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1 INTRODUCTION
Persistent memory (PM) technologies o�er attractive features for developing storage systems and
applications. For example, phase-change memory (PCM) [95], spin-transfer torque RAM (STT-
RAM) [62], Intel’s infamous Optane™ DCPMM [10], and the promising vendor-neutral CXL-based
PM technologies [34, 91] can support byte-granularity accesses with close to DRAM latencies,
while also providing durability guarantees. Such new properties have inspired a wide range of
PM-based software optimizations [8, 41, 52, 70, 98, 114].

Unfortunately, building correct PM-based software systems is challenging [69, 93]. For example,
to ensure persistence, PM writes must be �ushed from CPU cache explicitly via speci�c instructions
(e.g., clflushopt); to ensure ordering, memory fences must be inserted (e.g., mfence). Moreover,
to manage PM devices and support PM programming libraries (e.g., PMDK [19]), multiple OS
kernel subsystems must be revised (e.g., dax, libnvdimm). Such complexity could potentially lead
to obscure bugs that hurt system reliability and security.
Addressing the challenge above will require cohesive e�orts from multiple related directions

including PMbug detection [38, 76, 77, 88, 89], PMprogramming support [19], PM speci�cations [46],
among others. All of these directions will bene�t from a better understanding of real-world PM-
related bug characteristics.

Many studies have been conducted to understand and guide the improvement of software [39, 43,
54, 68, 78, 80]. For example, Lu et al. [78] studied 5,079 patches of 6 Linux �le systems and derived
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various patterns of �le system evolution; the study has inspired various follow-up research on �le
systems reliability [51, 86] and the dataset of �le system bug patches has been directly used for
evaluating the e�ectiveness of new bug detection tools [86]. While in�uential, this study does not
cover PM-related issues, as the direct-access (dax) feature of �le systems was introduced after this
study was performed. More recently, researchers have studied PM related bug cases. For example,
Neal et al. [88] studied 63 PM bugs (mostly from the PMDK library [19]) and identi�ed two general
patterns of PM misuse. While these existing e�orts have generated valuable insights for their
targets, they do not cover the potential PM-related issues in the Linux kernel.

In this work, we perform the �rst comprehensive study on PM-related bugs in the Linux kernel.
We focus on the Linux kernel for its prime importance in supporting PM programming [14, 16, 20].
Our study is based on 1,553 PM-related patches committed in Linux between Jan. 2011 and Dec.
2021, spanning over 10 years. For each patch, we carefully examine its purpose and logic, which
enables us to gain quantitative insights along multiple dimensions:

First, we observe that a large number of PM patches (38.9%) are for maintenance purpose, and a
similar portion (38.4%) are for adding new features or improving the e�ciency of existing ones.
These two major categories re�ect the signi�cant e�orts needed to add PM devices to the Linux
ecosystem and to keep the kernel well-maintained. Meanwhile, a non-negligible portion (22.7%)
are bug patches for �xing correctness issues.
Next, we analyze the PM bug patches in depth. We �nd that the majority of kernel subsystems

have been involved in the bug patches (e.g., ‘arch’, ‘fs’, ‘drivers’, ‘block’, ‘mm’), with drivers and
�le systems being the most “buggy” ones. This re�ects the complexity of implementing the PM
support correctly in the kernel, especially the nvdimm driver and the dax �le system support.

In terms of bug patterns, we �nd that the classic semantic and concurrency bugs remain pervasive
in our dataset (49.7% and 14.8% respectively), although the root causes are di�erent. Also, many PM
bugs are uniquely dependent on hardware (19.0%), which may be caused by misunderstanding of
speci�cations, miscalculation of addresses, etc. Such bugs may lead to missing devices, inaccessible
devices, or even security issues, among others.
In terms of bug �xes, we �nd that PM bugs tend to require more lines of code to �x compared

to non-PM bugs reported in previous studies [78]. Also, 20.8% bugs require modifying multiple
kernel subsystems to �x, which implies the complexity. In the extreme cases (0.9%), developers may
temporarily “�x” a PM bug by disabling a PM feature, hoping for a major re-work in the future. On
the other hand, we observe that di�erent PM bugs may be �xed in a similar way by re�ning the
sanity checks.

Moreover, to better understand the conditions formanifesting the issues and help develop e�ective
remedy solutions, we identify a subset of bug patches with relatively complete information, and
attempt to reproduce them experimentally. We �nd that con�guration parameters in di�erent
utilities (e.g., mkfs for creating a �le system, ndctl for managing the libnvdimm subsystem) are
critically important for manifesting the issues, which suggests that it is necessary to take into
account the con�guration states when building bug detection tools.
Finally, we look into the potential solutions to address the PM-related issues in our study.

We examine multiple representative PM bug detectors [76, 77, 88] and �nd that they are largely
inadequate for addressing the PM bugs in our study. On the other hand, a few recently proposed
non-PM bug detectors [63, 66, 99, 101] could potentially be applied to detect a great portion of
PM bugs if a few common challenges (e.g., precise PM emulation, PM-speci�c con�guration and
workload support) are addressed. To better understand the feasibility of extending existing tools for
PM bug detection, we further extend one existing bug detector called Dr.Checker [82] to analyze
PM kernel modules. By adding PM-speci�c modi�cations, the extended Dr.Checker, which we call
Dr.Checker+, can successfully analyze the major PM code paths in the Linux kernel. While the

, Vol. 1, No. 1, Article . Preprint.



Understanding Persistent-Memory Related Issues in the Linux Kernel 3

(a) PM Persistence Domains (b) So�ware Abstractions of NVDIMM Subsystem in Linux

Fig. 1. Background of PM Hardware and So�ware

e�ectiveness is still limited by the capability of the vanilla Dr.Checker, we believe that extending
existing tools to make them work for the PM subsystem can be an important �rst step towards
addressing the PM-related challenges exposed in our study.
Note that this manuscript is extended from a conference version [106]. The major changes

include: (1) collecting and analyzing one new year of PM-related patches (i.e., Jan. to Dec. 2021), (2)
conducting reproducibility experiments and identifying manifestation conditions, (3) analyzing
more existing tools and extending Dr.Checker for analyzing PM driver modules, (4) adding back-
ground, bug examples, etc. to make the paper more clear and complete. We have released our study
results including the dataset and the extended Dr.Checker+ publicly on Git [3]. We hope our study
could contribute to the development of e�ective PM bug detectors and the enhancement of robust
PM-based systems.
The rest of the paper is organized as follows: §2 provides background on the unique hardware

and software characteristics of PM devices; §3 describes the study methodology; §4 presents the
overview of PM patches; §5 characterizes PM bugs in details; §6 presents our experiments on PM
bug reproducibility; §7 discusses the implications on bug detection including our extension to
Dr. Checker for analyzing PM subsystem in the Linux kernel; §8 discusses related work and §10
concludes the paper.

2 BACKGROUND
In this section, we introduce the characteristics of PM hardware and software which may contribute
to correctness issues in PM-based systems.

2.1 NVM and PM Device Types
A wide range of non-volatile memory (NVM) devices have been proposed and are being developed
with di�erent degrees of maturity. To facilitate standardization, the JEDEC speci�cation [11]
classi�es NVM devices into three types based on the method used for persistence:

• NVDIMM-N devices employ both DRAM and Flash modules, and is the initial form of PM
devices developed. These devices achieve non-volatility by copying contents in the DRAM to
the �ash modules when the host power is lost using an energy source managed by either the
device (e.g., on-chip capacitor) or the host. AGIGA’s NVDIMM-N [2] and HPE NVDIMM [7]
devices are a few examples.
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• NVDIMM-F devices use NAND �ash modules over the memory bus as storage medium. Some
eamples of this type are SanDisk’s ULLtraDIMM [28] and IBM’s exFlash DIMM [9]. However,
due to their high access latency, these devices have largely been discontinued.

• NVDIMM-P standard encompasses devices that employ new storage technologies such as
PCM [95], STT-RAM [62], ReRAM [44], etc. to achieve persistence. The commercialized Intel®
Optane™ DCPMM and the vendor-neutral CXL-based PMs also belong to this category.

