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Abstract. In this paper we describe a new model for solidification with heat flux us-
ing the phase field crystal (PFC) framework. The equations are thermodynamically
consistent in the sense that the time rate of change of the entropy density is positive
in the bulk and at the boundaries of the domain of interest. The resulting model con-
sists of two equations, a heat-like equation and a mass-conservation equation that de-
scribes how the atom density changes in time and space. The model is simple, yet
it can properly capture the variation in the free energy landscape as the temperature
is changed. We describe the procedure for constructing a temperature-atom-density
phase diagram using this energy landscape, and we give a simple demonstration of
solidification using the model.
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1 Introduction

The phase field crystal (PFC) model was introduced in [13, 14] as continuum description
of solidification in a unary material. It was formulated as a mass conservative version of
the classical Swift-Hohenberg equation, but, later, the model was re-derived, via certain
reasonable simplifications, from the dynamical density functional theory (DDFT) [15]. In
particular, assuming a constant, uniform temperature field T, one expresses the Helmholtz
free energy density via

F=
∫

Ω

{

f (T,ρ)+
Tκ f ,ρ,o

2
(ρ−ρo)C(ρ−ρo)

}

dx,
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where Ω is some spatial domain of interest, ρ : Ω→ [0,∞) is the number density field of
the unary material in Ω, the constant ρo > 0 is a reference density, κ f ,ρ,o > 0 is a positive
constant, f is the homogeneous Helmholtz free energy density, and C is a symmetric,
potentially nonlocal, two-point correlation operator. The free energy density, f , is often
taken to satisfy an ideal “gas” model:

f (T,ρ)=ρkBT ln

(

ρ

ρo

)

−kBT(ρ−ρo),

where kB is the Bolzmann constant. Often, one makes a (Taylor) polynomial approxima-
tion of the logarithmic term about the reference density to make the model more tractable.
However, it is the singular nature of the logarithmic term that guarantees the positivity
of the solutions, and this is an important feature in the numerical and PDE analyses.
At constant temperature, one can argue that the dynamics of the model should satisfy a
diffusion-dominated mass conservation equation of the form

ρ̇=−∇· J, J=−Mρ∇µ, (1.1)

where J is the diffusion flux, M>0 is a mobility, and µ is the chemical potential:

µ :=δρF= kBT log(ρ)+Tκ f ,ρ,oC(ρ−ρo), (1.2)

where we have assumed, for simplicity, that the boundary conditions are periodic. As
a consequence of these assumptions, the total free energy is dissipated as the system
evolves toward equilibrium, and the dissipation rate is

Ḟ=−M
∫

Ω

ρ|∇µ|2 dx≤0.

Of course, it would be necessary to justify the property that ρ>0 (or at least ρ≥0) point-
wise for the model to make sense. Numerical analyses of similar gradient flow models,
that is, models that have logarithmic energy potentials, have been performed in [5,10–12,
19, 20, 23, 28].

The PFC modeling framework has a couple of basic, distinctive features. First, the
solutions to the PFC-type models exhibit (at least) two distinct phases. One is a spatially
oscillatory phase, which is identified with the solid phase, and the other is a spatially
uniform phase, which is usually identified as the liquid (or gas) phase. The peaks of the
solutions in the oscillatory phase are interpreted as the “locations” of the atoms, and typ-
ically, one can choose C so that the peaks are arranged in a desired crystal structure [21].
Second, PFC models operate at atomic length scales but diffusive time scales. Thus, the
framework can capture long-time phenomena.

In this paper, we will devise a new model for solidification and melting using the
phase field crystal framework. In particular, we will not assume that the temperature is
uniform in space and time. For an adiabatically isolated system, this requires that the
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global entropy is increasing as the system moves towards equilibrium, while, at the same
time, the total energy and the number density of particles should be conserved. From
a modeling perspective, one has some freedom in choosing the equations so that these
properties hold. In contrast with the case of uniform temperature, the Helmholtz free
energy can increase or decrease in time. While important to the model formulation, it
alone does not dictate the drive of the system toward equilibrium.

