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Abstract1

DNA sequencing data continues to progress towards longer reads with increasingly lower sequencing2

error rates. We focus on the critical problem of mapping, or aligning, low-divergence sequences3

from long reads (e.g., PacBio HiFi) to a reference genome, which poses challenges in terms of4

accuracy and computational resources when using cutting-edge read mapping approaches that are5

designed for all types of alignments. A natural idea would be to optimize efficiency with longer6

seeds to reduce the probability of extraneous matches; however, contiguous exact seeds quickly7

reach a sensitivity limit. We introduce mapquik, a novel strategy that creates accurate longer seeds8

by anchoring alignments through matches of k consecutively-sampled minimizers (k-min-mers) and9

only indexing k-min-mers that occur once in the reference genome, thereby unlocking ultra-fast10

mapping while retaining high sensitivity. We demonstrate that mapquik significantly accelerates11

the seeding and chaining steps — fundamental bottlenecks to read mapping — for both the human12

and maize genomes with > 96% sensitivity and near-perfect specificity. On the human genome,13

for both real and simulated reads, mapquik achieves a 37× speed-up over the state-of-the-art tool14

minimap2, and on the maize genome, a 410× speed-up over minimap2, making mapquik the fastest15

mapper to date. These accelerations are enabled not only from minimizer-space seeding but also a16

novel heuristic O(n) pseudo-chaining algorithm, which improves upon the long-standing O(n logn)17

bound. Minimizer-space computation builds the foundation for achieving real-time analysis of18

long-read sequencing data.19
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Introduction20

Recent advances in DNA sequencing enable the rapid production of long reads with low error rates;21

for example, Pacific Biosciences (PacBio) HiFi reads are 10 to 25 kbp in length with a ≤ 1% error22

rate. High-quality long reads have been used to accurately assemble genomes (Kolmogorov et al.23

2019; Nurk et al. 2020; Ekim et al. 2021; Bankevich et al. 2022); complete the human genome (Nurk24

et al. 2022); accurately detect small variants in challenging genomic regions (Olson et al. 2022); and25

further elucidate the landscape of large structural variants in human genomes (Denti et al. 2022).26

Critical to these successes are algorithms that perform genomic data analysis, such as reconstructing27

a reference from reads (genome assembly) (Logsdon et al. 2020), or mapping reads to a reference28

genome (read mapping) (Alser et al. 2021). With up to hundreds of gigabytes of sequenced data29

per sample, analysis algorithms need to balance efficiency with high sensitivity and accuracy (the30

percentage of reads mapped correctly) (Berger and Yu 2022), which is especially critical in rapid31

sequencing-to-diagnostics (Owen et al. 2022; Galey et al. 2022).32

We recently introduced the concept of minimizer-space computation (Ekim et al. 2021), where33

only a small fraction of the sequenced bases are retained as a latent representation of the sequencing34

data, enabling orders of magnitude improvements in efficiency without loss of accuracy. Minimizers35

are sequences that are selected under some local or global minimum criteria (Roberts et al. 2004;36

Schleimer et al. 2003), similar to locally consistent parsing (Şahinalp and Vishkin 1996). We37

applied the minimizer-space concept to perform genome assembly of long and accurate reads in38

minutes instead of hours — even for Human, and hypothesized that other types of genome analysis39

tasks would benefit from it in the future (Ekim et al. 2021). We now pursue the intuition that40

read mapping would also be amenable to minimizer-space computation, but there are multiple41

algorithmic challenges to overcome due to the repetitive nature of genomes, biological variation42

between samples and references, and sizable input data.43

Two cornerstones of read alignment/mapping algorithms — ubiquitous in sequence analysis44

pipelines — are the seeding and chaining steps, where each read is locally placed at a homologous45

location in a reference genome. Seeding is carried out by finding pairs of matching seeds, which are46

snippets of DNA with high-confidence (exact or inexact) matches between a query and a reference47
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genome. Seeds are initial matches that serve as anchoring points of alignments: They allow a48

challenging instance to be split into a set of easier sub-instances by aligning only the shorter49

intervals in-between seeds. In the short-read era, state-of-the-art alignment algorithms (e.g., BWA-50

MEM (H Li 2013), Bowtie2 (Langmead and Salzberg 2012), and CORA (Yörükoğlu et al. 2016; Shajii51

et al. 2021) typically relied on finding all possible seeds using a full-text index of the reference52

genome. For long reads, there has been a recent breakthrough by sampling and indexing only a53

relatively small number of short potential seeds from the reference genome, which has led to faster54

and more accurate mapping tools, e.g., minimap2 (H Li 2018) and Winnowmap2 (Jain et al. 2022b).55

Chaining consists of finding maximal ordered subsets of seeds that all agree on a certain genomic56

location (Jain et al. 2022a); seeds often have spurious matches due to their short lengths.57