In addition, to facilitate NVM programming, the Storage Networking Industry Association
(SNIA [22]) di�erentiates the concepts of NVM and PM [18]: NVM refers to any type of memory-
based, persistent media (including �ash memory packaged as solid state disks), while PM refers
to a subset of NVM technology with performance characteristics suitable for a load and store
programming (e.g., PCM, STT-RAM, Optane DCPMM). In this paper, we follow the de�nition and
study the Linux kernel issues related to such PM devices.

2.2 PM Device Characteristics
PM devices reside on the memory bus along with DRAM devices. Unlike traditional block storage
devices that provide a block IO interface to access data, PM devices use memory load and store
instructions. These devices typically o�er lower access latency and higher endurance compared to
�ash-based storage devices. For example, STT-RAM and PCM devices may o�er latencies in the
range of 5 - 220 nanoseconds with an endurance rate around 1012 writes per bit [102].

Among existing PM devices, Intel® Optane™ DCPMM has been the most prominent one. Great
e�orts have been made to integrate the device to the existing ecosystem. For example, new program-
ming model with special CPU instructions (e.g., clwb, clflush and clflushopt) were introduced
to provide durability guarantees. In addition, new persistence domains were de�ned to better
understand the persistence guarantees o�ered by these devices. Fig. 1(a) shows the two persistence
domain supported on Intel platforms. Asynchronous DRAM Refresh (ADR) domain speci�es that
all updates that reach the write pending queue (WPQ) in the integrated memory controller (iMC)
are guaranteed to be persisted in an event of system failure. Whereas, Enhanced ADR (eADR)
domain speci�es that all updates in the caches and memory controller are persisted in an event of
system failure. Therefore, there is no need for developers to explicitly �ush cachelines using special
CPU instructions. Note that eADR is a relatively recent feature which may not be available in all
platforms. Also, while eADR may provide stronger persistence guarantee at the hardware level, PM
software still needs to be carefully designed to achieve desired high level properties and correctness
guarantees (e.g., atomicity of a transaction) [34]. These e�orts have inspired the development of
many new PM-optimized software [19, 61].

Most recently, vendor-neutral interfaces such as Compute Express Link (CXL) have been pushing
the evolution of PM devices further. For example, CXL 2.0 speci�cation has included the support for
PM devices [4, 91]. These CXL-based PM devices are expected to be compatible with the existing
NVDIMM speci�cations and they will still show up as special memory devices to the operating
system (OS) kernel. Therefore, although Intel is winding down the Optane DCPMM business with
limited support in the next 3 to 5 years [29], the community is expecting to see CXL-based PM
devices in the near future which are compatible with the NVDIMM ecosystem [4, 29, 34, 91].

2.3 PM So�ware Abstractions
To support PM devices in the storage system, multiple subsystems in the Linux kernel were
modi�ed. New Uni�ed Extensible Firmware Interface (UEFI) speci�cations were introduced and
new NVDIMM Firmware Interface Table (NFIT) driver was added to the OS kernel [16]. Moreover,
to manage and access PM devices e�ciently, the Linux kernel exposes the PM storage space over
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Category Description Overall
Bug Fix existing correctness issues 352

(e.g., misalignment of PM regions, race on PM pages) (22.7%)
Feature Add new features or improve e�ciency of existing ones 597

(e.g., extend device �ags, reduce write overhead) (38.4%)
Maintenance Polish source code, compilation scripts, and documentation 604

(e.g., delete obsolete code, �x compilation errors) (38.9%)
Total 1553

Table 1. Three Categories of PM-related Patches and the Percentages.

multiple abstractions. Speci�cally, the PM devices attached to NVDIMM can be con�gured into
either interleaved or non-interleaved mode. In the interleaved mode (Figure 1b), an NVDIMM
region is created over multiple NVDIMM devices; in the non-interleaved mode, each device has
one NVDIMM region. Additionally, multiple namespaces may be created within one NVDIMM
region, which is conceptually similar to creating multiple partitions on one block device.
The NVDIMM devices are registered as special memory devices in the Linux kernel. Each

NVDIMM namespace maintains a dedicated memory area to store Page Frame Number (PFN)
metadata, which supports the necessary address translation when accessing the storage media.
Moreover, to bypass the page cache and enable direct access to PM, major �le systems such as
Ext4 and XFS have introduced the direct-access (DAX) feature based on the traditional Direct IO
feature. As will be shown in our study, however, it is challenging to implement such PM-oriented
optimizations correctly due to the system complexity.

3 METHODOLOGY
In this section, we describe how we collect the dataset for study (§3.1), how we characterize the
PM-related patches and bugs (§3.2), and the limitations of the methodology (§3.3).

3.1 Dataset Collection and Refinement
All changes to the Linux kernel occur in the form of patches [23], including but not limited to bug
�xes. We collect PM-related patches from the Linux source tree for study via four steps as follows:
First, we collect all patches committed to the Linux kernel between Jan. 2011 and Dec. 2021,

which generates a dataset containing about 772,000 patches.
Second, in order to e�ectively identify PM-related patches, we re�ne the dataset using awide set of

PM-related keywords, such as ‘persistent memory’, ‘pmem’, ‘dax’, ‘ndctl’, ‘nvdimm’, ‘clflushopt’,
etc. The resulting dataset contains 3,050 patches. Note that this step is similar to the keyword
search in previous studies [55, 80].
Third, to prune the potential noise, we re�ne the dataset further by manual examination. Each

patch is analyzed at least twice by di�erent researchers, and those irrelevant to PM are excluded
based on our domain knowledge. The �nal dataset contains 1,553 PM-related patches in total.

3.2 Dataset Analysis and Experiments
Based on the 1,553 PM-related patches, we conduct a comprehensive study to answer four set of
questions:

• Overall Characteristics: What are the purposes of the PM-related patches? How many of
them are merged to �x correctness issues (i.e., PM bugs)?

• Bug Characteristics: What types of PM-related bugs existed in the Linux kernel? What are
the bug patterns and consequences? How are they �xed?
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Fig. 2. Counts of PM Bug Patches in the Kernel Source Tree. The figure shows that PM bug patches
involve many major kernel subsystems, with drivers and file systems contributing the most.

• Reproducibility: Can the PM-related bugs be reproduced for future research? What are the
critical conditions for manifesting the issues?

• Implications: What are the limitations of existing PM bug detection tools? What are the
opportunities?

To answer these questions, we manually analyzed each patch in depth to understand its purpose
and logic. The patches typically follow a standard format containing a description and code
changes [23], which enables us to characterize them along multiple dimensions. For patches that
contain limited information, we further looked into relevant source code and design documents.
Moreover, we conduct experiments to validate the reproducibility of PM bugs and the capability of
state-of-the-art bug detectors. We present our �ndings for the four sets of questions above in §4,
§5, §6, and §7, respectively.

3.3 Limitations
The results of our study should be interpreted with the method in mind. The dataset was re�ned via
PM-related keywords and manual examination, which might be incomplete. Also, we only studied
PM bugs that have been triggered and �xed in the mainline Linux kernel, which is biased: there
might be other latent (potentially trickier) bugs not yet discovered. Nevertheless, we believe our
study is one important step toward addressing the challenge. We release our results publicly to
facilitate follow-up research [3].

4 PM PATCH OVERVIEW
We classify all PM-related patches into three categories as shown in Table 1: (1) ‘Bug’ means �xing
existing correctness issues (e.g., misalignment of NVDIMM namespaces); (2) ‘Feature’ means
adding new features (e.g., extend device �ags) or improving the e�ciency of existing designs; (3)
‘Maintenance’ means code refactoring, compilation or documentation update, etc.

Overall, the largest category in our dataset is ‘Maintenance’ (38.9%), which is consistent with
previous studies on Linux �le system patches [78]. This re�ects the signi�cant e�ort needed to
keep PM-related kernel components well-maintained. We �nd that the majority of maintenance
patches are related to code refactoring (e.g., removing deprecated functions or driver entry points),
and occasionally, the refactoring code may introduce new correctness issues that need to be �xed
via other patches.