While our model is, to our knowledge, new and distinct, an earlier effort has made
some important contributions towards adding heat flux to the PFC framework for melt-
ing/solidification. Specifically, in the paper by Kocher and Provatas [17], the authors
add temperature variation in the study of rapid solidification. In fact, the framework
that they derive is quite general, and, as they claim, seems to apply to several physi-
cal settings. However, the equations that they derive are ultimately different from those
found herein. Our model is simpler in the description of the internal energy and the
latent heat, but it still captures the most important effects of temperature variation. In
particular, the heat equation that we derive is essentially linear. Ultimately, Kocher and
Provatas introduced a couple of physically reasonable approximations in the derivation
of their working model. In particular, they have introduced a smoothing/averaging op-
eration to the internal energy density. The result of these approximations is that their
working model is no longer provably entropy non-increasing. Our model, on the other
hand, retains this important property.

In this brief paper, we will construct and demonstrate the key features of this thermal-
PFC model. We plan more thorough numerical, mathematical, and physical investiga-
tions in future works. The paper is arranged as follows. In Section 2, we derive the
model using the framework outlined in classical phase field community in the 1990s. In
Section 3, we show how to construct phase diagrams from the model. Finally, we use
the free energy landscape and the phase diagram information to do some very simple
computations in Section 4.

2 Derivation

The derivation here follows the ideas in the now classic papers by Charach and Fife [4],
Wang, Sekerka, Wheeler et al. [25], and Wheeler, McFadden, and Boettinger [26]. These
papers described thermodynamically consistent phase field models of solidification with
heat flux, that is, with a non-uniform and variable temperature field. The main difference
between these classical solidification models and and PFC modeling framework is that,
in the latter, it is a non-trivial task to identify the equilibrium phases. Indeed, in the PFC
framework, great care must be taken in identifying the equilibrium liquid and solid states
via the free energy landscape.



340 Wang C and Wise S M / J. Math. Study, 55 (2022), pp. 337-357

2.1 Basic assumptions

Set Ω⊂R
d and let e,s, f : Ω→R denote the internal energy, entropy, and Helmholtz free

energy densities (per unit volume). The functions T,ρ : Ω→R are the temperature and
the number density (of particles) fields of a unary material occupying the volume Ω.
The densities e, s, and f are functions only of the local values of the thermodynamic
variables and do not depend upon gradients, and, for this reason, they are usually called
homogenous energy and entropy densities.

We assume that the total free energy, entropy, and internal energies have the following
forms, respectively:

F=
∫

Ω

{

f (T,ρ)+
κ f ,ρ

2
(ρ−ρo)C(ρ−ρo)

}

dx,

S=
∫

Ω

{

s(e,ρ)− κs,ρ

2
(ρ−ρo)C(ρ−ρo)

}

dx,

E=
∫

Ω

{

e(s,ρ)+
κe,ρ

2
(ρ−ρo)C(ρ−ρo)

}

dx,

where C is a long-range interaction, or correlation operator, and ρo > 0 is a reference
density. In this paper, we will assume that C is a differential operator of the form

C$=L−2γ$+2∆$+L2
∆

2$,

where γ is a dimensionless parameter, and L is a characteristic length. In fact, we could
instead assume that C is a nonlocal operator, as has been done in the classical density
functional theory [15, 17]. We require that F= E−TS (globally) and f = e−Ts (locally) ,
which implies that

κ f ,ρ =κe,ρ+Tκs,ρ.

Our model is be greatly simplified by choosing κe,ρ = 0, as was done in [25, 26], which
yields

κ f ,ρ =Tκs,ρ.

It is assumed that κ f ,ρ is linear in temperature: κ f ,ρ=κ f ,ρ,oT, where κ f ,ρ,o>0 is a constant.
Thus

F=
∫

Ω

{

f (T,ρ)+
κ f ,ρ,oT

2
(ρ−ρo)C(ρ−ρo)

}

dx,

S=
∫

Ω

{

s(e,ρ)− κ f ,ρ,o

2
(ρ−ρo)C(ρ−ρo)

}

dx,

E=
∫

Ω

{e(s,ρ)}dx.
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Remark 2.1. The assumptions that κe,ρ=0 and κ f ,ρ is linear in temperature are simplifica-
tions of the model that essentially linearize the associated contributions in the dynamical
equations. This keeps with the spirit of the papers [25, 26], which sought the simplest
non-trivial, thermodynamically consistent models that described the solidification pro-
cess, see also [18]. Of course, more sophisticated nonlinear models can and should be
used when there is a concrete need for generalization.

