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Abstract—Machine learning-based hardware malware detectors
(HMDs) offer a potential game changing advantage in defending systems
against malware. However, HMDs suffer from adversarial attacks, can
be effectively reverse-engineered and subsequently be evaded, allowing
malware to hide from detection. We address this issue by proposing
novel HMDs (Stochastic-HMDs), which leverage approximate computing
(AC) to harden HMDs against adversarial evasion attacks. Stochastic-
HMD:s introduce stochastic noise into the computations within the model
to build an efficient and low-cost moving-target defense. Specifically,
we use controlled undervolting, i.e., scaling the supply voltage below
nominal level, to deliberately induce stochastic timing violations in the
HMDs’ computations during inference (detection). We show that such
technique makes HMDs more resilient to adversarial attacks, especially
to reverse-engineering and transferability. Our thorough empirical results
substantiate that Stochastic-HMDs offer effective defense against adver-
sarial attacks along with by-product power savings, without requiring
any changes to the hardware/software nor to the HMDs’ model, i.e., no
retraining or fine tuning is needed. In particular, Stochastic-HMDs can
detect more than 94% of the evasive malware with a negligible (i.e.,
< 2%) accuracy loss, along with ~15% power savings.

Index Terms—HMD, Adversarial Attack, Undervolting

I. INTRODUCTION

Although significant effort continues to be directed at making
systems more resilient to malware attacks, the number of exploitable
vulnerabilities is overwhelming. While preventing compromise is
difficult, signature-based static analysis techniques can be easily
bypassed using metamorphic/polymorphic malware or zero-day ex-
ploits. In contrast, dynamic detection techniques can detect unseen
signatures since they monitor the behavior of the program. However,
the complexity and difficulty of continuous dynamic monitoring have
traditionally limited its use due to constrained resources.

Against this backdrop, several research studies proposed using
Hardware Malware Detectors (HMDs) to make the continuous dy-
namic monitoring resource-efficient [13], [15], [18]. Specifically,
these studies showed that malware can be classified as a computa-
tional anomaly using low-level hardware features. HMDs offer a sig-
nificant advantage to defend against malware attacks because they can
be ‘always on’ with small-to-no impact on performance. Moreover, it
appears that the industry started to show interest in using HMDs too.
In fact, Intel introduced Threat Detection Technology (TDT) [11], as
part of their hardware shield suite, which uses hardware performance
counters for malware detection. Later, TDT was used by Microsoft
Defender for Endpoint to detect Ransomwares [31].

As HMDs showed defense effectiveness and are currently deployed
in practice [11], [31], it is natural to expect that attackers attempt to
find adaptive techniques to evade detection. As a consequence, it
was shown that attackers can adapt malware to continue to operate
while avoiding detection by HMDs [12], [14], [19]. Specifically,

evasive malware (adversarially generated malware), are generated by
carefully modifying the execution behaviour to force the model to
output a wrong label (classify it as benign), allowing the evasive
malware to evade detection while still being able to execute the
intended malicious functionality.

Among the proliferation of defenses against adversarial attacks
in the computer vision domain [3], randomization-based defenses
are shown to be promising for improving model robustness against
adversarial attacks [16], [24], [32]. The main idea is to introduce a
non-deterministic component in the model’s behavior. These non-
deterministic variations of the model lead to: (i) a time-variant
behavior that makes the reverse-engineering process more difficult,
and (ii) a stochastic gradient over the input, which makes the
estimation of the gradient direction challenging for the adversary.
As a result, multiple randomization techniques have been proposed,
such as randomly switching between multiple diverse models [32],
[33] and introducing noise to the hidden-layers [24]. However,
these proposed techniques require substantial changes to the model
and/or retraining/fine-tuning procedures, which involve significant
additional overhead, making it more challenging to build secure
HMDs, especially for resource-constrained devices. Against the ad-
ditional overhead, recent works [9], [13] demonstrated that hardware
can introduce noise that achieves the robustness requirement while
avoiding the additional overhead. However, these solutions require
new hardware designs and thus cannot be deployed in existing
devices. Furthermore, while randomization by switching between
multiple diverse models was explored as a defense against evasive
malware [13], [19], noise-based randomization was only explored in
image classification applications [9], [10], [24].