However, even the most recent long-read alignment tools are bottlenecks in analysis pipelines (Berger58

and Yu 2022). For instance, the popular minimap2 software requires 12 CPU hours to map a typi-59

cal PacBio HiFi dataset to the human genome, and Winnowmap2 requires 15 CPU days, preventing60

both real-time analysis of sequencing data (Loose et al. 2016) and efficient re-analysis of previously-61

sequenced data collections (Edgar et al. 2022). A significant part of the minimap2 and Winnowmap262

running times are in their seeding and chaining steps (Kalikar et al. 2022). These state-of-the-art63

long-read alignment tools are sensitive and accurate, but their underlying seed constructs (k-mers)64

are tailored to noisy reads. These small seed sizes induce longer computation times due to the65

multiple potential mapping locations of seeds that need to be examined and filtered out. Re-66

cent advances in short-read alignment methods have demonstrated that 98% of many organism’s67

genomes are non-repetitive and can be uniquely aligned to with longer seeds (Edgar 2020). There-68

fore, it seems natural to explore the use of longer seeds also in long reads: this idea is at the heart69

of our approach.70

Here, we provide a highly efficient and accurate read mapping tool for state-of-the-art and low-71

error long-read data. We introduce mapquik, which instead of using a single minimizer as a seed72

for a reference sequence (e.g., minimap2), builds accurate longer seeds by anchoring alignments73

through matches of k consecutively-sampled minimizers (k-min-mers). Our approach borrows from74

natural language processing where the tokens of the k-mers are the minimizers instead of base-75
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pair letters. We asked whether long-read mapping can be sped up by newly substituting k-mer76

seeds with k-min-mers that occur uniquely in the genome. In this work, we evaluate the extent to77

which k-min-mers can act as suitable seeds for accurate long-read alignment, and the performance78

of mapquik in making use of them for HiFi-read alignment. Our work represents the promise of79

unique, inexact seeds, such as k-min-mers, for ultra-fast long-read mapping and beyond.80

Related work81

minimap2 (H Li 2018) is a de facto standard for mapping accurate long reads to a reference genome.82

It applies a seed-and-extend strategy. Specifically, seeds are short k-mer minimizers, i.e., sequences83

of length k that are lexicographically-minimal within a window of w consecutive k-mers. The84

extension step is performed using an optimized implementation of the Needleman-Wunsch algo-85

rithm (Needleman and Wunsch 1970) with an affine gap penalty. Several attempts have been86

made to improve mapping performance compared to minimap2. MashMap (Jain et al. 2017) and87

MashMap2 (Jain et al. 2018) compute read-versus-genome and genome-versus-genome mappings88

without an alignment step, and use 5× less memory than minimap2 at the expense of longer run-89

time. In very recent work developed concurrently to ours, the aligner BLEND (Fırtına et al. 2023)90

uses strobemers (Sahlin 2021) and locality-sensitive hashing (inspired by Şahinalp and Vishkin91

1996) to speed up minimap2 end-to-end by about 2×; however, their seeding approach is integrated92

into minimap2’s codebase, which is implemented and optimized for exact short seeds (minimizers93

by Roberts et al. 2004), thus suffering from similar limitations (for the sake of completeness, we94

compare to BLEND in Results).95

Other works have focused on improving the sensitivity and accuracy of minimap2, at the expense96

of speed. Winnowmap (Jain et al. 2020) and Winnowmap2 (Jain et al. 2022b) use weighted minimizer97

sampling and minimal confidently-alignable substrings to better align in highly-repetitive regions,98

e.g., centromeres of chromosomes. Winnowmap2 is around 15× slower than minimap2 end-to-end,99

yet uses around 3× less memory.100

In recent years, many research groups focusing on low-level and/or hardware-specific accelera-101

tion have proposed ways to accelerate minimap2. mm2-fast (Kalikar et al. 2022), a CPU acceleration102
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of minimap2 developed by Intel, achieved a 1.5× acceleration over minimap2, end-to-end on HiFi103

reads. The bulk of the speed-up was obtained in the alignment phase, not in the seeding-chaining104

phase (Figure 1 in Kalikar et al. 2022). The domain-specific language Seq was developed to speed105

up genomic sequence analysis, and achieved two orders of magnitude improvement in the homology106

table reconstruction of the CORA read mapper (Yörükoğlu et al. 2016; Shajii et al. 2021).107

There also exist efficient implementations that employ specialized hardware. mm2-ax (Sadasivan108

et al. 2023), a recent GPU acceleration of minimap2 developed by NVIDIA, achieved 2.5× to 5.4×109

acceleration over mm2-fast in the chaining step. Guo et al. also proposed GPU and FPGA110

accelerations of minimap2 that respectively achieve 7× and 28× speed-ups on the distinct task of111

detecting pairwise read overlaps (Guo et al. 2019). These specialized hardware accelerators are112

outside the scope of this work. Methods that accelerate short-read alignment, e.g., using cloud113

computing resources (Schatz 2009), or optimized k-mer indexing (Almodaresi et al. 2021) are also114

not considered here, given that they do not support long reads.115

Results116

Why use k-min-mers as alignment seeds instead of k-mers?117

To motivate why k-min-mers are superior alignment seeds, compared to k-mers, for accurate long118

reads, we formulate and verify the following two hypotheses: (1) Long exact k-mer seeds are119

inadequate for accurate long-read alignment due to lack of sensitivity, whereas (2) k-min-mers are120

adequate and also offer near-perfect specificity. An empirical analysis on actual HiFi reads with121

average error rate of 0.1% over the entire human genome justifies these observations (Figure 1).122