2.2 Entropy production

For the evolution equations, we appeal to conservation laws and entropy production
requirements, assuming those processes are diffusion dominated. Because energy is con-
served locally and, typically, globally, we have the equation

ė=−∇· Je.

It is expected that this will ultimately provide an equation for the temperature, T. Since
the number of particles should be conserved locally and, typically, globally, we employ
for ρ a mass conservation equation of the form

ρ̇=−∇· Jρ.

Now, we want the entropy to increase locally and globally [7]. To this end, we calculate
the time derivative of the total entropy

Ṡ=
∫

Ω

{

(

∂s

∂e

)

ρ

ė+

(

∂s

∂ρ

)

e

ρ̇

}

dx+
∫

Ω

κ f ,ρ,oC(ρ−ρo)ρ̇dx,

upon assuming local thermodynamic equilibrium (LTE) boundary conditions for ρ, so
that integration-by-parts could be carried out without the introduction of any boundary
integrals. In essence, LTE boundary conditions ensure that C is a symmetric operator:
∫

Ω
ϕC$dx=

∫

Ω
$Cϕdx.

We assume that the internal energy density is, in its most natural form, a twice con-
tinuously differentiable function of s and ρ. We further assume that the system evolves in
such a way that it never deviates greatly from equilibrium, and, consequently, we can use
the equilibrium thermodynamic theory to develop our equations. The first and second
laws are encoded in the Gibbs relation

de=

(

∂e

∂s

)

ρ

ds+

(

∂e

∂ρ

)

s

dρ.

By definition, the temperature satisfies
(

∂e
∂s

)

ρ
=: T>0. Thus,

de=Tds+

(

∂e

∂ρ

)

s

dρ.
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As we have seen, the Helmholtz free energy density results from a Legendre transforma-
tion of the other densities, namely, f = e−Ts. Thus, it follows that

d f =de−Tds−sdT=−sdT+

(

∂e

∂ρ

)

s

dρ.

The natural variables of the free energy density, f , are T and ρ, as we have indicated
above. This implies the Maxwell relation

(

∂ f

∂ρ

)

T

=

(

∂e

∂ρ

)

s

. (2.1)

We want to choose our diffusion fluxes so that 0≤ Ṡ. Observing that

ds=
1

T
de− 1

T

(

∂e

∂ρ

)

s

dρ,

it follows that
(

∂s

∂e

)

ρ

=
1

T
,

(

∂s

∂ρ

)

e

=− 1

T

(

∂e

∂ρ

)

s

.

Thus, we can write

Ṡ=
∫

Ω

{

− 1

T
∇· Je+

1

T

(

∂e

∂ρ

)

s

∇· Jρ

}

dx+
∫

Ω

κ f ,ρ,oC(ρ−ρo)∇· Jρdx.

Using the Maxwell relation (2.1), we may write an even more convenient form for the
change in entropy:

Ṡ=
∫

Ω

{

− 1

T
∇· Je+

1

T

(

∂ f

∂ρ

)

T

∇· Jρ

}

dx+
∫

Ω

κ f ,ρ,oC(ρ−ρo)∇· Jρdx.

Next, we define the generalized chemical potential

ν :=
1

T
δρF=

1

T

(

∂ f

∂ρ

)

T

+κ f ,ρ,oC(ρ−ρo). (2.2)

Consequently,

Ṡ=
∫

Ω

{

∇
(

1

T

)

· Je−∇ν· Jρ

}

dx+
∫

∂Ω

{

− 1

T
Je ·n+νJρ ·n

}

da.