The second largest category is ‘Feature’ (38.4%). This re�ects the signi�cant changes needed
to add PM to the Linux ecosystem which has been optimized for non-PM devices for decades.
One interesting observation is that many (40+) feature patches are proactive (e.g., “In preparation
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File Name # of LoC Changed
Occurrence per 100 LoC

fs/dax.c 41 5.08
drivers/nvdimm/pfn_devs.c 22 2.62
drivers/nvdimm/bus.c 21 1.8
drivers/nvdimm/pmem.c 18 3.23
drivers/acpi/n�t/core.c 16 0.7
drivers/nvdimm/region_devs.c 15 1.95
drivers/nvdimm/namespace_devs.c 15 0.8
drivers/dax/super.c 14 3.27
mm/memory.c 13 0.53
drivers/nvdimm/btt.c 12 2.44

Table 2. Top 10 Most “Buggy” Files. The table shows that 9 out of the 10 files containing the most PM bugs
are related to the ‘dax’ or ‘nvdimm’ supports in the kernel.

for adding more �ags, convert the existing �ag to a bit-�ag” [5]), which may imply that PM-based
extensions tend to be well-planned in advance. Also, most recent feature patches are related to
supporting PM devices on the Compute eXpress Link (CXL) interface [4], which indicates the rapid
evolution of PM relevant techniques.
The ‘Bug’ patches, which directly represent con�rmed and resolved correctness issues in the

kernel, account for a non-negligible portion (i.e., 22.7% overall). We analyze this important set of
patches further in the next section.

5 PM BUG CHARACTERISTICS
5.1 Where Are the Bugs
Figure 2 shows the distribution of PM bug patches in the Linux kernel source tree. For clarity,
we only show the major top-level directories in Linux, which represent major subsystems (e.g.,
‘fs’ for �le systems, ‘mm’ for memory management). In case a patch modi�es multiple �les across
di�erent directories (which is not uncommon as will be discussed in §5.4.1), we count it towards all
directories involved. Therefore, the total count is larger than the number of PM bug patches.
We can see that ‘driver’ is involved in most patches , which is consistent with previous stud-

ies [43]. In the PM context, this is largely due to the complexity of adding the nvdimm driver and
the support for the CXL interface. Also, ‘fs’ accounts for the second most patches, largely due to
the complexity of adding dax support for �le systems [6]. The fact that PM bug patches involve
many major kernel subsystems implies that we cannot only focus on one (e.g., ‘fs’) to address the
challenge.

We also count the occurrences of individual �les involved in the bug patches. Table 2 shows the
top 10 most “buggy” �les based on the occurrences and the average lines of code (LoC) changed
per 100 LoC, which veri�es that adding dax and nvdimm supports are the two major sources of
introducing PM bugs in the kernel. In addition, the table also shows a �ne-grained view (i.e.,
individual �les) on where the bugs exist within a subsystem. Therefore, applying bug detection
techniques (e.g., static code analysis) on these speci�c �les and/or code paths may help identify
most issues.

5.2 Bug Pa�ern
To build reliable and secure PM systems, it is important to understand the types of bugs occurred.
We analyze the PM bug patches in depth and classify the bugs into �ve main types (Table 3):
Hardware Dependent, Semantic, Concurrency, Memory and Error Code. Each type includes multiple
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Type Subtype Description Major
Subsystems

H
ar
dw

ar
e

D
ep

en
de

nt

Speci�cation misunderstand speci�cation drivers, arch,
(e.g.: ambiguous ACPI speci�cations) include

Alignment mismatch b/w abstractions of PM device drivers, mm,
(e.g.: misaligned NVDIMM namespace) arch

Compatibility Device or architecture compatibility issue drivers, arch, mm
Cache Misuse of cache related operations arch, mm,

(e.g.: miss cacheline �ush) drivers

Se
m
an

ti
c Logic improper design drivers, fs, mm

(e.g.: wrong design for DAX PMD mgmt.)
State incorrect update to PM State fs, mm

Others other semantic issues drivers, fs
(e.g.: wrong function / variable names)

C
on

cu
rr
en

cy

Race data race issues involving DAX IO fs, mm, drivers
Deadlock deadlock on accessing PM resource drivers, mm, fs
Atomicity violation of atomic property for PM access drivers, fs, mm

Wrong Lock use wrong lock for PM access fs, drivers, block
Order violation of order of multiple PM accesses fs

Double Unlock unlock twice for PM resource drivers
Miss Unlock forget to unlock PM resource drivers

M
em

or
y Null Pointer dereference null PM / DRAM pointer drivers, fs, mm

Resource Leak PM / DRAM resource not released drivers, mm, arch
Uninit. Read read uninitialized PM / DRAM variables drivers, fs

Over�ow overrun the boundary of PM/DRAM struct. drivers, fs, include

Er
ro
r

C
od

e Error Return no / wrong error code returned drivers, fs, kernel
Error Check miss / wrong error check drivers, fs, mm

Table 3. Classi�cation of PM Bug Patterns. The last column shows the major subsystems (up to 3) a�ected
by the bugs.

Fig. 3. Percentages of PM Bug Types

subtypes. The last column of Table 3 shows the major subsystems a�ected by each type of bugs.
For clarity, the column only lists up to 3 subsystems for each type. We can see that the same type
of bugs may a�ect multiple subsystems (e.g., ‘drivers’, ‘fs’, ‘mm’), and each subsystem may su�er
from multiple types of bugs.

Figure 3 shows the relative percentages of the �ve main types. We can see that the Semantic type
is dominant (49.7%), followed by the Hardware Dependent type (19.0%). Similarly, Figure 4 further
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Fig. 4. Percentages of PM Bug Subtypes. The five bars represent the five main types, each of which consists
of multiple subtypes.

shows the relative percentages of the subtypes within each main type. We elaborate on multiple
representative types below based on these classi�cations, with an emphasis on the ones that are
di�erent from previous studies [78, 80].

5.2.1 Hardware Dependent. Compared to previous studies [78, 80], the most unique pattern
observed in our dataset is Hardware Dependent, which accounts for 19.0% of PM bugs (Figure 3).
There are four subtypes including Speci�cation (34.3% of Hardware Dependent), Alignment (29.9%),
Compatibility (26.9%), and Cache (8.9%), which re�ects four di�erent aspects of challenge for
integrating PM devices correctly to the Linux kernel.
Speci�cation is the largest subtype of Hardware Dependent bugs (34.3%). Figure 5a shows an

example caused by the ambiguity of PM hardware speci�cation. In this case, the PM device uses
Address Range Scrubbing (ARS) [1] to communicate errors to the kernel. ACPI 6.1 speci�cation
[1] requires de�ning the size of the output bu�er, but it is ambiguous if the size should include
the 4-byte ARS status or not. As a result, when the nvdimm driver should have been checking for
‘out_field[1] - 4’, it was using ‘out_field[1] - 8’ instead, which may lead to a crash.

