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Abstract

Prompt-tuning is an emerging strategy to adapt

large language models (LLM) to downstream

tasks by learning a (soft-)prompt parameter from

data. Despite its success in LLMs, there is lim-

ited theoretical understanding of the power of

prompt-tuning and the role of the attention mech-

anism in prompting. In this work, we explore

prompt-tuning for one-layer attention architec-

tures and study contextual mixture-models where

each input token belongs to a context-relevant

or -irrelevant set. We isolate the role of prompt-

tuning through a self-contained prompt-attention

model. Our contributions are as follows: (1) We

show that softmax-prompt-attention is provably

more expressive than softmax-self-attention and

linear-prompt-attention under our contextual data

model. (2) We analyze the initial trajectory of gra-

dient descent and show that it learns the prompt

and prediction head with near-optimal sample

complexity and demonstrate how the prompt can

provably attend to sparse context-relevant tokens.

(3) Assuming a known prompt but an unknown

prediction head, we characterize the exact finite

sample performance of prompt-attention which re-

veals the fundamental performance limits and the

precise benefit of the context information. We

also provide experiments that verify our theo-

retical insights on real datasets and demonstrate

how prompt-tuning enables the model to attend to

context-relevant information.

1. Introduction

Transformer models have achieved remarkable success in a

wide array of machine learning domains spanning language
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modeling, vision, and decision making. Recently, one of

the key techniques that has helped pave the way for the

deployment of transformers to ever increasing application

areas is their ability to adapt to multiple unseen tasks by

conditioning their predictions through their inputs ± a tech-

nique known as prompt-tuning (Lester et al., 2021; Li &

Liang, 2021). Concretely, prompt-tuning provides a more

efficient (cheaper/faster) alternative to fine-tuning the en-

tire weights of the transformer by instead training (fewer)

so-called prompt parameters that are appended on the input

and can be thought of as an input interface. In fact, several

recent works have demonstrated experimentally that prompt-

tuning is not only more efficient, but often even becomes

competitive to fine-tuning in terms of accuracy (Lester et al.,

2021; Liu et al., 2023). However, there is currently limited

formal justification of such observations. This motivates the

first question of this paper:

How does prompt-tuning compare to fine-tuning in terms of

expressive power? Are there scenarios prompt-tuning

outperforms fine-tuning in that regard?

The core constituent of a transformer, and thus of prompt-

tuning, is the attention mechanism. Through the attention

layer, prompts get to interact with other input features, cre-

ate/modify attention weights, and facilitate the model to

attend on latent task-specific information. The standard at-

tention layer relies on softmax nonlinearities. Operationally,

the softmax function allows a model to selectively focus on

certain parts of the input tokens when generating attention

outputs. However, there is little rigorous understanding of

attention-based prompt-tuning. Concretely,

What is the role of the softmax-attention in prompt-tuning

in terms of optimization and generalization? How does it

locate and extract relevant contextual information?

Contributions. Our contributions are as follows:

• We show that a particular form of attention which we

refer to as prompt-attention naturally arises from the self-

attention model with prompt-tuning. We identify provable

scenarios where it is more expressive than self-attention

and linear-prompt-attention. 1 This separation result re-

veals insightful data models where prompt-tuning can be

superior to fine-tuning with self-attention.

1Our emphasis is on the role of attention (whether prompt- or
self-). However, we analyze the general problem where attention
weights are optimized jointly with the linear classifier head.
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• We develop new statistical foundations for gradient-based

prompt-tuning: we study the optimization and generaliza-

tion dynamics of the initial trajectory of gradient descent

for optimizing prompt-attention. Concretely, we show

the first few iterations learn the prompt and prediction

head with near-optimal sample complexity while achiev-

ing high accuracy.

• Our results provide insights into the critical role of soft-

max in facilitating attention: we show how the initial

trajectory of gradient descent utilizes softmax to prov-

ably attend to sparse context-relevant tokens, ignoring

noisy/nuisance tokens.

• We also characterize the exact finite sample performance

of prompt-attention assuming known prompt but unknown

prediction head. This reveals the fundamental perfor-

mance limits and precisely quantifies the benefits of con-

text information.

• Our results highlight various trade-offs among different

model parameters: (i) the role of sparsity, i.e., the fraction

of context-relevant tokens, and (ii) the relative effects of

the different constituents of context-relevant tokens.

• Finally, we empirically validate our theoretical insights

on both synthetic contextual-mixture datasets and image-

classification datasets. Specifically, we compare multiple

variants of prompt-tuning against standard fine-tuning

on the latter. Our results highlight the role of prompt-

attention in selecting relevant tokens in the image classifi-

cation setting.

Related works. Attention, specifically the so-called

self-attention, is the backbone mechanism of transform-

ers (Vaswani et al., 2017). It differs from conventional

models (e.g., multi-layer perceptrons and convolutional neu-

ral networks) in that it computes feature representations

by globally modeling interactions between different parts

of an input sequence. Despite tremendous empirical suc-

cess (see, e.g., Vaswani et al., 2017; Brown et al., 2020;

Saharia et al., 2022; Ramesh et al., 2022; cha; Narayanan

et al., 2021; Reed et al., 2022, and references therein), the

underlying mechanisms of the attention layer remain largely

unknown: How does it learn? What makes it better (and

when) compared to conventional architectures? Yun et al.

(2020) show that self-attention based transformers with large

enough depth are universal approximators of seq2seq func-

tions. Focusing on the self-attention component, Edelman

et al. (2021) show that self-attention can efficiently repre-

sent sparse functions of its input space, while Sahiner et al.

(2022); Ergen et al. (2022) analyze convex-relaxations of

Self-attention, and Baldi & Vershynin (2022); Dong et al.

(2021) study the expressive ability of attention layers. How-

ever, these works do not characterize the optimization and

generalization dynamics of attention. To the best of our

knowledge, the only prior works attempting this are Jelassi

et al. (2022) and Li et al. (2023). Jelassi et al. (2022) assume

a simplified attention structure in which the attention matrix

is not directly parameterized in terms of the input sequence.

Our paper also distinguishes itself from contemporaneous

work by Li et al. (2023) in several ways: (1) Unlike their

data model, ours incorporates a context vector and employs

a sub-Gaussian noise model instead of assuming bounded

noise. (2) We provide a precise asymptotic analysis that elu-

cidates the role of various problem parameters. (3) While

Li et al. (2023) primarily focuses on vanilla self-attention,

our study centers on understanding the potential benefits of

prompt-tuning through prompt-attention.

2. Problem setting

2.1. Motivation: Prompt-tuning

Consider a single-head self-attention layer

Opre ≙ ϕ(XWQW
⊺

KX⊺)XWV , (1)

with input X ∈ R
T×d consisting of T tokens of dimension

d each, trainable parameters (WK ,WQ,WV ) and a soft-

max nonlinearity ϕ ∶ RT ↦ R
T , [ϕ(v)]t ≙ evt/∑t′∈[T ] evt′

that acts row-wise when its argument is a T × T matrix.

We scalarize the output of the self-attention layer with a

trainable linear head Ū which yields

ypre ≙ ⟨Ū ,Opre⟩ ≙ ⟨U , ϕ(XWQW
⊺

KX⊺)X⟩ . (2)

Note here that we implicitly subsume the value matrix WV

in the linear head via U ∶≙ ŪW ⊺

V .

We assume that the model above is pre-trained so that

WK ,WQ,U are fixed. Our goal is to use the pretrained

transformer on (potentially) new classification tasks. To-

wards this goal, we explore the use of prompt-tuning, in-

troduced in Li & Liang (2021); Lester et al. (2021) as an

alternative to fine-tuning the existing transformer weights.

Prompt-tuning appends a trainable prompt P ∈ R
m×d to

the input features X ∈ R
T×d with the goal of conditioning

the transformer to solve the new classification task. Let

XP ∶≙ [PX] ∈ R
(T+m)×d be the new transformer input. The

output of the attention-layer is thus is of the form

O ≙ ϕ(XPWQW
⊺

KX⊺)X.

Note that this is slightly different from (1) in that now the

layer computes a cross-attention between the augmented

inputs XP and the original inputs X . This is also equivalent

to self-attention on XP after masking the prompt P from

keys. This masking is used to cleanly isolate the residual

contribution of the prompt without impacting the frozen

attention output. Concretely, let Whead be the prediction

head associated with the prompt tokens. As before, we
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scalarize the output by projecting with a linear head of size(T +m) × d as follows:

y ≙ ⟨[Whead
⊺ U⊺]⊺, ϕ(XPWQW

⊺

KX⊺)X⟩ (3)

≙ ⟨Whead, ϕ(PWQW
⊺

KX⊺)X⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prompt-attention ynew

+ ⟨U , ϕ(XWQW
⊺

KX⊺)X⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
frozen self-attention ypre

.

Here, ynew captures the additive impact of prompt-tuning

on the prediction. We denote the trainable parameters in

the model above as θ ∶≙ (Whead,P ) 2 Since the ynew term

becomes a self-contained module and the features attend

directly to the prompt vector, we will refer to it as prompt-

attention.

Our goal is understanding the expressivity, training dynam-

ics, and generalization properties of the above model. To

simplify our analysis, we consider the following setting.

1. We focus our attention on the novel component ynew of

the model output in (3) so as to isolate and fully under-

stand the capabilities of prompt-attention.

2. We assume WK ,WQ ∈ R
d×d are full-rank.

3. We assume a single trainable prompt q ∈ R
d i.e., m ≙ 1.

Prompt-attention model. Using these assumptions and

setting q ∶≙ WKW ⊺

QP
⊺ ∈ R

d and w ≙ W ⊺

head ∈ R
d, we

arrive at our core prompt-attention model f ATT

θ (or simply

f ATT):

f ATT

θ (X) ≙ ⟨w,X⊺ϕ (Xq)⟩, θ ≙ (w,q). (4)

We shall see that this model exhibits interesting properties

to learn rich contextual relationships within the data and can

even be more expressive than a single self-attention layer.

We remark that the model above is of interest even beyond

the context of prompting: the prompt-attention model in (4)

is reminiscent of the simplified model proposed in earlier

seq2seq architectures (Bahdanau et al., 2014; Xu et al., 2015;

Chan et al., 2015) preceding self-attention and Transformers

(Vaswani et al., 2017). Indeed, in the simplified attention

mechanism of (Bahdanau et al., 2014; Xu et al., 2015; Chan

et al., 2015), the tokens’ relevance scores and corresponding

attention weights are determined by a ≙ ϕ(Xq) in which q

is a trainable vector and ϕ is the softmax-score transforma-

tion. Note here that the trainable parameter q corresponds

exactly to the trainable prompt vector in (4).

2In our model, we train the classifier head Whead in addition to
the prompt vectors P . Despite the additional training for the
classifier head, the computational overhead remains minimal, and
the overall scheme remains significantly more efficient compared
to updating the entire model WQ,WK ,U .

2.2. Contextual data model

Consider supervised classification on IID data (X, y) ∼ D
with features X ∈ R

T×d and binary label y ∈ {±1}.
Dataset model. We assume the following about an example(X, y) drawn fromD: The labels y are distributed as P(y ≙
1) ≙ 1 − P(y ≙ −1) ≙ π; for simplicity, we set π ≙ 1/2
so that E[y] ≙ 0. The tokens xt, t ∈ [T ] of input example

X ∶≙ [x1, . . . ,xT ] are split into a context-relevant setR ⊂[T ] and context-irrelevant setRc ∶≙ [T ] −R. Specifically,

conditioned on the labels and relevance setR, tokens xt, t ∈[T ] within X are i.i.d. as follows

xt∣y ≙ ⎧⎪⎪⎨⎪⎪⎩
q⋆ + yw⋆, t ∈R (relevant token)

−δqq⋆ − δ
wyw⋆ + zt, t /∈R (irrelevant token) .

(DATA)

In the above, q⋆ is a context-vector that indicates token rele-

vance and w⋆ is a regressor vector. y, δ ∶≙ (δq, δw), (zt)Tt≙1
are independent variables as follows:

• δ ≙ (δq, δw) ∈ R
2 is a bounded random variable that obeys

δq ≥ 0. Thus, δ reflects out-of-context information within

irrelevant tokens. However, δ is allowed to expose label

information through δw. When δ ≙ (0,0) almost surely,

we call the resulting distribution core dataset model.

• zt are independent centered subgaussian and random vari-

ables with covariance Σ (see Ass. 1.a). When Σ ≙ 0, we

call the resulting distribution discrete dataset model.

• We allow the relevance setR to be non-stochastic. This

includesR being adversarial to the classification model.

• We assume constant fraction ζ ≙ ∣R∣/T ∈ (0,1) of label-

relevant tokens for each input example X drawn from D.

Thus, ζ represents the sparsity of relevant signal tokens.

Training dataset S ∶≙ (Xi, yi)ni≙1. We draw n i.i.d. sam-

ples from D to form our training dataset S ∶≙ (Xi, yi)ni≙1.

For i’th example (Xi, yi), we denote the tokens by(xi,t)Tt≙1, noise by (zi,t)Tt≙1, relevance set by Ri, and out-

of-context variable by δi ≙ (δqi , δwi ).
Ideally, for i’th example, we would like to identify its

context-relevant set Ri and discard the rest. This would

especially help when the signal-to-noise-ratio is small, i.e.

ζ ≙ ∣Ri∣/T ≪ 1. This is precisely the role of the context-

vector q⋆: Observe that, per our construction, relevant to-

kens have positive correlation with q⋆ whereas irrelevant

tokens have non-positive correlation with q⋆ in expectation.

Thus, by focusing attention onto tokens based on their q⋆
correlation, we can potentially select the relevant set.

Remark 1 (Model interpretation). (DATA) can be thought

of as a simplified model for binary image classification with

tokens being image patches of two types: ones revealing
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information about the label (setR) and uninformative ones

containing noise. Tokens inR contain information indicat-

ing: (i) class-membership via signed-regressor yw⋆ and

(ii) context-relevance via context-vector q⋆. The signed-

regressor differs across tokens of examples belonging to

different classes y ∈ {±1}, while the context-vector is com-

mon for all context-relevant tokes across classes. For a con-

crete example, consider images each depicting multiple, say∣R∣, birds of one type surrounded by label-irrelevant/noisy

background. The goal is to classify images according to

one of two types of birds. Here, think of ªcontextº as

feature-information indicating corresponding pixels belong

to ªbirdº (of either type) rather than ªbackground,º while

the ªregressorº represents feature information useful to

distinguish between two bird types. Alternatively, (DATA)

may be modeling deep representations (rather than raw

pixels) of the original images. Overall, simplified models

similar to (DATA) have been used previously to analyze

optimization and generalization dynamics of training fully-

connected (Frei et al., 2022) and convolutional models (Cao

et al., 2022). Specifically, (DATA) is an extension of the

commonly used (sub)-Gaussian mixture model customized

to the nature of attention: each example is tokenized and

context-relevant information is described in terms of both a

regressor (differing between classes) and a context (common

across classes).

2.3. Baseline Models

We compare performance of the prompt-attention model in

(4) with the following three baseline models.

The linear model is parameterized by θ ≙w and outputs

f LIN(w) ≙ 1

T
w⊺X⊺

1T ≙
1

T
∑t∈[T ]w

⊺xt. (5)

Note this corresponds to a prompt-attention model with

uniform attention weights [a]t ≙ 1/T, t ∈ [T ].
The self-attention model is a strict generalization of the

linear model. Recalling (2), let us merge the key-query

weights W ∶≙ WQW
⊺

K (without losing generality) and

gather weights into θ ≙ (U ,W ); We then write it as

f SATT(U ,W ) ≙ 1

T
⟨U , ϕ(XWX⊺)X⟩ . (6)

Rather than using a Td dimensional U , we will also con-

sider the simpler token-pooling via U ≙ 1Tu
⊺ for u ∈ R

d.

The linear-attention model parameterized by θ ≙ (w,q)
replaces the softmax score transformation in (4) with a linear

function and outputs

f LIN-ATT(w,q) ≙w⊺X⊺Xq/T. (7)

2.4. Training

Given S ≙ (Xi, yi)ni≙1 drawn i.i.d. fromD, we solve square-

loss empirical risk minimization to obtain θ̂ ≙ (ŵ, q̂)
θ̂ ≙ argmin

θ
L̂S(θ) ∶≙ 1

2n

n

∑
i≙1

(yi − fθ(Xi))2. (8)

Within our theoretical investigation, we are interested

in the following performance criteria for models f ∈{f ATT, f LIN-ATT, f SATT}:
• Classification error: For a model f

θ̂
this is defined as

ERR(θ̂) ∶≙ P(yf
θ̂
(X) < 0).

• Test risk: L(θ̂) ≙ E(y,X)∼D[(y − fθ̂(X))2].
2.5. Assumptions and notations

First, we formally state our assumptions on the noisy tokens.

The more general condition is that noise is subgaussian and

satisfies a mild zero third-moment condition.

Assumption 1.a. The noise vector z ∼ SN (σ) is centered

σ-subGaussian, i.e. ∥z∥ψ2
≙ σ. Moreover, its distribution is

symmetric and has zero-third moment, i.e. E[z ⊗ (z⊺z) ] ≙
0. Let Σ ∶≙ E[zz⊺] denote the noise covariance.

For some of our results it will be convenient to further

assume that noise is Gaussian since this leads to precise

formulas that are easily interpretable.

Assumption 1.b. The noise vector z ∼ N (0, σ2
I) is

isotropic Gaussian with variance σ2.

Second, we require a mild assumption on the correlation be-

tween the context q⋆ and classifier w⋆ to guarantee that pure

signal tokens q⋆ + yw⋆ are correctly classified by the true

regressor w⋆, i.e. yw⊺
⋆
(q⋆ + yw⋆) > 0. For convenience,

we denote

W ∶≙ ∥w⋆∥, Q ∶≙ ∥q⋆∥, ρ ∶≙ q⊺
⋆
w⋆/(∥q⋆∥∥w⋆∥).

Assumption 3.a. Correlation satisfies ∣ρ∣ <W /Q.
We will also often consider the special case of zero correla-

tion ρ and thus state it as separate assumption below. This

orthogonality assumption, is useful for more tractable anal-

ysis as it helps decouple feature selection and prediction.

Assumption 3.b. The context and classifier vectors are

orthogonal, i.e. q⋆ ⊥w⋆.

Notation. We use boldface letters for vectors and matri-

ces. 1m represents an m-dimensional all-ones vector. For a

vector v, ∥v∥ denotes its Euclidean norm and v/∥v∥ its nor-

malization. ϕ(⋅) denotes the softmax transformation. Q(⋅)
denotes the tail function of the standard normal distribution.

∧ and ∨ denote the minimum and maximum of two num-

bers, respectively. Õ() and ≳ notations suppress logarithmic

dependencies. Finally, ∝ denotes proportionality.
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(b) Varying ∆ with δq ≙ δw
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(c) Varying ∆ with δq ≙ −δw

Figure 1. This figure summarizes and verifies the outcomes of Theorem 1. Fig (a) depicts the outcome of our Theorem 1. Relevant

token is at position yw⋆ + q⋆ whereas red tokens (irrelevant) are in positions −δ(q⋆ ± yw⋆) with δ ∈ {0,∆}. Figures (b) & (c) plot the

performance of our attention models under the contextual dataset with δ equally-likely over {0,∆} for a synthetic setup (cf. Section 5.1).

We set n ≙ 100, d ≙ T ≙ 10, ζ ≙ 0.4 and train with 100 SGD epochs. We report the median test accuracy over 20 trials. Fig (b)

sets δ ≙ δq ≙ δw and verifies self-attention has ≥ 50% error (for ∆ ≥ ∆crit≙ (1 − ζ)−2). Fig (c) sets δ ≙ δq ≙ −δw and verifies

linear-prompt-attention has ≥ 25% error (when δ ≥∆crit ≙

√
ζ/(1 − ζ) in this case).

3. Contrasting prompt-attention to baselines

In this section, we establish separation results between

prompt-attention (cf. (4)) and the baselines of self-attention

(cf. (6)) and linear attention (cf. (7)). For this, we focus on

the discrete dataset model with noiseless irrelevant tokens

(zt ≙ 0, t ∈ [T ]).
We first observe that if δ ≙ (δq, δw) admits a single value,

even a linear model can solve the discrete dataset model.

Observation 1 (Linear model solves singleton). Suppose(δq, δw) ≙ (∆q,∆w) almost surely for ∆q,∆w ∈ R. Set

w′
⋆
≙ (I−q̄⋆q̄⊺⋆)w⋆. As long as ∆w ≠ ζ/(1−ζ) and w′

⋆
≠ 0,

f LIN(w′
⋆
) or f LIN(−w′

⋆
) achieves perfect accuracy.

