rough error estimate (4.43), the following ||-||» estimate could be de-
rived for R:

[Ralls < QI |V [s < Q®RE, Q= (Ca) Q7. (A.17)
Consequently, a combination of (A.9)-(A.11), (A.15) and (A.16)-(A.17) indicates that

1 1 m o

C_N o a < Q <‘n1ﬁ<l | +|n ‘ z—ilj kD +Q(6)h4+ ‘ (Rz)i+%,j,k| (A.18)
with ) . . 1

O_—_~2 +20@1L200L-0@
Then we arrive at an estimate for the first part on the right-hand side of (A.3)
1 1 m+1 ~m+1
((:N §H>D"N+1]k D, i 1k (A.19)
4 * ~m-+1
> = (Q ([ |+ A5kl ) + QOB 4| (Ra), .y ] ) -C* | Dl

> — (QO([a! |+t il + QO +| (Ra),. Jk\) (C*)2Cs—(4C5)~ ‘Dxnm”]k‘.

Subsequently, a combination of (A.3), (A.4) and (A.19) results in

Dxﬁ"fl Dy (InN"™ 1 —Inp™ 1)

1k i+1,k
p 3 ~ 2
2_<Q (‘”;ﬂ]zl‘ﬂ ?ﬂl}k‘)JFQ W +|(Ra) 1+1/2]k\> C3+E‘Dxnﬁ+;j,k‘
> CS(DJ’”*;],(‘ ~6(QUICT)2Ca [P+ a1y ) ~3(QC)2Can
—3(C") 63‘(R2)i+%,j,k‘2- (A.20)

Notice that this inequality is valid at a point-wise level. With summation over space, and
keeping in mind of the a priori || || estimate (4.13), (4.15) for n™, combined with the |- ||»
estimate (A.17) for Ry, we obtain

<.A( M)Vh(lnNm+l_lnnm+l)’vhﬁm+l>
>0
-2 4C

36 ~m * ~ ~m * ~
> 5 IV H3-12(Q ) Sl 3-3(C)2CE((Q) 0]+ (Q®)*) k. (a21)

"3 —12(Q0C) Gl 3 -3(Q10C*) "Gl ~3(C*)*CE | Rall3
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This proves the first nonlinear estimate (5.1), by setting
(0) _ 3¢5
,)/1’1 8 C~3 7
The second nonlinear estimate (5.2) could be derived exactly in the same manner. The
details are skipped for the sake of brevity.
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