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ABSTRACT

Healthcare Associated Infections (HAIs) like MRSA are a major
threat to our hospitals and public health systems that significantly
affect lives and resources. Unlike many common transmissible dis-
eases, HAIs spread not only via direct person to person contacts
but also indirectly through infected surfaces. Consequently, many
of the standard epidemiological models like SIS, SEIR etc. cannot
be used here. As a result, recently, many 2 Mode models were de-
veloped where people and surfaces behave differently allowing the
pathogen to spread both via people and surfaces. However, these
2-Mode models are linear and cannot model non-linear contagions
and group interactions effectively. In this paper, we present an agent
based 2-Mode Hypergraph based Model and show that it is more
expressive than the graph based benchmark both theoretically and
experimentally.
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1 INTRODUCTION

Healthcare Associated Infections (HAIs), like Methicillin-resistant
Staphylococcus aureus (MRSA) are a growing scourge to global
healthcare systems increasing mortality and annually costing 28-
45 billion USD [11]. Unlike infectious diseases like Covid-19 and
Pneumonia, whose infection load is transmitted mainly through
person to person contacts, HAI dynamics are far more complex
and additional rely on indirect contact i.e. contact between infected
surfaces and people [7] for transmission.

Most of the existing work on modelling HAI dynamics has been
primarily on 2-Mode graph models. In these models, infections
can spread both via people and locations with correspondingly
different propagation mechanisms [7]. However, these models are
a gross oversimplification of the natural phenomenon as they only
consider pairwise interactions an not group interactions. As a result,
these models are unable to model the low variance of individual
case counts for many HAIs. To resolve this issue, we propose the
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HETEROGENEOUS-HYPERGRAPH-SIS model which is a generalization

of the graph based HETEROGENEOUS-GRAPH-SIS. We theoretically

show HETEROGENEOUS-HYPERGRAPH-SIS is more expressive and

more experimentally accurate than HETEROGENEOUS-GRAPH-SIS.
Our main contributions are:

o Definition of procedures HETEROGENEOUS-HYPERGRAPH-SIS -
We formally introduce a novel Hypergraph based SIS model.

e Equivalences between HETEROGENEOUS-HYPERGRAPH-SIS and
HETEROGENEOUS-GRAPH-SIS- We theoretically show when
the two models are equivalent to one another and demon-
strate how it is useful in practice.

o Experimental Evaluation on Real Hospital Traces - Using real
hospital contact data and synthetic case counts we show
that the HETEROGENEOUS-HYPERGRAPH-SIS is able to better
model the ground truth than HETEROGENEOUS-GRAPH-SIS.

2 RELATED WORK

2.1 HAI modelling

Modelling HAIs can be mainly split in two categories, Ordinary
Differential Equation (ODE) model and agent based models.

ODE based models [13] and [14] are compartmental based models
that deterministically allow for state transitions between the various
modelled states of infection.

Agent based models [7] [9] [8] however, stochastically model the
interactions between the various patients, locations and HCWs. [7]
in particular proposed a 2-mode Graph model to incorporate the
environmental mediation on the pathogen load. These models have
been successfully used to evaluate factors underlying transmission
[9] and in predicting case counts [8].

2.2 Spreading on Hypergraphs

Over the past few years, there has been increase work on spreading
on hypergraphs. [3] examined how both community structure and
nonlinear dependence on infection pressure affected the SIS spread-
ing. [6] [10] analyzed the dynamics behind extinction thresholds
and influence propagation over homogeneous hypergraphs. [2]
combined both classic network based and hypergraph based con-
tact pattern to demonstrate the importance of group interactions in
influence propagation on real life location based social networks.

In our work, we seek to combine these two different spheres of
work to use hypergraphs to model the group interactions and the
nonlinear pathogens to better predict HAI incidence.

3 PRELIMINARIES

Both HETEROGENEOUS-GRAPH-SIS and HETEROGENEOUS-HYPERGRAPH-

SIS are 2-mode models, i.e. there are two different types of nodes.
Here, Locations and Healthcare Workers (HCWs) can transmit
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Table 1: List of Notations

Variable Description

a Pathogen Shedding Rate

B Disease infectivity
1) Recovery Probability

Tijt Transfer ratio from node j to node i at time ¢
Iy Pathogen load vector at time ¢

Xt Infection State vector at time ¢

Ay Adjacency Matrix at time ¢

R Pathogen Transfer matrix at time ¢
g Elementwise Nonlinear function

nijt Number of hyperedges that i and j appear at time ¢
P Total number of patients
H Total number of Healthcare workers (HCWs)
L Total number of Locations
N Total number of agents (P + H + L)

pathogen whereas patients can both transmit pathogen and get
infected as well.