To get local and global entropy production, we make the following constitutive choic-
es: for the fluxes,

Je =MT∇
(

1

T

)

, Jρ =−Mρ∇ν.
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For the boundary conditions, we take non-negative entropy production conditions:

Je ·n=−βT,∂Ω

T
, Jρ ·n=βρ,∂Ων on ∂Ω,

where βT,∂Ω,βρ,∂Ω≥0. These boundary conditions allow for heat and mass to flow through
the outer boundary, but only in an entropy non-decreasing manner. For adiabatically in-
sulated materials (meaning no mass or heat is exchanged between Ω and the outside
world), we assume that βT,∂Ω = βρ,∂Ω = 0. Another common, outer boundary condition
results from a constraint on the temperature:

T=T?<TM on ∂Ω,

known as the undercooling condition, where TM is the melting temperature. For this
condition, we do not have control of the global entropy production.

For the (general) entropy non-decreasing boundary conditions, the entropy produc-
tion rate becomes

Ṡ=
∫

Ω

{

MT

∣

∣

∣

∣

∇
(

1

T

)∣

∣

∣

∣

2

+Mρ |∇ν|2
}

dx+
∫

∂Ω

{

βT,∂Ω

T2
+βρ,∂Ων2

}

da≥0, (2.3)

and the evolution equations are

ė=−∇·
(

MT∇
(

1

T

))

,

ρ̇=∇·
(

Mρ∇ν
)

,

ν=
1

T

(

∂ f

∂ρ

)

T

+κ f ,ρ,oC(ρ−ρo).

Remark 2.2. Note that we use µ to denote the variational derivative of the Helmholtz free
energy, as in Eqs. (1.2) and (3.7). We use the variable ν to denote the variational derivative
of the Helmholtz free energy divided by temperature, as in Eq. (2.2). In the isothermal
case, the distinction is insignificant, while here it is not.

2.3 The internal and free energy densities

The only remaining issue is to specify the internal energy density e so that we can com-
pute its time derivative. To do so, it helps to express the internal energy density, e, as a
function of T and ρ. These are more natural variables for the problem. To find e= ê(T,ρ),
first note that

f

T
=

e

T
−s,

and, hence, it follows that

d

(

f

T

)

=− e

T2
dT+

1

T
de−ds=− e

T2
dT+

1

T

(

∂e

∂ρ

)

s

dρ.
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Consequently,
(

∂
(

f
T

)

∂T

)

ρ

=− e

T2
=⇒ e=−T2

(

∂
(

f
T

)

∂T

)

ρ

. (2.4)

We will begin with an expression of the form f = f (T,ρ). In fact, for the PFC model, f is
usually modeled by an ideal gas law [15]. To gain some modeling flexibility, we will use
a more general non-ideal gas law:

f (T,ρ)=ρkBT ln

(

ρ

ρo

)

−kBT(ρ−ρo)+ρokBTg

(

ρ−ρo

ρo

)

−αρokBT ln

(

T

To

)

−βρkBTo, (2.5)

where kB is Boltzmann’s constant, ρo is a reference density, To > 0 is the reference tem-
perature, g is a polynomial that measures the deviation of the free energy density from
the ideal gas model, and is typically non-negative, and, finally, α, and β are positive,
dimensionless constants. Clearly,

(

∂
(

f
T

)

∂T

)

ρ

=−αρokB
1

T
+βρkB

To

T2
.

It follows from (2.4), therefore, that the internal energy may be expressed as

e= ê(T,ρ)=αρokBT−βρkBTo,

which is linear in T and ρ. Note that we use a hat over e, since this functional form is gen-
erally different from the functional form of e in its natural thermodynamic coordinates s
and ρ.

For the PFC models, we define the latent heat as

L(T) := e(T,ρL)−e(T,ρS)=βkBTo (ρS−ρL),

where ρL is the (expected) spatially-uniform equilibrium density in the liquid phase at
temperature T, and ρS is the (expected) spatially-oscillatory field that characterizes the
equilibrium solid phase at temperature T. These two density fields generally depend im-
plicitly on the temperature. Otherwise, there is no direct dependence on the temperature
for the latent heat. We will derive these fields shortly. In the applications that we will
examine, the following inequality is valid:

ρL =ρL <ρS,

where the overline represents the spatial average. In this case, the spatial average of the
latent heat is a positive constant, since β is assumed positive:

L(T)=βkBTo (ρS−ρL)>0.
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As we see below, the average densities play an important role in the phase diagram and,
therefore, the dynamics of the model.