Thus, to investigate the expressivity of f ATT, f SATT, f LIN,(δq, δw) would need to admit two or more values. Perhaps

surprisingly, we prove that, as soon as, (δq, δw) comes from

a binary distribution, then both f SATT and f LIN can indeed

provably fail. Importantly, this happens in the regime δq ≥ 0

where prompt-attention thrives.

Theorem 1 (Separation of population accuracies). Consider

the discrete dataset model where we set Σ ≙ 0 in (DATA).

The following statements hold:

1. Prompt-attention: Suppose ρ2 < 1, δq ≥ 0, and ∣δw ∣ ≤ C
almost surely. Define q′

⋆
≙ (I − w̄⋆w̄

⊺

⋆
)q⋆,w′⋆ ≙ (I −

q̄⋆q̄
⊺

⋆
)w⋆. For Γ >

log(C(1/ζ−1))
Q2(1−ρ2) , choosing θ ≙ (w′

⋆
,Γq′

⋆
),

f ATT

θ achieves perfect classification accuracy on (DATA).

2. Self-attention: In (DATA), choose (δq, δw) to be (0,0)
or (∆,∆) equally-likely with ∆ > (1 − ζ)−2.

• For any choice of (U ≙ 1u⊺,W ), f SATT(1u⊺,W )
achieves 50% accuracy (i.e. random guess).

• For any choice of (U ,W ), there exists a (DATA) distri-

bution with adversarial relevance set choices such that

f SATT(U ,W ) achieves 50% accuracy.

3. Linear-attention: In (DATA), choose (δq, δw) to be(0,0) or (∆,−∆) equally-likely with ∆ >
√
ζ/(1 − ζ). For

any choice of (w,q), f LIN-ATT(w,q) achieves at most 75%

accuracy.

See Fig. 1 for an illustration of the main takeaways from

Thm. 1 and a numerical validation of its conclusion on syn-

thetic data. While surprising, the reason prompt-attention

can provably beat self-attention is because it is optimized

for context-retrieval and can attend perfectly on the relevant

contextual information. In contrast, self-attention scores

are fully feature-based; thus, context information is mixed

with other features and can be lost during aggregation of

the output. Also note that all results, with the exception of

self-attention for general U , hold for arbitrary choices of

the relevance sets (including adversarial ones). The reason

is that tokens are pooled and the particular choice of R

does not matter. Only for f SATT(U ,W ) we need to adapt

the relevance setR to the output layer U (as well as (y, δ)
variables) to promote misclassification. Otherwise, with

the hindsight knowledge of the relevance set, U can intelli-

gently process individual tokens of the self-attention output

to filter out ªconfusingº tokens. In fact, for the same failure

dataset model, self-attention can achieve perfect accuracy by

choosing U ≙ 1Rw
′⊺

⋆
where 1R is the vector of ones over

the (known!) relevance set R (see Lemma 17). However,

this is of course only known in hindsight.
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4. Gradient-based analysis of

prompt-attention

This section investigates how gradient-descent optimization

of the prompt-attention model learns (DATA). Concretely,

it shows that a few gradient steps can provably attend to

the context-relevant tokens leading to high-classification

accuracy. Our results capture requirements on sample com-

plexity in terms of all problem parameters, i.e. dimension

d, correlation ρ, context / signal energies Q / W , number of

tokens T , and sparsity ζ. This allows studying tradeoffs in

different regimes.

Our analysis in this section concerns the prompt-attention

model f ATT

θ , so we simply write fθ. Also, without any fur-

ther explicit reference, we focus on the core dataset model,

i.e. (DATA) with δ ≙ (0,0). All our results here hold under

the mild noise and correlation assumptions: Assumption 1.a

and Assumption 3.a (we will not further state these). Finally,

for simplicity of presentation we assume here isotropic noise

Σ ≙ σ2
I and handle the general case in the appendix.

4.1. Gradient-based algorithm

For data generated from (DATA), we show the three-step

gradient-based algorithm described below achieves high test

accuracy. Our analysis also explains why three appropriately

chosen steps suffice.

Algorithm: We split the train set in three separate subsets

S1,S2,S3 of size n each. Starting from w0 ≙ 0,q0 ≙ 0,

the algorithm proceeds in three gradient steps for step sizes

η > 0 and γ > 0 and a final debiasing step as follows:

ŵ1 ∶≙ −η∇wL̂S1
(0,0), (9a)

q̂1 ∶≙ −γ∇qL̂S2
(0, ŵ1), (9b)

ŵ2 ∶≙ −η∇wL̂S3
(q̂1, ŵ1), (9c)

where L̂Sj
, j ≙ 1,2,3 is the loss in (8) evaluated on sets Sj .

The debiasing step is defined in Section 4.3.

4.2. Population analysis

To gain intuition we first present results on the popula-

tion counterpart of the algorithm, i.e., substituting L̂(w,q)
with its population version L(w,q) ≙ E [L̂(w,q)] in

all three steps in (9). It is convenient to introduce

the following shorthand notation for the negative gradi-

ent steps Gq(q,w) ∶≙ −∇qLD(θ) ≙ E(X,y)∼D[(y −
fθ(X))∇qfθ(X)] and Gw(q,w) ∶≙ −∇wLD(θ) ≙
E(X,y)∼D[(y − fθ(X))∇wfθ(X)] .
The first gradient step (cf. (9a)) is easy to calculate and

returns a classifier estimate that is already in the direction

of w⋆.

Lemma 1 (Population first step). The first population gradi-

ent step w1 ≙ ηGw(0,0) satisfies w1 ≙ ηζw⋆ since under

(DATA), Gw(0,0) ≙ E(X,y)[yX⊺
1]/T ≙ ζw⋆.

The second gradient step q1 ≙ γGw(w1,0) is more intri-

cate: unless q⋆ ⊥ w⋆, q1 also has nonzero components in

both directions q⋆ and w⋆.

Lemma 2 (Population second step). The second population

gradient step q1 ≙ γGw(w1,0) satisfies for α ∶≙ ηζ

q1 ≙ γαW
2(ζ − ζ2)(1 + ασ2

T
− αζ(W 2

+ ρ2Q2))q⋆ (10)

+ γαρQW (ζ − ζ2)(1 − 2ζαW 2
− (1 + 2

T
)ασ2)w⋆ .

Proof. Since this computation involves several terms, we

defer complete proof to Appendix D.1. The above simplifi-

cation is made possible by leveraging the assumption on the

third-moment of noise (cf. Assumption 1.a).

Lemma 2 highlights the following key aspects: (i) As men-

tioned, q1 also picks up the w⋆ direction unless ρ ≙ 0. How-

ever, we can control the magnitude of this undesired term

by choosing small step-size η (see Cor. 2). (ii) As αW 2

grows, the gradient component in the q⋆ direction might end

up pointing in the direction of −q⋆. This is because large

signal along the w⋆ direction might still allow to predict

±1 label. However, this can always be avoided by choosing

sufficiently small step-size η (see Cor. 2). (iii) Similarly,

as the noise strength σ2 grows, gradient in the q⋆ direction

grows as well. This is because, going along q⋆ direction

attenuates the noise and cleans up the prediction. (iv) Fi-

nally, as ζ → 1 and ζ −ζ2 → 0 the magnitude of the gradient

decays because all tokens contain signal information and

there is no need for q⋆.

To see how q1 selects good tokens, we investigate the rele-

vance scores (normalized by the step size γ) rt ∶≙ x
⊺

t q1/γ of

relevant vs irrelevant tokens. Attending to context-relevant

tokens requires their relevance scores to be larger than those

of the noisy ones. Concretely, suppose we have

B ∶≙min
t∈R
{rt ≙ (q⋆ + yw⊺⋆)q1

γ
} ≥ 2 max

t∈Rc
{rt ≙ z⊺t q1

γ
}. (11)

Note above that the relevance scores are the same for each

t ∈ R. Thus, ∣R∣ eγB + ∣Rc∣ eγB/2 ≥ S ∶≙ ∑t′∈[T ] eγrt′ ≥∣R∣ eγB , which implies the following for the attention

weights as step size increases γ →∞:

at ≙ [ϕ(Xq1)]t ≙ eγrt/S ⎧⎪⎪⎨⎪⎪⎩
≙
eγB

S
→

1
ζT

t ∈R

≤
eγB/2

S
→ 0 t ∈Rc

. (12)

Provided (11) holds, a large enough second gradient step (i.e.

large γ) finds q1 that attends (nearly) perfectly to context-

relevant tokens in R and attenuates (almost) all irrelevant

tokens inRc. The following theorem formalizes the above

intuition. We defer the complete proof to Appendix D.3.
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Theorem 2 (Main theorem: Population). Consider the

model θγ ≙ (wγ
2 ,q

γ
1 ) where q

γ
1 ≙ γGq(w1,0), w

γ
2 ≙

Gw(0,qγ1 ) and w1 ≙ ηGw(0,0) for step-size η small

enough (see Eq. (66) for details). Then, there exists an

absolute constant c > 0, sufficiently large context strength

Q and step-size γ > 0 such that

ERR (fθγ ) ≤ 2Te−cα2Q2

σ2 ,

provided

(1 − ρ2/2)Q − 2 ∣ρ∣W√
1 + 3ρ2

≥ αQ. (13)

Eq. (13) guarantees the desired condition (11) holds. When

ρ ≙ 0 (q⋆ ⊥w⋆), α can be as large as 1 in (13) in which case

the rate is 2Te−cQ
2/σ2

. For ρ ≠ 0, (13) imposes ∣ρ∣ < Q

2W
,

in which the role of Q,W is reversed compared to ∣ρ∣ ≤ W
Q

in Assumption 3.a: the latter guarantees classifier energy is

larger so that signal yw⋆ dominates q⋆, while for prompt-

attention to attend to relevant tokens it is favorable that

energy of q⋆ dominates w⋆. Finally, we compare the theo-

rem’s error to the error Q(√ ζ2W 2T

1−ζ
) of the linear model in

Fact A.1. For concreteness, consider a setting of extreme

sparsity ζ ≙ O(1/√T ) and W ≙ O(1). Then the error of

linear model is O(1), while the (population) algorithm in

(9) for prompt-attention achieves an error of e−O(Q
2), which

is exponentially decreasing in Q.

4.3. Finite-sample analysis

Here, we investigate the behavior of the algorithm in (9)

with finite sample-size n. For convenience, we first in-

troduce an additional de-biasing step after calculating the

three gradients in (9). Specifically, for a sample S4 of size

n we compute a bias variable b̂ ∶≙ 1
n ∑ni≙1 f(q̂1,ŵ2)(Xi) ,

and use it to de-bias the model’s prediction by outputting

f(θ,b)(X) ∶≙ fθ(X) − b. While this extra step is not nec-

essary, it simplifies the statement of our results. Intuitively,

b̂ helps with adjusting the decision boundary by removing

contributions of the context vector in the final prediction

(the context vector is useful only for token-selection rather

than final prediction).

Below we provide a simplified version of our main result

where noise variance σ ∝ 1 and ≳ subsumes constants.

Refer to Theorem 6 in the appendix for precise details.

Theorem 3 (Main theorem: Finite-sample). Suppose Q,W

and ρ are such that there exists α ∈ (0,3/16) for which

(3/16 − ρ2/8)Q−(9/4 ∣ρ∣ + 1/16)W ≥ α⋅Q ≳√log(nT ).
Fix any ϵ > 0. For sufficiently small step-size η ≲ Q−2,

sufficiently large step-size γ ≙ γ(ϵ), and

n ≳ d(Q/ζW )4 log5(nd),

the following statements hold with high probability (see Eq.

(63)) over the training set:

1. Prompt attends to relevant tokens. Concretely, for any

fresh sample (X, y), with probability at least 1−2Te−cα
2Q2

,

the attention coefficients at ≙ [ϕ(Xq̂1)]t satisfy:

at

⎧⎪⎪⎨⎪⎪⎩
≥

1−ϵ
ζT

, t ∈R ,

≤
ϵ

(1−ζ)T , t ∉R .

2. Prompt-attention learns relevant features. Concretely,

for some absolute constant c > 0,

P(X,y) (∥X⊺ϕ(Xq̂1) − (q⋆ + yw⋆)∥ < ϵ) ≤ 2Te−cα2Q2

.

3. The test error of the model f ′θ similarly satisfies

ERR(f ′θ) ≤ 2Te−cα2Q2

.

Assuming small correlation coefficient ρ and W < Q, we

can set α ≙ O(1). Then, similar to Theorem 2, prompt at-

tention achieves a test error rate of e−O(Q
2) which is a strict

improvement over the linear baseline of Fact A.1 whenever

Q2
≳ ζ2W 2T . Secondly, our bound achieves a sample com-

plexity of n ≳ d(Q/ζW )4. The linear growth in d is intu-

itive from counting degrees of freedom. Interestingly, large

Q does improve the test error, however, it degrades sample

complexity. This is because it makes the estimation of pa-

rameters more challenging. Finally, larger ζW improves

sample complexity since ζW (combining sparsity level and

magnitude) captures the strength of the label-relevant infor-

mation within relevant tokens t ∈R.

Sharp error rates: Finally, in Appendix A we provide

an exact analysis of the classification error when q⋆ is

known and only w⋆ is estimated from data. This analy-

sis exactly quantifies the value of context-information and

how prompt-tuning retrieves it. Specifically, we prove a

sharp asymptotic error rate ofQ( eQ
2/4

√
1+ISNR(n/d) ⋅

√
ζ2W 2T

1−ζ
)

where ISNR(α) ∶≙ α−1 (1−ζ)e−Q2/2

rateLIN

, This uniformly (for all

Q ≥ 0 values) improves the optimal rates for (context-free)

Gaussian mixture models thanks to the context information.

5. Experiments

First, we verify the utility of prompt-attention via experi-

ments on a synthetic setting that precisely follows the con-

textual data model from Section 2.2. Subsequently, we

explore prompt-tuning on various image classification tasks

that are motivated by the contextual data model and compare

it with the standard fine-tuning method. Finally, we validate

the utility of prompt vectors in distinguishing relevant to-

kens from irrelevant tokens via prompt-attention under an

image classification setting.
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Figure 2. Performance of prompt-attention on the synthetic setting

described in Section 5.1. For prompt-attention, we employ the

algorithm in (9) to obtain q̂ and ŵ. For the baseline linear model

and two oracle settings, we have closed-form expressions for their

asymptotic test error (cf. Theorem 1), which are depicted by solid

lines. On the other hand, markers show the finite sample perfor-

mance of these three methods. All finite sample performances are

obtained by averaging over 20 independent runs.

5.1. Synthetic experiments

Here, we generate a synthetic dataset according to the core

dataset model, i.e. we have δ ≙ (δq, δw) ≙ (0,0) for all

examples in the dataset. In particular, we consider a setting

with T ≙ 500, d ≙ 50, and ζ ≙ 0.1, i.e. each example has

500 tokens out of which 10% tokens are relevant. As for

the noisy tokens, they consists of i.i.d. N (0, I) vectors. As-

suming that q⋆ ⊥w⋆ and
√
TW ≙ 3, we generate n ≙ 10 ⋅ d

training examples from the core dataset model for varying

Q. Fig. 2 showcases the performance of prompt-attention

(cf. (4)) when combined with the estimates q̂ and ŵ pro-

duced by gradient-based algorithm in (9). We also showcase

the performance of the linear model (cf. (5)) and two ora-

cle methods where we assume access to true q⋆ and true(q⋆,w⋆), respectively, while applying the prompt-attention.

Note that prompt-attention achieves a vanishing classifi-

cation test error in this setting whereas a natural baseline

(linear model) can fail to achieve a good performance. On

the other hand, the prompt-attention enabled by (9) success-

fully achieves a high accuracy as the context energy (defined

by Q) increases, validating the utility of prompt-attention

as well as our gradient-based algorithm in (9). Finally, we

also consider a stochastic δ ≙ (δq, δw) ≠ (0,0) to validate

Theorem 1 as described in Fig. 1.

5.2. Image classification experiments

Dataset. Motivated by our contextual data model, we con-

struct three datasets based on CIFAR-10 (Krizhevsky et al.,

2009) to conduct our evaluation (see Fig. 3 for examples).

Due to spaces constraints, we defer the additional details

regarding datasets to Appendix H.1. We also refer the reader

to Appendix H.1 for details regarding the model architecture

and training procedure.

Methods. In our fine-tuning experiments, we update all

pre-trained model parameters. As for prompt-tuning, we

only update newly introduced (prompt) variables and keep

the pre-trained network frozen. We consider three vari-

ants of prompt-tuning: 1) PROMPT-TUNING-I (Lester et al.,

2021), where we add trainable vector between CLS token

embedding and first image (patch) embeddings only at the

input; 2) PROMPT-TUNING-II (Li & Liang, 2021), where we

add the same trainable vectors between the CLS embed-

ding and the first image embedding at the input of every

transformer layer; and 3) PROMPT-TUNING-III, where we

add different trainable vectors between the CLS embedding

and the first image patch embedding at the input of every

transformer layer. Note that the number of trainable pa-

rameters in PROMPT-TUNING-I and PROMPT-TUNING-II do

not scale with the number of layers whereas we have lin-

ear scaling with number of layers in PROMPT-TUNING-III.

Interestingly, all three prompt-tuning variant are identical

when the number of layers is 1, which corresponds to the

setup we theoretically analyzed in the paper. However, they

exhibit remarkably different behavior for a multi-layer trans-

former model, as we show next. (In Appendix H.2, we

also compare prompt-tuning with fine-tuning only first layer

self-attention parameters for the underlying ViT model as

per the single-layer nature of our theoretical results.)

Results. Here, the main goal of our exploration is to high-

light the different behavior of fine-tuning and prompt-tuning.

We utilize a model trained on FULL-TILED dataset as the

pre-trained model. This model achieves top-1 (in-domain)

accuracy of 80.43 on FULL-TILED test set. In contrast, it

achieves zero-shot top-1 test accuracy of 56.35 and 17.97

on PARTIAL-TILED and EMBED-IN-IMAGENET, respectively.

This alludes to the fact that EMBED-IN-IMAGENET corre-

sponds to a larger distribution shift from the pre-training

distribution (FULL-TILED), as compared to PARTIAL-TILED.

Fig. 4 and Fig. 5 (cf. Appendix H.2) showcase the per-

formance of fine-tuning and prompt-tuning approaches

on EMBED-IN-IMAGENET and PARTIAL-TILED, respectively.

Note that fine-tuning outperforms prompt-tuning in a data-

rich setting (cf. Fig. 4a and 5a). This is due to fine-tuning

having the ability to update a large number of model param-

eters (5.4M in our case). In contrast, with 2000 prompt vec-

tors, PROMPT-TUNING-III (the most expensive prompt-tuning

method out of all three) only updates 460.8K parameters.

Interestingly, in the data-limited regimes, prompt-tuning

becomes more competitive. In fact, the best perform-

ing prompt-tuning method outperforms the fine-tuning

(cf. Fig. 4b and 4c) on EMBED-IN-IMAGENET, where fine-

tuning can easily overfit as it cannot leverage the benefits of

the pre-training data due to a large distribution-shift between

FULL-TILED and EMBED-IN-IMAGENET.

Part of the performance gap between PROMPT-TUNING-III

and PROMPT-TUNING-II can be attributed to the larger num-
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Figure 3. Illustration of different CIFAR-10 based datasets utilized in image classification experiments (cf. Section 5.2). Note that all

three variants correspond to 10-way multiclass classification tasks corresponding to 10 original classes in CIFAR-10.
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Figure 4. Performance of fine-tuning vs. prompt-tuning on 10-way classification tasks defined by EMBED-IN-IMAGENET dataset. Full

dataset has 50K training examples. Capped 10% and 2% correspond to sub-sampled train sets where we select exactly 500 and 100

examples per class from the full dataset. Note that number of prompt vectors equal to 0 corresponds to zero-shot performance.

ber of trainable parameters available to PROMPT-TUNING-

III. Note that PROMPT-TUNING-II consistently outperforms

PROMPT-TUNING-I, even with the same number of trainable

parameters. This alludes to the fact that optimization and ar-

chitecture choices play a major role beyond just the number

of trainable parameters. As mentioned earlier, our theoret-

ical treatment for a single-layer model cannot distinguish

among these different prompt-tuning approaches. As a re-

sult, we believe that our empirical observations point to

multiple interesting avenues for future work.

5.3. Attention weights for prompt vectors

Finally, we explore what role prompt-attention, i.e. the

attention weights with prompt vectors as keys and image

patches/tokens as values, plays towards underlying task. In

Fig. 6 (cf. Appendix H.2), we illustrate one representative

example. The figure shows how average attention weights

from prompt vectors to image tokens/patches evolve across

transformer layers, when we employ PROMPT-TUNING-III.

Indeed, the figure verifies that prompt-attention helps distin-

guish the relevant tokens/patches from the irrelevant patches,

validating our starting hypothesis in Section 2.1 and 2.2.