In this paper, we propose Stochastic-HMDs, which unprecedent-
edly utilize undervolting to defend against adversarial attacks on
HMDs. Particularly, we leverage controlled undervolting, i.e., supply
voltage scaling below the nominal level, to induce stochastic noise in
HMD’s model computations during inference. From the security per-
spective, stochastic noise during inference injects a non-deterministic
component in the HMDs’ behavior. This corresponds to a practical
implementation of a moving-target defense through inference-time
stochastic decision boundaries. This aspect allows HMDs to resist
reverse-engineering and makes evasion harder by changing the model
behavior at runtime. From the power consumption perspective, con-
trolled undervolting offers a by-product power saving, which is useful
specifically for mobile, edge, and IoT devices. We show that a trade-
off can be obtained between low accuracy loss and considerable gains
in security and power consumption. Thus, our work proves that the
security and energy efficiency can be improved at the same time,
without adding performance overhead— contrasting the conventional



wisdom that tells us that if you want security, you have to sacrifice
performance.
The key contributions of this paper are as follows:

« We study and characterize undervolting-induced noise properties
on areal CPU. Our empirical results show that the computational
faults induced by undervolting are stochastic, i.e., time-variant,
and the undervolting level controls the noise magnitude.

« We propose Stochastic-HMD, which leverages undervolting to
make HMDs resilient to malware evasion. Specifically, we
show that computational faults via undervolting, i.e., hardware-
induced noise, can be used as a defensive technique against
evasive malware.

o Our results demonstrate that Stochastic-HMDs can detect more
than 94% of the evasive malware with a negligible accuracy
loss (i.e., < 2%), along with around 15% power savings. These
results substantiate that the security and energy efficiency can
be improved at the same time, without performance loss.

II. CHARACTERIZING UNDERVOLTING-INDUCED NOISE

Setup. For our characterization experiments, we used an Intel
Broadwell processor (model number i7-5557U) running an Ubuntu
18.04 LTS with stock Linux v4.15. We scale the voltage using the
Model-Specific Register (MSR) 0x15@ [28]. Specifically, we set the
plane idx bits to @ to scale the core’s voltage exclusively, and used
the offset bits for undervolting. In fact, these bits are used to scale
the voltage by the specified offset in mV relatively to the nominal
supply voltage. Moreover, the core frequency was kept at 2.2 GHz.

To better understand the nature of faults, we applied undervolting
by reducing the voltage in small steps of 1 mV while repeatedly
executing the same instruction with the same operands until a fault
or system freeze occured. Next, we will show the analysis of
undervolting effect on multiplications as well as other instructions.
Undervolting effect. First, we analyse the undervolting impact on
multiplications. Thus, we repeatedly run multiply operations on same
operands several times for 100k sets of operands. We observed that
undervolting by —103 mV to —145 mV, depending on inputs,
was sufficient to generate faults. We noticed that the sign bit never
flipped. This observation is expected since the output sign bit is
the result of a simple XOR between the two input sign bits, which
should be far from being a critical path, and hence unlikely to be
affected by timing violations. In addition, the 8 least significant
bits never flipped, mainly because of their lower propagation delays.
More importantly for this work, when using the same operands as
inputs for an undervolted multiplication, the locations of faulty bits
varied non-deterministically across different runs, demonstrating the
stochastic aspect of the undervolting-induced noise. We validated
this observation using the approximate entropy test. Please notice
that these observations are consistent with [28], which tested on
different CPU microarchitectures, as well as [30], which tested on
FPGA devices.

To analyze the distribution of the undervolting-induced fault loca-
tion, we generated faulty results using the above mentioned experi-
ment and computed the bit-wise fault rates. This gives us an overview
of the error location distribution within a specific undervolting level.
Results are shown in Figure 1 (experiment configurations are listed
in the caption).