In the experiments that follow, we compared Jellyfish (Marçais and Kingsford 2011), DSK (Rizk123

et al. 2013), rust-mdbg (Ekim et al. 2021) and mapquik. All code and data are available in the124

mapquik repository (experiments/figure-seeds/ folder).125

To assess hypothesis (1), we examined the specificity of k-mers and k-min-mers as seeds (Fig-126

ure 1, left panel) by recording their number of occurrences in the CHM13v2.0 as a proxy for the127

number of potential mapping locations. The x-axis reports the seed weight, which for k-mers cor-128
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require a subsequent chaining step, given the low number of false matches to remove. This is in142

stark contrast with existing k-mer-based algorithms, for which colinear chaining removes hundreds143

of false seed matches per read.144

Overview of minimizer-space read mapping with mapquik145

To allow computation in minimizer space (Figure 2), we here develop mapquik, a read mapper based146

on k-min-mer seeds. mapquik follows a seed-and-extend strategy used by most read mappers, with147

two exceptions: (1) Only the k-min-mers that appear exactly once in all reference sequences are148

indexed (Figure 2E-F), and (2) unlike a typical colinear chaining procedure that makes use of a149

dynamic programming formulation (Figure 2A-D), e.g., in minimap2 (H Li 2018), a linear-time150

recursive extension step is performed for each initial k-min-mer match between the query and151

the reference, followed by a novel, provably linear-time step we call pseudo-chaining that ensures152

k-min-mer matches are approximately colinear. Figure 2G-I depicts the idea behind our pseudo-153

chaining algorithm. Given a set of maximal k-min-mer matches, we chain only the k-min-mer154

matches that are colinear with the match with the highest score (k-min-mer count). Unlike the155

DP formulations used in regular colinear chaining, this step can be performed in linear time by156

identifying the k-min-mer match with the highest score, and checking colinearity with the other157

matches through a linear scan. Note that the matches in the output chain after this step are not158

guaranteed to be pairwise colinear ; however, thanks to the low number of k-min-mer matches,159

pseudo-chaining performs adequately in practice while offering a substantial speed-up over classical160

colinear chaining. The philosophy behind these drastic changes is that mapping long and accurate161

reads to close reference genomes is “easy enough” that long minimizer-space seeds are sufficient for162

the vast majority of the reads. The remaining few unmapped reads can in principle be fed to a163

more sensitive, albeit slower, read mapper such as minimap2 or Winnowmap2 (see Discussion).164

Datasets and mapping evaluation165

We used the complete human reference genome CHM13v2.0 for our evaluations. We constructed166

a simulated dataset of long reads with 99% base-level accuracy and 24 kbp mean length using167
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Figure 2. Overview of the long-read mapping pipeline using mapquik and comparison with state-
of-the-art methods using minimizers as seeds. State-of-the-art read mappers such as minimap2 and
Winnowmap2 (top, pink shaded) build an index for a reference sequence by computing window minimizers (k =
3, w = 5) (a), and storing the positions of the minimizers in the index (b). In order to map a query sequence
using the reference index (top right, nucleotide C in blue denotes a sequencing error), mappers compute the
minimizers on the query sequence (c), and find matches between the minimizers of the query and those
in the reference index. Once minimizer matches are found, minimap2 and Winnowmap2 perform a colinear
chaining step to output a high-scoring set of matches, using dynamic programming (d). In contrast, mapquik
(bottom, green shaded) indexes reference sequences by generating k-min-mers, k consecutive, randomly-
selected minimizers of length ` (k = 3, ` = 2) (e), and storing only the k-min-mers that appear exactly
once in the reference (f). mapquik stores the start and end position of each k-min-mer, along with the
order in which the k-min-mers appear. To map a query sequence using the k-min-mer index, mapquik first
obtains matches between the query and the reference index by querying the index with each query k-min-mer
(g). k-min-mer matches are extended if the next immediate pair of k-min-mers also match (h). Instead of
a colinear chaining step, mapquik performs a linear-time pseudo-chaining step to locate matches that are
colinear with the match with the highest number of k-min-mers (i).
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pbsim (Ono et al. 2013), mimicking HiFi reads at 10× genome coverage. We also used real HiFi168

reads for the HG002 individual corrected using DeepConsensus (Baid et al. 2022), at 30× genome169

coverage. For maize, we simulated reads from the maize RefSeq genome (GCF_902167145.1) at 30×170

coverage using the same protocol as the human simulated reads. mapquik was run with default171

parameters (k = 5, ` = 31, δ = 0.01, β = 4, µ = 11, ε = 2000); we provide an extensive evaluation172

of the parameters k, `, and δ in Supplemental Note S8 and Supplemental Figure S3, and of β and173

µ in Figure 3. All other tools were run with default parameters in HiFi mapping mode. Command174

lines and versions are given in Supplemental Note S2.175

For simulated reads, we assessed mapping accuracy using the mapeval command of the paftools176

software distributed in the minimap2 package. A read is considered to be correctly mapped if the177

intersection between the true and mapped reference intervals is at least 10% of their union. For178

real reads, we evaluated the concordance between the alignments of minimap2 and mapquik using179

a custom script (experiments/intersect_pafs.py in the GitHub repository and Supplemental180