Remark 2.3. The last two terms of the free energy density expressed in (2.5) are designed
in part so that the internal energy density comes out linear in the variables T and ρ and
so that the average latent heat has the appropriate sign. However, we also note that these
two terms add self consistency to the model in the following sense: later, in Section 3,
when we discuss the construction of phase diagrams, we observe that the free energies
of the solid and liquid phases respond appropriately to changes in temperature. For
example, if the temperature is decreased from the melting temperature, the free energy
curve for the solid phase becomes “lower” than that of the liquid phase, and conversely
for increasing temperature. This would not happen if the terms were all merely linear in
T.

Remark 2.4. In our derivation, we proposed the Helmholtz free energy density first and
from it derived the internal energy density and latent heat expressions. The opposite
derivation could be done as well. One could express the internal energy density and
derive the free energy density. However, in the phase field crystal setting, the free ener-
gy of material is, in general, very well understood in the constant temperature setting,
having been borrowed from the dynamical density functional theory (DDFT) [15]. Thus,
beginning with the Helmholtz free energy density is a more natural starting point.

Remark 2.5. It appears that the spatial average of the latent heat is constant with respect
to temperature. While there is no explicit dependence on the temperature, the average
densities ρS and ρL do depend (in a complicated way) upon temperature. Thus the spatial
average of the latent heat is implicitly a function of temperature.

2.4 The full model

Finally, we can find the time derivative of the internal energy density:

ė=αρokBṪ−βρ̇kBTo.

With some other standard choices, namely,

MT =MT,oT2, Mρ =Mρ,oρ,

where MT,o and Mρ,o are positive constants, the system becomes

αρokBṪ−βkBToρ̇=MT,o∆T,

ρ̇=Mρ,o∇·(ρ∇ν),

ν= kB ln

(

ρ

ρo

)

+kBg′
(

ρ−ρo

ρo

)

−βkB
To

T
+κ f ,ρ,oC(ρ−ρo).
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We can now clearly identify the different terms in the chemical potential: kB ln
(

ρ
ρo

)

corre-

sponds to the ideal gas term, whereas kBg′
(

ρ−ρo

ρo

)

takes care of the correction to the ideal

gas law. The term −βkB
To
T relates to the latent heat of fusion, and κ f ,ρ,oC(ρ−ρo) is con-

cerned with the long-range interaction among particles. The boundary conditions are of
local thermodynamic equilibrium (LTE) type, coupled with the entropy non-decreasing
conditions

MT,oT2∇
(

1

T

)

·n=−βT,∂Ω

T
, −Mρ,oρ∇ν·n=βρ,∂Ων on ∂Ω.

Recapitulating the entropy and energy densities, all of them as functions of ρ and T, we
have

f = f (T,ρ)=ρkBT ln

(

ρ

ρo

)

−kBT(ρ−ρo)+ρokBTg

(

ρ−ρo

ρo

)

−αρokBT ln

(

T

To

)

−βρkBTo,

e= ê(T,ρ)=αρokBT−βρkBTo,

s= ŝ(T,ρ)=−ρkB ln

(

ρ

ρo

)

+kB (ρ−ρo)−ρokBg

(

ρ−ρo

ρo

)

+αρokB

(

1+ln

(

T

To

))

.

2.5 Non-dimensionalization

By appropriate rescaling, we obtain the following non-dimensional version of the model:

αṪ−βρ̇=−M∇·
(

T2∇
(

1

T

))

,

ρ̇=∇·(ρ∇ν),

ν= ln(ρ)+g′(ρ−1)− β

T
+κγ(ρ−1)+κ

(

2∆ρ+∆
2ρ
)

, (2.6)

where T−→T/To, ρ−→ ρ/ρo, and M, α, β, ε, and κ, are positive, non-dimensional con-
stants. The dimensionless constant γ can be positive, negative, or zero. The dimension-
less boundary conditions are of LTE type, plus the following entropy producing condi-
tions

−T2∇
(

1

T

)