In addition to undervolting multiplication operations, we tried
undervolting addition, subtraction, and bit-wise operations, but no
faults were observed. We believe that this is due to their simpler
circuits and, by consequence, lower propagation delays compared to
the multiplier implementation.
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Fig. 1: Probability distribution of faulty bits location for undervolted
multiplication results. These results are generated on i7-5557U at 2.2
GHz, with a CPU temperature of 49° C and the CPU was undervolted
by —130 mV.

III. STOCHASTIC-HMDS

In this section, we propose a new class of adversarial evasion
resilient HMDs, called Stochastic-HMDs. Stochastic-HMDs leverage
undervolting to induce a non-deterministic aspect in the inference
computations, making the HMD’s decision boundaries stochastic over
time. Thus, they prevent the adversary from having reliable access
to the HMD’s output (reverse-engineering attacks) and reduce the
transferability of evasive malware built using the victim HMD’s exact
or proxy model. Specifically, Stochastic-HMDs exploit AC, which
is a computing paradigm that trades energy consumption with the
accuracy of results.

Several noise-based methods, such as [5], [24], have been used in
the image classification domain to defend against adversarial attacks.
However, these techniques add substantial performance and power
overhead; they need to query a physical noise source to guarantee the
random distribution of noise and require changes to the classification
model, e.g, adding noise injection layers to the model structure.
In this paper, we use a circuit level approximation, specifically
undervolting [4] as a practical source of randomness to harden
HMDs against adversarial attacks. Our goal is to intentionally cause
controlled random timing violations driven by the supply voltage
level [4]. The rationale behind choosing undervolting is as follows:
(i) Injects time-variant stochastic behavior: One of the interesting
properties of undervolting is that the timing violations are stochastic
(Section II). This offers a significant advantage to defend against
adversarial attacks because it offers time-variant decision boundaries,
i.e., a moving-target defense [19]. In contrast, other circuit level
approximation techniques depend on reducing resource utilization
and redesigning the circuit blocks accordingly [1], [9]. Therefore,
their behavior is deterministic.

(ii) Easy to deploy: Undervolting is a practical source of randomness
that can be easily deployed; doesn’t require any changes to the
computing stack, e.g., hardware/software, since it only depends on
scaling the supply voltage.

(iii) Reduces energy consumption without costing performance
overhead: Unlike related randomization based defenses that impose
high performance and power overhead, undervolting comes with a
by-product reduction in energy consumption due to the super-linear
dependence of both dynamic and leakage power on supply voltage.
Specifically, for related randomness-based defenses, generating ran-
domness requires a source of entropy, e.g., a true random number
generator (TRNG) [27]. As a result, they require n TRNG queries
for each of the n MAC operations in a convolution layer, which
comes with increasing costs for deeper models. Note that the TRNG
is an off-core components, i.e., shared between all CPU cores, thus,
require more time and power to query compared to querying on-core
resources.



This work is the first to explore if there is an advantage from
injecting noise in the malware detection domain, while also providing
a practical way to inject stochastic noise. Furthermore, the proposed
approach: (1) does not require additional training or fine-tuning of the
protected model, unlike related work [17], [19], (2) does not require
any changes to the pre-trained model, (3) does not require additional
input preprocessing, and (4) provides energy gains.

Space exploration — The fault rate that a chip is likely to encounter is
related to the undervolting level [28]. Therefore, a space exploration
of the effect of different undervolting levels on the accuracy and
robustness features of a Stochastic-HMD is needed to identify the
optimal undeviating level to achieve the best accuracy and robustness
tradeoff. In particular, we identify the undervolting level that would
result in the minimal to no accuracy loss under no evasion attack,
while maximizing the robustness to evasive malware. For this reason,
we explore the impact of the undervolting from two perspectives:
(1) Baseline accuracy, and (ii) The moving-target impact, i.e., the
stochasticity of the decision boundaries that we leverage for the
defense. We describe our space exploration methodology and select
the best configuration for our experiments in Section VI. Subse-
quently, we evaluate the security and performance of the selected
configurations in Sections VII and VIII, respectively.