Algorithm 1: HETEROGENEOUS-GRAPH-SIS procedure

1 Inputs: © = {, 8,6, {G; = (V.E)}T_, {mije}ijufA T, }
2 Initialize infection-states x1, loads I;

/% Compute pathogen transfer matrix */

3 Compute R; (i, j) = {Titht(i’ » %fi #J
Tijt ifi=j

4 fort=1,...T do

/* Add loads for each node */
5 Update loads I+1 = R¢l; + ax;

/* Calculate next state for patients */
6 for each patient i do
7 if i is susceptible at time t (i.e., x;(i) = 0) then
8 L i gets infected (i.e. x441(i) = 1 with prob. min{1,

Bl (i)}

9 else
10 L i gets susceptible (i.e. x;4+1(i) = 0 with prob. §

3.1 HETEROGENEOUS-GRAPH-SIS

3.1.1 Variable Description. We model the spread of infections by
a sequence of temporal graphs Gy, G, ....Gr with T number of
timesteps. Graph G; models whether the N nodes (Patients, HCW
and Locations) interacted with each other at that timestep ¢t. As a
result, we can represent each G; as an N X N symmetric binary
adjacency matrix A; where A;(i,j) = 1if i and j interacted at
time t and A; (i, j) = 0 otherwise. To model how the pathogen is
transferred between various agents, we define 7;j; as the transfer
ratio of pathogen load from j to i at time ¢.

3.1.2  Procedure Description. In this procedure, the pathogen trans-
fer matrices at each time step are calculated based on the various
transfer ratios and their corresponding adjacency matrices. Then
at each timestep, we iteratively accumulate pathogen load on each
node and stochastically let the patients undergo state transitions
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(Susceptible to Infected or Infected to Susceptible). This can be
clearly seen in Algorithm 1.

Algorithm 2: HETEROGENEOUS-HYPERGRAPH-SIS proce-
dure

1 Inputs:
O ={a,p.6.{Gr = (V.HOY L Azijentijun (AN, 9() }

2 Initialize infection-states x1, loads I;
/* Compute hypergraph pathogen transfer matrix */

3 for each hyperedge h do

hys s e
T AT (I, ifi #
. Compute Ri’(i, j) = ijehA¢ (i ) : J
0 ifi=j
self .. . _ .
s Compute R, 7 (i,1) = 7j;;p, Vi€V
s fort=1,...,T do
/* Add loads from each hyperedge */
h self
7 lt+1 :axt+2h€Hg(Rtlt)+Rt lt
/* Calculate next state for patients */
8 for each patient i do
9 if i is susceptible at time t (i.e., x;(i) = 0) then
10 i gets infected (i.e. x741(i) = 1 with prob. min{1,
Al (D}
11 else
12 L i gets susceptible (i.e. x441(i) = 0 with prob. §

3.2 Why Hypergraphs?

Inside a hospital, nodes don’t have only a pairwise relationship
with each other (People can interact with each other in groups at
a location). For other infectious diseases, understanding the vari-
ous group settings is critical in modelling how a pathogen spreads
[5] and it is equally critical here. Moreover, as HAIs are environ-
mentally mediated, it is necessary to not only consider the people
involved in the transmission (Patients and HCWs) but also the lo-
cations (surfaces) that can accumulate and transfer pathogen. As a
graph only explicitly models pairwise relationships, these group
interactions can be lost in the corresponding graph representation.

To model the group interactions, we use a hypergraph repre-
sentation of the data. Each hyperedge within the hypergraph is
in effect a photograph or a snapshot of a particular location at a
particular period of time. In each hyperedge, both patient and HCW
nodes can be present in addition to a single location node. This is
to model the fact that at a given point in time, patients, HCWs and
the location they are present at can accumulate and shed pathogen.

More formally, we can define a hyperedge h € Has h c {P U
H}&l|lelL.

One example to show how this group information can be lost can
be seen in Figure 1. If we focus on node v5, we can clearly see from
the hypergraph snapshot that v, has been with (v3) and (v, v2)
at L; at different times. However, from the graph representation,
we cannot determine if 03 interacted with both v; and v3 together
or with each of them separately. Hypergraphs, unlike graphs, can
unambiguously model this group information.

Note that if we use use a temporal graph with countable number
of timesteps we could model the various group interactions as
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well as the hypergraph model. However, there needs to be some
resolution that needs to be chosen as the pathogen cannot spread
instantaneously. A day in this context is a natural aggregation, has
been used in works like [1], and therefore use it as our unit of time.