6. Discussion

In light of remarkable success of attention architectures, we

initiate a theoretical investigation of one of its core mecha-

nisms: prompt-tuning. For a one-layer attention model, we

motivate and analyze a simplified model for prompt-tuning,

which we coin prompt-attention. Through this model, we

developed new statistical foundations for gradient-based

prompt-tuning, characterized its optimization and general-

ization dynamics, and explored how it facilitates attending

to context-relevant information. We also showed that under

(DATA) one-layer softmax-prompt-tuning can provably be

superior to alternatives including one layer self-attention.

Thorough experiments support our theory on how prompt-

tuning attends to the context and how it can potentially

outperform full fine-tuning. Our results also suggest many

interesting future directions including 1) extension to deeper

architectures by characterizing the role of softmax-attention

in individual layers, 2) developing a stronger theoretical

and empirical understanding of when/if prompt-tuning is

superior to fine-tuning, 3) extending our model to include

multiple prompt vectors (and perhaps extending (DATA) to

include multiple context vectors), and 4) investigating the

role of multi-head attention in prompt-tuning.
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A. Sharp characterization of accuracy under known context

While the discrete dataset model is insightful, incorporating noise is crucial for understanding the fundamental limits of the

benefits of context in attention. To this end, let us focus on the core dataset model where we set δq ≙ δw ≙ 0 and explore the

role of noise in population accuracy. Also assume that noise is standard normal, i.e. Assumption 1.b.

● Linear model. The linear model aggregates tokens to obtain a simple Gaussian mixture distribution. Specifically,

aggregated tokens are exactly distributed as 1
T
X⊺

1T ∼N (ζw⋆, 1−ζT I), leading to the following well-known result.

Fact A.1. For linear models, optimal accuracy obeys minw ERR(f LIN(w)) ≙ Q(√ ζ2W 2T

1−ζ
) where Q(⋅) is the tail function

of the standard normal distribution.

● Prompt-attention model. Since prompt-attention strictly generalizes the linear model, its accuracy is at least as good.

The theorem below quantifies this and demonstrates how context vector can enable an optimal weighting of relevant and

irrelevant tokens to maximize accuracy. A general version of this theorem is proven under a non-asymptotic setting (finite

T, d) as Theorem 8.

Theorem 4. Consider the prompt-attention model f ATT

θ . Suppose w⋆ ⊥ q⋆ and let τ, τ̄ > 0 be hyperparameters. Consider

the following algorithm which uses the hindsight knowledge of q⋆ to estimate w⋆ and make prediction:

Set ŵ ≙ (I − q̄⋆q̄⋆)∇Lw(0, τ q̄⋆) and θ ≙ (ŵ, τ̄ q̄⋆). Suppose ζ2W 2T,1 − ζ,α ∶≙ n/d, eQ2

, eτ each lie between two

positive absolute constants. Suppose T is polynomially large in n and these constants and Õ(⋅) hides polynomial terms

in n. Define inverse-signal-to-noise-ratio: ISNR(α, τ) ≙ (1−ζ)e2τ(τ−Q)
αζ2W 2T

. In the limit T, d →∞, the test error converges in

probability to Q( eQτ̄−τ̄2

√
1+ISNR(α,τ) ⋅

√
ζ2W 2T

1−ζ
). In this limit, optimal hyperparameters are τ ≙ τ̄ ≙ Q/2 and leads to optimal

ISNR(α) ∶≙ (1−ζ)e−Q2/2

αζ2W 2T
and the error

ERR(α,Q,W ) ≙ Q⎛⎝ eQ
2/4√

1 + ISNR(α) ⋅
√

ζ2W 2T

1 − ζ

⎞⎠
Here, a few remarks are in place. Note that rateLIN ∶≙

√
ζ2W 2T

1−ζ
term is the population error rate of f LIN from Fact

A.1. In the limit α ≙ n/d → ∞, the rate of f ATT is simply given by eQ/4rateLIN demonstrating the strict superiority of

prompt-attention. Moreover setting Q ≙ 0 (no prompt info), since feature-output of f LIN (i.e. X⊺ϕ(X1)) is (essentially) a

binary Gaussian mixture distribution, our error-rate recovers the Bayes-optimal f LIN classifier which has a finite-sample

rate of rateLIN/√1 + (1 − ζ)/(αζ2W 2T 2). Prompt-tuning also strictly improves this because our ISNR(α) introduces an

additional e−Q
2/2 multiplier.

B. Gradient calculations and concentration

In this section, we focus on finite-sample analysis of Algorithm 9. Introduce the following shorthand notation analogous to

the population counterparts in Section 4.2:

Ĝq(q,w) ∶≙ −∇qL̂D(θ) ≙ 1

n
∑
i∈[n]
(yi − fθ(Xi))X⊺

i ϕ
′(Xiq)Xiw ,

Ĝw(q,w) ∶≙ −∇wL̂D(θ) ≙ 1

n
∑
i∈[n]
(yi − fθ(Xi))X⊺

i ϕ((Xiq)). (14)

B.1. Gradient Calculations

We begin with the gradient calculations for the first two steps of the algorithm.

For convenience, we make use of the following shorthands

Rq⋆ ∶≙ Rw,q⋆ ∶≙w
⊺q⋆, Rw⋆ ∶≙ Rw,w⋆ ∶≙w

⊺w⋆, αi ∶≙ α(w, yi) ∶≙ Rq⋆ + yiRw⋆ ,

γi ∶≙ γ(Zi) ≙ 1

T
Z⊺i 1, βi ∶≙ β(Zi;w) ≙ γ⊺i w, Σ̂i ∶≙

1

T
Z⊺i Zi ,

12
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where Zi ∈ R
(1−ζ)T×d is the matrix of irrelevant tokens zi,t, t ∈R

c for sample i ∈ [n].
Lemma 3. Under dataset model (DATA) and Assumption 1.a, we have

Ĝw(0,0) ≙ ζw⋆ + ζq⋆ ⎛⎝ 1n ∑i∈[n]yi
⎞⎠ + 1

n
∑
i

yiγi. (16)

Lemma 4. Under dataset model (DATA) and Assumption 1.a, we have that

Ĝq(0,w) ∶≙ 1

n

n

∑
i≙1

(yi − ζαi − βi) [((ζ − ζ2)αi − ζβi) (q⋆ + yiw⋆) + Σ̂iw − (ζαi + βi)γi] . (17)

B.1.1. PROOF OF LEMMA 3

By direct computation,

Ĝw(0,0) ∶≙ −∇wL̂D(θ) ≙ 1

nT
∑
i∈[n]

yiX
⊺

i 1T ≙
1

nT
∑
i∈[n]

∑
t∈[T ]

yixi,t

≙
ζ

n
( ∑
i∈[n]

yi)q⋆ + ζ
n
w⋆ +

1

n
∑
i∈[n]

yiγi .

B.1.2. PROOF OF LEMMA 4

Note that ϕ′(0) ≙ 1
T
I −

1
T 211

⊺; hence, for θ ≙ (0,w):
Ĝq(0,w) ∶≙ −∇qL̂D(θ) ≙ 1

n
∑
i∈[n]

1

T
(yi − fθ(Xi))X⊺

i Xiw´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term1,i

−
1

n
∑
i∈[n]

1

T 2
(yi − fθ(Xi))X⊺

i 11
⊺Xiw´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term2,i

.

Moreover, note that,

fθ(Xi) ≙ 1

T
w⊺X⊺

i 1,

X⊺

i Xi ≙ ζT (q⋆ + yiw⋆)(q⋆ + yiw⋆)⊺ +Z⊺i Zi,
X⊺

i 1 ≙ ζT (q⋆ + yiw⋆) +Z⊺i 1 ,
where recall the notation in Lemma 3 for Zi. Hence, using the lemma’s notation (repeated here for convenience)

αi ∶≙ Rq⋆ + yiRw⋆ , βi ∶≙ β(Zi;w) ∶≙ 1

T
1
⊺Ziw, γi ∶≙ γ(Zi) ≙ 1

T
Z⊺i 1, Σ̂i ∶≙

1

T
Z⊺i Zi.

we find that

yi − fθ(Xi) ≙ yi − ζαi − βi
1

T
XiX

⊺

i w ≙ ζαiq⋆ + ζyiαiw⋆ + Σ̂iw

1

T 2
X⊺

i 11
⊺Xiw ≙ ζ (ζαi + βi)q⋆ + ζ (ζαi + βi)yiw⋆ + (ζαi + βi)γi.

With the above, each one of the two terms becomes:

Term1,i ≙ (yi − ζαi − βi) ζαiq⋆ + (yi − ζαi − βi) ζαiyiw⋆ + (yi − ζαi − βi) Σ̂iw

Term2,i ≙ ζ (yi − ζαi − βi) (ζαi + βi)q⋆ + ζ (yi − ζαi − βi) (ζαi + βi)yiw⋆ + (yi − ζαi − βi) (ζαi + βi)γi .
Combining the above:

Term1,i − Term2,i ≙ (yi − ζαi − βi) [ζ ((1 − ζ)αi − βi) (q⋆ + yiw⋆) + Σ̂iw − (ζαi + βi)γi] . (18)

13
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B.2. Concentration of Gradient Ĝq(0,w) in the q direction

The main result of this section is the following lemma about concentration of gradient with respect to q.

Lemma 5 (Concentration of Ĝq(0,w)). Fix any vectors v,w ∈ R
d. For convenience define Rv,q⋆ ∶≙ v

⊺q⋆ and Rv,w⋆ ∶≙

v⊺w⋆ and recall Rw⋆ ,Rq⋆ notations from Lemma 4. Then, we can decompose

v⊺Ĝq(0,w) ≙ v⊺Gq(0,w) + v⊺G̃q(0,w),
where the expectation term is given by

v⊺Gq(0,w) ∶≙ E [v⊺Ĝq(0,w)] ≙ ((ζ − ζ2) (Rw⋆ +w
⊺
Σw/T) − (ζ2 − ζ3) (R2

w⋆
+R2

q⋆
)) Rv,q⋆

+ (((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆) Rv,w⋆ − ((1 + 2/T ) (ζ − ζ2)Rq⋆)v⊺Σw , (19)

and the deviation term obeys

v⊺G̃q(0,w) ≙ [((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆Rv,q⋆ + ((ζ − ζ2)Rw⋆ − (ζ2 − ζ3) (R2
w⋆
+R2

q⋆
))Rv,w⋆] ( 1n

n

∑
i≙1

yi)
+ [(−ζ + 2ζ2)Rq⋆Rv,q⋆ + (−ζ + (−ζ + 2ζ2)Rw⋆)Rv,w⋆ + (1 − ζ)w⊺Σv] ( 1

n

n

∑
i≙1

(γ⊺i w))
+ [ζRw⋆ − ζ

2(R2
q⋆
+R2

w⋆
) + (1 − ζ)

T
w⊺Σw]( 1

n

n

∑
i≙1

v⊺γi)
+ [(−ζ + (−ζ + 2ζ2)Rw⋆)Rv,q⋆ + (−ζ + 2ζ2)Rq⋆Rv,w⋆] ( 1n

n

∑
i≙1

yi (γ⊺i w))
+ [ζRq⋆ − 2ζ

2Rq⋆Rw⋆] ( 1n
n

∑
i≙1

yi (v⊺γi))
+ ζRv,q⋆ ( 1n

n

∑
i≙1

(γ⊺i w)2 − (1 − ζ)T
w⊺Σw)

+ ζRv,w⋆ ( 1n
n

∑
i≙1

(γ⊺i w)2 yi)
+ [1 − 2ζRw⋆] ( 1n

n

∑
i≙1

yi (w⊺γi) (v⊺γi))
+ (1 − ζRw⋆)( 1n

n

∑
i≙1

yiv
⊺
Σ̂iw)

− ζRq⋆ ( 1n
n

∑
i≙1

v⊺Σ̂iw − (1 − ζ)v⊺Σw)
− [2ζRq⋆] ( 1n

n

∑
i≙1

(w⊺γi) (v⊺γi) − 1 − ζ

T
v⊺Σw)

− ( 1
n

n

∑
i≙1

(v⊺γi)((w⊺γi)2 − (1 − ζ)
T

w⊺Σw))
− ( 1

n

n

∑
i≙1

(γ⊺i w) (v⊺Σ̂iw − (1 − ζ)w⊺Σv)) . (20)

Moreover, all random terms in (20) are zero-mean and concentrate as prescribed by Lemma 6 below .

Lemma 6 (Main concentration lemma). Let yi, i ∈ [n] be iid Rademacher random variables. Let Zi ∈ R
(1−ζ)T×d, i ∈ [n] be

iid copies of a random matrix Z. Each row zt, t ∈ [(1− ζ)T ] of Z is an iid copy of a random vector z satisfying Assumption

1.a. For convenience denote γi ∶≙ Z⊺i 1/T and Σ̂i ∶≙ Z⊺i Zi/T . Then, the following statements are true for all vectors

w,v ∈ R
d: XXXXXXXXXXXX

1

n
∑
i∈[n]

yi

XXXXXXXXXXXXψ2

≤
C√
n

14



On the Role of Attention in Prompt-tuning

XXXXXXXXXXXX
1

n
∑
i∈[n]

γ⊺i w

XXXXXXXXXXXXψ2

∨

XXXXXXXXXXXX
1

n
∑
i∈[n]

yiγ
⊺

i w

XXXXXXXXXXXXψ2

≤
Cσ
√
1 − ζ∥w∥2√
nT

XXXXXXXXXXXX
1

n
∑
i∈[n]
(γ⊺i w) (γ⊺i v) − 1 − ζ

T
v⊺Σw

XXXXXXXXXXXXψ1

∨

XXXXXXXXXXXX
1

n
∑
i∈[n]

yi (γ⊺i w) (γ⊺i v)
XXXXXXXXXXXXψ1

≤
Cσ2(1 − ζ)∥w∥2∥v∥2

T
√
n

XXXXXXXXXXXX
1

n
∑
i∈[n]

w⊺Σ̂iv − (1 − ζ)w⊺Σv

XXXXXXXXXXXXψ1

∨

XXXXXXXXXXXX
1

n
∑
i∈[n]

yiw
⊺
Σ̂iv

XXXXXXXXXXXXψ1

≤
Cσ2
√
1 − ζ∥w∥2∥v∥2√

nT

XXXXXXXXXXXX
1

n
∑
i∈[n]
((γ⊺i w)2 − 1 − ζ

T
w⊺Σw)γ⊺i v

XXXXXXXXXXXXψ2/3

≤
Cσ3(1 − ζ)3/2∥w∥22∥v∥2

T 3/2√n logn

XXXXXXXXXXXX
1

n
∑
i∈[n]
(γ⊺i w) (w⊺Σ̂iv − (1 − ζ)w⊺Σv)XXXXXXXXXXXXψ2/3

≤
Cσ3(1 − ζ)∥w∥22∥v∥2

T
√
n

logn .

Also, all the random variables that appear above are zero mean.

B.2.1. PROOF OF LEMMA 5

We split (17) in four terms and handle each of them separately.

● TermI ≙
1
n ∑ni≙1 (yi − ζαi − βi) ((ζ − ζ2)αi − ζβi)q⋆

We first focus on

TermI ≙
1

n

n

∑
i≙1

(yi(1 − ζRw⋆) − βi − ζRq⋆) (yi(ζ − ζ2)Rw⋆ − ζβi + (ζ − ζ2)Rq⋆)q⋆ ≙∶ Aq⋆.
We we can express A above conveniently as follows (recall y2i ≙ 1):

A ∶≙ −ζ(ζ − ζ2)R2
q⋆
+ (1 − ζRw⋆)(ζ − ζ2)Rw⋆ + ((1 − ζRw⋆)(ζ − ζ2)Rq⋆ − ζ(ζ − ζ2)Rw⋆Rq⋆)( 1n

n

∑
i≙1

yi)
+ (−(ζ − ζ2)Rq⋆ + ζ

2Rq⋆)( 1n
n

∑
i≙1

βi) + (−(1 − ζRw⋆)ζ − (ζ − ζ2)Rw⋆)( 1n
n

∑
i≙1

yiβi) + ζ ( 1
n

n

∑
i≙1

β2
i )

≙ (ζ − ζ2)Rw⋆ − (ζ2 − ζ3) (R2
w⋆
+R2

q⋆
) + ((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆ ( 1n

n

∑
i≙1

yi)
+ (−ζ + 2ζ2)Rq⋆ ( 1n

n

∑
i≙1

βi) + (−ζ + (−ζ + 2ζ2)Rw⋆)( 1n
n

∑
i≙1

yiβi)
+ ζ ( 1

n

n

∑
i≙1

β2
i −
(1 − ζ)
T

w⊺Σw) + (ζ − ζ2)
T

w⊺Σw.

From Lemma 6, all random terms above are zero mean. Hence,

E[A] ≙ −(ζ2 − ζ3)R2
q⋆
+ (1 − ζRw⋆)(ζ − ζ2)Rw⋆ + (ζ − ζ2)w⊺Σw

T

≙ −(ζ2 − ζ3)R2
q⋆
+ (ζ − ζ2) (Rw⋆ +w

⊺
Σw/T) − (ζ2 − ζ3)R2

w⋆

≙ (ζ − ζ2) (Rw⋆ +w
⊺
Σw/T) − (ζ2 − ζ3) (R2

w⋆
+R2

q⋆
) . (21)
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● TermII ≙
1
n ∑ni≙1 (yi − ζαi − βi) ((ζ − ζ2)αi − ζβi)yiw⋆
TermII ≙

1

n

n

∑
i≙1

(yi(1 − ζRw⋆) − βi − ζRq⋆) (yi(ζ − ζ2)Rw⋆ − ζβi + (ζ − ζ2)Rq⋆)yiw⋆ ≙ Bw⋆.

We we can express B above conveniently as:

B ∶≙ ((ζ − ζ2)Rw⋆ − (ζ2 − ζ3) (R2
w⋆
+R2

q⋆
))⎛⎝ 1n ∑i∈[n] yi

⎞⎠ + ((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆

+ (−ζ + 2ζ2)Rq⋆ ( 1n
n

∑
i≙1

βiyi) + (−ζ + (−ζ + 2ζ2)Rw⋆)( 1n
n

∑
i≙1

βi) + ζ ( 1
n

n

∑
i≙1

β2
i yi) .

All the random terms above are zero-mean. Hence,

E[B] ≙ ((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆ . (22)

● TermIII ≙
1
n ∑ni≙1 (yi − ζαi − βi) Σ̂iw

Fix any vector v ∶

v⊺{TermIII} ≙ ( 1
n

n

∑
i≙1

yiv
⊺
Σ̂iw) − ζ (Rq⋆ + yiRw⋆)( 1n

n

∑
i≙1

v⊺Σ̂iw) − ( 1
n

n

∑
i≙1

(γ⊺i w)v⊺Σ̂iw)
≙ (1 − ζRw⋆)( 1n

n

∑
i≙1

yiv
⊺
Σ̂iw) − ζRq⋆ ( 1n

n

∑
i≙1

v⊺Σ̂iw) − ( 1
n

n

∑
i≙1

(γ⊺i w)v⊺Σ̂iw)
≙ (1 − ζRw⋆)( 1n

n

∑
i≙1

yiv
⊺
Σ̂iw) − ζRq⋆ ( 1n

n

∑
i≙1

v⊺Σ̂iw − (1 − ζ)v⊺Σw) − (ζ − ζ2)Rq⋆v
⊺
Σw

−
1

n

n

∑
i≙1

(γ⊺i w) (v⊺Σ̂iw − (1 − ζ)w⊺Σv) + (1 − ζ)(w⊺Σv) 1
n

n

∑
i≙1

(γ⊺i w)
From Lemma 6 all random terms above are zero mean. Hence,

E [v⊺{TermIII}] ≙ −(ζ − ζ2)Rq⋆w
⊺
Σv. (23)

● TermIV ≙
1
n ∑ni≙1 (yi − ζαi − βi) (ζαi + βi)γi

For fixed vector v, v⊺{TermIV} ≙ 1
n ∑ni≙1 (yi − ζαi − βi) (ζαi + βi)v⊺γi. Reorganizing, note that

(yi − ζαi − βi) (ζαi + βi) ≙ ζyi(Rq⋆ + yiRw⋆) − ζ2(R2
q⋆
+R2

w⋆
+ 2yiRq⋆Rw⋆) − 2ζRq⋆βi − 2ζRw⋆yiβi + yiβi − β

2
i

≙ (ζRq⋆ − 2ζ
2Rq⋆Rw⋆)yi + (ζRw⋆ − ζ

2(R2
q⋆
+R2

w⋆
)) − (2ζRq⋆)βi + (1 − 2ζRw⋆)yiβi − β2

i

Overall,

v⊺{TermIV} ≙ (ζRw⋆ − ζ
2(R2

q⋆
+R2

w⋆
))( 1

n

n

∑
i≙1

v⊺γi) + (ζRq⋆ − 2ζ
2Rq⋆Rw⋆)( 1n

n

∑
i≙1

yi (v⊺γi))
+ (1 − 2ζRw⋆)( 1n

n

∑
i≙1

yi (w⊺γi) (v⊺γi))
− (2ζRq⋆)( 1n

n

∑
i≙1

(w⊺γi) (v⊺γi) − 1 − ζ

T
v⊺Σw) − (2ζRq⋆) 1 − ζT v⊺Σw

−
1

n

n

∑
i≙1

(v⊺γi)((w⊺γi)2 − (1 − ζ)
T

w⊺Σw) + (1 − ζ)
T

w⊺Σw ( 1
n

n

∑
i≙1

(v⊺γi)) .
16



On the Role of Attention in Prompt-tuning

According to Lemma 6 all random terms above are zero mean. Thus,

E [v⊺{TermIV}] ≙ −2ζRq⋆

1 − ζ

T
w⊺Σv (24)

● Combined

The desired identities (19) and (20) follow by combining all the terms above.