Undervolting a CPU - Recent systems/computers have a multi-
core CPU. This is not limited to laptops, desktops, and servers, but
mobile and low-power devices as well. For example, the Apple Watch
Series 7 have a dual-core CPU [2]. In addition, modern processors
have several integrated voltage regulators (VRs), which can control
the supply voltage of each core independently. Therefore, detection
(running the malware detection model) can be offloaded to a specific
core to improve the use experience. Specifically, monitored applica-
tions can continue running (without interruption) since detection is
offloaded to another core.

Trusted control — Trusted control of voltage is an important
component of the proposed defense (otherwise the defense can be
simply disabled by the adversary). Prior works implement HMDs
either as a co-processor [19] or to run in a trusted execution
environment [34]. For a co-processor implementation, the processor
supports several integrated voltage regulators (VRs), thus, we can
simply dedicate the control of one of the VRs to the Stochastic-HMD
IP. For a trusted execution environment, the operating system can
grant exclusive control of CPU VR to the Stochastic-HMD enclave.

IV. DATASET & FEATURE COLLECTION

Database. The dataset consists of 3000 malware and 600 benign
programs. The malware programs were downloaded from the Zoo
malware database (a.k.a MalwareDB) and include five types of
malware, which are backdoors, rogues, password stealers, trojans,
and worms. The benign programs consisted of a wide variety of
applications, including browsers, text editing tools, system programs,
and CPU performance benchmarks. The dataset was divided evenly
into 3-folds, which are victim training, attacker training, and testing.
We use 3-fold cross-validation in our experiments to get accurate
results, i.e., eliminate bias. Furthermore, the malware types and the
benign application types were distributed evenly and randomly across
the folds to ensure that the datasets are not biased.

Features Collection. To collect hardware features dynamically, we
used Intel’s Pin tool [26], running on an isolated machine that is
running Windows 7. All security and firewall services were disabled
so malware runs freely. The extracted features are based on the
frequency of executed instruction categories; based on Intel’s sub-
grouping of instructions, e.g., binary arithmetic, control transfer, and

system instructions sub-groups. The trace collection and features
extraction are modeled after the RHMD study [19] to establish the
feasibility and provide trustworthy experimental results.

Recently, it has been shown that hardware features collected
through hardware performance counters (HPCs) are not reliable to
be used in security application due to their non-determinism [6]. In
this work, we do not use HPCs, and we make sure that our feature
collection framework is deterministic; we get the exact same trace
in every run when we supply the same input. We manually verified
this by running samples of programs multiple times, using different
machines and using a virtual machine.

V. THREAT MODEL

We assume a realistic common setting which is a black-box
adversarial attack scenario. This setting is consistent with related
work on HMDs [13], [19]-[22]. In addition, the adversary has no
access to specific thermal or process variability, or internal functions
of the model. We follow the same attack methodology described
in [13], [19], which starts by reverse-engineering the victim HMD to
generate a proxy model and then uses the proxy model to generate
evasive malware examples that can bypass HMD detection.

VI. STOCHASTIC-HMDS SPACE EXPLORATION

We are interested in two criteria upon which we explore the
optimal undervolting level that maximizes the decision boundaries
stochasticity, under the constraint of minimal accuracy loss. Thus,
we will explore the effect of different undervolting levels on the
Stochastic-HMD accuracy and robustness features, i.e., the stochas-
ticity of decision boundaries.

A. Experimental setup

For our experimental setup, we apply undervolting to the baseline
HMD to construct a Stochastic-HMD. In particular, to model the
computational stochasticity caused by the undervolting, we built a
stochastic fault injection tool! that emulates timing violations at
the output of arithmetic operations, based on the error distribution
model detailed earlier in Section II. Practically, the tool injects
timing violation errors that follow the distribution that matches the
undervolting level. Note that we did not implement any measures
to detect or correct potential timing violation-induced computational
faults since they are the foundation of our proposed defense. Finally,
we integrated our tool to the Fast Artificial Neural Network Library
(FANN) [29] to simulate the behavior of our neural network model
under undervolting (the Stochastic-HMD).
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B. Detection accuracy