Code), similar to mapeval. In our evaluation of both the simulated and real datasets, we focus181

on reads of the highest mapping quality (Q60). Mappers report a mapping quality metric for182

each read, indicating their confidence that the read is mapped at the right location, as an integer183

between 0 and 60 where 60 corresponds to the highest confidence. Reads with low mapping quality184

are less frequent and are often removed in downstream applications (e.g., the popular variant185

calling pipeline GATK (McKenna et al. 2010) filters out reads with mapQ ≤ 20 by default). With186

minimap2 results, mapeval reports only two mapping quality groups (Q0 and Q60), with no value187

in-between. With mapquik, we report a mapQ of 60 if the output pseudo-chain has score ≥ µ or188

length ≥ β, and 0 otherwise.189

mapquik achieves faster and accurate mapping of HiFi reads to the human and190

maize genomes191

Table 1 demonstrates the enhanced overall performance of mapquik and other evaluated methods192

(minimap2, mm2-fast, Winnowmap2, and concurrently-developed BLEND) on mapping simulated and193

real PacBio HiFi reads to the human and maize genomes. We demonstrate mapquik’s 37× and 975×194
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relative speedup over state-of-the-art mapping methods minimap2 and Winnowmap2, respectively,195

for both simulated and real HiFi reads from the human genome. We further apply mapquik to196

mapping simulated HiFi reads from the highly-repetitive maize genome, and demonstrate a 410×197

speed-up over minimap2, with remarkably no loss of sensitivity nor accuracy.198

On the simulated human dataset, mapquik is 54× faster than minimap2. mapquik maps 95.8%199

of reads at a mapQ score of 60 (Q60), indicating a high-confidence match, with 2 errors. In200

contrast, other mappers map 96.1% to 98.6% of reads at Q60 with also no/almost no error. On201

the real dataset from HG002, a similar trend is observed. mapquik outperforms all mappers except202

Winnowmap2 in terms of percentage of reads mapped (96.1%), as opposed to 92.2 to 97.9% for203

the other tools. The concordance of minimap2 and mapquik mappings is 99.8% on the Q60 reads204

mapped by minimap2. In Supplemental Table S1, we provide the fraction of the reference genome205

covered by each tool for all experiments. All mappers required less than 14 gigabytes of memory206

on the human genome (MashMap2 was not further evaluated as it took over 13 wall-clock hours on207

the simulated human dataset, and does not output mapping quality scores.)208

A highlight of mapquik is a 410× mapping speed-up compared to minimap2 on the maize209

genome. Remarkably, this speed-up comes with near-perfect precision for mapquik and no loss of210

sensitivity, as mapquik reports the second highest number of mapped reads at mapping quality 60211

across all tools after Winnowmap2. Of note, Winnowmap2 has faster performance on maize than the212

human genome and than that of minimap2 on the maize genome.213

We further investigated why some reads were mapped at lower qualities than Q60 or were not214

mapped at all. Out of 58,004 reads from the simulated human dataset that were not mapped at Q60215

by mapquik, 94.4% of these reads intersected with centromeric/satellite regions of chromosomes, as216

reported by BEDTools (Quinlan and Hall 2010) using the chm13v2.0_censat_v2.0.bed annotation217

from the Telomere-to-Telomere (T2T) consortium. Thus, the vast majority of reads not aligned at218

Q60 correspond to challenging genomic regions that would likely have been masked in downstream219

analyses, making their lack of alignment potentially inconsequential. We hypothesize that similar220

conclusions hold on real data, but this cannot be ascertained as the true reference interval of each221

read is not known.222
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Tool name Mapped Q60 Q < 60 or missed Wrong Q60 Memory (GB) Time (s) Speed-up
CHM13 10× coverage simulated 24 kbp HiFi reads

minimap2 1,340,993 27,819 0 13.1 978 1x
mm2-fast 1,340,993 27,819 0 13.1 805 1.21x
Winnowmap2 1,350,016 18,796 6 11.8 21,009 0.05x
BLEND 1,315,676 53,136 1 6.8 188 5.2x
mapquik 1,310,808 58,004 2 12.2 18 54.33x

HG002 30× coverage real 24 kbp HiFi reads (DeepConsensus)
minimap2 3,611,990 303,304 N/A 10.8 3,146 1x
mm2-fast 3,611,983 303,311 N/A 10.8 2,693 1.17x
Winnowmap2 3,835,225 80,069 N/A 8.8 83,180 0.04x
BLEND 3,708,582 206,712 N/A 6.0 626 5.03x
mapquik 3,760,677 154,617 N/A 12.1 85 37.01x

Maize 30× coverage simulated 24 kbp HiFi reads
minimap2 2,807,058 58,730 1 15.1 17,194 1x
mm2-fast 2,807,059 58,729 1 15.0 14,693 1.17x
Winnowmap2 2,854,041 11,747 93 14.1 15,376 1.12x
BLEND 2,836,244 29,544 5 4.8 349 49.27x
mapquik 2,837,524 28,264 2 13.1 42 409.38x

Table 1. Mapping statistics of mapquik and other evaluated methods (minimap2, mm2-fast, Winnowmap2,
BLEND) on simulated and real HiFi human reads, and simulated maize HiFi reads. Only reads with reported
mapping quality over 60 were included in columns 1 and 3. Incorrectly-aligned reads were detected using
paftools mapeval. “Time” column consists of wall-clock times and includes on-the-fly reference indexing.
Reads were ungzipped. Tools were run on 10 threads. For Winnowmap2, the time for reference k-mer counting
(meryl) was not included. The last column indicates the speed-up over minimap2 taken as a baseline.