B.2.2. PROOF OF LEMMA 6

First bound: Obvious by boundedness (hence, sub-gaussianity) of yi and Fact G.1.

Second bound: For convenience set T̃ ≙ (1 − ζ)T and assume wlog thatRc ≙ [T̃ ]. Recall that

βi ≙
1

T

T̃

∑
t≙1

z⊺i,tw ≙
1 − ζ

T̃

T̃

∑
t≙1

z⊺i,tw.

Also for all t: ∥z⊺i,tw∥ψ2

≤K∥w∥2. Thus, from Fact G.1:

∥βi∥ψ2
≤
Cσ(1 − ζ)∥w∥2√

T̃
≙
Cσ
√(1 − ζ)∥w∥2√

T
. (25)

The bound then follows by applying Fact G.1 once more.

For the second term in this bound recall that yi ∈ {±1} and βi ≙ ∑t z⊺i,tw/T . Also, for all i ∈ [n]: yi,{zi,t}t are zero-mean

and independent. Thus (i) E[yiβi] ≙ 0, and (ii) {yizi,t D∼ zi,t and yizi,t ⊥ yizi,t′} Ô⇒ yiβi
D
∼ βi. Thus, the same bound

as the first term holds.

Third bound: It is easy to compute

E[(γ⊺i w) (γ⊺i v)] ≙ 1

T 2

T̃

∑
t≙1

T̃

∑
t′≙1

E[w⊺zi,tzi,t′v] ≙ 1 − ζ

T
v⊺Σw, (26)

and, using (25)

∥(γ⊺i w) (γ⊺i v) − E[(γ⊺i w) (γ⊺i v)]∥ψ1

≤ C ∥(γ⊺i w) (γ⊺i v)∥ψ1

≤ C ∥γ⊺i w∥ψ2

∥γ⊺i v∥ψ2

≙
Cσ2(1 − ζ)∥w∥2∥v∥2

T
. (27)

Since (γ⊺i w) (γ⊺i v) , i ∈ [n] are independent, the desired bound on the first term follows from Fact G.1.

Consider now the second term. By independence of yi,γi it holds that E[yi (γ⊺i w) (γ⊺i v)] ≙ 0. Arguing as we did above

for the second bound, yiγ
⊺

i w
D
∼ γ⊺i w. Hence, the subexponential bound is the same as for the first term.

Fourth bound: First, it is easy to compute that for all i ∈ [n]:
E[w⊺Σiv] ≙ 1

T
E[w⊺Z⊺i Ziv] ≙ 1

T

T̃

∑
t≙1

E[w⊺z⊺i,tzi,tv] ≙ T̃T w⊺Σv ≙ (1 − ζ)w⊺Σv.

Thus,

w⊺Σ̂iv − E[w⊺Σ̂iv] ≙w⊺Σ̂iv − (1 − ζ)w⊺Σv ≙
1

T

T̃

∑
t≙1

((z⊺i,tw)(z⊺i,tv) −w⊺Σv)
and so

1

n

n

∑
i≙1

w⊺Σ̂iv − (1 − ζ)w⊺Σv ≙
1

nT

n

∑
i≙1

T̃

∑
t≙1

((z⊺i,tw)(z⊺i,tv) −w⊺Σv).
17
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Now, each random variable in the double sum above is independent and such that

∥(z⊺i,tw)(z⊺i,tv) −w⊺Σv∥ψ1
≤ 2∥(z⊺i,tw)(z⊺i,tv)∥ψ1

≤ 2∥z⊺i,tw∥ψ2
∥z⊺i,tv∥ψ2

≤ Cσ2∥w∥2∥v∥2. (28)

Hence, from Fact G.1,

∥ 1
n

n

∑
i≙1

w⊺Σ̂iv − (1 − ζ)w⊺Σv∥
ψ1

≤
Cσ2
√
1 − ζ∥w∥2∥v∥2√

nT
.

The bound for the second term follows along the same lines. The two key observations are that (i) E[yiw⊺Σ̂iv] ≙ 0 because

yi and zi,t are independent, and, (ii)

yiw
⊺
Σ̂iv ≙

1

T
w⊺yiZ

⊺

i Ziv
D
∼

1

T
w⊺Z̃⊺i Ziv ≙

1

T

T̃

∑
t≙1

(z̃⊺i,tw)(z⊺i,tv)
where Z̃i is an independent copy of Zi.

Fifth bound: From (29) and (26), we have for all i ∈ [n] that

∥(γ⊺i w) (γ⊺i v) − 1 − ζ

T
w⊺Σw∥

ψ1

≤
Cσ2(1 − ζ)∥w∥22

T
.

Moreover, recall from Eq. (25) that

∥γ⊺i v∥ψ2

≤
Cσ
√
1 − ζ∥v∥2√
T

.

Combining the above two displays and applying Fact G.2 we find for all i ∈ [n] that

∥((γ⊺i w)2 − 1 − ζ

T
w⊺Σw)γ⊺i v∥

ψ2/3

≤
Cσ3(1 − ζ)3/2∥w∥22∥v∥2

T 3/2 . (29)

The desired bound follows from the above after using Fact G.3.

Sixth bound: From Eq. (28):

∥w⊺Σ̂iv − (1 − ζ)w⊺Σv∥
ψ1

≤
Cσ2
√
1 − ζ∥w∥2∥v∥2√

T

and from Eq. (25)

∥γ⊺i w∥ψ2

≤
Cσ
√
1 − ζ∥w∥2√
T

.

Next we use Fact G.2 with α ≙ 2 and β ≙ 1 to find that

∥(γ⊺i w) (w⊺Σ̂iv − (1 − ζ)w⊺Σv)∥
ψ2/3
≤
CK3(1 − ζ)∥w∥22∥v∥2

T
.

Next we use Fact G.3 which allows us to conclude that

∥ 1
n

n

∑
i≙1

(γ⊺i w) (w⊺Σ̂iv − (1 − ζ)w⊺Σv)∥
ψ2/3

≤
CK3(1 − ζ)∥w∥22∥v∥2

T
√
n

logn .

Finally, the zero-mean property follows since

E[(1⊺Ziw) (w⊺ZiZ⊺i v)] ≙ T̃

∑
t≙1

T̃

∑
t′≙1

E[(z⊺i,tw) (w⊺zi,t′z⊺i,t′v)] ≙ T̃

∑
t≙1

T̃

∑
t′≙1

E[w⊺zi,t tr (zi,t′z⊺i,t′vw⊺)]
≙ T̃ 2

E[tr (z⊺w) tr (zz⊺vw⊺)] ≙ T̃ 2
E[tr ((z⊺w)⊗ (zz⊺vw⊺))]

≙ T̃ 2 tr (E[(z⊺ ⊗ zz⊺)](w ⊗ vw⊺)) ≙ 0 ,
where the last equality follows by the zero third moment property in Assumption 1.a.

18
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C. Finite-sample gradient analysis

In the following, we assume without explicit further reference that Ass. 3.a holds (i.e. ∣ρ∣ <W /Q) and additionally that

Q >W . To simplify the results we further assume σ ∝ 1 and W ≳ 1.

C.1. First gradient step

The lemma below studies the deviation of the first-step of GD ŵ1 with respect to its population counterpart w1. Provided

that n and nζT /d are larger than appropriate functions of other problem parameters, then the deviations are of small

multiplicative order.

Lemma 7 (First gradient step). Consider the one-step population and finite updates w1 ≙ ηGw(0,0) and ŵ1 ≙ ηĜw(0,0),
respectively. For convenience denote

Rw⋆ ≙w
⊺

1w⋆, Rq⋆ ≙w
⊺

1q⋆, R̂w⋆ ≙ ŵ
⊺

1w⋆, R̂q⋆ ≙ ŵ
⊺

1q⋆ .

For any u > 0 and any small constant c0 > 0, there exist absolute constants c, c′ > 0 and large enough constantC ≙ C(c0) > 0
such that if √

n≥ Cu
Q

W
and

√
nζT ≥ Cu

σ

W

√
ζ−1 − 1 , (30)

then, with probability at least 1 − c′e−cu
2

∣R̂w⋆ −Rw⋆ ∣ ≤ c0Rw⋆ and ∣R̂q⋆ −Rq⋆ ∣ ≤ c0ηζQW . (31)

Additionally, if √
n ≥ Cu

Q

W
and

√
nζT ≥ C(1 + u) σ

W

√
ζ−1 − 1

√
d (32)

then with probability 1 − e−cu
2

− e−cdu
2

∣∥ŵ1∥ − ∥w1∥∣ ≤ c0ηζW. (33)

Proof. Note that the conclusions of the lemma are all homogeneous in η. Hence, without loss of generality, set η ≙ 1. Also

recall by Lemma 3 that

ŵ1 ≙ Ĝw(0,0) ≙ ζw⋆ + ζq⋆ ⎛⎝ 1n ∑i∈[n]yi
⎞⎠ + 1

n
∑
i

yiγi , (34)

and w1 ≙Gw(0,0) ≙ ζw⋆; thus, Rw⋆ ≙ ζW
2. From these, and also using Lemma 6 , for any u > 0 with probability at least

1 − 2e−cu
2

∣R̂w⋆ −Rw⋆ ∣ ≙ ∣w⊺⋆(ŵ1 −w1)∣ ≤ ζ ∣ρ∣WQ

RRRRRRRRRRRR
1

n
∑
i∈[n]

yi

RRRRRRRRRRRR + ∣
1

n
∑
i

yiγ
⊺

i w⋆∣ ≤ Cuζ ∣ρ∣WQ√
n

+
Cuσ
√
1 − ζ

√
ζW√

nζT

≤ c0ζW
2
≙ c0Rw⋆ .

where the last inequality follows by assuming n, ζT large enough as in the condition of the lemma and using ∣ρ∣ ≤ 1.

Similarly,

∣R̂q⋆ −Rq⋆ ∣ ≙ ∣q⊺⋆(ŵ1 −w1)∣ ≤ ζQ2

RRRRRRRRRRRR
1

n
∑
i∈[n]

yi

RRRRRRRRRRRR + ∣
1

n
∑
i

yiγ
⊺

i q⋆∣ ≤ CuζQ2√
n
+
Cuσ
√
1 − ζ

√
ζQ√

nζT
≤ c0ζQW

for sufficiently large n per (30). Finally, with probability at least 1 − e−cu
2

− e−cdu
2

∥ŵ1∥ − ∥w1∥ ≤ ∥ŵ1 −w1∥ ≤ CuζQ√
n
+
C(1 + u)σ√1 − ζ√ζ√d√

nζT
≤ c0ζW . (35)

where, again, the last inequality follows by assuming n, ζT large enough as stated in the lemma. In the second inequality,

we used from Lemma 6 that ∑i∈[n] yiγi/n is Cσ
√
1 − ζ/√nT -subGaussian and applied Fact G.4 to get a high-probability

bound on its euclidean norm.

19
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C.2. Second gradient step

Next, we move on to the second gradient update in the direction of Ĝq(0, ŵ1). Recall our goal of controlling the relevance

scores of signal and noisy tokens. The first lemma below takes a step in this direction by computing the signal and noise

relevance scores assuming access to the population gradient Gq(0, ŵ1) ∶≙ E [Ĝq(0, ŵ1)] .
Lemma 8 (Ĝq(0, ⋅) control: Expectation term). Let Gq(0,w1) ≙ E [Ĝq(0,w1)] be the expectation of a gradient step

in the q-direction evaluated at (0, ŵ1) and recall that ŵ1 ≙ ηĜw(0,0) for η > 0. Suppose ŵ1 satisfies (31) and (33) for

sufficiently small enough constant c0 > 0. Further assume that the step-size η satisfies the following for sufficiently small

absolute constant cη > 0:

η ≙
cη

σ2Q2
. (36)

Then, for y ∈ {±1} it holds that

(q⋆ + yw⋆)⊺Gq(0, ŵ1) ≥ ηζ(ζ − ζ2)W 2Q ((1/4 − ρ2/8 − 3c0)Q − (9/4 ∣ρ∣ + c0)W) , (37)

and

∥Gq(0, ŵ1)∥ ≤ ηζ (ζ − ζ2) W 2Q (13/4 + 2c0) . (38)

Proof. Fix any v and recall the notation of Lemma 7. With these, we have from Lemma 5 that

v⊺Gq(0, ŵ1) ≙ ((ζ − ζ2) (R̂w⋆ + σ
2∥ŵ1∥2/T) − (ζ2 − ζ3) (R̂2

w⋆
+ R̂2

q⋆
)) v⊺q⋆

+ ((ζ − ζ2) − 2(ζ2 − ζ3)R̂w⋆) R̂q⋆ v
⊺w⋆ − σ

2 (1 + 2/T ) (ζ − ζ2)R̂q⋆v
⊺ŵ1

≙ (ζ − ζ2)R̂w⋆ (1 + σ2∥ŵ1∥2/(TR̂w⋆) − ζ (R̂w⋆ + R̂
2
q⋆
/R̂w⋆)) v⊺q⋆

+ (ζ − ζ2)R̂q⋆ (1 − 2ζR̂w⋆) v⊺w⋆ − σ2 (1 + 2/T ) (ζ − ζ2)R̂q⋆v
⊺ŵ1

≙ (ζ − ζ2)R̂w⋆ (1 + σ2∥ŵ1∥2/(TR̂w⋆) − ζ (R̂w⋆ + R̂
2
q⋆
/R̂w⋆))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶≙Ĉ1

v⊺q⋆

+ (ζ − ζ2)R̂q⋆ (1 − 2ζR̂w⋆ − ηζσ
2 (1 + 2/T ))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶≙Ĉ2

v⊺w⋆ − ησ
2 (1 + 2/T )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶≙Ĉ3

(ζ − ζ2)R̂q⋆v
⊺δ1 (39)

where, in the last line we used (34) and set

δ1 ∶≙ (ŵ1 −w1)/η ≙ ζq⋆ ⎛⎝ 1n ∑i∈[n] yi
⎞⎠ + 1

n
∑
i

yiγi.

Recall from (31) and (33) that Rw⋆/2 ≤ R̂w⋆ ≤ 3Rw⋆/2, ∣R̂q⋆ −Rq⋆ ∣ ≤ c0ηζQW and ∥ŵ1∥ ≤ ∥w1∥ + c0ηζW . Also, from

(33) we have that ∥δ1∥ ≤ c0ζW, . Here and onwards, c0 > 0 is a small enough absolute constant (smaller than 1/2) whose

value may change from line to line. Further recall Rw⋆ ≙ ηζW
2, Rq⋆ ≙ ηζρWQ and ∥w1∥ ≙ ηζW . With these, we can set

small enough step size η ∝ σ−2Q−2 such that

Ĉ1 ∈ [1/2,3/2], Ĉ2 ∈ [−1/8,1], Ĉ3 ∈ [0, (c3/ζ)/Q2] ,
for constant c3 > 0 to be made small enough later in the proof.

From the above, we can compute

Ĉ3 ∣R̂q⋆ ∣ ∥δ1∥ ≤ c3

ζQ2
ηζ(c0QW + ρWQ)(c0ζQ) ≤ c3c0ηζ Q .
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Moreover,

Ĉ1R̂w⋆Q
2
≥ ηζW 2Q2/4

Ĉ2R̂q⋆ρWQ ≙ Ĉ2ρWQRq⋆ +C2ρWQ(R̂q⋆ −Rq⋆) ≥ −ηζρ2Q2W 2/8 − c0ηζQ2W 2

≥ −ηζρ2Q2W 2/8 − c0ηζW 2Q2 .

Putting the above displays together we find that

q⊺
⋆
Gq(0, ŵ1) ≥ ηζ(ζ − ζ2) (W 2Q2/4 − ρ2Q2W 2/8 − c0W 2Q2

− c3c0Q
2) .

Similarly, we can compute that

∣Ĉ1R̂w⋆ρQW ∣ ≤ (9/4)ηζW 3Q ∣ρ∣
∣Ĉ2R̂q⋆W

2∣ ≤ ηζ(∣ρ∣W 3Q + c0QW
3) .

Hence, for y ∈ {±1}
∣yw⊺

⋆
Gq(0, ŵ1)∣ ≤ ηζ (ζ − ζ2)4W 3Q ∣ρ∣ + c0QW 3

+ c3c0QW .

The above two displays put together yield (37). Specifically, we also use the simplifying assumption Q ≳W ≳ 1 and pick c3
small enough so that c3W

−2Q−1 ≤ 1.

The norm bound in (38) follows again starting from (39) and using similar arguments as above to show:

∥Gq(0, ŵ1)∥ ≤ ηζ(ζ − ζ2) (Ĉ1Rw⋆Q + ∣Ĉ2∣ ∣R̂q⋆ ∣W + Ĉ3 ∣R̂q⋆ ∣ ∥δ1∥)
≤ ηζ(ζ − ζ2) ((9/4)W 2Q + (∣ρ∣ + c0)W 2Q + c3c0Q) .

The next lemma controls the effect on the relevance scores of the deviation term G̃q(0, ŵ) ≙ Ĝq(0, ŵ) −Gq(0, ŵ).
Lemma 9 (Ĝq(0, ⋅) control: Deviation term). Let G̃q(0, ŵ1) ∶≙ Ĝq(0, ŵ1) −Gq(0, ŵ1) and suppose ŵ1 satisfies (31)

and (33). Also assume σ ≙ 1. Fix any u > 0 and any small constant c1 > 0. Then, there exists small enough constant cη
(dependent on c1) such that if step-size η is small enough as per (36) the following statements hold.