In terms of the other 3 subtypes, we �nd that Alignment issues are typically caused by the
inconsistency between various abstractions of PM devices (e.g., PM regions, namespaces). Figure 5b
shows an issue due to a misalignment between the Page Frame Number (PFN) device abstraction
and the NVDIMM namespace. While validating the PFN device alignment, the method does not
take into account of the padding at the beginning of the namespace. This inconsistency makes the
NVDIMM device inaccessible.
Compatibility issues often arise when the new dax functionality con�icts with the underlying

CPU architecture or PM device. For example, the dax support requires modifying page protection
bits in the page table entries (PTEs) which depends on CPU architectures. However, PowerPC
architecture does not allow for such modi�cation to valid PTEs. A check within the memory
management subsystem triggers a kernel warning in this scenario. This bug was �xed by invoking
a PowerPC-speci�c routine when modifying PTEs.
Cache issues are caused by misuse of cache-related operations (e.g., clflushopt). The cache-

related operations have been the major focus of existing studies on user-level PM software [69, 88].
Nevertheless, we �nd that the Cache subtype only accounts for 8.9% of Hardware Dependent bugs
in our dataset (Figure 4). Moreover, we �nd that the Cache bug pattern is di�erent from the typical
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(a) A Speci�cation Bug Example

(b) An Alignment Bug Example

(c) A Cache Bug Example

Fig. 5. Three Examples of Hardware Dependent Bugs. (a) was caused by the ambiguity of the ACPI specifica-
tion; (b) was caused by misalignment between the PFN abstraction and the NVDIMM namespace; (c) was
caused by inaccurate flushing of cachelines.

pattern widely studied in the literature. Existing studies mostly focus on the cases where a speci�c
operation (cacheline �ush or memory fence) is missing. In our dataset, however, the issues may
arise due to partially �ushing data from the volatile CPU cache to PM media. Figure 5c shows
an example. In this example, the function clean_cache_range in line 4 is expected to �ush the
cacheline holding the data of variable dst. However, if the data occupy two cachelines, then the
code in line 4 only �ushes data in the �rst cacheline. A crash at this point may lead to incomplete
data on persistent media. This bug was �xed (line 5) by providing the size of data as input to
clean_cache_range. Such subtle granularity issues will likely require additional innovations on
bug detection to handle.

5.2.2 Other Types. In addition to Hardware Dependent, we �nd that PM bugs may follow the
classic Semantic, Concurrency, Memory, Error Code patterns observations in traditional �le systems
and/or user-level applications [78, 80], but the root causes may be di�erent due to the di�erent
contexts. For example, Concurrency bugs in our dataset are speci�c to the PM environment. In
particular, we �nd that the majority of Concurrency PM bugs are caused by race conditions between
the dax page fault handler and regular IO operations. Figure 6 shows one speci�c example involving
two threads. In this case, Thread 1 invokes a write syscall which allocates blocks on PM, and Thread
2 invokes a read to the same PM blocks which triggers a page fault. When Thread 1 is updating
the block mappings, Thread 2 should wait until the update completes. However, due to the lack
of proper locking, Thread 2 instead maps hole pages to the page table, which results in reading
zeros instead of data written in place. This may cause crash-consistency issues. The bug was �xed
by locking the exception entry before mapping the blocks for a page fault. In this way, either the
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Fig. 6. A Concurrency Bug Example in the PM Context. This bug was caused by a race condition involving
DAX IO operations: Thread 1 a�empts to write data to a given address range, while Thread 2 a�empts to
read data from the same address range.

(a) A Memory Over�ow Bug Example (b) An Error Code Bug Example

(c) A Semantic Bug Example

Fig. 7. Three Di�erent Types of Classic Bug Pa�erns in the PM Context. (a) Memory Overflow: an o�set was
missed when calculating a PM address in the NVDIMM driver, which caused an out-of-bound access error;
(b) Error Code: the return code is not captured when the struct nd_class is invalid, which a�ected the error
handling; (c) Semantic: the max size of an I/O request for the PM device is wrong.

writer will be blocked until read �nishes or the reader will see the correct PM blocks updated by
the writer.

Figure 7 shows three additional examples of classic bug patterns in the PM context. Speci�cally,
Figure 7a shows aMemory Over�ow bug where an o�set was missed when calculating a PM address
in the NVDIMM driver, and this miscalculation led to an out-of-bound access error, resulting in
a kernel crash. In Figure 7b (Error Code bug), the return code was not captured when the struct
nd_class is invalid, which a�ected the error handling later (i.e., no error code returned). In Figure 7c
(Semantic bug), a wrong size is used for the request for accessing the NVDIMM block device, which
limited the max I/O size to PM to 1024 sectors resulting in an inconsistent read or write. Overall,
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Fig. 8. Size Distribution of PM Bug Patches

these classic bug patterns suggest that “history repeats itself”, and more e�orts are needed to
address the classic issues in the PM context.

5.3 Bug Consequence
To understand how severe the PM bugs are, we classify them based on the symptoms reported in
the patches. We �nd that there are 8 types of consequence, including Missing Device, Inaccessible
Device, Security, Corruption, Crash, Hang, Wrong Return Value, and Resource Leak. We elaborate on
the �rst four types as they are relatively more unique to our dataset, while the others are similar to
previous studies [78]:
First, Missing Device implies the kernel is unable to detect PM devices, which is often the

consequence of hardware dependent bugs. For example, the e820_pmem driver is responsible for
registering resources that surface as pmem ranges. However, the buggy ‘e820_pmem_probe’ method
may fail to register the pmem ranges into the System-Physical Address (SPA) space, which makes
the PM device not recognizable by the kernel.
Second, Inaccessible Device means the PM device is detectable by the kernel but not accessible.

For example, the ‘start_pad’ variable was introduced in ‘struct nd_pfn_sb’ of the nvdimm driver
to record the padding size for aligning namespaces with the Linux memory hotplug section. But
the buggy ‘nd_pfn_validate’ method of the driver does not check for the variable, which leads to
an alignment issue and makes the namespace not recognizable by the kernel.

Third, in terms of Security, we observe two interesting issues. In one case, write operations may
be allowed on read-only dax mappings, which exposes wrong access permissions to the end user.
In another case, an NVDIMM’s security attribute remains in ‘unlocked’ state even when the admin
issues an ‘overwrite’ operation, which could potentially allow malicious accesses to the PM device.

Fourth, Corruption means the data or metadata stored on PM devices are corrupted, which could
lead to permanent data loss if there is no additional backup available on other systems. One special
type of corruption is the Crash-Consistency issues, which means tricky corruptions (i.e., data or
metadata inconsistencies) triggered by a crash event (e.g., power outage, kernel panic). Such issues
have been investigated intensively in the literature due to its importance[85, 111, 113], and we
have observed multiple crash-consistency issues in our dataset as well. For example, the routine
dax_mapping_entry_mkcleanmay fail to clean and write protect DAX PMD entries; consequently,
memory-mapped writes to DAX PMD pages may not be �ushed to PM even when a sync operation
is invoked. As a result, a crash may leave the system in an inconsistent state.
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File Count 1 2 3 4 5 > 5
Patch % 66.0% 13.2% 8.3% 6.0% 2.9% 3.6%

Dir. Count 1 2 3 4 5 > 5
Patch % 79.2% 12.7% 5.7% 1.6% 0.5% 0.3%

Table 4. Scope of PM Bug Patches. This table shows the % of bug patch involving di�erent counts of files or
directories.

5.4 Bug Fix
5.4.1 How di�icult it is to fix PM bugs. Measuring the complexity of �xing PM bugs is chal-
lenging as it requires deep domain knowledge and may depend on the developers’ capability and
other constraints (e.g., priority of tasks). Inspired by existing studies [43, 73, 78], we calculate three
simple but quantitative metrics as follows, which might re�ect the complexity to some extent:
Bug Patch Size. We de�ne the patch size as the sum of lines of insertion and deletion in the
patch. Figure 8 shows the distribution of bug patch sizes. We can see that most bug patches are
relatively small. For example, 50% patches have less than 51 lines of insertion and deletion code
(LoC). However, compared to traditional non-PM �le system bug patches where 50% are less than
10 LoC [78], the majority of PM bug patches tend to be larger.
Bug Patch Scope.We de�ne the patch scope as the counts of �les or directories involved in the
patch. For simplicity, we only count the top-level directories in the Linux source tree. Table 4 shows
the patch scopes. We can see that most patches only modi�ed one �le (66.0%) or �les within one
directory (79.2%). On the other hand, 3.6% patches may involve more than 5 �les. Moreover, a non-
negligible portion of patches involve more than one directories (20.8%). Since di�erent directories
represent di�erent kernel subsystems, this implies that �xing these PM bugs are non-trivial. For
comparison, we randomly sample 100 GPU-related bug patches and measure their scope too. We
observe that only 5% of the sampled GPU patches involve more than one directory, which is much
less than the 20.8% cross-subsystem PM bug patches.