Efficient genome indexing using k-min-mers223

Table 2 demonstrates the computing resources necessary to index a human genome for mapquik as224

compared to minimap2, mm2-fast, Winnowmap2 and the concurrently-developed BLEND. Although225

indexes created by the alternative mapping methods to mapquik are different in nature, a similar226

order of magnitude of numbers of sequences (tens to hundreds of millions) end up being indexed.227

minimap2 and mm2-fast index positions of windowed minimizers. Those minimizers are different228

from the (`, δ)-minimizers defined in this article. Winnowmap2 indexes weighted minimizers to229

increase the accuracy of seeds. BLEND (in HiFi mapping mode) indexes a locality-sensitive seed230

built from strobemers (Sahlin 2021), which are chains of consecutive windowed minimizers (Roberts231

10

 Cold Spring Harbor Laboratory Press on August 4, 2023 - Published by genome.cshlp.orgDownloaded from 



et al. 2004), different in nature from k-min-mers.232

mapquik indexing is 9× faster than minimap2 and 6× faster than BLEND. The mapquik seeding233

strategy provides ultra-fast construction of an index that records unique k-min-mer positions across234

the reference genome. This index is of independent interest, for example, for indexing larger235

databases such as RefSeq (W Li et al. 2021). We anticipate that this index will have other uses236

beyond long-read mapping, such as large-scale sequence search. We have already demonstrated the237

usefulness of performing k-min-mer search in anti-microbial resistance tracking (Ekim et al. 2021),238

albeit in earlier work that did not benefit from the speed-up of such an index presented here.239

Tool name Indexed sequences Singletons Memory (GB) Wall-clock (seconds)
minimap2 215,125,355 92% 10.1 33
mm2-fast 215,125,355 92% 10.1 28

Winnowmap2 23,616,987 41% 2.6 64
BLEND 111,799,540 97% 5.3 23

mapquik 39,603,738 100% 12.1 3.4

Table 2. Indexing a reference human genome using mapquik and other evaluated methods (minimap2,
mm2-fast, Winnowmap2, BLEND). The CHM13v2.0 reference sequence was given as input to each tool. Tools
were run using 10 threads with warm cache, i.e., the reference genome file was already pre-loaded in memory.
The “Indexed sequences” column indicates the number of distinct sequences that are keys of the final index.
The “Singletons” column indicates how many indexed sequences have only one position in the reference
genome.

Comparison with BLEND240

While concurrently-developed, we compare to BLEND in Tables 1 and 2 for completeness, and demon-241

strate that mapquik achieves a 7× speed-up overall (indexing plus chaining) over BLEND on human242

data.243

Robustness of mapping shorter reads with mapquik244

We next asked how mapquik would perform on smaller reads than those offered by HiFi, which are245

currently available for lengths ranging from 10 kbp to 25 kbp. Future technologies may also offer246

long high-accuracy reads, although HiFi is currently the only high-throughput solution available.247

To determine whether mapquik is also suitable for mapping HiFi reads shorter than 24 kbp, we248

tested mapquik on other datasets with overall shorter reads using both real and simulated data.249

11

 Cold Spring Harbor Laboratory Press on August 4, 2023 - Published by genome.cshlp.orgDownloaded from 



To assess mapquik’s robustness in mapping reads of varying length, we ran mapquik on real HG002250

HiFi 16 kbp length reads from DeepConsensus (Baid et al. 2022), using identical parameters as251

in the run with 24 kbp read length. mapquik’s performance on 16 kbp reads is strikingly similar252

to that on 24 kbp reads: the running time increased by only 4%, memory usage remains nearly253

identical, and the concordance with minimap2 remains 99.8%.254

To determine if mapquik is still robust to larger variation in read length, we simulated seven255

samples with 10× coverage from CHM13, using the same protocol, except that a different average256

read length is selected for each sample (from 2 kbp to 14 kbp, by 2 kbp increments). Supplemental257

Figure S2 reports that both minimap2 and mapquik map over 93% of the reads at Q60 in sam-258

ples having read lengths of 10 kbp or higher, remarkably without tuning their parameters. Both259

minimap2 and mapquik are challenged by read lengths of 2 kbp; with their default HiFi parame-260

ters, they respectively map 89% and 27% of the reads at Q60. Note that mapquik maps 63% of261

the remaining 2 kbp reads at Q0, with a low mapping error rate (1%) as reported by mapeval. We262

expect mapquik has more difficulty mapping these 2 kbp reads due to its longer seed weight than263

minimap2.264

Limitations of our study265

We evaluated the limitations of our method with respect to several aspects: the choice of k, inter-266

nal cut-off parameters, and the requirement of having low divergence between the reads and the267

reference.268

As seen in Table 1, mapquik is unable to map some of the reads, mostly in low-complexity regions269

of the genome, partially because no indexed k-min-mer exists, but also because of the lack of a long270

enough (i.e., high-scoring) pseudo-chain. We examined the magnitude of the second effect. Figure 3271