We study the effect of undervolting on HMDs detection accuracy,
i.e., detection performance of Stochastic-HMDs under no attacks.
We used the testing set for this experiment. We performed 3-folds
cross-validation, repeated each experiment 50 times, and computed
the mean and standard deviation to obtain representative results.
Figure 2(a) shows the Stochastic-HMD detection accuracy, false
positive rate, and false negative rate while increasing the error rate
(scaling the voltage). An interesting observation is that the standard
deviation increases while increasing the undervolting until a 0.5 error
rate, and then it starts decreasing. Notice that the standard deviation
represents the stochasticity that undervolting adds to the output
due to the non-deterministic decision boundaries. More interestingly,
the accuracy degradation diverges logarithmically as the error rate
approaches 1; the relationship is not linear. The same observation
also applies to the false positive rate and false negative rate. This
is a strong advantage from the defender’s perspective since adding
more errors (specifically, until 0.5 error rate) would not significantly
impact detection accuracy loss. For example, at 10% error rate, the
detection accuracy of Stochastic-HMDs drops by around 2% only.
Furthermore, increasing the error rate from 0.1 to 0.4 would result
in 0.1x detection accuracy loss. A discussion of the potential trade-
offs is detailed in Section IX.

C. Stochasticity of decision boundaries

We explore the impact of undervolting on the HMD confidence
distribution. We infer the model for different error rates comparatively
with the baseline HMD and we present the distribution of the output
scores. Figure 2(b) shows the confidence distribution for the two
classes: Benign and Malware. As depicted in the figure, the higher
the error rate, the higher the uncertainty is observed through a
higher stand deviation of the scores distribution. While these results
are correlated with the results in Figure 2(a), we can see that an
uncertainty level could be injected while the accuracy remains almost
equal to the baseline.

VII. SECURITY EVALUATION

We explore whether Stochastic-HMDs can increase the robustness
of HMDs against evasive malware, i.e., both steps of the attack—
reverse-engineering and transferability. Our results show that un-
dervolting helps making HMDs resistant to evasive malware. In
particular, undervolting introduces noise to the reverse-engineering
component that is bounded by a function of the amount of introduced
noise, i.e, undervolting level.
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Fig. 3: Reverse-engineering effectiveness.

A. Resilience against reverse engineering

We assume two attack scenarios: (1) the attacker knows the
Stochastic-HMD (victim) training data; we use the victim training
set to perform the reverse-engineering, and (2) the attacker does
not know the Stochastic-HMD (victim) training data; we use the
attacker training set to perform the reverse-engineering. Note that
the first scenario assumes a stronger attacker than the second scenario
since the attacker will use the same data distribution that the victim

is trained on. In addition, in both scenarios, we use the testing
set to evaluate the proxy model performance (i.e., the reverse-
engineering effectiveness). Moreover, we perform reverse engineer-
ing using Multi-Layer Perceptron (MLP) neural network, Logistic
Regression (LR), and Decision Tree (DT). We selected MLP for its
state-of-the-art performance, LR for its simplicity, and DT for its
non-differentiability.

Figure 3 shows the reverse-engineering effectiveness of Stochastic-
HMDs using the two attack scenarios while setting the error rate of
Stochastic-HMD to 0.1. The results show that using a Stochastic-
HMD makes the reverse-engineering substantially more difficult;
the reverse-engineering effectiveness using MLP drops from 99%
to 75.5% (around 24% drop) when using the attacker training set
and from 99% to 86.0% (around 13.3% drop) when using the
victim training set. Furthermore, we noticed that the Stochastic-
HMDs resilience to reverse-engineering increases by increasing the
error rate, irrespective of the machine learning algorithm used to
perform the attack. As seen from the results, reverse-engineering
attacks become harder with undervolting.