Although many PM bug patches in our dataset involves changes in multiple kernel subsystems,
this does not imply that only PM bug patches can involve multiple kernel subsystems. It is possible
that there are complicated non-PM bugs which may also require modi�cations across multiple
subsystems to �x. We leave further comparison of PM bugs and non-PM bugs in terms of the patch
scope as future work.
Time-to-Fix.Most patches in our dataset do not contain the information when the bug was �rst
discovered. However, we �nd that 48 bug patches include links to the original bug reports, which
enables us to measure the time-to-�x metric. We �nd that PM bugs may take 6 to 48 days to �x
with an average of 24 days, which further implies the complexity. There are other sources which
may provide more complete time-to-�x information (e.g., Bugzilla [12]), which we leave as future
work. Note that similar to measuring “how long do bugs live” in the classic study of Linux and
OpenBSD kernel bugs [43], human factors such as the developer’s availability and capability may
a�ect the time-to-�x metric; therefore, there is unlikely a linear relationship between the time-to-�x
metric and the bug complexity. In other words, how to measure the complexity of bug precisely
is still an open challenge. On the other hand, we �nd that during the time to �x window, there
were often in-depth discussions among developers which requires substantial domain knowledge
and trial-and-error steps; therefore, we believe that the long time-to-�x value still re�ects the
need of better debugging support to certain extent, similar to the observations from previous
studies [43, 73].
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(a) An Alignment Bug Fix (b) A Data Race Bug Fix

Fig. 9. Two examples of refining sanity checks to fix PM bugs: (a) Alignment bug fix; (b) Data race bug fix.

5.4.2 Fix Strategy. We �nd that the strategies for �xing PM bugs often vary a lot depending
on the speci�c bug types (Table 3). On the other hand, we also observe that di�erent types of PM
bugs may be �xed by one common strategy: re�ning sanity checks. For example, Figure 9a shows
an Alignment bug �x. In this example, a PM device was mistakenly disabled due to an ine�ective
sanity check (is_power_of_2). The bug was �xed by replacing the original sanity check with an
accurate one (IS_ALIGNED). Similarly, Figure 9b shows a data race bug that was triggered when
there were concurrent write faults to same DAX pages. The error occurs because the DAX page
fault was not aware of pre-allocated (unwritten data) and just-allocated blocks. Therefore, a data
race may end up zeroing the pages, similar to the case described in Figure 6 (§5.2.2). The bug was
�xed in the �lesystem layer by re�ning the sanity check to identify unwritten DAX pages. Similar
�xes have been applied to other bugs triggered by check violations.
We also �nd that developers may temporarily “�x” a PM bug by disabling a PM feature. For

example, to avoid a race condition in handling transparent huge pages (THP) over dax, developers
make the THP support over dax dependent on CONFIG_BROKEN, which means if CONFIG_BROKEN is
disabled (common case) then the feature is disabled too. The developers even mention that a major
re-work is required in the future, which implies the complexity of actually �xing the bug.

6 PM BUG REPRODUCIBILITY

Metric ID Description Bug #
1Con�g Con�guration parameters of PM device & relevant software 20
2HW Information of speci�c PM hardware type (e.g., NVDIMM-N) 12
3Emu Information of PM emulation platform (e.g. QEMU) 4
4Test Information of test suite and/or test case used (e.g. xfstests) 18
5Step Information of necessary steps to reproduce the bug 18

Total Unique 39
Table 5. Five metrics for selecting PM bug candidates for reproducibility experiments.

To better understand the conditions for manifesting the issues and help derive e�ective remedy
solutions, we further perform a set of reproducibility experiments. We identify a subset of bug
patches with relatively complete information, and attempt to reproduce them experimentally. We
�nd that con�guration parameters in di�erent storage utilities (e.g., mkfs for creating a �le system,
ndctl for managing the libnvdimm subsystem) are critically important for manifesting the issues,
which suggests that it is necessary to take into account the con�guration states when developing
relevant testing or debugging tools.

As shown in Table 5, we look for �ve pieces of information from the bug patches when selecting
candidates for the reproducibility experiments, which includes con�guration parameters (1Con�g),
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hardware information (2HW ), emulation platform (3Emu), test suite information (4Test), and
reproducing steps information (5Step). Based on the �ve metrics, we identify 39 bug candidates
which contain relatively complete information for the experiments.

Table 6 summarizes the reproducibility results. At the time of this writing, we are able to
reproduce 11 out of the 39 candidates based on the information derived from the patches (3in
the last column). Most interestingly, we �nd that the con�guration parameters of storage utilities
(i.e., mkfs, mount, ndctl) and workloads are critically important for triggering the bugs, which are
summarized in the four columns of "Critical Con�gurations".

For example, in bug #15, when the �le system is mounted with both DAX and read-only param-
eters, accessing the �le system results in a “Segmentation fault”, because the DAX fault handler
attempts to write to the journal in read-only mode. As another example, the ndctl utility enables
con�guring the libnvdimm subsystem of the Linux kernel. In bug #35, a resource leak was observed
when an existing NVDIMM namespace was recon�gured to “device-dax” mode via ndctl.

Note that Table 6 only shows the necessary con�gurations for triggering the bug cases, which
may not be su�cient. In fact, there are many other factors which can make a case un-reproducible
in our experiments. For example, we are unable to reproduce cases that require test cases from
the ndctl test suite [17]. These test cases require “n�t_test.ko” kernel module, which is not
available in the generic Linux kernel source tree. Also, some cases are dependent on speci�c
architectures (e.g., PowerPC) which are incompatible with our experimental systems. In addition,
many concurrency bugs such as data races cannot be easily reproduced due to the nondeterminism
of thread interleavings.

Overall, we can see that most of the bug cases in Table 6 require speci�c con�gurations to trigger,
which suggests the importance of considering con�gurations for testing and debugging [40, 84, 92,
100]. We summarize all the reproducible bug cases, including the necessary triggering conditions
and scripts, in a public dataset to facilitate follow-up research [3].

7 IMPLICATIONS ON PM BUG DETECTION
Our study has exposed a variety of PM-related issues, which may help develop e�ective PM bug
detectors and build robust PM systems. For example, since 20.8% PM bug patches involve multiple
kernel subsystems, simply focusing on one subsystem is unlikely enough; instead, a full-stack
approach is much needed, and identifying the potential dependencies among components would
be critical. On the other hand, since many bugs in di�erent subsystems may follow similar patterns,
capturing one bug pattern may bene�t multiple subsystems (see §9.1 for more discussions).
As one step to address the PM-related issues identi�ed in the study, we analyze a few state-of-

the-art bug detection tools in this section. We discuss the limitations as well as the opportunities
for both PM bug detectors and Non-PM bug detectors (§7.1 and §7.2, respectively). Moreover (§7.3),
we present our e�orts and results on extending one state-of-the-art static bug detector (i.e., Dr.
Checker [82]) for analyzing PM drivers, which account for the majority of bug cases in our dataset
(Figure 2).

7.1 PM Bug Detectors
Multiple PM-speci�c bug detection tools have been proposed recently, including PMTest [77],
XFDetector [76], and AGAMOTTO [88]. These tools mostly focus on user-level PM programs.
We have performed bug detection experiments using these tools, and we are able to verify their
e�ectiveness by reproducing most of the bug detection results reported in the papers. Unfortunately,
we �nd that they are fundamentally limited for capturing the PM bugs in our dataset. For example,
XFDetector [76] relies on Intel Pin [21] which can only instrument user-level programs. PMTest [77]
can be applied to kernel modules, but it requires manual annotations which is impractical for major
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Bug Bug Type Critical Con�gurations R?ID mkfs mount ndctl workload
1 Semantic - State - - - mmap(MAP_SHARED) 7
2 Concurrency - Wrong lock - - - - 7
3 Error code - Error return - - - - 7
4 Semantic - Logic - -o dax - - 3
5 Semantic - Logic - -o dax - - 3
6 Semantic - Logic - - - - 7
7 Hardware - Alignment - - -a 4096 - 7
8 Semantic - Logic - - - fallocate 7

(FALLOC_FL_ZERO_RANGE)