(left) shows the total number of reads (y-axis) whose highest pseudo-chain score is given on the272

x-axis. Read numbers follow approximately a Gaussian distribution, confirming the soundness of273

filtering out the leftmost tail containing erroneous pseudo-chains. Figure 3 (right) depicts filtering274

thresholds by showing the percentage of reads mapped correctly (y-axis) at each pseudo-chain score275

per read (x-axis), depending on the choice of k. The monotonically-increasing relationship suggests276
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only the long minimizer-space seeds (k-min-mers) that occur uniquely in the genome is sufficient289

for sensitive and specific mapping. By leveraging the high specificity of these seeds, we are able290

to devise a provably O(n) time (heuristic) pseudo-chaining algorithm, which improves upon the291

subsequent best O(n logn) runtime of all other known colinear chaining methods (Jain et al. 2022a),292

without loss of performance in practice.293

We previously used minimizer-space computation for fast and accurate genome assembly; how-294

ever, long-read mapping is entirely different as no de Bruijn graph is constructed. This work thus295

establishes the versatility of k-min-mers in algorithms for biological sequences. As sequencing reads296

are getting longer and more accurate, we anticipate that our approach will particularly benefit from297

technological advances: longer reads will be increasingly easier to map with minimizer-space seeds.298

A potential concern with providing a faster alignment method is the loss of sensitivity in “hard-299

to-map” regions, such as centromeres or structural variant breakpoints. In Supplemental Note S9300

and Supplemental Figures S4 and S5, we investigated the missed genomic regions by both minimap2301

and mapquik and found that they overlap by more than 90%. One could partially mitigate this302

concern by performing a conservative, but fast alignment of reads using mapquik, and remapping303

the unmapped reads with minimap2 or Winnowmap2 to increase alignment sensitivity, while keeping304

the efficiency of mapquik. Another possible direction would be to use a pangenomic reference to305

provide more indexable k-min-mers.306

Future extensions of this work include implementing base-level alignment, which will allow307

the design of a complete single-nucleotide variant calling pipeline, as well as one with structural308

variant calling built on top of mapquik. Currently, mapquik is directly usable for quickly finding309

genomic positions of HiFi reads, which enables many downstream applications such as sorting reads310

by genome position, separating them by chromosome, filtering non-human reads, etc. Since the311

k-min-mer matches have k exact matches of minimizers of length `, only the regions in-between312

minimizers and in-between neighboring k-min-mer matches would need to be aligned, which po-313

tentially lowers both the memory usage and runtime of the alignment step. Another potential314

improvement to mapquik would be to refine the mapping quality scores, in light of the observa-315

tions made in Figure 3 that the pseudo-chain score reliably tracks mapping accuracy. We expect316
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minimizer-space computation to further mitigate challenges in other sequencing data analysis tasks,317

such as sequence-to-graph alignment, metagenomic binning, and similarity search.318

Methods319

Although Figure 2 and Algorithm 1 describe the steps of mapquik, we go into more detail below.

Algorithm 1 The mapquik algorithm
Input: A collection of reference sequences R and a collection of query sequences Q. We assume

global parameters k, `, δ, ε, µ, β, f , and ϕ are pre-defined.
Output: Query-to-reference mappings S.

1: function Map(R,Q)
2: I ← {} . Empty hash table of reference k-min-mers
3: L← {} . Empty hash table of sequence lengths
4: S ← {} . To store mapping results
5: for r ∈ R do
6: Xr ← Extract(r) . Extract k-min-mers from reference sequence into a list
7: L[rID]← |r| . Store length of r
8: for every xir ∈ Xr do
9: if ϕi

r is not a key in I then
10: I[ϕi

r]← (rID, sir, e
i
r, π

i
r, ir) . Record the reference ID rID and tuple of xir

11: else I[ϕi
r]← ( ) . Assign empty entry

12: for q ∈ Q do
13: L[qID]← |q| . Store length of q
14: Xq ← Extract(q) . Extract k-min-mers from query sequence into a list
15: H ← Match(Xq, I, qID) . Generate maximal k-min-mer matches
16: S[q] ← PseudoChain(H, qID, L, ε, µ, β) . Pseudo-chain generated k-min-mer matches
17: return S

320

Methodological formalization321

For a fixed integer ` > 1, let f : Σ` 7→ [0, H] be a random hash function that maps strings of length322

` to integers between 0 and H. In practice, we use a 64-bit hash function. Moreover, we require323

f to be invariant with respect to reverse-complements, i.e., an `-mer and its reverse complement324

map to the same integer. For a density 0 < δ < 1, we define U`,δ as the set of all `-mers m with325

f(m) < δ ·H. We refer to the elements of U`,δ as (`, δ)-minimizers. Note that whether an `-mer is326

a (`, δ)-minimizer does not depend on any sequence besides the `-mer itself.327
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Let S be a sequence of length ≥ `. We define its minimizer-space representation MS as an328

ordered list of (`, δ)-minimizers that appear in S. Since the contents of U`,δ only depend on f , and329

as long as the same hash function f is used, MS will always be a subset of U`,δ. We omit S from330

the subscript when it is obvious from the context.331

Let M be a minimizer-space representation of S and let k > 0 be a fixed integer parameter.332

We define a k-min-mer xi of S as an ordered list of k consecutive minimizers in M starting from333

index i, i.e., xi = (mi, . . . ,mi+k−1). We denote the ordered list of all k-min-mers (x0, . . . , x|M |−k)334

of S as XS . We omit S from the subscript when it is obvious from the context.335