B. Resilience against evasive malware (Transferability)

Having a reverse-engineered model of the victim HMD, transfer-
ability is defined by the percentage of evasive malware designed to
evade the reverse-engineered model that can also evade the victim
HMD’s detection, i.e., transfer to the defender model. Therefore, in
this experiment, we generated evasive malware samples based on each
of the reverse-engineered models of the Stochastic-HMD with error
rate 0.1 (shown in Figure 3), and tested their success rate in evading
the Stochastic-HMD. Figure 4 shows the transferability results when
attacking Stochastic-HMDs. The results show that Stochastic-HMDs
are robust against transferability attacks regardless of the machine
learning algorthim used for the reverse-engineering. In addition to
detection accuracy and transferability robustness, a comprehensive
trade-off investigation should also include the robustness against
reverse-engineering, which we discuss in Section IX.
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C. Stochastic-HMDs vs RHMDs resilience

After performing the security analysis of Stochastic-HMDs, we
compare Stochastic-HMDs resilience to state-of-the-art randomiza-
tion based solution for HMDs, RHMDs [19]. Basically, RHMDs is a
randomization-based defense that switches between multiple diverse
HMDs, i.e., decision boundaries, at run-time to perform malware
detection. The RHMDs’ resilience increases while increasing the
number of base-HMDs (decision boundaries). Therefore, similar to
[19], we constructed four RHMDs such as randomizing two features
vectors (RHMD-2F), three features vectors (RHMD-3F), two features
vectors with two detection periods (RHMD-2F2P), and three features
vectors with two detection periods (RHMD-3F2P). We reverse-
engineer each RHMD construction using all the feature vectors used
in the construction to get the most accurate proxy model and most
efficient reverse-engineering. Furthermore, based on the obtained
proxy models for each of the RHMD constructions, we use our
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evasion framework to inject instructions to evade it. The accuracy
results of detecting evasive malware with all RHMD constructions
as well as the most resilient Stochastic-HMD (with 10% error rate)
are shown in Figure 5. The results show that Stochastic-HMDs can
detect more than 53% of the evasive malware missed by the most
resilient RHMD construction (RHMD-3F2P).

VIII. PERFORMANCE EVALUATION OF STOCHASTIC-HMDS

In this section, we compare Stochastic-HMDs detection accuracy
and implementation overhead to state-of-the-art randomization based
solution for HMDs, RHMDs [19].

We used the festing set to evaluate the detection accuracy and

implementation overhead of RHMDs and Stochastic-HMDs.
Detection accuracy: We used the same RHMDs constructions de-
scribed in Section VII-C and the most resilient Stochastic-HMD
(with 10% error rate). Note that here we are comparing the base-
line accuracy, i.e., percentage of correctly classified benign and
non-evasive/non-adaptive malware programs. The detection accuracy
results are shown in Figure 6. The results show that Stochastic-
HMDs have comparable results (less than 2% accuracy loss) to the
most resilient RHMD (RHMD-3F2P). Note that the accuracy drop is
negligible and acceptable, which comes from the fact that Stochastic-
HMDs uses only one detector (rather than multiple detectors in
RHMDs). We interpret the minor accuracy loss as the cost of
improved security (cf. Figure 5).
Memory space: RHMDs store multiple HMDs models, i.e., base-
detectors, to be able to switch between them. In contrast, only one
model needs to be stored in Stochastic-HMD. Therefore, storage
savings of Stochastic-HMDs over RHMDs can be measured using
the following equation:

# of base detectors in RHMD—1 (1)
# of base detectors in RHM D

Storage savings =

For example, Stochastic-HMD storage saving over an RHMD-2F, i.e.,
smallest RHMD implementation in terms of size in memory, is 50%.
This saving not only reduces the storage space in memory, but also
the pressure on the CPU resources, such as the caches and the bus;
thus, reducing the overhead on the system overall performance. In
our experiments, every HMD takes 71 KB of memory, while the L1
cache size in Intel’s Tiger Lake CPU is 32 KB.