3.3 HETEROGENEOUS-HYPERGRAPH-SIS

3.3.1 Variable Description. We model the spread of infections by a
sequence of temporal hypergraphs, H, Hy, ...Hr with T timesteps.
Hypergraph H; models whether the N nodes (Patients, HCWs and
Locations) interacted with each other at that timestep ¢. Each hyper-
edge hi within H; indicates whether the nodes present within that
hyperedge interacted in a group setting at time ¢. Consequently,
we can express each hyperedge as a subgraph or as a binary ad-
jacency matrix Ai‘ where Af}(i, j) = 1 indicates that i and j inter-
acted with each other in hyperedge h at time ¢ and Ai’(i, j)=0
indicates otherwise. The notation used here is almost identical to
HETEROGENEOUS-GRAPH-SIS. The only change is that we add a
superscript h to indicate the corresponding variable for each hyper-

edge.

3.3.2  Procedure Description. Like in HETEROGENEOUS-GRAPH-SIS,
we define pathogen transfer matrices. However, as we are dealing
with hypergraphs, we need to define it for each hyperedge. Subse-
quently, we again compute the load accumulated on each node like
in HETEROGENEOUS-GRAPH-SIS, but here we additionally discount
the load accumulated across each hyperedge with the function g.
This is to account for the nonlinear pathogen. This allows us to
model the loss of the pathogen between various group interac-
tions. After the new loads are computed, patients undergo state
transitions stochastically.

4 THEORETICAL EQUIVALENCY BETWEEN
THE TWO MODELS
Both the HETEROGENEOUS-GRAPH-SIS and the HETEROGENEOUS-

HYPERGRAPH-SIS are quite similar to each other. The following
results when taken together clearly show that HETEROGENEOUS-
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In simpler words, the transfer ratio for the two nodes across
hyperedge h depends on the graph transfer ratio, g~!, the pathogen
load and the number of hyperedges the two nodes appear in.

Proof Sketch: At time ¢ assume that pathogen loads are equal for
both the hypergraph model and graph model. Then, inductively
solve for parameters (r and g) needed to make pathogen loads at
time t + 1 equal.

Theorem 1 shows that HETEROGENEOUS-HYPERGRAPH-SIS is
equivalent to HETEROGENEOUS-GRAPH-SIS when g is linear. This
shows that the hypergraph model can do whatever the graph model
can do.

Theorem 2, shows a similar equivalence between the two mod-
els. However, assuming that the two models are equivalent here
is false. This is due to the presence of the pathogen load (I;) in
the equivalence term. In both procedures, the pathogen load is not
known beforehand when we run the simulation. This shows that
HETEROGENEOUS-GRAPH-SIS is NOT equivalent to HETEROGENEOUS-
HYPERGRAPH-SIS when g is nonlinear. The reason why the pathogen
load appears is due to the nonlinear function g which does not allow
the I; (j) to be cancelled out. It has been shown that if spreading is
nonlinear, hyperedges are more influential seeds than individual
nodes [10]. Here however, nonlinearity ensures that HETEROGENEOUS-

HYPERGRAPH-SIS is more powerful and expressive than HETEROGENEOUS-

GRrAPH-SIS.
Now that we know that HETEROGENEOUS-HYPERGRAPH-SIS is
more powerful, we need to evaluate it experimentally.

5 EXPERIMENTS

5.1 Experimental Setup

5.1.1 Dataset. The dataset that we use for the following experi-
ments is the Lyon Hospital Dataset [12]. This dataset was collected
from 29 patients and 46 HCWs in Lyon, France. For five days, each
person’s location was tracked using wearable RFID sensors and two
agents were said to be in contact if they were in close proximity
with each other for more than 20 seconds.

HyPERGRAPH-SIS is far more expressive and powerful than HETEROGENEOU$- 1.2 Graph Construction. We construct a graph for each day in

GraPH-SIS.

In both the following theorems, for the sake of simplicity we
assume that 7;;,p, = 7;j;p,Yh1, h2 € H;. This is because there would
be far too many variables to calibrate over if we have different
transfer ratios for each hyperedges. Moreover, in the proofs for
these theorems, we inductively ensure that the load vector (I;)
remains the same across both models at each timestep.

THEOREM 1 (LINEAR EQUIVALENCE). Ifg is linear, HETEROGENEOUS-
GRAPH-SIS and HETEROGENEOUS-HYPERGRAPH-SIS are equivalent if
. .. _ Tijt
andonlyif Vi,j €V, 1jjp = Tjt
In simpler words, the transfer ratio for the two nodes across
hyperedge h depends only on the graph transfer ratio and the

number of hyperedges the two nodes appear in.