9 Hardware - Speci�cation - - - - 7
10 Hardware - Cache - -o dax - - 7
11 Hardware - Alignment - - -m devdax - 7

-a 4K
12 Semantic - Logic - - -m devdax - 7

-a 4K
13 Concurrency - Race - -o dax - - 7
14 Semantic - Logic - -o dax - - 3
15 Semantic - Logic - -o dax,ro - - 3
16 Concurrency - Deadlock - -o dax - - 7
17 Semantic - Logic -O inline_data -o dax - - 3
18 Semantic - Logic - -o dax, - - 3

nodelalloc
19 Error code - Error check - -o dax - open(O_TRUNC) 7
20 Hardware - Alignment - - -m devdax - 7

-a 1G
21 Semantic - Logic -t xfs -o dax -l 4K - 7
22 Semantic - Logic - - - blockdev –setro 3
23 Hardware - Speci�cation - - - - 7
24 Semantic - Logic - - - - 7
25 Concurrency - Race -t xfs -o dax - - 7
26 Concurrency - Race - - - - 7
27 Semantic - Logic - - -s < 16MB - 7
28 Semantic - Logic - - -e -m devdax - 7
29 Concurrency - Atomicity - - create-namespace - 3

destroy-namespace
30 Concurrency - Deadlock - - create-namespace - 3

destroy-namespace
31 Semantic - Logic - -o dax - mmap(MAP_PRIVATE) 7
32 Semantic - Logic - -o dax - mmap(MAP_SYNC) 7
33 Hardware - Compatibility - - -m devdax - 7

-a 16M
34 Error code - Error return - - inject-error - 7
35 Memory - Resource leak - - -e -m devdax - 3
36 Semantic - Logic - - sanitize-dimm - 7

–overwrite
37 Semantic - Logic -O inline_data - - chattr +x 3
38 Semantic - Logic - - -e -m devdax - 7
39 Memory - Resource leak - - - - 7

Table 6. Results of reproducing 39 PM bug cases. The last column R? means if the bug case was reproducible
(3) or not (7). The middle columns show the bug type as well as the critical configurations necessary for
triggering the bug cases.

kernel subsystems. AGAMOTTO [88] relies on KLEE [35] to symbolically explore user-level PM
programs. While it is possible to integrate KLEE with virtual machines to enable full-stack symbolic
execution (as in S2E [42]), novel PM-speci�c path reduction algorithms are likely needed to avoid the
state explosion problem [67]. One recent work Jaaru [53] leverages commit stores, a common coding
pattern in user-level PM programs, to reduce the number of execution paths that need to be explored
for model checking. Nevertheless, such elegant pattern has not been observed in our dataset due to
the complexity of kernel-level PM optimizations (§5). Therefore, additional innovations on path
reduction are likely needed to apply model checking to detect diverse PM-related bugs in the kernel
e�ectively.
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Driver Module Description Ck Ck+
n�t.ko Probe NVDIMM devices and register a libnvdimm device tree. En-

ables libnvdimm driver to pass device speci�c messages (DSM) for
platform/DIMM con�guration.

7 3

nd_pmem.ko Drives a system-physical-address (SPA) range where memory store op-
erations are persisted. Enables support for Direct-Access (DAX) feature.

7 3

nd_blk.ko Enables I/O access to DIMM over a set of programmable memory
mapped apertures. A set of apertures can access just one DIMM de-
vice.

7 3

nd_btt.ko Enables an indirection table that provides power-fail-atomicity of at
least one sector (512B). Can be used in front of PMEM or BLK block
device drivers.

7 3

libnvdimm.ko Provides generic support for NVDIMM devices, such as discover
NVDIMM resources, register and advertise PM namespaces (e.g.
/dev/pmemX, /dev/daxX.X, etc.)

3 3

device_dax.ko Support raw access to PM over an mmap capable character device. 7 3
dax.ko Provides generic support for direct access to PM. 7 3

Table 7. List of major PM driver modules studied in this work. The last two columns show whether the
module can be supported (3) or not (7) by the vanilla Dr.Checker (Ck) and our extended version Dr.Checker+
(Ck+). The vanilla Dr.Checker can only support the ioctl entry type used in libnvdimm.ko.

7.2 Non-PM Bug Detectors
Great e�orts have been made to detect non-PM bugs in the kernel [13, 25, 27, 63, 66, 85, 99, 101].
For example, CrashMonkey [85] logs the bio requests and emulates crashed disk states to test the
crash consistency of traditional �le systems. As discussed in §5.3, such tricky crash consistency
issues exist in PM subsystems too. Nevertheless, extending CrashMonkey to detect PM bugs may
require substantial modi�cations including tracking PM accesses and PM-critical instructions (e.g.,
mfence), designing PM-speci�c workloads, among others.

Similarly, fuzzing-based tools have proven to be e�ective for kernel bug detection [24, 63, 66, 99,
101]. For example, Syzkaller [24] is a kernel fuzzer that executes kernel code paths by randomizing
inputs for various system calls and has been the foundation for building other fuzzers; Razzer [63]
combines fuzzing with static analysis and detects data races in multiple kernel subsystems (e.g.,
‘driver’, ‘fs’, ‘mm’), which could potentially be extended to cover a large portion of concurrency
PM bugs in our dataset. Since Syzkaller, Razzer and similar fuzzers heavily rely on virtualized (e.g.,
QEMU [33]) or simpli�ed (e.g., LKL [15]) environments to achieve high e�ciency for kenel fuzzing,
one common challenge and opportunity for extending them is to emulate PM devices and interfaces
precisely to ensure the �delity.

Also, Linux kernel developers have incorporated tools such as Kernel Address Sanitizer (KASAN) [25],
Unde�ned Behavior Sanitizer (UBSan) [27] and memory leak detectors (Kmemcheck) [13] within
the kernel code to detect various memory bugs (e.g., null pointers, use-after-free, resource leak).
These sanitizers instrument the kernel code during compilation and examine bug patterns at run-
time. Similar to other dynamic tools, these tools can only detect issues on the executed code paths.
In other words, their e�ectiveness heavily depends on the quality of the inputs. As discussed in
§6, many PM issues in our dataset require speci�c con�guration parameters from utilities (e.g.,
mkfs, ndctl) and workloads (e.g., mmap(MAP_SHARED), open(O_TRUNC)) to trigger, so we believe it
is important to consider such PM-critical con�gurations when leveraging existing kernel sanitizers
for detecting the issues exposed in our study.
As discussed above, while various bug detectors have been proposed and used in practice,

addressing PM-related issues in our dataset will likely require PM-oriented innovations including
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Fig. 10. Entry points for the libnvdimm driver module

precise PM emulation, PM-speci�c con�guration and workload support, etc., which we leave as
future work.
On the other hand, to better understand the feasibility of extending existing tools for PM

bug detection, we present our e�orts and results on extending one existing bug detector called
Dr.Checker [82] in this section. We select Dr.Checker for three main reasons: First, it has proven
e�ective for analyzing kernel-level drivers [82], and as shown in Figure 2 (§5.1), drivers account for
the majority of bugs in our dataset; Second, Dr.Checker is based on static analysis without dynamic
execution, which makes it less sensitive to the limitations discussed in the previous sections (e.g.,
device emulation, input generation); Third, Dr. Checker employs multiple bug detection algorithms
that can detect multiple bug patterns identi�ed in our study (§5.2). We name our extension as
Dr.Checker+ and release it on Git to facilitate follow-up research on PM bug detection [3].