With probability at least 1 − c′e−cu
2/3

for positive constants C, c′, c > 0 it holds for signal tokens that

∣(q⋆ + yw⋆)⊺G̃q(0, ŵ1)∣ ≤ uC c1Q(Q ∨ σ ∨ σ2√
T
∨
σ3

T
) log(n)√

n
, y ∈ {±1} (40)

Moreover, with probability at least 1 − c′d e−cu
2/3

it holds that

∥G̃q(0, ŵ1)∥ ≤ uC c1 (Q ∨ σ ∨ σ2√
T
∨
σ3

T
) log(n)√d√

n
. (41)

Proof. We study each one of the terms of G̃q(0, ŵ1) in (20) separately. We repeat the terms here for convenience, also
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noting the substitutions Rw⋆ ← R̂w⋆ ≙ ŵ
⊺

1w⋆ and Rq⋆ ← R̂q⋆ ≙ ŵ
⊺

1q⋆.

v⊺G̃q(0, ŵ1) ≙ [((ζ − ζ2) − 2(ζ2 − ζ3)R̂w⋆) R̂q⋆Rv,q⋆ + ((ζ − ζ2)R̂w⋆ − (ζ2 − ζ3) (R̂2
w⋆
+ R̂2

q⋆
))Rv,w⋆] ( 1n

n

∑
i≙1

yi)
+ [(−ζ + 2ζ2) R̂q⋆Rv,q⋆ + (−ζ + (−ζ + 2ζ2)R̂w⋆)Rv,w⋆ + (1 − ζ)ŵ⊺1Σv] ( 1

n

n

∑
i≙1

(γ⊺i ŵ1))
+ [ζR̂w⋆ − ζ

2(R̂2
q⋆
+ R̂2

w⋆
) + (1 − ζ)

T
ŵ⊺1Σŵ1]( 1

n

n

∑
i≙1

v⊺γi)
+ [(−ζ + (−ζ + 2ζ2)R̂w⋆)Rv,q⋆ + (−ζ + 2ζ2) R̂q⋆Rv,w⋆] ( 1n

n

∑
i≙1

yi (γ⊺i ŵ1))
+ [ζR̂q⋆ − 2ζ

2R̂q⋆R̂w⋆] ( 1n
n

∑
i≙1

yi (v⊺γi))
+ ζRv,q⋆ ( 1n

n

∑
i≙1

(γ⊺i ŵ1)2 − (1 − ζ)
T

ŵ⊺1Σŵ1)
+ ζRv,w⋆ ( 1n

n

∑
i≙1

(γ⊺i ŵ1)2 yi)
+ [1 − 2ζR̂w⋆] ( 1n

n

∑
i≙1

yi (ŵ⊺1γi) (v⊺γi))
+ (1 − ζR̂w⋆)( 1n

n

∑
i≙1

yiv
⊺
Σ̂iŵ1)

− ζR̂q⋆ ( 1n
n

∑
i≙1

v⊺Σ̂iŵ1 − (1 − ζ)v⊺Σŵ1)
− [2ζR̂q⋆] ( 1n

n

∑
i≙1

(ŵ⊺1γi) (v⊺γi) − 1 − ζ

T
v⊺Σŵ1)

− ( 1
n

n

∑
i≙1

(v⊺γi)((ŵ⊺1γi)2 − (1 − ζ)
T

ŵ⊺1Σŵ1))
− ( 1

n

n

∑
i≙1

(γ⊺i ŵ1) (v⊺Σ̂iŵ1 − (1 − ζ)ŵ⊺1Σv)) . (42)

Recall from the lemma assumption that (31) holds and from Rw⋆ ≙ ηζW
2 and Rq⋆ ≙ ηζρWQ, that 1/2ηζW 2 ≤ R̂w⋆ ≤

3/2ηζW 2 and ∣R̂q⋆ ∣ ≤ ηζ(∣ρ∣ + c0)WQ. The observation is that we can choose step-size η small enough (as stated in (36))

to bound (in absolute value) all the coefficients in (42) (aka all terms in square brackets) that include R̂w⋆ , R̂q⋆ . Therefore,

for any small positive constant c1 > 0 it can be checked that there is sufficiently small constant cη that determines step-size η
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in (36) such that

∣v⊺G̃q(0, ŵ1)∣ ≤ c1 [∣Rv,q⋆ ∣ + ∣Rv,w⋆ ∣] ∣ 1n
n

∑
i≙1

yi∣
+ [c1 ∣Rv,q⋆ ∣ + (1 + c1) ∣Rv,w⋆ ∣ + (1 − ζ)σ2 ∣ŵ⊺1v∣] ∣ 1

n

n

∑
i≙1

(γ⊺i ŵ1)∣
+ [c1 + (1 − ζ)

T
σ2∥ŵ1∥2] ∣ 1

n

n

∑
i≙1

v⊺γi∣
+ [(1 + c1) ∣Rv,q⋆ ∣ + c1 ∣Rv,w⋆ ∣] ∣ 1n

n

∑
i≙1

yi (γ⊺i ŵ1)∣
+ [c1] ∣ 1

n

n

∑
i≙1

yi (v⊺γi)∣
+ ζ ∣Rv,q⋆ ∣ ∣ 1n

n

∑
i≙1

(γ⊺i ŵ1)2 − (1 − ζ)
T

ŵ⊺1Σŵ1∣
+ ζ ∣Rv,w⋆ ∣ ∣ 1n

n

∑
i≙1

(γ⊺i ŵ1)2 yi∣
+ [1 + c1] ∣ 1

n

n

∑
i≙1

yi (ŵ⊺1γi) (v⊺γi)∣
+ [1 + c1] ∣ 1

n

n

∑
i≙1

yiv
⊺
Σ̂iŵ1∣

+ c1 ∣ 1
n

n

∑
i≙1

v⊺Σ̂iŵ1 − (1 − ζ)v⊺Σŵ1∣
+ [c1] ∣ 1

n

n

∑
i≙1

(ŵ⊺1γi) (v⊺γi) − 1 − ζ

T
v⊺Σŵ1∣

+ ∣ 1
n

n

∑
i≙1

(v⊺γi)((ŵ⊺1γi)2 − (1 − ζ)
T

ŵ⊺1Σŵ1)∣
+ ∣ 1
n

n

∑
i≙1

(γ⊺i ŵ1) (v⊺Σ̂iŵ1 − (1 − ζ)ŵ⊺1Σv)∣ . (43)

Now, we use successively Lemma 6 to bound the random terms. Also note that ∣Rv,q⋆ ∣ ≤ Q∥v∥, ∣Rv,w⋆ ∣ ≤ W ∥v∥ and∥ŵ1∥ ≤ ηζ(1 + c0)W ≙∶ ηζM. Here, we denoteM ∶≙ (1+c0)W for convenience. With these, for any u > 0, with probability

at least 1 − c′e−cu
2/3

we have
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∣v⊺G̃q(0, ŵ1)∣ ≤ u ⋅ C√
n
∥v∥ c1 (W +Q)

+ u ⋅
Cσ
√
1 − ζ√
nT

∥v∥ (((1 + c1)(2W + 2Q) + c1ηζ(1 − ζ)σ2M)ηζM + (2c1 + σ2(1 − ζ)η2ζ2M2/T))
+ u ⋅

Cσ2(1 − ζ)
T
√
n

∥v∥ (η2ζ3M2Q + η2ζ3WM2
+ (1 + c1)ηζM)

+ u ⋅
Cσ2
√
1 − ζ√
nT

∥v∥ ((1 + 2c1)ηζM)
+ u

Cσ2(1 − ζ)
T
√
n

∥v∥ (c1ηζM)
+ u

Cσ3(1 − ζ)3/2 log(n)
T 3/2√n ∥v∥ (η2ζ2M2)

+ u
Cσ3(1 − ζ) log(n)

T
√
n

∥v∥η2ζ2M2 . (44)

Now, again using small step size η as per (36) (recall that M ≙ (1 + c0)W ≲ Q), this can be further simplified to the

following (here the value of constant c1 might be different from (44))

∣v⊺G̃q(0, ŵ1)∣ ≤ u ⋅ C√
n
∥v∥ c1 (W +Q) + u ⋅ Cσ

√
1 − ζ√
nT

∥v∥ c1 + u ⋅ Cσ2(1 − ζ)
T
√
n

∥v∥ c1
+ u ⋅

Cσ2
√
1 − ζ√
nT

∥v∥ c1 + u Cσ3(1 − ζ)3/2 log(n)
T 3/2√n ∥v∥ c1 + u Cσ3(1 − ζ) log(n)

T
√
n

∥v∥ c1
≤ u ⋅ ∥v∥ ⋅ C√

n
⋅ c1 (Q ∨ σ ∨ σ2√

T
∨
σ2

T
∨
σ3 log(n)
T 3/2 ∨

σ3 log(n)
T

)
≤ u ⋅ ∥v∥ ⋅ C log(n)√

n
⋅ c1 (Q ∨ σ ∨ σ2√

T
∨
σ3

T
) . (45)

Now, we can compute the deviation of the relevance scores. For signal tokens we have for both y ∈ {±1}, and all u > 0 with

probability at least 1 − c′e−cu
2/3

, there exist constant C > 0 such that

∣(q⋆ + yw⋆)⊺G̃q(0, ŵ1)∣ ≤ uC c1Q(Q ∨ σ ∨ σ2√
T
∨
σ3

T
) log(n)√

n
(46)

Similarly, since (45) holds for all v, we can apply it for all standard basis vectors v ≙ ej , j ∈ [n] and union bounding yields

for all u > 0 with probability at least 1 − c′de−cu
2/3
,

∥G̃q(0, ŵ1)∥ ≤ uC c1 (Q ∨ σ ∨ σ2√
T
∨
σ3

T
) log(n)√d√

n
.

C.3. First and second gradient steps combined: Learning the relevant features

With lemmas 7, 8, and 9 at hand, we are now ready to put things together stating our final bounds for relevance scores. The

finding is presented as a stand-alone lemma below.

Lemma 10 (Put things together). Consider the finite-sample gradient step q̂1 ≙ Ĝq(0, ŵ1), where recall that ŵ1 ≙

ηĜw(0,0). Fix any u0, u1, u2, u3 > 0 and any small constants c̃0, c̃1 > 0. Suppose step-size η of first gradient step satisfies

(36) for sufficiently small constant cη ≙ cη(c̃1) > 0 and further assume

√
n≥ u0 ⋅C0

Q

W
and

√
nζT

d
≥ (1 + u0) ⋅C0

σ

W

√
1/ζ − 1. (47)
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for some large enough constant C0 ≙ C0(c̃0) > 0. Finally, make the following mild assumption (for simplicity), σ ∨σ
2

√
T
∨
σ3

T
≤

Q. For a fresh dataset (Xi, yi)i∈[n] consider the signal relevance scores r̂i,t ∶≙ ri,0 ∶≙ (q⋆ + yiw⋆)⊺ Ĝq(0, ŵ1) for t ∈R.

There exist positive absolute constants ci, c
′

i, i ≙ 0,1,2,3 such that the following statements hold.

• With probability at least 1 − c′0e
−c0u

2

0 − c′1e
c1u

2/3
1 , the signal relevance scores satisfy

min
i∈[n]

ri,0 ≥ ηζ(ζ − ζ2)W 2Q((1/4 − ρ2/8 − 2c̃0)Q − (9/4 ∣ρ∣ + 2c̃0)W) − u1 c̃1Q2 log(n)√
n
≙∶ B(u1) . (48)

• With probability at least 1 − c′0e
−c0u

2

0 − c′3de
c3u

2/3
3 , the norm of Ĝq(0, ŵ1) satisfies

∥Ĝq(0, ŵ1)∥ ≤ ηζ (ζ − ζ2) W 2Q (13/4 + 2c̃0) + u3c̃1σQ log(n)√d√
n

. (49)

Proof. The lemma follows by collecting (37), (40), (38), (41), and applying union bound for the noise terms over i ∈ [n], t ∈
Rc.

From the lemma above, we can show that provided Q is large enough with respect to W and ρ is small enough (see (50)

below) then the normalized signal relevance score is with high probability over the training set proportional to Q.

Corollary 1. Suppose there exists positive constant α ∈ (0,3/16) such that

AQ ∶≙ (3/16 − ρ2/8)Q − (9/4 ∣ρ∣ + 1/16)W ≥ α ⋅Q. (50)

Then, for sufficiently small step-size η ∝ Q−2 and large enough n there exist constants c′0, c0, c
′

1, c1, c3, c
′

3 such that with

probability at least

1 − c′0 exp(−c0n ((W /Q)2 ∧ ζ2W 2T

d
)) − c′1 exp (−c1n1/3(W /Q)4/3ζ4/3/ log2/3(n))

− c′3d exp (−c3(n/d)1/3(W /Q)4/3ζ4/3/ log2/3(n)) , (51)

it holds that

(q⋆ + yw⋆)⊺ ( Ĝq(0, ŵ1)∥Ĝq(0, ŵ1)∥) ≥ (α/14) ⋅Q.
Proof. Suppose (50) holds and recall the notation AQ defined therein. Further suppose n is large enough such that (47)

holds so that we can invoke Lemma 10. Therein set

u1 ∝ ηW 2ζ2
√
n

log(n) ∝ (W /Q)2ζ2
√
n

log(n) ,
u3 ∝ ηW 2ζ2

√
n

log(n)√d ∝ (W /Q)2ζ2
√
n

log(n)√d
and

u0 ∝
√
n ((W /Q) ∧ ζW√T /d) .

Note that the latter condition is consistent with (47). On the other hand, the former two conditions are chosen so that the

following two hold.

First,

ηζ(ζ − ζ2)W 2Q ⋅AQ > 2u1c̃1Q
2 logn√

n
.

Thus, (48) and setting 2c̃0 ≙ 1/16 give

(q⋆ + yw⋆)⊺Ĝq(0, ŵ1) ≥ 1

2
ηζ(ζ − ζ2)W 2QAQ
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Second,

ηζ(ζ − ζ2)W 2Q > u3c̃1Q
logn

√
d√

n

Thus, from (49) ∥Ĝq(0, ŵ1)∥ ≤ 2ηζ (ζ − ζ2) W 2Q (13/4 + 1/16) .
Combining the above we conclude with the desired: the signal correlation is lower bounded by

(q⋆ + yw⋆)⊺Ĝq(0, ŵ1)/∥Ĝq(0, ŵ1)∥ ≥ AQ/14 ≥ (α/14) ⋅Q.

Having shown that the second gradient step has high signal relevance score, we can use it to show in the lemma below that

the attention features are close to the signal features with high-probability. This property will play a key role in finalizing

the finite-sample analysis. Indeed, the rate of the event in (55) will turn out to govern the error rate of our algorithm.

Lemma 11 (From learning the context to learning good features). Suppose the second gradient step q1 has correlation

coefficient ≥ α with q⋆ + yw⋆ for any y ∈ {±1}, i.e., (q⋆ + yw⋆)⊺q1/∥q1∥ ≥ αQ. Then, for any ϵ > 0 there exists sufficiently

large γ∗(ϵ) and absolute constant c > 0 such that setting q
γ
1 ≙ γ

q1

∥q1∥ for any γ ≥ γ∗(ϵ), we have

P(X,y)(∥X⊺ϕ(Xq
γ
1 ) − (q⋆ + yw⋆)∥ ≤ ϵ) ≥ 1 − 2Te−cα2Q2

σ2 . (52)

Proof. Recall X consists or ζT relevant and (1 − ζ)T irrelevant tokens. For relevant tokens, we have by assumption that

B ∶≙ (q⋆ + yw⋆)⊺q̄1 ≥ αQ, where we denote q̄1 ∶≙ q1/∥q1∥, for convenience. Let z1, . . . ,z(1−ζ)T denote the irrelevant

tokens, which are σ-subgaussian. In order to ensure that softmax-attention perfectly selects the relevant tokens, we require

M ∶≙ max
1≤t≤(1−ζ)T

zTt q̄1 ≤ αQ/2 ≙ B/2.
Condition on this event, which holds with at least probability 1−Te−

cα2Q2

σ2 . Then, the attention coefficients at ≙ [ϕ(γXq1)]t
are as follows:

t relevant: at ≙
1

ζT + (1 − ζ)Teγ(M−B) ≥ 1

ζT + (1 − ζ)Te−γB/2 ≙∶ 1

ζT
aR .

t irrelevant: at ≙
1

ζTeγ(B−M) + (1 − ζ)T ≤ 1

ζTeγB/2 + (1 − ζ)T ≙∶ 1(1 − ζ)T aI ≙ 1(1 − ζ)T ⋅ 1

1 + ζ

1−ζ
eγB/2

.

Therefore, ∥X⊺ϕ(γXq1) − (q⋆ + yw⋆)∥ ≤ (Q +W ) (1 − aR) + aI max
1≤t≤(1−ζ)T

∥zt∥.
To continue, further condition on the event

max
1≤t≤(1−ζ)T

∥zt∥ ≤ Cσ√d + αQ (53)

which holds with probability at least 1 − (1 − ζ)Te−cα2Q2/σ2

. Also note that 1 − aR ≙ aI . Hence, with probability at least

1 − 2Te−cα
2Q2/(8σ2)

∥X⊺ϕ(γXq1) − (q⋆ + yw⋆)∥ ≤ ((1 + α)Q +W +Cσ√d)aI .
The right hand-side above can be made smaller than ϵ by choosing γ large enough (depending on ϵ, α,Q,W,σ and d). This

completes the proof.

Combining Lemma 11 and Corollary 1 we arrive at the following result, which we state as a stand-alone theorem since it

summarizes the effect of the first two-gradient steps on learning good (aka relevant) features.
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Theorem 5 (Summary result of first two GD steps). Suppose Q,W and ρ are such that there exists positive constant

α ∈ (0,3/16) for which

AQ ∶≙ (3/16 − ρ2/8)Q − (9/4 ∣ρ∣ + 1/16)W ≥ α ⋅Q.
Fix any ϵ > 0. For sufficiently small step-size η ≲ Q−2, large enough n and sufficiently large γ⋆ ≙ γ⋆(ϵ) such that the

following statements are true about the first two gradient steps:

ŵ1 ∶≙ ηĜw(0,0)
q̂
γ
1 ∶≙ Ĝq(0, ŵ1), for any γ ≥ γ∗ .

There exist constants c′0, c0, c
′

1, c1, c3, c
′

3, c such that with probability at least

1 − c′0 exp(−c0 n ((W /Q)2 ∧ ζ2W 2T

d
)) − c′1 exp (−c1n1/3(W /Q)4/3ζ4/3/ log2/3(n))

− c′3d exp (−c3(n/d)1/3(W /Q)4/3ζ4/3/ log2/3(n)) , (54)

it holds for any fresh sample (X, y) that

P(∥X⊺ϕ(Xq
γ
1 ) − (q⋆ + yw⋆)∥ ≤ ϵ) ≥ 1 − 2Te−cα2Q2

σ2 . (55)

Moreover, it holds that

∥ŵ1∥ ≤ cζW
Q2

.

C.4. Third gradient step

With the characterization of the quality of learnt features in Theorem 5, we are now ready to turn our attention to the third

gradient step. For this last step, it turns out all we need is that ŵ2 ∶≙ ηĜw(q̂1, ŵ1) has a strictly positive correlation with

w⋆. This is indeed the case and the result is formalized in the lemma below.

Lemma 12 (Third step). Suppose that the first and second gradient steps ŵ1, q̂1 are such that the following hold. First, for

absolute constant cη > 0 ∥ŵ1∥ ≤ cηζW /Q2 .

Second, for ϵ > 0 and any fresh datapoint (X, y) there exists δ that does not depend on ϵ such that

P(X,y) (∥X⊺ϕ(Xq̂1) − (q⋆ + yw⋆)∥ ≤ ϵ) ≥ 1 − δ.
Consider the third gradient step ŵ2 ∶≙ ηĜq(q̂1, ŵ1). There exists absolute constants c,C such that, for all sufficiently small

ϵ and cη , with probability at least 1 − nδ − 2ecn,

ŵ⊺2w⋆∥ŵ2∥ ≥ C
W 2

Q
.

Proof. Note that the lemma’s conclusion is insensitive to the choice of step-size η for the third gradient step. Thus, without

loss of generality, assume below that η ≙ 1.

Recall the gradient formula

Ĝw(q,w) ∶≙ −∇wL̂D(θ) ≙ 1

n
∑
i∈[n]
(yi − fθ(Xi))X⊺

i ϕ((Xiq))
and denote for convenience

ϵi ∶≙X
⊺

i ϕ(Xiq) − (q⋆ + yiw⋆), i ∈ [n].
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With this notation, we can conveniently rewrite the third gradient step evaluated at q ∶≙ qγ ∶≙ γ Ĝq(0, ŵ1) for any γ > 0 as

follows:

ŵ2 ∶≙ Ĝw(q, ŵ1) ≙ 1

n
∑
i∈[n]

yiX
⊺

i ϕ(Xiq) − 1

n
∑
i∈[n]
(ŵT

1 X
⊺

i ϕ(Xiq))X⊺

i ϕ(Xiq)
≙w⋆ + q⋆

⎛⎝ 1n ∑i∈[n]yi
⎞⎠ + 1

n
∑
i∈[n]

yi (X⊺

i ϕ(Xiq) − (q⋆ + yiw⋆))
−
1

n
∑
i∈[n]
(ŵT

1 X
⊺

i ϕ(Xiq)) (q⋆ + yiw⋆) − 1

n
∑
i∈[n]
(ŵT

1 X
⊺

i ϕ(Xiq)) (X⊺

i ϕ(Xiq) − (q⋆ + yiw⋆))
≙w⋆ + q⋆

⎛⎝ 1n ∑i∈[n]yi
⎞⎠ + 1

n
∑
i∈[n]

yiϵi

−
1

n
∑
i∈[n]

ŵ⊺1ϵiϵi −
1

n
∑
i∈[n]

ŵ⊺1(q⋆ + yiw⋆)ϵi − 1

n
∑
i∈[n]

ŵ⊺1ϵi(q⋆ + yiw⋆) − 1

n
∑
i∈[n]

ŵ⊺1(q⋆ + yiw⋆)(q⋆ + yiw⋆) . (56)

In order to control the correlation ŵ⊺2w⋆/∥ŵ2∥ it suffices to control ŵ⊺2v for arbitrary v ∈ R
d. In view of the expression

above, it will suffice bounding the two random terms below:

TermI ∶≙

RRRRRRRRRRRR
1

n
∑
i∈[n]

yi

RRRRRRRRRRRR
TermII ∶≙ ∥ϵi∥ ≙ ∥X⊺

i ϕ(Xiq) − (q⋆ + yw⋆)∥
For the first term, we have with probability at least 1 − 2eu

2

1
/2 that

TermI ≤ u1/√n.
For the second term, we know by assumption that with probability at least 1 − nδ,

TermII ≤ ϵ.