·n= βT,∂Ω

T
, −ρ∇ν·n=βρ,∂Ων on ∂Ω,

where βT,∂Ω ≥0 and βρ,∂Ω ≥0. The dimensionless entropy is

S=
∫

Ω

{

−ρln(ρ)+ρ−1−g(ρ−1)+α(1+ln(T))− κ

2

(

γ(ρ−1)2−2|∇ρ|2+(∆ρ)2
)

}

dx,

and the entropy production rate is

Ṡ=
∫

Ω

{

ρ|∇ν|2+MT2

∣

∣

∣

∣

∇
(

1

T

)∣

∣

∣

∣

2
}

dx+
∫

∂Ω

{

βρ,∂Ων2+
βT,∂Ω

T2

}

da≥0. (2.7)
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3 Free energies and phase diagrams

Let us examine the Helmholtz free energies of the liquid and solid phases, which infor-
m the phase diagrams of the material. We say phase diagrams because each choice of
the parameter set will give a different phase diagram. Understanding the free energy
landscape will help us calibrate the melting temperature, TM, as well as the equilibrium
values of the fields ρS and ρL. In particular, if we take To=TM, at the melting temperature
we should have T = 1.0. We will show how to adjust parameters so this corresponds to
the correct physical case. We will first recount the method to approximate the free en-
ergy analytically [22], and later we will explain how to get more accurate calculations
numerically.

We will start by considering the non-dimensional free energy at the uniform, dimen-
sionless temperature T:

F[T,ρ]=
∫

Ω

{

Tρln(ρ)−T(ρ−1)+g(ρ−1)−αT ln(T)−βρ+
κT

2

(

γ(ρ−1)2−2|∇ρ|2+(∆ρ)2
)

}

dx.

The phase diagram can be constructed by minimizing the free energy, or, equivalently, maximiz-
ing the entropy, as long as the temperature is uniform, which we assume in this section. Now, we
will make a small deviation approximation. Suppose that

ρ=1+ψ, |ψ|�1.

For simplicity, let us assume for now that the ideal gas deviation term, g, is identically zero. (We
will take up the more general case in future papers.) Then, using Taylor’s Theorem,

Tρln(ρ)−T(ρ−1)−βρ+
κγT

2
(ρ−1)2=

λT

2
ψ2− T

6
ψ3+

T

12
ψ4−β(ψ+1)+O(ψ5), (3.1)

where λ :=1+γκ. Thus, the approximate free energy is

F [T,ψ]=
∫

Ω

{

λT

2
ψ2− T

6
ψ3+

T

12
ψ4−β(ψ+1)−αT log(T)+

κT

2

(

−2|∇ψ|2+(∆ψ)2
)

}

dx. (3.2)

We will examine the free energies that lead to the construction of a 2D phase diagram using the
procedure outlined in [22]. The 3D case can be tackled in an analogous way. See, for example, [22].
In the crystalline phase, we observe through computations that the density field has a spatially
oscillatory “equilibrium” solution that is, up to rotations, approximately of the form

ψ(x,y)≈χ(x,y) :=A+B

(

cos

(

2πx

p

)

cos

(

2πy√
3p

)

+
1

2
cos

(

4πy√
3p

))

, (3.3)

where A, B, and p>0 are parameters to be determined. The approximation χ is sometimes called
the crystal ansatz. Observe that

χ=A,

that is, A is the average density and B is the amplitude of oscillations. This solution has hexagonal
symmetry. Its peaks form a hexagonal Bravais lattice (see Figure 6). Next, fixing α, β, κ, and λ, we
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define

G(A,B,p,T) :=
2√
3p2

·
∫

p
√

3
2

0

∫ p

0

{

λT

2
χ2− T

6
χ3+

T

12
χ4−β(χ+1)−αT log(T)

+
κT

2

(

−2|∇χ|2+(∆χ)2
)

}

dxdy,

which represents the free energy at a constant temperature T evaluated at the approximate solu-
tion χ, averaged over the crystal’s unit cell, that is, the smallest repeat unit of χ.

Taking the derivative with respect to p, setting this equal to zero, and solving for p, we have

∂G

∂p
=

4B2κ(3p2π2−16π4)T

3p5
=0 =⇒ p= peq :=

4π√
3

.