About Dr.Checker & its limitations. Dr.Checker [82] mainly uses two static analysis techniques
(i.e., points-to and taint analysis) to detect memory-related bugs (e.g., bu�er over�ow) in generic
Linux drivers. It performs �ow-sensitive and context-sensitive code traversal to achieve high
precision for driver code analysis. One special requirement for applying Dr.Checker is to identify
correct entry points (i.e., functions invoking the driver code) as well as the argument types of entry
points. For example, Figure 10 shows a VFS interface (“struct �le_operations”) with function pointers
that allow userspace programs to invoke operations on libnvdimm driver module. The functions
included in the structure (e.g., “nvdimm_ioctl”) are entry points that enables manipulating the
underlying NVDIMM devices through the driver code. The entry points and their argument types
collectively determine the entry types, which in turn determines the taint sources for initiating
relevant analysis. For example, the vanilla Dr. Checker describes an IOCTL entry type where the
�rst argument of the entry point function is marked as PointerArgs (i.e., the argument points to a
kernel location, which contains the tainted data) and the second argument is marked as TaintedArgs
(i.e., the argument contains tainted data and is referenced directly). This entry type is applicable to
entry point functions that have similar signature. In the case of the libnvdimm kernel module, the
IOCTL entry type is applicable to two entry point functions (i.e., nd_ioctl, nvdimm_ioctl). In
addition, Dr.Checker includes a number of detectors to check speci�c bug patterns based on the
taint analysis (e.g., IntegerOver�owDetector, GlobalVariableRaceDetector).

While Dr.Checker has been applied to analyze a number of Linux device drivers [82], it does not
support major PM drivers directly. Table 7 summarizes the seven PM driver modules involved in our
study, including nfit.ko, nd_pmem.ko, nd_blk.ko, nd_btt.ko, libnvdimm.ko, device_dax.ko,
and dax.ko. These driver modules provide various supports to make PM devices usable on Linux-
based systems. For example, dax.ko provides generic support for direct access to PM, which is
critical for implementing the dax feature for Linux �le systems including Ext4 and XFS. As discussed
in §5 and §6, these PM drivers tend to contain the most PM bugs in our dataset, and many PM bugs
require PM driver features to trigger (e.g., -o dax). Based on our study of the bug patterns and
relevant source code, we �nd that these PM drivers have much more diverse entry types compared
to the embedded drivers analyzed by the vanilla Dr.Checker [82]. As shown in the second to the last
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Entry Kernel Entry Point Function(s) Tainted Input Argument (s) Taint TypeType Module

DEV_OP*

n�t.ko acpi_nfit_add, acpi_nfit_probe
struct acpi_device *adev PointerArg

acpi_nfit_remove
nd_blk.ko nd_blk_probe, nd_blk_remove

struct device *dev PointerArglibnvdimm.ko nvdimm_release, nvdimm_probe

device_dax.ko dev_dax_split struct vm_area *vma PointerArg
dev_dax_fault, dev_dax_pagesize struct vm_fault *vmf PointerArg

dax.ko dax_destroy_inode, dax_free_inode struct inode *inode PointerArg

DAX_OP* nd_pmem.ko pmem_dax_direct_access
struct dax_device *dax_dev PointerArg

pgoff_t pgo� TaintedArgs
long nr_pages TaintedArgs

BLK_OP*
nd_pmem.ko pmem_rw_page

struct block_device *bdev PointerArg
sector_t sector TaintedArgs

nd_btt.ko btt_rw_page
struct page *page TaintedArgsData
unsigned int op TaintedArgs

GETGEO* nd_btt.ko btt_getgeo struct block_device *bdev TaintedArgs
MOUNT* dax.ko dax_mount struct file_system_type *fs_type TaintedArgsData

IOCTL libnvdimm.ko nd_ioctl, nvdimm_ioctl
struct file *�le PointerArgs
unsigned long arg TaintedArgs

Table 8. Entry types identified to support Dr.Checker for analyzing PM drivers. The first five types (*) are
newly added entry types. The table also shows the specific functions, arguments, and taint types applied for
individual arguments.

column of Table 7, the vanilla Dr.Checker [82] only supports one entry type (i.e., ioctl(file))
used in the libnvdimm module, leaving the majority of PM driver code unattended.

Extending Dr.Checker to Dr.Checker+. To make Dr.Checker works for the major PM drivers, we
manually examine the source code of PM drivers and identify critical entry points. As summarized in
Table 8, we have added �ve new entry types (i.e., DEV_OP, DAX_OP, BLK_OP, GETGEO, MOUNT)
besides the original IOCTL entry type. The new entry types include the major entry point functions
used in the PM driver modules. Moreover, we identify the critical input arguments and map them
to the appropriate taint types de�ned by Dr.Checker (i.e., TaintedArgs for arguments directly passed
by the userspace, and PointerArgs and TaintedArgsData for arguments pointing to a kernel memory
location which contains tainted data). In addition, to make Dr.Checker work for newer versions of
Linux kernel, we have ported the implementation to the latest version of the LLVM/Clang compiler
infrastructure [26]. Overall, as summarized in the last column of Table 7, the enhanced Dr. Checker+
is able to support bug detection in the seven major PM driver modules based on our comprehensive
study of the PM driver bugs and the relevant source code.

7.3 Extending Dr. Checker for Analysing PM Kernel Modules

Experimental Results of Dr.Checker+. We have applied the extended Dr.Checker+ to analyze
seven major PM kernel modules in Linux kernel v5.2. In this set of experiments, we applied four
detectors: (1)IntegerOver�owDetector checks for tainted data used in operations (e.g., add, sub
or mul) that may cause an integer over�ow or under�ow; (2) TaintedPointerDereferenceChecker
detects pointers that are tainted and directly dereferenced; (3) GlobalVariableRaceDetector checks
for global variables that are accessed without a mutex; and (4) TaintedSizeDetector checks for
tainted data that is used as a size argument in any of the copy_to_ or copy_from_ functions
which may result in information leak or bu�er over�ows. Table 9 summarizes the experimental
results. Overall, Dr. Checker+ can process all the target kernel modules successfully, and we have
observed warnings (i.e., potential issues) reported by its four detectors in �ve out of the seven
kernel modules (i.e., nfit.ko, nd_pmem.ko, nd_btt.ko, libnvdimm.ko, and dax.ko). For example,
the TaintedPointerDereferenceChecker was able to identify a potential null pointer dereference in the
nd_btt driver module, where the pointer variable bdev in the btt_getgeo entry point of nd_btt
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Detectors of Dr.Checker+ PM Kernel Modules Totaln�t.ko nd_pmem.ko nd_btt.ko libnvdimm.ko dax.ko
IntegerOver�owDetector 0 4 2 0 0 6

TaintedPointerDereferenceChecker 0 0 4 0 0 4
GlobalVariableRaceDetector 1 0 0 12 2 15

TaintedSizeDetector 0 0 0 4 0 4
Total 1 4 6 16 2 29

Table 9. Summary of warnings reported by Dr. Checker+ on analyzing five PM kernel modules.

was accessed without a check for its validity. If the routines invoking the entry point function do
not check for the null value before using it, then this code may lead to a kernel crash.
Note that the warnings reported by Dr.Checker+ do not necessarily imply PM bugs due to the

conservative static analysis used in Dr.Checker. For example, the GlobalVariableRaceDetector in
Dr. Checker would falsely report a warning for any access to a global variable outside of a critical
section. By looking into the warnings reported in our experiments, we observed a similar false
alarm: Dr. Checker+ may report a warning when the driver code invokes the macro "WARN_ON"
to print to the kernel error log, which is benign.

Also, since Dr.Checker’s detectors are stateless, they may report a warning for every occurrence
of the same issue. For example, the page o�set in pmem_dax_direct_access is used to calculate the
physical address of a page, which involves bit manipulation operations and the resulting value may
over�ow the range of possible integer values. The IntegerOver�owDetector may report a warning
whenever the method is invoked.

Overall, our experience is that extending Dr.Checker for analyzing PM-related issues in the Linux
kernel is non-trivial and time-consuming due to the complexity of the PM subsystem. On the other
hand, the actual code modi�cation is minor: we only need to modify about 100 lines of code (LOC)
in Dr.Checker to cover the major PM driver modules. While the e�ectiveness is still fundamentally
limited by the capability of the core techniques used in the existing tools (e.g., Dr.Checker’s static
analysis may report false alarms), we believe that extending existing tools to make them work for
the PM subsystem in the kernel can be an important �rst step towards addressing the PM-related
challenges exposed in our study. We leave the investigation of improving Dr.Checker further (e.g.,
improving the static analysis algorithms, adding diagnosis support for understanding the root
causes of warnings, or �xing the warnings detected) and building new detection tools as future
work.