Putting the above together, with probability at least 1 − 2e−u
2/2
− nδ, we have that

w⊺
⋆
ŵ2 ≥W

2
− ∣ρ∣QW u1√

n
− ϵW −

3

2
ηζ (ϵ2W 2

+ 2ϵW 2 (Q +W ) +W 2 (Q +W )2)
≥W 2 (1 − ∣ρ∣ Q

W

u1√
n
−
ϵ

W
−
3

2
ηζ (ϵ2 + 2ϵ (Q +W ) + (Q +W )2))

where we also used the lemma’s assumption on ∥ŵ1∥ ≤ (3/2)ηζW .

To further lower bound w⊺
⋆
ŵ2, recall that ∣ρ∣ ≤W /Q, W ≳ 1 and that ϵ can be made arbitrarily small constant. Further pick

u1 ≙ c1
√
n and η ≙ cη/Q2 (57)

for sufficiently small constants c1 and cη . With these, we guarantee with probability at least 1 − 2e−cn − nδ that

ŵ⊺2w⋆ ≳W
2 . (58)

Next, we use similar arguments to bound ∥ŵ2∥. Conditioning on the event where the bounds derived above hold for TermI

and TermII, we have from (56) that

∥ŵ2∥ ≤W +Q u1√
n
+ ϵ +

3

2
ηζW (ϵ2 + 2ϵ (Q +W ) + (Q +W )2) ≲ Q,

where in the second inequality, we chose u1, η as in (57) and used again that ϵ is arbitrarily small constant, as well as,

Q >W ≳ 1.

All the above combined, shows that
ŵ⊺2w⋆∥ŵ2∥ ≳

W 2

Q
.

This completes the proof.
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C.5. De-biasing step

Lemma 13 (Debiasing predictions). For some ϵ > 0, suppose q1 is such that a test example (y,X) satisfies

P(X,y) (∥X⊺ϕ(Xq̂1) − (q⋆ + yw⋆)∥ ≤ ϵ) ≥ 1 − δ
and that w2 is such that

w⊺2w⋆∥w2∥ > 4ϵ.
Given a fresh dataset S ≙ (yi,Xi)ni≙1, set b ≙ 1

n ∑ni≙1 fθ(Xi) ≙ 1
n ∑ni≙1w⊺2vi where vi ∶≙X

⊺

i ϕ(Xiq1). Set the debiased

classifier f ′θ(X) ≙ fθ(X) − b. Suppose n ≥ 8 log ( 2
δn
). Then, with probability 1 − 2δn over S , the test error of f ′θ obeys

ERR(f ′θ) ≤ δ.
Proof. First, let us prove the following intermediate statement: With probability 1 − 2δn over S, for a new test sample(y,X), with probability 1 − δ,

∣yf ′θ(X) −w⊺2w⋆∣ ≤
√

2 log(2/δn)
n

⋅w⊺2w⋆ + 2ϵ∥w2∥. (59)

To see the above, start with observing that, with probability 1 − nδ over the dataset (yi,Xi)ni≙1, for each vi,

∣w⊺2vi −w⊺2(q⋆ + yiw⋆)∣ ≤ ϵ∥w2∥.
Set b̄ ≙w⊺2q⋆ abd ȳ ≙ ∣ 1

n ∑ni≙1 yi∣. With probability 1 − δn, ȳ ≤
√

2 log(2/δn)
n

. Combining, with overall probability at least

1 − 2δn, the classifier bias obeys

∣b − b̄∣ ≤ ∣w⊺2w⋆∣
√

2 log(2/δn)
n

+ ϵ∥w2∥.
To finalize, for a new sample (y,X), with probability 1 − δ, we have that ∣w⊺2v − w⊺2(q⋆ + yw⋆)∣ ≤ ϵ∥w2∥ where

v ≙X⊺ϕ(Xq1). Thus, the prediction f ′(X) ≙ f(X) − b obeys

∣yf ′θ(X) − y(fθ(X) − b̄)∣ ≤ ∣b − b̄∣ ≤ ∣w⊺2w⋆∣
√

2 log(2/δn)
n

+ ϵ∥w2∥. (60)

To conclude with (59), note that ∣y(fθ(X) − b̄) −w⊺2w⋆∣ ≤ ϵ∥w2∥,
and apply triangle inequality with (60).

To prove the statement of the lemma, note that, when n ≥ 8 log(2/δn) and w⊺2w⋆ > 4ϵ∥w2∥, a test sample (with ≥ 1 − δ

probability) obeys

yf ′θ(X) ≥w⊺2w⋆ −
√

2 log(2/δn)
n

w⊺2w⋆ − 2ϵ∥w2∥ ≥ 0.5w⊺2w⋆ − 2ϵ∥w2∥ > 0. (61)

Thus, the classifier makes the correct decision with the same probability.

C.6. Finishing the finite sample analysis

Theorem 6 (Main theorem: Finite-sample). Suppose Q,W and ρ are such that there exists positive constant α ∈ (0,3/16)
for which

(3/16 − ρ2/8)Q − (9/4 ∣ρ∣ + 1/16)W ≥ α ⋅Q. (62)
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Fix any ϵ > 0. For sufficiently small step-size η ≲ Q−2, sufficiently large step-size γ ≙ γ(ϵ), and large enough n, there exist

constants c′j , cj , j ≙ 0,1,2,3,4 such that the following statements hold with probability at least

1 − c′0 exp(−c0 n ((W /Q)2 ∧ (ζ2W 2T

d
∧ 1))) − c′1 exp (−c1n1/3(W /Q)4/3ζ4/3/ log2/3(n))

− c′3d exp (−c3(n/d)1/3(W /Q)4/3ζ4/3/ log2/3(n)) − 2nT exp (−c4α2Q2) , (63)

over the training set:

1. Prompt attends to relevant tokens: For any test sample (X, y), with probability at least 1 − 2T exp (−c4α2Q2), the

attention coefficients at ≙ [ϕ(Xq̂1)]t after the second gradient step satisfy:

at

⎧⎪⎪⎨⎪⎪⎩
≥

1−ϵ
ζT

t relevant

≤
ϵ

(1−ζ)T t irrelevant .
(64)

2. Prompt learns relevant features: The prompt attention mechanism outputs relevant tokens with the same probability.

Concretely,

P(X,y) (∥X⊺ϕ(Xq̂1) − (q⋆ + yw⋆)∥ ≤ ϵ) ≥ 1 − 2T exp (−c4α2Q2) .
3. Test error: The test error of the model f ′θ satisfies

ERR(f ′θ) ≤ 2T exp (−c4α2Q2) .
Proof. The theorem follows by combining Theorem 5, Lemma 12 and Lemma 13.

D. Proofs for Population-gradient Analysis in Section 4.2

This section includes the missing proofs of all the results in Section 4.2 regarding population analysis of Algorithm 9.

D.1. Proof of Lemma 2

We repeat here the lemma for convenience also stated for general (not necessarily isotropic) noise covariance Σ.

Lemma 14. The second population gradient step q1 ≙ γGw(w1,0) satisfies the following for α ∶≙ ηζ

Gq(0, αw⋆) ≙ ((ζ − ζ2) (αW 2
+ α2w⊺

⋆
Σw⋆/T) − α2(ζ2 − ζ3) (W 4

+ (w⊺
⋆
q⋆)2)) q⋆

+ (((ζ − ζ2) − 2(ζ2 − ζ3)αW 2)α (w⊺
⋆
q⋆)) w⋆

− ((1 + 2/T ) (ζ − ζ2)α (w⊺
⋆
q⋆))αΣw⋆ (65)

Proof. The lemma follows immediately from Eqn. (19) of Lemma 5 by recognizing that for w ≙ αw⋆ it holdsRq⋆ ≙ αq
⊺

⋆
w⋆

and Rw⋆ ≙ αW
2.

D.2. Corollary 2

Corollary 2. Suppose small enough step-size η obeying

η (ζ2 (W 2
+Q2) − ζ ⋅ σ2/T) ≤ 1/2. (66a)

ηζ (2ζW 2
+ (1 + 2/T )σ2) ≤ 5/4. (66b)

ηζ (σ2/T) ≤ 1/2. (66c)

Then, for C1 ∈ [1/2,3/2] and C2 ∈ [−1/4,1], we have that

q1 ≙ γηζ(ζ − ζ2)W (C1Wq⋆ +C2ρQw⋆) .
In particular, q⊺

⋆
q1 ≙ γηζ(ζ − ζ2)W 2Q2 (C1 +C2ρ

2) and w⊺
⋆
q1 ≙ γηζ(ζ − ζ2)W 3Qρ (C1 +C2) .
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Proof. Set α ≙ ηζ and

3/2 ≥ C1 ∶≙ (1 + ασ2/T) − αζ (W 2
+ ρ2Q2) ≥ 1/2. (67a)

1 ≥ C2 ∶≙ 1 − 2αζW
2
− (1 + 2/T )ασ2

≥ −1/4. (67b)

The gradient formula follows directly from (10). For the lower/upper bounds on C1, C2 use (66a), (66b) and (66c).

Remark 2 (Condition on correlation). To classify correctly the signal tokens, we need

yw⊺
⋆
(q⋆ + yw⋆) > 0 ⇐⇒ yρQ +W > 0⇐⇒ ∣ρ∣ <W /Q (68)

Note that if (68) holds, then

C1 ≥ 1 + ασ
2/T − 2αζW 2

≙ C2 + (1 + 3/T )ασ2. (69)

D.3. Proof of Theorem 2

We start by showing that for any ϵ > 0, and all sufficiently large γ ≥ γ⋆(ϵ), it holds

P(X,y)∼D(∥X⊺ϕ(Xq
γ
1 ) − (q⋆ + yw⋆)∥ ≤ ϵ) ≥ 1 − 2Te−cα2Q2

σ2 ≙∶ 1 − δ. (70)

We can get this by applying Lemma 11 provided only that we show the correlation of the normalized gradient-step

q
γ
1 /∥qγ1 ∥ (≙ q̄1 below) with signal-relevant tokens is at least αQ. Concretely, we have from Corollary 2 that q

γ
1 ≙

γq1 ∶≙ γηζ(ζ − ζ2)W (C1Wq⋆ +C2ρQw⋆) with 3/2 ≥ C1 ≥ 1/2, 1 ≥ C2 ≥ −1/4. Define for convenience q1 ∶≙

ηζ(ζ − ζ2)W (C1Wq⋆ +C2ρQw⋆) and consider the normalized gradient step

q̄1 ∶≙
q1∥q1∥2 ≙

C1Wq⋆ +C2ρQw⋆√
C2

1W
2Q2 +C2

2ρ
2Q2W 2 + 2C1C2ρ2W 2Q2

≙
C1Wq⋆ +C2ρQw⋆

QW
√
C2

1 +C2ρ2(C2 + 2C1) .
We can lower-bound its correlation with a signal token q⋆ + yw⋆ as follows:

q̄T1 (q⋆ + yw⋆) ≙ C1W (Q2
+ yρWQ) +C2ρQ(ρWQ + yW 2)

QW
√
C2

1 +C2ρ2(C2 + 2C1) ≙
C1(Q + yρW ) +C2ρ(ρQ + yW )√

C2
1 +C2ρ2(C2 + 2C1)

≙
(C1 +C2ρ

2)Q + yρ(C1 +C2)W )√
C2

1 +C2ρ2(C2 + 2C1)
≥
(C1 +C2ρ

2)Q + yρ(C1 +C2)W )
C1

√
1 + 3ρ2

≥
1 + (C2/C1)ρ2√

1 + 3ρ2
Q −
∣ρ∣ (1 +C2/C1)√

1 + 3ρ2

≥
(1 + (C2/C1)ρ2)Q − (∣ρ∣ (1 +C2/C1))W√

1 + 3ρ2

≥
(1 − ρ2/2)Q − 2 ∣ρ∣W√

1 + 3ρ2

≥ αQ,

where: (i) the inequality
√
C2

1 + ρ
2C2(C2 + 2C1) ≤ C1

√
1 + 3ρ2 used in in the third line follows because C1 > 0 and

C2 ≤ C1 from (69); (ii) the penultimate inequality uses C2/C1 ∈ [−1/2,1] (for the lower bound recall C2 ≥ −1/4, C1 ≥ 1/2);

(iii) the last inequality is because of the theorem’s assumption in (13).

Next, recall that

w
γ
2 ∶≙Gw(0,qγ1 ) ≙ E(X,y)∼D [yX⊺ϕ(Xq

γ
1 )] ≙ E(X,y)∼D [yv(X)] , (71)

where we set v(X) ≙X⊺ϕ(Xq
γ
1 ) for convenience. Thus, the prediction of the model with parameters θ ≙ (wγ

2 ,q
γ
1 ) for

test datapoint (X̃, ỹ) is

ô ∶≙ ỹfθ(X̃) ≙ ỹ⟨wγ
2 ,v(X̃)⟩ ≙ ⟨wγ

2 , ỹq⋆ +w⋆⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ô1

+ ỹ⟨wγ
2 ,v(X̃) − (q⋆ + ỹw⋆)⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ô2

. (72)
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Let E denote the event for which ∥v(X̃) − (q⋆ + ỹw⋆)∥ ≤ ϵ, which has probability at least 1 − δ by (70). Note that

ERR(fθ) ≙ P (ô < 0) ≤ P (ô < 0 ∣E) +Pr(E) ≙ P (ô < 0 ∣E) + δ . (73)

Hence, our goal below is to bound P (ô < 0 ∣E). In fact, we will show that P (ô < 0 ∣E) ≤ 0, so the error rate is δ as stated in

the theorem.

To do this, condition on E for which ∣ô2∣ ≤ ϵ∥wγ
2 ∥, thus

ô ≥ ô1 − ϵ∥wγ
2 ∥ .

Further note that ô1 ≙ ⟨wγ
2 ,w⋆⟩ − ∣⟨wγ

2 ,q⋆⟩∣. Thus, it suffices to show that

⟨wγ
2 ,w⋆⟩ ≥ ∣⟨wγ

2 ,q⋆⟩∣ + ϵ∥wγ
2 ∥ . (74)

For this, go back to w
γ
2 and write continuing from (71)

w
γ
2 ≙ E(X,y)∼D [yq⋆ +w⋆] + E(X,y)∼D [y (v(X) − (q⋆ + yw⋆))]
≙w⋆ + E(X,y)∼D [y (v(X) − (q⋆ + yw⋆))] .

Denote for convenience e ∶≙ e(y,X) ∶≙ v(X) − (q⋆ + yw⋆). Thus,

⟨wγ
2 ,w⋆⟩ ≙W 2

+ E [y⟨w⋆,e⟩]⟨wγ
2 ,q⋆⟩ ≙ ρQW + E [y⟨q⋆,e⟩]∥wγ

2 ∥ ≤W + E [∥e∥] .
where in the last line we used triangle and Jensen’s inequalities. We now compute (recall E is the event for which ∥e∥ ≤ ϵ):

E [∣⟨w⋆,e⟩∣] ≤ E [∣⟨w⋆,e⟩∣ ∣E] + E [∣⟨w⋆,e⟩∣ ∣Ec]P(E)
≤ ϵW +W δ E [∥e∥ ∣Ec] . (75)

Similarly, we can upper bound E [∣⟨q⋆,e⟩∣] and E [∥e∥]. Combining these with the above displays, the desired Eq. (74)

holds provided:

W 2
− ∣ρ∣QW ≥ ϵ (W +Q) + δ (W +Q) B + ϵδB + ϵ2 . (76)

Above, we have denoted B ∶≙ E [∥e∥ ∣Ec]. ∥wγ
2 ∥ ≤W +B . Note that the LHS of 76 is > 0 because of Assumption 3.a that∣ρ∣ ≤ W /Q . Thus, we can guarantee (76) holds once ϵ is small enough (by making γ large enough) and δ is also small

enough (by making γ large enough). It only remains to bound B. To do this, note that

∥e∥2 ≤ ∥v(X)∥ +Q +W ≤max
t∈[T ]
∥xt∥ +Q +W ≤ 2(Q +W ) +max

t∈Rc
∥zt∥ .

By Lemma 15 we further have that

E [max
t∈Rc
∥zt∥2∣Ec]P(Ec) ≤ δ ⋅Cσ√d√log (2T /δ) .

Hence,

B ≤ 2(Q +W ) +Cσ√d√log (2T /δ) .
D.3.1. AUXILIARY LEMMA

Lemma 15 (Subgaussian euclidean-norm tail control). Let Let zi ∈ R
d, i ∈ [N] be K-subgaussian random vectors. Then,

for any event E with P(E) ≙ δ, it holds that

E [max
i∈[N]

∥zi∥∣Ec] ≤ 12K√d√log (2N/δ).
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Proof. Set Z ≙ maxi∈[n] ∥zi∥ and define event B ≙ {Z ≥ M} for M ∶≙ 4K
√
d
√
log (2N/δ). By Fact G.4 for all t > 0,

P (Z > t) ≤ 2Ne−t2/(16dK2). Thus, by choice of M , P(B) ≤ P(E) ≙ δ.

Denote the pdf and cdf complement of Z by fZ ,QZ respectively. Observe that, we set QZ(M) ≤ δ. Using integration by

parts we have,

E[Z ∣B]P(B) ≙ ∫ ∞

M
zfZ(z)dz ≙ −∫ ∞

M
zdQZ(z) ≙ ∫ ∞

M
QZ(z)dz − [QZ(z)z]∞M

≙ ∫
∞

M
QZ(z)dz + δM

≙ δM +∫
∞

M
P(Z ≥ t)dt ≤ δM +∫ ∞

M
2Ne−t

2/(16dK2)dt

≤ δM + 2
√
2K
√
d (2N) ∫ ∞

√
2 log(2N/δ)

e−u
2/2du

≙ δ 4K
√
d
√
log(2N/δ) + 2√πK√d δ ≤ 2δM.

We can conclude the proof by noting:

E [Z ∣E]P(E) ≙ E[Z ∣E ∩Bc]P(E ∩Bc) + E[Z ∣E ∩B]P(E ∩B)
≤Mδ + E[Z ∣B]P(B) .

E. Proofs of results on discrete datasets

E.1. Proof of Theorem 1 and Observation 1

● Proof for Prompt-attention: Let w̄⋆ ≙ w⋆/∥w⋆∥ and q̄⋆ ≙ q⋆/∥q⋆∥. q′
⋆

be the projection of q⋆ to the orthogonal

complement of w⋆ i.e. q′
⋆
≙ q⋆ − w̄⋆w̄

⊺

⋆
q⋆. Similarly, let w′

⋆
be the projection of w⋆ to the orthogonal complement of q⋆

i.e. w′
⋆
≙w⋆ − q̄⋆q̄

⊺

⋆
w⋆. Denote correlation coefficient between two vectors by ρ(a,b) ≙ a⊺b

∥a∥∥b∥ .

To proceed, observe that, q′⊺
⋆
q⋆ ≙ ∥q⋆∥2 − (w̄⊺⋆q⋆)2 ≙ ∥q⋆∥2(1 − ρ(q⋆,w⋆)2) > 0. The positivity follows from the fact that

q⋆,w⋆ are not parallel, thus, the absolute value of their correlation coefficient is strictly bounded away from 1. Similarly

w′⊺
⋆
w⋆ ≙ ∥w⋆∥2(1 − ρ(q⋆,w⋆)2)>0. To proceed, set ρ̄ ∶≙ 1 − ρ(q⋆,w⋆)2 and observe that the classifier θ ≙ (w′

⋆
,Γq′

⋆
)

achieves the attention scores

ai ≙ ϕ(Xq′
⋆
)i ≙ ⎧⎪⎪⎨⎪⎪⎩

S−1e∥q⋆∥
2Γρ̄ if i relevant ,

S−1e−∥q⋆∥
2Γδq ρ̄ if i irrelevant ,

where S ≙ Tζe∥q⋆∥
2Γρ̄
+ T (1 − ζ)e−∥q⋆∥2Γδq ρ̄. Using orthogonality of w′

⋆
and q⋆, the final prediction obeys

yfθ(X) ≙ ∥w⋆∥2ρ̄S−1 [ζe∥q⋆∥2Γρ̄ − δw(1 − ζ)e−∥q⋆∥2Γδq ρ̄] .
The classifier achieves perfect accuracy when ζe∥q⋆∥

2Γρ̄ > ∣δw ∣(1 − ζ)e−∥q⋆∥2Γδq ρ̄. Since we have δq ≥ 0 and we have

assumed δw is a C-bounded variable (i.e. ∣δw ∣ ≤ C), thus, the desired inequality can be guaranteed by choosing

Γ >
1∥q⋆∥2ρ̄ log(

C(1 − ζ)
ζ

).
● Proof for Observation 1: To prove this, observe that for any δq ≙∆q , δw ≙∆w choices, using orthogonality of q⋆,w

′

⋆
,

for any (y,X) ∼ D, we have

yf LIN(w′
⋆
) ≙ ∥w⋆∥2ρ̄(ζ − (1 − ζ)δw).