In order to avoid explicitly storing nucleotide sequences of minimizers, we use a random hash336

function ϕ that maps sequences of k `-mers to 64-bit hash values. We define ϕ so that it is invariant337

to reversing the order of the k-min-mer, i.e., ϕ(xi) = ϕ(rev(xi)), where rev(xi) denotes the list of338

minimizers of xi with the order reversed. This is achieved by hashing xi and rev(xi), and taking339

ϕ(xi) to be the minimum value.340

Then, instead of storing X as an ordered list of k-min-mer sequences, we store the ith k-min-mer341

xi of X as a tuple (i, ϕi, si, ei, πi), where342

• i is the rank of xi in X,343

• ϕi = ϕ(xi),344

• si and ei the nucleotide start and end positions of xi, i.e., the start position of minimizer mi345

and the end position of minimizer mi+k−1, respectively, on S,346

• πi a Boolean variable that evaluates to 1 if, in the construction of ϕ, the hash of rev(xi) was347

smaller than that of xi, and 0 otherwise.348

We call this the tuple of xi. When the sequence S is not obvious from the context, we add it as349

a subscript in the above notation, e.g., πi
S . The hash functions f and ϕ are instantiated prior to350

constructing the k-min-mer lists for the input sequences. We consistently use the same functions f351

and ϕ when selecting minimizers and consequently building k-min-mer lists for both the reference352

and query sequences throughout.353
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Indexing reference sequences354

The mapquik index I is a hash table that associates a k-min-mer x to its unique position in the355

reference genome, whether or not it appears reverse-complemented, and its rank in the list of k-356

min-mers X. As described in “Methodological formalization”, this information is represented by a357

tuple in the form (rID, si, ei, πi, i). We construct I using a two-pass approach. First, we call the358

Extract function. It builds the list X by a linear scan through the reference sequence, during359

which it identifies minimizers and outputs each k consecutive minimizers, together with their hash360

values. We use the same efficient algorithm as rust-mdbg (Ekim et al. 2021), which runs in O(|X|)361

time, so we do not include the pseudo-code for Extract here. Second, we load every entry of X362

into a hash table I, indexed by the hash value. In this step, we discard from I any k-min-mer that363

appears in more than one reference location. Therefore, the hash table holds a single value per364

distinct k-min-mer key.365

Locating and extending query-to-reference k-min-mer matches366

Informally, a k-min-mer match is a stretch of k-min-mer seeds which appear consecutively both in367

the reference and the query (under the hash function used). Note that all matches are unique, in368

the sense that all seed k-min-mers appear only once in the genome, by definition. Given a query369

q and a reference r, we formally define a match as a triple (i, j, c) such that 0 ≤ i ≤ |Xq| − c,370

0 ≤ j ≤ |Xr|−c, c ≥ 1, and, for all 0 ≤ c′ < c, ϕi+c′

q = ϕ
j+c′

r . A match (i, j, c) is said to be maximal371

if cannot be further extended to the right or left, i.e., (1) either i = 0, j = 0, or ϕi−1
q 6= ϕ

j−1
r , and372

(2) either i+ c = |Xq|, j + c = |Xr|, or ϕi+c
q 6= ϕ

j+c
r .373

For each query q, the mapquik algorithm first builds the list of k-min-mers Xq, sorted in increas-374

ing order of location (line 14). Then, it runs the Match routine (line 15), which finds all maximal375

matches between q and the reference. Match works by scanning through Xq and, for each seed376

x ∈ Xq, using the reference index I to see if x exists in the reference. If it does, then it marks377

the start of a match and proceeds to extend the match to the right as long as the seeds continue378

to match. Since we only have to query the index with the hash value of each k-min-mer in Xq,379

the extension procedure can be done during a single linear pass over the elements of Xq, and thus380
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takes O(|Xq|) time (assuming O(1) hashing, look-ups, and insertions). Care must be taken due to381

reverse complements, which can change the direction of matching, but we omit these details. For382

completeness, the full algorithm (Algorithm 2) and the proof of maximality of k-min-mer matches383

(Supplemental Note S7) are in Supplemental Material.384

In theory, generating a single 64-bit hash value for each unique k-min-mer could lead to hash385

collisions and, consequently, lead to false k-min-mer matches. However, since a k-min-mer match386

can only be extended with a consecutive k-min-mer match, k-min-mers that match an entry in the387

reference due to a hash collision are likely to be singletons and get filtered out in the pseudo-chaining388

step, with no decrease in final accuracy.389

From maximal k-min-mer matches to pseudo-chains390

Recall that k-min-mer matches are extended based solely on whether the next immediate k-min-391

mer of q matches the next immediate k-min-mer of r. However, k-min-mer matches on q might392

occur in multiple non-overlapping positions on r (due to sequencing errors or biological variation393

in q), i.e., for two matches (i, j, c) and (i′, j′, c′) between q and r, it is not necessarily true that394

|i− j| = |i′ − j′|.395

In order to output a list of matches that are likely to be true positives while avoiding a396

computationally-expensive dynamic programming procedure, mapquik uses a pseudo-chaining pro-397

cedure which finds k-min-mer matches between a query q and a reference r that are gap-bounded398

colinear, but not all pairwise colinear.399

Concretely, let h = (i, j, c) and h′ = (i′, j′, c′) be two matches, and consider the coordinates400