8 RELATEDWORK
Studies of Software Bugs.Many researchers have performed empirical studies on bugs in open
source software [39, 43, 49, 54, 68, 72, 78, 80, 83, 84, 107, 109]. For example, Lu et al. [80] studied 105
concurrency bugs from 4 applications and found that atomicity-violation and order-violation are
two common bug patterns; Lu et al. [78] studied 5,079 �le system patches (including 1,800 bugs �xed
between Dec. 2003 and May 2011) and identi�ed the trends of 6 �le systems; Mahmud et al. [83, 84]
studied bug patterns in �le systems and utilities and extracted con�guration dependencies that
may a�ect the manifestation of bugs. Our study is complementary to the existing ones as we
focus on bugs related to the latest PM technology, which may involve issues beyond existing
foci (e.g., user-level concurrency bugs [49, 80, 109, 110], non-PM �le systems [78], cryptographic
modules [68], con�gurations [83, 84]).
Studies of Production System Failures. Researchers have also studied various failure incidents
in production systems [32, 55–57, 59, 60, 75, 96, 97, 108], many of which are caused by software
bugs. For example, Gunawi et al. [55] studied 597 cloud service outages and derived multiple lessons
including the outage impacts, causes, etc.; they found that many root causes were not described
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clearly. Similarly, Liu et al. [75] studied hundreds of high-severity incidents in Microsoft Azure. Due
to the nature of the data source, these studies typically focus on high-level insights (e.g., caused by
hardware, software, or human factors) instead of source-code level bug patterns described in this
study. Since PM-based servers are emerging for production systems [30], and many production
systems are based on Linux kernel, our study may help understand PM-related incidents in the real
world.
Tools for Testing & Debugging Storage Systems. Many tools have been created to test storage
systems [31, 36, 37, 51, 59, 83, 86, 87, 103, 111, 112] or help debug system failures [58, 64, 65, 71, 90,
104, 105, 108]. For example, EXPLODE [103], B3 [87], and Zheng et.al. [111] apply fault injections
to emulate crash images to detect crash-consistency bugs in �le systems, which has also been
observed in our dataset. PFault [36, 59] applies fault injection to test Lustre and BeeGFS parallel
�le systems building on top of the Linux kernel. Gist [65] applies program slicing to help pinpoint
the root cause of failures in storage software including SQLite, Memcached, etc. Duo et.al. [108]
extended PANDA [48] to track device commands to help diagnosis. In general, these tools rely on
detailed understanding of the underlying bug patterns to be e�ective. We believe our study on
PM-related issues can contribute to building more e�ective bug detectors or debugging tools for
PM-based storage systems, which we leave as future work.

9 DISCUSSIONS
9.1 Importance of Empirical Studies on Real-World Bug Pa�erns
As brie�y mentioned in previous sections, this work was inspired by many existing research e�orts
on studying the characteristics of bugs in real-world software systems, including bug patterns in
multi-threaded applications [80], Linux and/or OpenBSD kernels [39, 43], (non-PM) �le systems [78]
and utilities [84], cryptographic software [68], cloud systems [54], and so on. Due to the complexity
of real-world systems, it is practically impossible to build e�ective or e�cient tools to address
the issues induced by various bugs without thorough understanding of the bug characteristics.
Therefore, such empirical studies of real-world bug patterns, which typically requires substantial
manual e�orts and domain knowledge, often serve as the foundation for understanding the issues
and deriving practical solutions later. For example, the seminal work of S. Lu et. al. [80] studied the
concurrency bug patterns from four applications; while the study did not build any tools to address
the bugs directly, it has inspired a series of follow-up research on concurrency bug detection and
improving multi-threaded software in general [47, 50, 81, 94]. Similarly, the study of Linux �le
system patches by L. Lu et. al. [78] has exposed general bug patterns in the context of �le systems
and has inspired various follow-up innovations on improving �le systems reliability [51, 86]. One
common lesson learned from these classic works is that “history repeats itself”, and “learning from
mistakes” is important for a better future [78, 80].

Our study follows a similar methodology (§3) but focus on a dataset that has never been covered
by existing works (to the best of our knowledge). As discussed in §5, we have identi�ed a wide
range of PM-related bug patterns, some of which are consistent to previous �ndings but others are
not. For example, our study shows that cache-related issues only contribute to a small subset (1.7%)
of the bugs in our dataset, and crash-consistency issues may be caused by semantic and concurrency
bugs besides misusing low-level instructions. This observation is in contrast to recent research
focus on PM bug detection in the community which mostly only consider crash-consistency issues
caused by the misuse of cacheline �ush instructions [53, 76, 77, 88]. In other words, additional
research e�orts are likely needed to address the PM-related issues in general.

As exempli�ed by previous studies, we envision multiple directions for follow-up research based
on our empirical study of PM bug patches. First, the detailed characterisation of PM bug patterns
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(§5) may help derive concrete rules for building new PM bug detection tools, similar to our extension
to Dr. Checker (§7.3). Second, the critical conditions identi�ed in our reproducibility experiments
(§6) may guide the design of future tools which need to consider how to trigger the bugs for bug
detection or failure diagnosis. Third, the curated dataset of various types of PM bugs may serve
as the test cases for evaluating the e�ectiveness of newly built tools, similar to the concept of
BugBench [79, 108]. We hope that by publishing our study results and releasing the dataset, the
work can facilitate building the next generation of more robust PM-based storage systems.

9.2 Importance beyond Intel Optane DCPMM
As mentioned in §1 and §2, PM technologies are not limited to Intel Optane™ DCPMM [10], and
the PM ecosystem in Linux is not solely designed for Intel. Various other PM technologies (e.g.,
PCM [95], STT-RAM [62], CXL-based PM [34, 91]) will likely require similar support from the
Linux kernel (e.g., the dax feature). Therefore, our study of PM-related issues in the Linux kernel is
not limited to Intel Optane technology either.

While Intel is winding down its Optane DCPMM business and will only provide limited support
in the next 3 to 5 years [29], we expect to see other PM devices in the near future which will
be largely compatible with the Linux PM ecosystem. Particularly, Compute Express Link (CXL)
[45] is a new open standard cache-coherent interconnect for processors, memory expansion and
accelerators. CXL 2.0 speci�cation describes that PM devices can be realized using CXL.io and
CXL.mem protocols [91]. Hence, it is expected that future PM devices would reside on CXL slots
instead of memory DIMM slots. Although this change may impact how the host system recognizes
PM devices, it is expected to have little impact on the PM software stack. For example, CXL-PM
driver code in the Linux kernel (drivers/cxl/pmem.c) relies on existing NVDIMM driver code for
functions such as register, un-register and probe devices [74]. CXL-based PM devices would still
appear as special memory devices (similar to existing PM devices), and existing software interfaces
(e.g., DAX) are expected to work without any modi�cations. Therefore, our study on the current
Linux PM subsystem, which is the foundation for supporting the next generation of CXL-based
PM devices, is still relevant. On the other hand, we expect that CXL-based devices will likely
introduce new CXL-speci�c drivers and speci�cations, which will add to the complexity of Linux
PM subsystem and may introduce new bug patterns. Therefore, additional studies will likely be
needed in the future.

10 CONCLUSIONS AND FUTUREWORK
This paper presented a comprehensive study on PM-related patches and bugs in the Linux kernel.
Based on 1,553 PM-related kernel patches, we derived multiple insights in terms of patch categories,
bug patterns, consequences, �x strategies, etc. We also performed reproducibility experiments to
identify the critical con�guration conditions for manifesting the bug cases. Moreover, we conducted
tool extension experiments to explore the remedy solutions to address the issues exposed in our
study. In the future, we plan to investigate new methodologies, including extensions to other tools,
to address PM-related issues in the Linux PM ecosystem based on the detailed bug patterns identi�ed
in this work. More importantly, we hope that by sharing our study and releasing the characterized
dataset, our e�orts could facilitate follow-up research in the community and contribute to the
development of e�ective PM bug detection tools and the enhancement of PM-based systems in
general.
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