THEOREM 2 (NONLINEAR EQUIVALENCE). If g is nonlinear, then
HETEROGENEOUS-GRAPH-SIS and HETEROGENEOUS-HYPERGRAPH-SIS
are equivalent if and only if Vi, j € V 15, = g_l(%;t(])) [ 1:(j)
and g is invertible.

question. For a given day, for each interaction between agents, we
add an edge between the agent nodes. As we do not have any in-
formation about the locations where these interactions took place,
we simply add a placeholder location node for each separate inter-
action.

5.1.3 Hypergraph Construction. We construct a hypergraph for
each day in question. For a given day, if multiple agents interact
with each other within the same timeframe, we assume that they
have interacted with each other and create a hyperedge with all of
the agents present and a separate dummy location node.

5.1.4 Model Calibration. We calibrate our model using the ABCpy
RejectionABC backend [4]. As we only have five days of graphs, we
repeat our graphs/hypergraphs for a total of 35 times in sequence.
Moreover, we calibrate on weekly average active case counts i.e.
the current active infections as the calibration is too brittle other-
wise. The parameters that are calibrated for both procedures are
a, B, § and all of the 7s. For HETEROGENEOUs-HYPERGRAPH-SIS we
additionally calibrate g between [0, 1]. Like in Section 4, we assume
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Figure 1: Sample Trace Data and their corresponding Hypergraph and Graph representations
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Figure 2: Plots comparing 100 runs of the best cali-
brated HETEROGENEOUS-GRAPH-SIS, HETEROGENEOUS-
HYPERGRAPH-SIS against the ground truth average active
case counts

a single set of rs for the entire simulation. We calibrate with a
threshold € = 1.

5.1.5 Aggregate Comparisons. For this experiment, we will be com-
paring the relative performances of the graph and the hypergraph
model on two different synthetic active case count datasets. The
two datasets are described as High Variance and Low Variance
respectively.

| Trace | 2-MopE-GraPH-SIS [ 2-MoDE-HYPERGRAPH-SIS |
High Variance 0.436096 0.351075
Low Variance 0.062750 0.132840

Table 2: Average RMSE for the best 2-MoDE-GRAPH-SIS and
2-MoDE-HYPERGRAPH-SIS models against the ground truth
average active cases

5.1.6  Synthetic Case Count Generation. As we did not have access
to actual case counts, we were forced to approximate real life HAI
case counts. From conversations with other colleagues, we learned
that real life weekly active cases could either be low or high variance.
Consequently, we formulated such data to test our hypergraph
model on.

5.2 Results

From Figure 2a) we can clearly see that HETEROGENEOUS-HYPERGRAPH-
SIS models the High Variance ground truth significantly better than
HETEROGENEOUS-GRAPH-SIS. This is because HETEROGENEOUS-
HYPERGRAPH-SIS has additional degrees of freedom to manipu-
late the threshold for g. This allows it to explore nonlinearity
that HETEROGENEOUS-GRAPH-SIS cannot. However, the variance
is significantly more given that the 95% CI for HETEROGENEOUS-
HYPERGRAPH-SIS is almost 1.5xs larger than HETEROGENEOUS-GRAPH-
SIS. This is to be expected given the greater number of parame-
ters. From Table 2, we can see that not only is HETEROGENEOUS-
HyPERGRAPH-SIS able to capture the various trends of the ground
truth over time, but is also able to achieve a better RMSE.

From Figure 2b), we see that HETEROGENEOUS-HYPERGRAPH-SIS
is somewhat able to model the trends in the ground truth whereas
HETEROGENEOUS-GRAPH-SIS fails to capture these trends. Again
HETEROGENEOUS-HYPERGRAPH-SIS has more variance reflecting
the same trend from Figure 2a). However, here, HETEROGENEOUS-
HYPERGRAPH-SIS has a higher RMSE than HETEROGENEOUS-GRAPH-
SIS. This is likely due to the fact that the peaks in the ground truth
are not large enough to impact the RMSE significantly enough.

6 CONCLUDING REMARKS AND FUTURE
WORK

In this work, we have successfully been able to introduce a new
hypergraph based model Heterogeneous-Hypergraph-SIS that has
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been shown in our preliminary theoretical and experimental results
to be more expressive than standard graph based models.

Though this work is promising, it is still in the preliminary stages
and we still have to perform more experiments to comprehensively
show that hypergraphs model HAIs better than graphs. In the future,
we plan on expanding our scope of experiments to real life UVA
hospital data.
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