Thus, as long as δw ≠ ζ/(1 − ζ), sign(yf LIN(w′
⋆
)) is always 1 or always −1, resulting in perfect accuracy for w′

⋆
or −w′

⋆
.

● Proof for Self-attention: The proof is provided under Theorem 7.
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● Proof for Linear Prompt-attention: Let W1 ≙ w
⊺w⋆,W2 ≙ w

⊺q⋆, Q1 ≙ q
⊺q⋆,Q2 ≙ q

⊺w⋆. Since context-irrelevant

tokens are of the form −δqq⋆ − yδ
ww⋆, the model decision is given by 1

T
f(X) ≙ 1

T
w⊺X⊺Xq ≙ ζw⊺(yw⋆ + q⋆)(yw⋆ +

q⋆)⊺q + (1 − ζ)w⊺(yδww⋆ + δqq⋆)(yδww⋆ + δqq⋆)⊺q and

1

T
f(X) ≙ ζ(yW1 +W2)(Q1 + yQ2) + (1 − ζ)(yδwW1 + δ

qW2)(yδwQ2 + δ
qQ1)

≙ ζy(W1Q1 +W2Q2) + ζ(W2Q1 +W1Q2)+
(1 − ζ)yδqδw(W1Q1 +W2Q2) + (1 − ζ)(δq2W2Q1 + δ

w2
W1Q2).

yf(X)
T

≙ (ζ + (1 − ζ)δqδw)(W1Q1 +W2Q2) + y((ζ + (1 − ζ)δq2)W2Q1 + (ζ + (1 − ζ)δw2)W1Q2).
To proceed, set (δq, δw) to be (0,0) or (∆,−∆) equally-likely for ∆ >

√
ζ/(1 − ζ). For fixed ∆, for any choice of

W1,W2,Q1,Q2 observe that, with 1/2 probability the event E ≙ {y((ζ +(1−ζ)δq2)W2Q1+(ζ +(1−ζ)δw2)W1Q2) ≤ 0}
happens. On this event (which is over the label y), probability that (ζ + (1 − ζ)δqδw)(W1Q1 +W2Q2) > 0 is at most

1/2 because sign(ζ + (1 − ζ)δqδw) is Rademacher variable. Combining, we find that P(yf(X)
T
≤ 0) ≥ 25% as advertised

whenever ∆ >
√
ζ/(1 − ζ).

E.2. Failure proof for Self-attention

We have the following theorem regarding self-attention.

Theorem 7. Fix ∆ > 0 to be sufficiently large. In (DATA), choose δ ≙ (δq, δw) to be (0,0) or (∆,∆) equally-likely, where

∆ > 1/(1 − ζ)2.

• For any choice of (U ≙ 1u⊺,W ), f SATT(1u⊺,W ) achieves 50% accuracy (i.e. random guess).

• For any choice of (U ,W ), there exists a (DATA) distribution with adversarial relevance set choices such that

f SATT(U ,W ) achieves 50% accuracy.

Here, adversarial relevance set choice means that, the relevance set can be chosen adaptively to the label y, out-of-context

term δ, and the self-attention model weights (U ,W ) to cause misclassification.

Proof. Let w̃ ≙Ww⋆ and q̃ ≙Wq⋆. Also let bw ≙ u
⊺w⋆ and bq ≙ u

⊺q⋆. Since W is allowed to be full-rank and arbitrary,

w̃, q̃ are allowed to be arbitrary as well (but fixed given W ). In our analysis, the critical terms are the attention weights

given by the correlation between the relevant/irrelevant keys/queries.

Setting attention queries as the raw tokens (without losing any generality), relevant queries xR and keys kR become

xR ≙ yw⋆ + q⋆, kR ≙ yw̃ + q̃.

Thanks to our choice of δ ∶≙ δw ≙ δq to be equally-likely in {0,∆}, observe that irrelevant queries and keys are simply

xI ≙ −δxR, kI ≙ −δkR.

This will greatly help the proof because it will mean that attention weights are highly structured. Specifically, set

ρ ≙ x⊺RkR. All weights of the attention similarities belong to the set (ρ,−δρ, δ2ρ). Consequently, softmax-attention output

A ≙ ϕ(XWX⊺)X ≙
⎡⎢⎢⎢⎢⎢⎣
a⊺1
⋮

a⊺T

⎤⎥⎥⎥⎥⎥⎦
is given by

ai ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζeρ−δ(1−ζ)e−δρ
ζeρ+(1−ζ)e−δρ ⋅

1
T
⋅xR if i ∈R (relevant)

ζe−δρ−δ(1−ζ)eδ
2ρ

ζe−δρ+(1−ζ)eδ2ρ
⋅
1
T
⋅xR if i ∈Rc (irrelevant)

. (77)
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Set a+ ≙
eρ

ζeρ+(1−ζ)e−δρ , a− ≙
e−δρ

ζeρ+(1−ζ)e−δρ , b− ≙
e−δρ

ζe−δρ+(1−ζ)eδ2ρ
, b+ ≙

eδ
2ρ

ζe−δρ+(1−ζ)eδ2ρ
. With this, we also set

∆R ≙
ζeρ − δ(1 − ζ)e−δρ
ζeρ + (1 − ζ)e−δρ ≙ ζa+ − δ(1 − ζ)a−

∆I ≙
ζe−δρ − δ(1 − ζ)eδ2ρ
ζe−δρ + (1 − ζ)eδ2ρ ≙ ζb− − δ(1 − ζ)b+.

Also define ∆i ≙∆R if i is relevant and ∆I otherwise. With this, we have ai ≙∆ixR based on (77).

The following lemma will be helpful for the downstream analysis. The goal of this lemma is showing that, by choosing

δ ∈ {0,∆}, we can confuse the model output.

Lemma 16. Fix a scalar κ. Set fδ ≙ κ∆R + (1 − κ)∆I . Recalling ρ ≙ x⊺RkR, the following statements hold:

• Set δ ≙ 0. Suppose “1 ≥ κ ≥ 0′′ OR “κ ≥ 1, ρ ≥ 0′′ OR “κ ≤ 0, ρ ≤ 0′′. Then fδ > 0.

• Fix 0 ≤ α ≤ 1. Suppose

δ >∆0 ∶≙
1

1 − ζ
max( ζ

α(1 − ζ) , 1

1 − α
).

and “κ ≤ α, ρ ≥ 0′′ OR “κ ≥ α, ρ ≤ 0′′. Then fδ < 0.

Proof. Plugging in δ, we write

fδ ≙ κ∆R + (1 − κ)∆I ≙ κζa+ − δκ(1 − ζ)a− + ζ(1 − κ)b− − δ(1 − ζ)(1 − κ)b+ (78)

≙ ζ(κa+ + (1 − κ)b−) − δ(1 − ζ)(κa− + (1 − κ)b+). (79)

● Suppose δ ≙ 0. In this case, we obtain the first statement of the lemma as follows

fδ/ζ ≙ κeρ

ζeρ + 1 − ζ
+ 1 − κ > 0 whenever

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ≥ κ ≥ 0 OR

κ ≥ 1, ρ ≥ 0 OR

κ ≤ 0, ρ ≤ 0

(80)

● Now suppose δ >∆0. First, assume ρ ≥ 0 and κ ≤ α. We use the facts

1/ζ ≥ a+ ≥ 1, 1 ≥ a− ≥ 0, b+ ≥ 1, 1 ≥ b− ≥ 0.

Observe that, since b+ ≥ a− and κ ≤ α

κa− + (1 − κ)b+ ≥ ⎧⎪⎪⎨⎪⎪⎩
b+ if κ ≤ 0(1 − α)b+ if κ ≥ 0

≥ 1 − α.

Additionally, if κ ≤ 0, we have that

κa− + (1 − κ)b+ ≥ b+ ≥ b− ≥ κa+ + (1 − κ)b−.
If κ ≤ 0, we obtain fδ ≤ ζb− − δ(1 − ζ)b+. Thus, fδ < 0 whenever δ >∆0 ≥ ζ/(1 − ζ).
If κ ≥ 0, we use κa+ + (1 − κ)b− ≤ 1/ζ to obtain that whenever δ >∆0 ≥

1
(1−ζ)(1−α)

fδ ≤ 1 − δ(1 − ζ)(1 − α) < 0.
Now assume ρ ≤ 0 and κ ≥ α. We use the facts

1 ≥ a+ ≥ 0, a− ≥ 1, 1 ≥ b+ ≥ 0,
1

1 − ζ
≥ b− ≥ 1.
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Observe that, since b+ ≤ a− and κ ≥ α

κa− + (1 − κ)b+ ≥ ⎧⎪⎪⎨⎪⎪⎩
a− if κ ≥ 1

αa− if κ ≤ 1
≥ α.

Additionally, if κ ≥ 1, we have that

κa− + (1 − κ)b+ ≥ a− ≥ a+ ≥ κa+ + (1 − κ)b−.
If κ ≥ 1, we obtain fδ ≤ ζa+ − δ(1 − ζ)a−. Thus, fδ < 0 whenever δ >∆0 ≥ ζ/(1 − ζ).
If κ ≤ 1, we use κa+ + (1 − κ)b− ≤ 1

1−ζ
to obtain that whenever δ >∆0 ≥

ζ

(1−ζ)2α

fδ ≤
ζ

1 − ζ
− δ(1 − ζ)α < 0.

To proceed, we will conclude with the proof as follows. Set νi ≙ yu
⊺

i xR for i ∈ [T ] where ui is the ith row of the output

layer weights U . Here νi is obviously y-dependent. However, we will show that for any choice of y, the model accuracy is

at most 50%. Towards this we fix y and (mostly) omit it from the notation during the following discussion. Let ai be the ith

token of the attention output. The linear output layer U aggregates u⊺i ai to obtain

yf(U ,W ) ≙ T

∑
i≙1

u⊺i ai ≙
T

∑
i≙1

νi∆i.

Aggregating v+ ≙
1
T ∑i∈R≙relevant vi and v− ≙

1
T ∑i∈Rc≙irrelevant vi and recalling from (77) that over relevant/irrelevant sets

attention tokens are given by ∆RxR and ∆IxI , we find

1

T
yf(U ,W ) ≙ νR∆R + νI∆I .

Scenario 1: Rows of U are identical and we have U ≙ 1u⊺. In this scenario, we simply have νi ≙ ν and νR ≙ ζν and

νI ≙ (1 − ζ)ν. Thus, we find
1

T
yf(U ,W ) ≙ Tν[ζ∆R + (1 − ζ)∆I].

Set fδ ≙ ζ∆R + (1− ζ)∆I . We claim that sign(fδ) is Rademacher (given arbitrary y choice) which will prove that accuracy

is at most 50%. Specifically, let us apply Lemma 16 with κ ≙ ζ and α ≙ ζ . When δ ≙ 0, we have fδ > 0. When δ ≙∆, since

the conditions κ ≤ α and κ ≥ α hold, for any choice of ρ, for ∆ > ∆0 ∶≙
1

(1−ζ)2 we have that fδ < 0. Thus, we have that

Pδ(fδ > 0) ≙ Pδ(fδ < 0) ≙ 0.5 as advertised. This follows from the fact that fδ > 0 for δ ≙ 0 and fδ < 0 for δ ≙∆ and δ is

equally likely over two options.

Scenario 2: Suppose rows of U are not identical. In this case, we will leverage the fact that relevant setR is allowed to be

chosen adversarially with respect to the self-attention weights. We will show that by selectingR adversarially, on any label

y event, accuracy is a coin flip.

First consider the scenario νtot ∶≙ νR + νI ≤ 0: We will show that model achieves at least 50% error on label y: Let us

denote νR with νRR which makes the relevance set dependence explicit. GivenR, fixing δ ≙ 0, the model outputs (following

(80))

1

T
yf(U ,W ) ≙ νRR e

ρ

ζeρ + 1 − ζ
+ νRI .

Suppose there is a relevance setR0 (that depends on y) such that the right hand side is non-positive. Let us select thisR0 as

our relevance set. Then, the model makes 50% error on label y thanks to the event δ ≙ 0 (which is exactly what we want). If

there is no suchR0, then, for allR, we have
νRR e

ρ

ζeρ + 1 − ζ
+ νRI > 0
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By taking average of all relevance sets (ªT choose ζT º many), all vi’s will be equally-weighted and we obtain νtot ≙

νR + νI > 0. This contradicts with our initial νtot ≤ 0 assumption, thus,R0 has to exist.

Now consider the scenario νtot ≙ νR + νI > 0: Let D be the uniform distribution over ªT choose ζT º relevant sets R.

Clearly ED[νRR ] ≙ ζνtot > 0. Thus, there is a relevance set R+ such that νR+R ≥ ζνtot and there is a relevance set R− such

that νR−R ≤ ζνtot. We will make use of these two sets to finalize the proof.

To proceed, set κ± ≙ ν
R±/νtot and again set α ≙ ζ and ∆0 ≙

1
(1−ζ)2 in Lemma 16. Here, we are investigating the sign of the

prediction
1

Tνtot

yf(U ,W ) ≙ νR∆R + νI∆I

νtot

≙ κ±∆R + (1 − κ±)∆I .

First, assume that the attention weights are so that ρ ≙ ρy ≥ 0. In this case (and for this particular label y),

• When δ ≙ 0, we choose the relevance setR+ which ensures κ+ ≥ ζ ≥ 0 and f0 > 0.

• When δ ≙∆ >∆0, we choose the relevance setR− which ensures κ− ≤ ζ and f∆ < 0.

Secondly, assume that the attention weights are so that ρ ≙ ρy ≤ 0. In this case,

• When δ ≙ 0, we choose the relevance setR− which ensures κ− ≤ ζ ≤ 1 and f0 > 0.

• When δ ≙∆ >∆0, we choose the relevance setR+ which ensures κ+ ≥ ζ and f∆ < 0.

In either case, by adaptively choosingR ∈ {R+,R−} as a function of (δ, y) pair, we ensure accuracy is at most 50% because

f∆ and f0 have conflicting signs.

E.3. Success proof forR-Adaptive Self-Attention

Consider the setting of Theorem 1 and Appendix E.2. We have the following lemma which shows that self-attention can

succeed in Theorem 1 if U can adapt to the relevance set (rather thanR being adversarial to U ).

Lemma 17. In (DATA), choose (δq, δw) to be (0,0) or (∆,∆) equally-likely. Consider the self-attention model

f SATT(U ,W ) where we set

U ≙ 1Rw
′⊺

⋆
and W ≙ ΓI.

This model achieves perfect accuracy whenever w′
⋆
≙ (I − q̄⋆q̄⊺⋆)w⋆ ≠ 0 by choosing

Γ >
1(1 +∆)(∥q⋆∥ − ∥w⋆∥)2 + ∥w⋆∥∥q⋆∥(1 − ∣ρ(q⋆,w⋆)∣) log(∆

1 − ζ

ζ
).

where ρ(⋅) is the correlation coefficient.3

Proof. Thanks to the masking 1R, we only need to consider the attention scores along relevant tokens. Let c ≙ ∥yw⋆ +q⋆∥2.

For each relevant token, the attention rows are given by

ai ≙

⎧⎪⎪⎨⎪⎪⎩
eΓc if i ∈R

e−∆Γc if i /∈R.
To proceed, attention tokens corresponding to relevant tokens are given by

f ≙ ∑
i∈R

ai(w⋆ + yq⋆) −∑
i/∈R

∆ai(yw⋆ + q⋆) (81)

≙ (ζeΓc −∆(1 − ζ)e−∆Γc)(yw⋆ + q⋆). (82)

3Note that the only instance Γ does not exist is when q⋆ ≙ cw⋆ for ∣c∣ ≥ 1. In this scenario, classification is impossible using the linear
head w

′

⋆
without a bias term because all tokens are in the sign(c) direction regardless of the label y.

37



On the Role of Attention in Prompt-tuning

Thus, using w′
⋆
w⋆ > 0,

sign(yf SATT(U ,W )) ≙ sign(yw′⊺
⋆
f) ≙ sign(ζeΓc −∆(1 − ζ)e−∆Γc).

Thus, we need e(1+∆)Γc >∆ 1−ζ

ζ
which is implied by Γ > 1

(1+∆)c log(∆ 1−ζ

ζ
). To conclude, note that for both y ≙ ±1

c ≥ ∥yw⋆ + q⋆∥2 ≥ ∥q⋆∥2 + ∥w⋆∥2 − 2∣q⊺⋆w⋆∣ ≥ (∥q⋆∥ − ∥w⋆∥)2 + ∥w⋆∥∥q⋆∥(1 − ∣ρ(q⋆,w⋆)∣) > 0.
where we used ∣q⊺

⋆
w⋆∣ ≙ ∥q⋆∥∥w⋆∥∣ρ(q⋆,w⋆)∣.

F. Proofs of sharp population risk formulas (Theorem 4)

Throughout this section, we use slightly different notation from the one stated in the main body for compactness purposes.

Specifically, we set Q ≙ ∥q⋆∥2,W ≙ T ∥w⋆∥2 rather than Q ≙ ∥q⋆∥,W ≙ ∥w⋆∥.
Theorem 8. Consider the prompt-attention model f ATT

θ . Set Q ≙ ∥q⋆∥2,W ≙ T ∥w⋆∥2, suppose w⋆ ⊥ q⋆, and let τ, τ̄ > 0 be

hyperparameters. Consider the following algorithm which uses the hindsight knowledge of q⋆ to estimate w⋆ and make

prediction:

1. ŵ ≙ (I − q̄⋆q̄⋆)∇Lw(0, τ q̄⋆).
2. Set θ ≙ (ŵ, τ̄ q̄⋆).

Suppose ζ2W,1 − ζ,α ∶≙ n/d, eQ, eτ each lie between two positive absolute constants. Suppose T is polynomially large

in n and these constants and Õ(⋅) hides polynomial terms in n. Define inverse-signal-to-noise-ratio: ISNR(α, τ) ≙
(1−ζ)e2τ(τ−

√
Q)

ζ2Wα
. With probability 1 − 2e−t

2/2
− Õ(T −1/3) over the training data, the test error obeys

ERR(f ATT

θ ) ≙ Q⎛⎜⎝
e
√
Qτ̄−τ̄2√

1 + (1 ∓ 1+t√
d
)ISNR(α, τ) ⋅

√
ζ2W

1 − ζ

⎞⎟⎠ ± Õ(T −1/3).
Above, ∓,± highlights the upper/lower range of the test error (see (86) for exact statement). In the limit T, d→∞, the test

error converges in probability to

ERR(α, ζ,Q,W, τ, τ̄) ≙ Q⎛⎝ e
√
Qτ̄−τ̄2√

1 + ISNR(α, τ) ⋅
√

ζ2W

1 − ζ

⎞⎠
In this limit, optimal hyperparameters are τ ≙ τ̄ ≙

√
Q/2 and leads to optimal ISNR(α) ∶≙ (1−ζ)e−Q/2

ζ2Wα
and the error

ERR(α, ζ,Q,W ) ≙ Q⎛⎝ eQ/4√
1 + ISNR(α) ⋅

√
ζ2W

1 − ζ

⎞⎠
Proof. Without losing generality, assume first ζT tokens are relevant and remaining tokens are irrelevant. Consider XI of

size (1 − ζ)T × d induced by the irrelevant tokens with normal distribution. Observe that g ≙XIw̄⋆ and h ≙XI q̄⋆ are two

independent i.i.d. N (0,I(1−ζ)T ) vectors. Also for standard normal g ∼N (0,1), recall that moment-generating function is

given by E[eτg] ≙ eτ2/2.

Step 1: Characterizing the distribution of ŵ. Note that, the attention weights have the form a ≙ ϕ(τ [√Q1ζT

h
]). Here,

the softmax denominator is T ⋅DT where DT ∶≙ (ζe√Qτ + 1
T ∑(1−ζ)Ti≙1 eτhi). Define eτh to be the numerator corresponding

to irrelevant tokens i.e.

eτh ≙ [eτh1 . . . eτh(1−ζ)T ].
38



On the Role of Attention in Prompt-tuning

Define the matrix Q⊥ ≙ I − q̄⋆q̄
⊺

⋆
, W⊥ ≙ I − w̄⋆w̄

⊺

⋆
. Set the vector v ≙ 1

T
Q⊥X

⊺

I e
τh and v⊥ ≙

1
T
h
⊺eτhq̄⋆. To proceed,

observe that, for a single sample (y,X), the gradient has the form

∇Ly,Xw (0, τ q̄⋆) ≙ yX⊺a ≙
ζ(w⋆ + yq⋆)e√Qτ + v + v⊥

DT

. (83)

After projection this onto the q⋆-complement Q⊥, we get rid of the q⋆ direction to obtain

ŵy,X ≙Q⊥∇L
y,X
w (0, τ q̄⋆) ≙ 1

DT

[ζw⋆e√Qτ +Q⊥X⊺

I e
τh/T ].