This gives

G(A,B,peq,T)=−β(1+A)+
T

1536

(

−256A3−48B2(B+6κ−6λ)+128A4+45B4

+96AB2(−3+B)+96A2(8λ+3B2)

)

−αT log(T).

Next, taking the derivative with respect to B, we have

∂

∂B
G(A,B,peq,T)=

3BT

128

(

−4(4A+B+4κ−4λ)+(16A2+8AB+5B2)
)

.

This cubic equation (with respect to B) has the solution B= 0, which represents the liquid state,
and the two crystalline solutions

B=B± :=
2−4A

5
± 2

5

√

1+16A+20(κ−λ)−16A2. (3.4)

We will take B=B+, since, it turns out, using B=B− results in a higher free energy for the crystal
ansatz.

Now, the liquid free energy per unit cell can be obtained simply by setting B= 0. Thus we
define

FL(A,T)=G(A,0,p,T)=
λT

2
A2− T

6
A3+

T

12
A4−β(A+1)−αT log(T). (3.5)

This expression is exact, assuming that (3.2) is the exact free energy expression. The crystal phase
free energy per unit cell is approximated as

FS(A,T)=G(A,B+,peq,T).

Now, the melting temperature, T=1.0, should be, by definition, the temperature at which the
minimum values of FS(A,T) and FL(A,T) are equal. Thus, for a given parameter set λ, κ, β, α,

FS(AS,1)=FL(AL,1), (3.6)

where
AL :=argminAFL(A,1) and AS :=argminAFS(A,1).
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subject to periodic boundary conditions, with the initial conditions given by the crystal ansatz:

ρ(x,y,t=0)=1+A+B+

(

cos

(

2πx

p

)

cos

(

2πy√
3p

)

+
1

2
cos

(

4πy√
3p

))

,

where B+ is a given in (3.4). Clearly,

ρ(·,0)−1=A.

We solve (3.7) to steady state (equilibrium) and compute the energy of the solution on the unit
cell, obtaining the equilibrium solutions

ρ∞ ≡ρ(·,t=∞) on [0,p]×
[

0,

√
3

2
p

]

and

F∞(A,T,p) :=
∫ p

0

∫

√
3p/2

0

{

λT

2
(ρ∞−1)2− T

6
(ρ∞−1)3+

T

12
(ρ∞−1)4−βρ∞

−αT log(T)+
κT

2

(

−2|∇ρ∞|2+(∆ρ∞)2
)

}

dydx.

Finally,

FE
S (A,T) :=F∞(A,T,pE

eq), pE
eq :=argminp F∞(A,T,p).

We use a pseudo-spectral, stabilized implicit-explicit (IMEX) method to perform the equilibrium
field calculations. The spectrally accurate trapezoidal rule is used to compute the energies. The
minimization problem in p is solved using a derivative-free method [3] over the interval [peq−
1,peq+1], where peq=

4π√
3
.

The results of our improved free energy computations are shown in Figures 3, T=1.0; the left
of Figure 4, T=1.1; and the right of Figure 4, T=0.9. Notice that the approximate solution yields
a larger free energy than the true minimizer, as expected. To recalibrate the model so that T=1.0
occurs when FE

S (AE
s ,T)=FL(AL,T), we need only to adjust the value of κ lower. The approximate

free energy landscape computed using the ansatz is still quite useful, since the resulting free
energies are reasonably good ballpark estimates that can help tune the parameters. The more
accurate method can then refine and recalibrate the parameters after the ballpark estimates are
obtained.