Inference time: We ran 100k detection for Stochastic-HMD ,
RHMD-2F (with 2 base-detectors), and RHMD-2F2P (with 4 base-
detectors) on an Intel i7-5557U CPU. The average inference time
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Fig. 7: Power savings of Stochastic-HMD.

is 7us, 7.7us, and 7.8us for Stochastic-HMD , RHMD-2F, and
RHMD-2F2P, respectively. The results show an average of at least
10% performance overhead of the simplest RHMD (RHMD-2F) over
Stochastic-HMD. The inference time of RHMDs is higher owing to
its additional task of randomly selecting a model from its set of base
models; such random model selection also has impact on L1 cache
eviction. We noticed that scaling the voltage has no effect on the
inference time because undervolting has no effect on the cycle time
since we are only scaling the CPU voltage but not frequency.
Power consumption: We ran 100k detection for both Stochastic-
HMD and RHMD-2F (with 2 base-detectors) on an Intel i7-5557U
CPU. We use Intel’s Power Gadget [23] to measure the power
consumption and report the average consumed power per inference.
Figure 7 shows the power savings for voltages ranging from 1.18 V'
(the nominal voltage) to 0.68 V' with a voltage step size of 0.1V. Re-
sults show over 75% in power saving compared to RHMD achieved
by Stochastic-HMD under 40% voltage scaling.

Comparison with TRNG: We evaluate the overhead of modifying
non-secure baseline HMD to inject noise after each MAC operation
based on queering a TRNG. Our results shows that the TRNG
based implementation adds ~ 62x performance and ~ 112X energy
consumption overheads. We repeated the experiment while using a
pseudo random number generator (PRNG) [25] instead of a TRNG.
Our result shows that the PRNG based implementation adds ~ 4 X
performance and ~ 5.7 energy consumption overheads.

IX. DISCUSSION

This work has unprecedentedly shown that a promising robustness
enhancement technique of HMDs can be implemented in a practical
and efficient manner using undervolting.

Tradeoff: For a practical deployment, the security aspects need
to be considered under the baseline accuracy constraint, i.e., the
accuracy without evasive malware. An overview of the security and
accuracy trends and the possible tradeoff is shown in Figure 8. Specif-
ically, Figure 8 shows the detection accuracy and the transferability
robustness, i.e., percentage of evasive malware created using the
proxy model that fails to evade victim HMD’s detection. From the
figure, it is clear that a fault rate that exceeds 0.2 (area @) would
no longer be practical. However, as shown in area @, trade-offs
between security and performance could be reached with low error
rates, which can considerably increase the defender HMD reverse-
engineering robustness, transferability robustness (achieves more than
94%, even with effectively reverse-engineered victim HMD), with
negligible accuracy loss, along with around 15% power saving.
Calibration: Undervolting-induced faults vary across devices. There-
fore, a separate calibration needs to be done for each device to deter-
mine the undervolting level that leads to the best accuracy/robustness
tradeoff. Furthermore, the temperature needs to be considered, since
it affects the faults [8]. Therefore, the voltage regulator that controls
the Stochastic-HMD needs to dynamically adjust the undervolting
level based on the current temperature to achieve the best accu-
racy/robustness tradeoff.
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Fig. 8: Stochastic-HMDs trade-off

Implication of undervolting on the rest of the system: Undervolt-
ing may cause faults in the rest of the system making the whole sys-
tem unstable/unreliable. To avoid this issue, the undervolting should
be applied only when executing the HMDs detection component (i.e.,
detection model inference). If the detection component is running
in a trusted execution environment (TEE), the voltage needs to be
undervolted directly after entering the TEE and scaled back to the
nominal voltage just before exiting the TEE. Note that voltage scaling
can be controlled from software through the MSRs [7]. Another
approach is to dedicate one core for the detection component only
in a multi-core system and implement the detection component on
bare-metal to guarantee that there are no system components running
on the undervolted core.

Limitations: Since least significant bits cannot flip, models that
operate on numbers that are very close to zero are not protected.

X. CONCLUSION

We propose Stochastic-HMDs that leverage undervolting to secure
HMDs. We show that such detectors prevent the adversary from
having reliable access to their model (i.e., resist reverse-engineering)
and reduce the success rate of evasive malware attacks (over 94%
detection). In addition, Stochastic-HMDs resilience to the attacks
can be achieved with low accuracy cost (i.e., < 2% accuracy loss).
Compared to related approaches, we offer additional benefits such as
power savings (~ 15%) and easier deployment.
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