(sq, eq, π) and (sr, er, π) of respectively the first and last k-min-mers of h, and (s′q, e
′
q, π

′) and401

(s′r, e
′
r, π

′) for the k-min-mers of h′. Let g > 0 be a fixed-integer gap upper bound. We say that h402

and h′ are gap-bounded colinear if403

• the matches are on the same relative strand, i.e., π = π′,404

• the reference start positions of the matches agree with the order of the matches, i.e., if π = 0,405

sr < s′r; or if π = 1, s′r < sr, and406
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• the length of the gap between the two matches in the query is similar to that on the reference,407

i.e., if π = 0, |(s′q − eq)− (s′r − er)| < g; or if π = 1, |(s′q − eq)− (sr − e′r)| < g.408

This last gap length difference condition, on top of the traditional definition of colinearity (the409

first two conditions), ensures that the regions outside the matches are similar in length. A similar410

parameter (ε) is used in minimap (H Li 2016).411

Let H be the list of all maximal k-min-mer matches between a read q and a reference sequence412

r. We define a pseudo-chain Ψi as the list of all matches in H that are colinear with the ith match413

in H; we say that Ψi is anchored at i. Note that even though every match in Ψi is colinear with414

the ith match in H, it is not necessarily true that every pair of matches in Ψi are pairwise colinear,415

thus Ψi does not satisfy the criteria of chains as defined in other works (e.g., H Li 2018).416

The score of a pseudo-chain Ψi is the number of matching k-min-mers in Ψi, i.e.,

score(Ψi) =
∑

h∈Ψi

c(h)

where c(h) denotes the number of matching k-min-mers in match h. Since the maximal matches417

in Ψi are guaranteed to not share any query k-min-mers because both the start and end locations418

of each maximal match are distinct, the cumulative sum of the number of matching k-min-mers in419

each match in Ψi equals the number of total matching k-min-mers in Ψi.420

Computing high-scoring pseudo-chains in linear time421

We now introduce a novel algorithm for computing a single high-scoring pseudo-chain Ψ∗ for a query422

q given a list of maximal matches, and prove that it runs in O(n) time. The match extension step423

outputs a hash table H of maximal k-min-mer matches per reference, indexed by their reference424

identifier. In the pseudo-chaining step, however, the objective is to output a single list of matches425

between q and a single reference, even though H might contain matches between q and more than426

one reference sequence. We first initialize Ψ∗ = [ ], and iterate over the key-value tuples in H,427

processing each list of maximal matches Hq,r for a single reference r one by one. In every iteration,428

we obtain a candidate pseudo-chain Ψq,r from the list of maximal matches Hq,r by computing429
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the pseudo-chain anchored at the match in Hq,r with the highest number of matching k-min-430

mers. After computing Ψq,r, we compare its score to that of Ψ∗, and replace Ψ∗ with Ψq,r if431

score(Ψq,r) > score(Ψ∗). At the end of the loop, Ψ∗ will be the highest-scoring pseudo-chain432

out of all possible candidate pseudo-chains per reference sequence in H.433

Finally, if the pseudo-chain Ψ∗ has score ≥ µ or length ≥ β, where µ and β are user-defined434

parameters, we retrieve the query and reference coordinates of the region covered by the matches435

in Ψ∗. The final query and reference coordinates for a mapping between query q and reference r436

is computed by extending the start and end coordinates of the first and last matches in Ψ∗ to the437

length of the query. In Supplemental Material, Algorithm 3 provides a complete description of the438

pseudo-chaining procedure, and Algorithm 4 describes the coordinate computation step.439

Proof of pseudo-chaining algorithm’s complexity. The complexity of computing pseudo-440

chain Ψi for each read q is as follows. Let n be the total number of matches in H. To determine441

Ψ∗, each candidate pseudo-chain Ψq,r for a single reference sequence r needs to be computed.442

Computing a single pseudo-chain Ψq,r requires determining the match with the highest number443

of matching k-min-mers and comparing each match in Hq,r to this match, which can both be444

performed in Θ(|Hq,r|) time. Moreover, every single candidate pseudo-chain (for every reference445

in H) needs to be computed to determine Ψ∗. Then, the running time of the pseudo-chaining446

procedure is Θ(
∑

r∈H |Hq,r|). Note that |Hq,r| ≤ n, and the number of reference sequences that447

appear in H is upper bounded by the total number of reference sequences, which is O(1). Hence,448

the pseudo-chaining procedure runs in O(n) time, where n is the total number of matches in H.449

Note that colinear chaining (as implemented by state-of-the-art read mappers) has an asymp-450

totic complexity of O(n logn). We also implemented two alternative heuristics that (1) computes451

c pseudo-chains anchored at c matches with the highest number of k-min-mers (thus running in452

O(cn) time), and (2) sets c = n and computes all possible pseudo-chains (thus running in O(n2)453

time). However, we observed that the runtime of the O(n) pseudo-chaining procedure is faster in454

practice: In our tests, the O(n) pseudo-chaining procedure performed ∼ 20%−50% faster than the455

other heuristics, with little decrease in accuracy.456
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