4 Numerical solution of the model

To conclude this paper, let us perform a simple computation to give just a small sample of what
this model can do. We use the polynomial free energy (3.2) as our “exact” free energy; the associ-
ated entropy is

S=
∫

Ω

{

−
(

λ

2
ψ2− 1

6
ψ3+

1

12
ψ4

)

+α(1+ln(T))− κ

2

(

−2|∇ψ|2+(∆ψ)2
)

}

dx;
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Figure 3: Plots of the free energies (per unit cell) FE
S (red), FS (blue), and FL (yellow) for the parameters

T = 1.0, λ = 1.0, κ = 0.917385, β = 0.025, and α = 0.1. At the (recalibrated) melting temperature, T = 1.0,

the minimum values of FE
S and FL are equal. The purple line is −0.025315. Notice that, as expected, the

approximate solution obtained by the ansatz (3.3) yields a higher free energy. We adjusted κ lower (relative to
the value in Figure 1) in order to recalibrate the parameters so that T=1.0 was the “exact” melting temperature.

and the associated internal energy becomes

E=
∫

Ω

{αT−β(ψ+1)}dx,

where we have made use of the change of variable

ψ :=ρ−1.

The simplified evolution equations are

αṪ−βψ̇=M∆T,

ψ̇=∆ν,

ν=
1

T
δψF=λψ− 1

2
ψ2+

1

3
ψ3− β

T
+κ
(

2∆ψ+∆
2ψ
)

, (4.1)

and we use periodic boundary conditions for simplicity. We leave it to the reader to show that this
system is still entropy producing, locally and globally. Mass is conserved in our simulation, and
therefore, this simplified setup disallows freezing in the usual sense. This is because the solid and
liquid phases have distinct average densities. If we start out with the equilibrium values of the
solid and liquid states and then drop the temperature below the melting temperature, the solid
may not grow much, if at all. We would have to add mass to the system in order for the solid
state to grow, since the solid state has a higher average density. We will save such sophisticated
simulations for a future paper, where we will explore the model further.

For the numerical solution, we use a Fourier pseudo-spectral discretization of space, cou-
pled with a stabilized, linear, first-order IMEX algorithm for time discretization. This scheme
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Figure 4: Plots of the free energies (per unit cell) FE
S (red), FS (blue), and FL (yellow) for the parameters

T = 0.9 (left), T = 1.1 (right), and λ= 1.0, κ = 0.917385, β= 0.025, and α= 0.1. The uniform temperature is

below (above) the recalibrated melting temperature, and the minimum value of FE
S is below (above) that of

FL. The purple line is −0.025315−αT log(T).

is not designed to keep the temperature field positive, and will not guarantee entropy produc-
tion. More sophisticated schemes will be developed in the future that guarantee these properties
theoretically. See, for example, the related numerical works of the PFC model with constant tem-
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Figure 5: Plots of the free energies (per unit cell) FE
S (red), FS (blue), and FL (yellow) for the parameters

T = 1.0 (left), T = 0.97 (right), and λ= 0.6, κ = 0.459810, β= 0.06, and α= 0.1. The uniform temperature is

equal to (below) the recalibrated melting temperature, and the minimum value of FE
S is equal to (below) that

of FL. The purple line is −0.0631798−αT log(T).

perature [9, 16, 27], the modified PFC equation [1, 2], the square PFC equation [6], and the recent
papers describing entropy stable methods for phase-field models of crystal growth [18] and two-
phase flow [24], in the a non-isothermal setting. We perform a singe test, the results for which are
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Figure 6: A unary crystal growing in its supersaturated liquid phase: (left column) the ψ field and (right column)

the temperature field. Parameters for the test are given in the caption of Figure 5. In addition, Ω=(0,400)2

and M=0.1.
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shown in Figure 6. The parameters for the test are given in the captions of Figure 5, where we
give a cartoon description of the free energy landscape for the parameters.

We seed the center of the domain with a two-grain crystal that is very near to its equilibrium
state at T = 1.0, with an average density of A= 0.16. (See the left of Figure 5.) The liquid phase
surrounding the crystal seed is supersaturated, meaning its average density (at A=0.14) is higher
than that of the equilibrium state (just below A=0.11, see, again, the left of Figure 5). The initial
temperature is roughly T= 0.97. This shifts the equilibria slightly; see the right of Figure 5. The
new equilibrium average would be computed using the Maxwell common-tangent construction,
of course. The extra mass is ejected from the liquid and attaches to the solid seed, and the seed
grows. As it does the temperature changes due the the release of latent heat, and we see a com-
monly observed Gibbs-Thompson-like temperature jump effect at the boundary of the crystal.
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