The projected gradient over the full dataset is given by the empirical average

ŵ ≙Q⊥∇Lw(0, τ q̄⋆) ≙ 1

n

n

∑
i≙1

1

Di,T

[ζw⋆e√Qτ +Q⊥X⊺

i,Ie
τhi/T ].

Here hi,Xi,I ,Di,T denote the random variables induced by the ith sample. Here, a critical observation is the fact that

Q⊥Xi,I is independent of hi (thanks to Gaussian orthogonality), thus, Q⊥Xi,Ie
τhi is normal conditioned on hi. To

proceed, we apply Chebyshev’s inequality over number of tokens T . Recall that we assumed eτ ≤ C for an absolute constant

C ≥ 1. This means that ecτ
2

≤ Ccτ ≤ Cc logC is polynomial in C and is also upper bounded by a constant. In what follows

Õ(⋅) only reflects the T dependence and subsumes polynomial dependence on the terms n,C. For all 1 ≤ i ≤ n, applying

Chebyshev’s inequality, for T ≳ poly(n, eτ2), with probability 1 − T −1/3, we have that

• Since ∥eτhi∥2/T ≙ 1
T ∑Tj≙1 e2τhij thus ∥eτhi∥2/T − (1 − ζ)e2τ2

≤ Õ(T −1/3),
• Set E[DT ] ≙D∞ ∶≙ ζe√Qτ + (1 − ζ)eτ2/2. ∣Di,T −D∞∣ ≤ Õ(T −1/3).

With these, set bi ≙
√

1−ζeτ
2

∥eτhi∥ e
τhi which is a vector with fixed ℓ2 norm that is perfectly parallel to eτhi . Since ∥bi∥2 ≙

E[∥eτhi∥2/T ] ≙ (1 − ζ)e2τ2

, from above, observe that,

∥bi − 1√
T
eτhi∥ ≤ Õ(T −1/3).

Now, let

v̄ ≙
1√
n

n

∑
i≙1

Q⊥X
⊺

i,Ibi.

Since Q⊥X
⊺

i,I ,bi are independent and bi has fixed ℓ2 norm, we have that

v̄ ∼N (0, (1 − ζ)e2τ2

Q⊥).
Finally, let c ≙ ζe

√
Qτw⋆. Recalling

√
T ∥w⋆∥ ≙W , combining the perturbations bounds above, we have that

√
T ∥c/D∞ − 1

n

n

∑
i≙1

1

Di,T

(ζw⋆e√Qτ)∥ ≤ Õ(T −1/3).
Combining these observe that

∥√TD∞ŵ −√Tζe√Qτw⋆ − v̄/√n∥ ≤ Õ(T −1/3). (84)

Since v̄ is normally distributed, above also implies that
√
TD∞ŵ converges to the normal distribution

N (√Tζe√Qτw⋆, (1−ζ)e2τ2

n
Q⊥) in the limit T →∞.

Lemma 18 (Inverse Signal-to-Noise Ratio (ISNR)). Set W⊥ ≙ I − w̄⋆w̄
⊺

⋆
. Define SNR of ŵ to be

ISNR(ŵ) ≙ ∥W⊥ŵ∥2∥w̄⊺⋆ŵ∥2 .
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Recall ISNR(α, τ) ≙ (1−ζ)e2τ(τ−√Q)

ζ2Wα
. With probability 1 − 2e−t

2/2
− T −1/3 over the dataset, we have that

(1 − t + 1√
d
− Õ(T − 1

3 ))2
+

≤
ISNR(ŵ)
ISNR(α, τ) ≤ (1 + τ√

d
+ Õ(T − 1

3 ))2 .
Proof. Let us recall the standard normal concentration: For g ∼N (0,Id−1),√d − 1 ≥ E[∥g∥] ≥ d−1√

d
. Thus, with probability

1 − 2e−t
2/2, through Lipschitz concentration, √

d + t ≥ ∥g∥ ≥√d − 1 − t.
This means that, with the same probability

√
d + t ≥

∥v̄∥√
1 − ζeτ

2
≥ (√d − 1 − t)+.

We first upper bound ∥W⊥ŵ∥2. Recalling (84),

∥W⊥ŵ − v̄/√n∥ ≤ Õ(T −1/3).
Thus,

(√d + t)2 + Õ(T −1/3) ≥ n∥W⊥ŵ∥2(1 − ζ)e2τ2
≥ (√d − 1 − t)2

+
− Õ(T −1/3).

Using ∥w⋆∥2T ≙W , We similarly have that

∣∥w̄⊺
⋆
ŵ∥2 −Wζ2e2

√
Qτ ∣ ≤ Õ(T −1/3).

To conclude, with probability 1 − 2e−t − T −1/3, ISNR(ŵ) obeys

(√d + t)2 + Õ(T −1/3)
Wζ2e2

√
Qτ − Õ(T −1/3) ≥ n(1 − ζ)e2τ2

ISNR(ŵ) ≥ (√d − 1 − t)2+ − Õ(T −1/3)
Wζ2e2

√
Qτ + Õ(T −1/3)

Rewriting this bound, we find

(1 + t√
d
+ Õ(T − 1

3 ))2 (1 − ζ)e2τ2

ζ2Wαe2
√
Qτ
≥ ISNR(ŵ) ≥ (1 − 1 + t√

d
− Õ(T − 1

3 ))2
+

(1 − ζ)e2τ2

ζ2Wαe2
√
Qτ
.

Recalling the definition of ISNR(α, τ) ≙ (1−ζ)e2τ(τ−√Q)

ζ2Wα
, we conclude with the bound.

Step 2: Characterizing the error rate of θ ≙ (ŵ, τ̄q⋆). To achieve this goal, we will leverage Theorem 9. Since conditions

of this theorem is satisfied (noticing that their γ is our ISNR(ŵ) which is upper bounded by a positive constant), for a new

test point (y,X), we have that

RRRRRRRRRRRERR(f ATT

θ ) −Q⎛⎝ e
√
Qτ̄−τ̄2√

1 + ISNR(ŵ) ⋅
√

ζ2W

1 − ζ

⎞⎠
RRRRRRRRRRR ≤ Õ(T

−1/3).
Using the Lipschitzness of the Q-function (i.e. Q(x + ϵ) −Q(x) ≙ ∫ x+ϵx e−t

2/2dt ≤ ϵ), as we have done in Theorem 9, we

pull out the perturbation term Õ(T −1/3) within ISNR(ŵ) to obtain the advertised bound

Q
⎛⎜⎝

e
√
Qτ̄−τ̄2√

1 + (1 + t√
d
)ISNR(α, τ) ⋅

√
ζ2W

1 − ζ

⎞⎟⎠ − Õ(T −1/3) ≤ ERR(f ATT

θ ) ≤ (85)

Q
⎛⎜⎝

e
√
Qτ̄−τ̄2√

1 + (1 − 1+t√
d
)+ISNR(α, τ) ⋅

√
ζ2W

1 − ζ

⎞⎟⎠ + Õ(T −1/3). (86)
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To emphasize, this bound holds with probability 1−2e−t
2/2
−Õ(T −1/3) over a new test datapoint (y,X). To see the optimal

choices for τ̄ , τ , we need to optimize the error bound. This results in

τ̄⋆ ≙ argmin
τ̄

√
Qτ̄ − τ̄2 ≙

√
Q/2 (87)

τ⋆ ≙ argmin
τ

ISNR(α, τ) ≙ 2τ(τ −√Q) ≙√Q/2. (88)

Theorem 9. Consider the prompt-attention model f ATT

θ where we set θ ≙ (w⋆ + p, τ q̄⋆). Set Q ≙ ∥q⋆∥2,W ≙ T ∥w⋆∥2.

Here τ is a tuning parameter and p is a perturbation vector and assume all vectors are perpendicular i.e. p ⊥w⋆ ⊥ q⋆. Set

γ ∶≙ ∥p∥2/∥w⋆∥2 and suppose 1 + γ, ζ2W,1 − ζ, eQ, eτ each lie between two positive absolute constants. Õ(⋅) subsumes

polynomial dependencies in these constants. We have thatRRRRRRRRRRRERR(f ATT

θ ) −Q⎛⎝e
√
Qτ−τ2√
1 + γ

⋅

√
ζ2W

1 − ζ

⎞⎠
RRRRRRRRRRR ≤ O(T

−1/3).
Thus, as T →∞, the optimal tuning obeys τ⋆ ≙

√
Q/2 and yields an error of Q(eQ/4 ⋅√ ζ2W

1−ζ
).

Proof. Let us recap the notation of Theorem 4. Without losing generality, assume first ζT tokens are relevant and remaining

tokens are irrelevant. Consider XI of size (1 − ζ)T × d induced by the irrelevant tokens with normal distribution. Using

orthogonality of q⋆,w⋆,p, observe that g ≙ XI(w̄⋆ + p

∥w⋆∥) ∼ N (0, (1 + γ)I(1−ζ)T ) and h ≙ XI q̄⋆ ∼ N (0,I(1−ζ)T )
are independent vectors. Also for standard normal g ∼ N (0,1), recall that moment-generating function is given by

E[eτg] ≙ eτ2/2.

Note that, the attention weights have the form a ≙ ϕ(τ [√Q1ζT

h
]). Here, the softmax denominator is T ⋅ DT where

DT ∶≙ (ζe√Qτ + 1
T ∑(1−ζ)Ti≙1 eτhi). Define eτh to be the numerator corresponding to irrelevant tokens i.e.

eτh ≙ [eτh1 . . . eτh(1−ζ)T ].
Define the matrix Q⊥ ≙ I − q̄⋆q̄

⊺

⋆
, W⊥ ≙ I − w̄⋆w̄

⊺

⋆
. To proceed, observe that, the prediction with θ ≙ (w⋆ + p, τ q̄⋆) is

given by

DT√
T ∥w⋆∥yf ATT

θ (X) ≙√T (w̄⋆ + p∥w⋆∥)⊺[ζe∥q⋆∥τ(w⋆ + yq⋆) +
XIe

τh

T
] (89)

≙ ζe∥q⋆∥τ
√
W +

1√
T
g⊺eτh. (90)

With this, conditioned on eτh observe that g⊺eτh ∼N (0, 1
T
∥eτh∥2), thus,

Pg(yf ATT

θ (X) > 0) ≙ 1 −Q( ζe
√
Qτ
√
W√

1 + γ∥eτh∥/√T ) .
To proceed, similar to Theorem 4, we apply Chebyshev’s inequality over number of tokens T to find that with probability

1 − Õ(T −1/3) over h, ∣∥eτh∥2/T − e2τ2 ∣ ≤ Õ(T −1/3).
In aggregate, this implies that, with probability 1 − Õ(T −1/3) over h, we have that

1 −Q((1 + Õ(T −1/3))ζe
√
Qτ
√
W√

1 + γeτ
2
) ≥ Pg(yf ATT

θ (X) > 0) ≥ 1 −Q((1 − Õ(T −1/3))ζe
√
Qτ
√
W√

1 + γeτ
2
) ,

Finally, note that since
ζe
√

Qτ
√
W√

1+γeτ
2 is upper/lower bounded by a positive constant, and sinceQ(x+ϵ)−Q(x) ≙ ∫ x+ϵx e−t

2/2dt ≤

ϵ, we can rewrite

∣Pg(yf ATT

θ (X) > 0) −Q(ζe
√
Qτ
√
W√

1 + γeτ
2
)∣ ≤ Õ(T −1/3).

Union bounding with failure probability over h, we conclude with the result.
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G. Useful facts

For a random variable Z and α > 0, ∥Z∥ψα
denotes its ψα-norm for Orlicz function ψα(z) ≙ ezα − 1 (Ledoux & Talagrand,

1991).

Fact G.1. Let X1, . . . ,Xn be independent zero-mean sub-gaussian or sub-exponential random variables with ∥Xi∥ψm
≤K

for all i ∈ [n] for either m ≙ 2 or m ≙ 1. Then,

XXXXXXXXXXXX
1

n
∑
i∈[n]

Xi

XXXXXXXXXXXXψm

≤
CK√
n
.

Fact G.2. (Pollard, 1990) The following identity holds for Orlitz norms

∥XY ∥ψ αβ
α+β

≤ c ∥X∥ψα
⋅ ∥Y ∥ψβ

(91)

for a fixed numerical constant c.

Next we state a Lemma from Talagrand quoted directly from Lemma 22 of (Mohammadi et al., 2019).

Fact G.3. (Ledoux & Talagrand, 1991)For any scalar α ∈ (0,1], there exists a constant Cα such that for any sequence of

independent random variables ξ1, ξ2, . . . , ξN we have

∥∑
i

ξi − E[∑
i

ξi]∥
ψα

≤ Cα (max
i
∥ξi∥ψα

)√N logN.

Fact G.4. Let z ∈ R
d be a K-subgausssian vector i.e. z⊺v is K-subgaussian for fixed ∥v∥ ≙ 1. Then, the following are true

for a constant c > 0

P(∥z∥ ≥ cK(√d + t)) ≤ e−t2 .
Proof. For completeness, we provide a proof. Repeating Lemma 31 of (Oymak, 2019), we can pick a 1/2 cover C of the

unit Euclidean ball in R
d with size log ∣C∣ ≤ 2d. For any v ∈ C subgaussianity implies P(v⊺z ≥ t) ≤ exp(−ct2/K2). Setting

K ′ ≙K/√c, t ≙K ′(√2d + τ) and union bounding over all v ∈ C, we find

P(sup
v∈C

v⊺z ≥K ′(√d + τ)) ≤ exp(−τ2).
To proceed, set v(z) ∈ C to be the nearest point to z̄ ≙ z/∥z∥ in C. Since ∥v(z) − z∥ ≤ 0.5, note that

∥z∥ ≙ z̄⊺z ≙ v(z)⊺z + (z − v(z))⊺z ≤ v(z)⊺z + 0.5∥z∥.
Thus, ∥z∥ ≤ 2K ′(√d + τ) with probability at least 1 − exp(−τ2).

H. Additional experimental results and details

H.1. Additional details for image classification experiments

Dataset. As mentioned in Section 5.2, we construct three datasets by modifying the original images in CIFAR-10:

• FULL-TILED. Each examples consists of a 64x64 images obtained by arranging a 32x32 image from CIFAR-10 in a tiling

pattern with four tiles (cf. Fig. 3a).

• PARTIAL-TILED. This is dataset is similar to FULL-TILED with the exception that each image has at-least T out of 4 tiles

replaced by patches of i.i.d. random Gaussian noise with mean zero and variance 0.2. Note that, for each example in the

dataset, T ∈ {1,2,3} is a random number as well as the location of the noisy tiles (cf. Fig. 3b).

• EMBED-IN-IMAGENET (Karp et al., 2021). We construct an example by simply embedding a 32x32 image from CIFAR-10

at a random location in a 64x64 background corresponding to a randomly selected image from ImageNet (Russakovsky

et al., 2015). We also add i.i.d. random Gaussian noise with mean zero and variance 0.2 to the background (cf. Fig. 3c).
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Figure 5. Performance of fine-tuning vs. prompt-tuning on 10-way classification tasks defined by PARTIAL-TILED dataset. Full dataset

has 50K training examples. Capped 10% and 2% correspond to sub-sampled train sets where we select exactly 500 and 100 examples per

class from the full dataset. Note that number of prompt vectors equal to 0 corresponds to zero-shot performance.

Table 1. Comparison between prompt-tuning and fine-tuning only first layer self-attention weights (Full dataset).

Method (trainable parameters) EMBED-IN-IMAGENET PARTIAL-TILED

PROMPT-TUNING-I w/ 100 prompt vectors (19.2K) 31.89 68.46

PROMPT-TUNING-II w/ 100 prompt vectors (19.2K) 38.48 72.04

PROMPT-TUNING-III w/ 100 prompt vectors (230.8K) 47.81 74.40

Fine-tuning only first layer attention weights (148.2K) 30.35 73.95

By construction, each dataset has 50,000 train and 10,000 test examples corresponding to train and test set of CIFAR-10. We

also consider data-limited settings where we keep the test set intact but subsample the train set by selecting a fixed number

of images for each class. Note that all three datasets define 10-way multiclass classification tasks with CIFAR-10 classes as

potential labels.

Model architecture. We utilize a tiny variant of the Vision transformer model (Dosovitskiy et al., 2021) for our experiments.

This variant has 12 transformer layers with its hidden dimension, MLP intermediate dimension, and number of heads per

attention layer being equal to 192, 768, and 3, respectively. The patch size in our study is set to be 4x4. The model itself

(without counting the trainable parameters/weights during prompt-tuning) has approximately 5.44M parameters. We rely on

the CLS token to obtain the classification logits.

Training. We rely on Scenic library (Dehghani et al., 2022)4 to conduct our experiments on image classification. Following

the default settings in the library along with a coarse grid search, we employ Adam optimizer (Kingma & Ba, 2014) with

β1 = 0.9, β2 = 0.999, weight decay = 0.1, and batch size = 128 while training a randomly initialized model. Furthermore,

we employ a linear warm-up of learning rate followed cosine learning rate schedule with base learning rate 3e-3. As for

the fine-tuning and prompt-tuning experiments that (partially) initialize from a pre-trained model, we rely on SGD with

momentum parameter 0.9 and batch size = 128 to update trainable parameters. Again, we utilize a linear warm-up of

learning rate followed by cosine learning rate schedule. Throughout our experiments, the base learning rates for fine-tuning

and prompt-tuning are 1e-3 and 0.1, respectively.

H.2. Additional results on image classification

Figure 5 showcases the performance of fine-tuning and various prompt-tuning strategies on PARTIAL-TILED.

Comparison with fine-tuning the first self-attention layer. In Tables 1, 2, and 3, we explored fine-tuning only first layer

self-attention parameters for the underlying ViT model. This setting aligns well with the single-layer nature of our theoretical

results. Similar to Fig. 4 (corresponding to EMBED-IN-IMAGENET dataset) and Fig. 5 (corresponding to PARTIAL-TILED

dataset), we considered three settings: 1) Full dataset; 2) Capped 10%; and 3) Capped 2%, which progressively corresponds

to smaller amount of (training) data during fine-tuning and prompt-tuning.

The key takeaways are:

4
https://github.com/google-research/scenic
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Table 2. Comparison between prompt-tuning and fine-tuning only first layer self-attention weights (Capped 10%).

Method (trainable parameters) EMBED-IN-IMAGENET PARTIAL-TILED

PROMPT-TUNING-I w/ 100 prompt vectors (19.2K) 28.06 67.68

PROMPT-TUNING-II w/ 100 prompt vectors (19.2K) 36.76 70.95

PROMPT-TUNING-III w/ 100 prompt vectors (230.8K) 42.96 73.09

Fine-tuning only first layer attention weights (148.2K) 18.53 70.44

Table 3. Comparison between prompt-tuning and fine-tuning only first layer self-attention weights (Capped 2%).

Method (trainable parameters) EMBED-IN-IMAGENET PARTIAL-TILED

PROMPT-TUNING-I w/ 100 prompt vectors (19.2K) 20.52 64.81

PROMPT-TUNING-II w/ 100 prompt vectors (19.2K) 33.62 68.14

PROMPT-TUNING-III w/ 100 prompt vectors (230.8K) 36.13 69.40

Fine-tuning only first layer attention weights (148.2K) 15.46 65.04

1. When there is a significant distribution-shift between from pre-training data (in case of EMBED-IN-IMAGENET), even the

simplest prompt-tuning, namely PROMPT-TUNING-I, significantly outperforms the fine-tuning first layer self-attention

parameters.

2. When the distribution-shift is small, prompt-tuning variants realize a better accuracy vs. training cost trade-off, e.g.

PROMPT-TUNING-II outperforms fine-tuning first layer self-attention parameters in the Capped 10% and Capped 2%

setting (while training only 19.2K rather than 148.2K parameters).

H.3. Illustration of attention weights for prompt vectors

Fig. 6 presents a representative example where we show evolution of average attention weights from prompt vectors to

image tokens/patches across transformer layers, when we employ PROMPT-TUNING-III. It is evident from the figure that

prompt-attention helps distinguish the relevant tokens/patches from the irrelevant patches.
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(b) Average attention weights from prompts (keys) to image patches (values).

Figure 6. Illustration of how attention weights progressive change from the first layer (Figure 6b-top) to the last layer (Figure 6b-bottom)

in the transformer model for a given input image (Figure 6a) when we employ PROMPT-TUNING-III. We plot average attention weights

from 50 prompt vectors (keys) to 256 image patches (values). The attention weights for each attention head are naturally arranged in a 16

x 16 grid corresponding to the original locations of the patches in the image. Note that the attention weights in the early layer have a tiling

pattern similar to that in FULL-TILED± the dataset utilized by the pre-trained model. However, as we progress deeper into the transformer,

attention weights begin to capture the relevant patch locations in the dataset of interest, i.e., EMBED-IN-IMAGENET.
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