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Abstract

DNA sequencing data continues to progress towards longer reads with increasingly lower sequencing
error rates. We focus on the critical problem of mapping, or aligning, low-divergence sequences
from long reads (e.g., PacBio HiFi) to a reference genome, which poses challenges in terms of
accuracy and computational resources when using cutting-edge read mapping approaches that are
designed for all types of alignments. A natural idea would be to optimize efficiency with longer
seeds to reduce the probability of extraneous matches; however, contiguous exact seeds quickly
reach a sensitivity limit. We introduce mapquik, a novel strategy that creates accurate longer seeds
by anchoring alignments through matches of k consecutively-sampled minimizers (k-min-mers) and
only indexing k-min-mers that occur once in the reference genome, thereby unlocking ultra-fast
mapping while retaining high sensitivity. We demonstrate that mapquik significantly accelerates
the seeding and chaining steps — fundamental bottlenecks to read mapping — for both the human
and maize genomes with > 96% sensitivity and near-perfect specificity. On the human genome,
for both real and simulated reads, mapquik achieves a 37x speed-up over the state-of-the-art tool
minimap2, and on the maize genome, a 410x speed-up over minimap2, making mapquik the fastest
mapper to date. These accelerations are enabled not only from minimizer-space seeding but also a
novel heuristic O(n) pseudo-chaining algorithm, which improves upon the long-standing O(nlogn)
bound. Minimizer-space computation builds the foundation for achieving real-time analysis of

long-read sequencing data.
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Introduction

Recent advances in DNA sequencing enable the rapid production of long reads with low error rates;
for example, Pacific Biosciences (PacBio) HiFi reads are 10 to 25 kbp in length with a < 1% error
rate. High-quality long reads have been used to accurately assemble genomes (Kolmogorov et al.
2019; Nurk et al. 2020; Ekim et al. 2021; Bankevich et al. 2022); complete the human genome (Nurk
et al. 2022); accurately detect small variants in challenging genomic regions (Olson et al. 2022); and
further elucidate the landscape of large structural variants in human genomes (Denti et al. 2022).
Critical to these successes are algorithms that perform genomic data analysis, such as reconstructing
a reference from reads (genome assembly) (Logsdon et al. 2020), or mapping reads to a reference
genome (read mapping) (Alser et al. 2021). With up to hundreds of gigabytes of sequenced data
per sample, analysis algorithms need to balance efficiency with high sensitivity and accuracy (the
percentage of reads mapped correctly) (Berger and Yu 2022), which is especially critical in rapid
sequencing-to-diagnostics (Owen et al. 2022; Galey et al. 2022).

We recently introduced the concept of minimizer-space computation (Ekim et al. 2021), where
only a small fraction of the sequenced bases are retained as a latent representation of the sequencing
data, enabling orders of magnitude improvements in efficiency without loss of accuracy. Minimizers
are sequences that are selected under some local or global minimum criteria (Roberts et al. 2004;
Schleimer et al. 2003), similar to locally consistent parsing (Sahinalp and Vishkin 1996). We
applied the minimizer-space concept to perform genome assembly of long and accurate reads in
minutes instead of hours — even for Human, and hypothesized that other types of genome analysis
tasks would benefit from it in the future (Ekim et al. 2021). We now pursue the intuition that
read mapping would also be amenable to minimizer-space computation, but there are multiple
algorithmic challenges to overcome due to the repetitive nature of genomes, biological variation
between samples and references, and sizable input data.

Two cornerstones of read alignment/mapping algorithms — ubiquitous in sequence analysis
pipelines — are the seeding and chaining steps, where each read is locally placed at a homologous
location in a reference genome. Seeding is carried out by finding pairs of matching seeds, which are

snippets of DNA with high-confidence (exact or inexact) matches between a query and a reference
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genome. Seeds are initial matches that serve as anchoring points of alignments: They allow a
challenging instance to be split into a set of easier sub-instances by aligning only the shorter
intervals in-between seeds. In the short-read era, state-of-the-art alignment algorithms (e.g., BWA-
MEM (H Li 2013), Bowtie2 (Langmead and Salzberg 2012), and CORA (Yoriikoglu et al. 2016; Shajii
et al. 2021) typically relied on finding all possible seeds using a full-text index of the reference
genome. For long reads, there has been a recent breakthrough by sampling and indexing only a
relatively small number of short potential seeds from the reference genome, which has led to faster
and more accurate mapping tools, e.g., minimap2 (H Li 2018) and Winnowmap2 (Jain et al. 2022b).
Chaining consists of finding maximal ordered subsets of seeds that all agree on a certain genomic

location (Jain et al. 2022a); seeds often have spurious matches due to their short lengths.

However, even the most recent long-read alignment tools are bottlenecks in analysis pipelines (Berger

and Yu 2022). For instance, the popular minimap2 software requires 12 CPU hours to map a typi-
cal PacBio HiFi dataset to the human genome, and Winnowmap2 requires 15 CPU days, preventing
both real-time analysis of sequencing data (Loose et al. 2016) and efficient re-analysis of previously-
sequenced data collections (Edgar et al. 2022). A significant part of the minimap2 and Winnowmap2
running times are in their seeding and chaining steps (Kalikar et al. 2022). These state-of-the-art
long-read alignment tools are sensitive and accurate, but their underlying seed constructs (k-mers)
are tailored to noisy reads. These small seed sizes induce longer computation times due to the
multiple potential mapping locations of seeds that need to be examined and filtered out. Re-
cent advances in short-read alignment methods have demonstrated that 98% of many organism’s
genomes are non-repetitive and can be uniquely aligned to with longer seeds (Edgar 2020). There-
fore, it seems natural to explore the use of longer seeds also in long reads: this idea is at the heart
of our approach.

Here, we provide a highly efficient and accurate read mapping tool for state-of-the-art and low-
error long-read data. We introduce mapquik, which instead of using a single minimizer as a seed
for a reference sequence (e.g., minimap2), builds accurate longer seeds by anchoring alignments
through matches of k consecutively-sampled minimizers (k-min-mers). Our approach borrows from

natural language processing where the tokens of the k-mers are the minimizers instead of base-
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pair letters. We asked whether long-read mapping can be sped up by newly substituting k-mer
seeds with k-min-mers that occur uniquely in the genome. In this work, we evaluate the extent to
which k-min-mers can act as suitable seeds for accurate long-read alignment, and the performance
of mapquik in making use of them for HiFi-read alignment. Our work represents the promise of

unique, inexact seeds, such as k-min-mers, for ultra-fast long-read mapping and beyond.

Related work

minimap2 (H Li 2018) is a de facto standard for mapping accurate long reads to a reference genome.
It applies a seed-and-extend strategy. Specifically, seeds are short k-mer minimizers, i.e., sequences
of length k that are lexicographically-minimal within a window of w consecutive k-mers. The
extension step is performed using an optimized implementation of the Needleman-Wunsch algo-
rithm (Needleman and Wunsch 1970) with an affine gap penalty. Several attempts have been
made to improve mapping performance compared to minimap2. MashMap (Jain et al. 2017) and
MashMap2 (Jain et al. 2018) compute read-versus-genome and genome-versus-genome mappings
without an alignment step, and use 5x less memory than minimap2 at the expense of longer run-
time. In very recent work developed concurrently to ours, the aligner BLEND (Firtina et al. 2023)
uses strobemers (Sahlin 2021) and locality-sensitive hashing (inspired by Sahinalp and Vishkin
1996) to speed up minimap2 end-to-end by about 2x; however, their seeding approach is integrated
into minimap2’s codebase, which is implemented and optimized for exact short seeds (minimizers
by Roberts et al. 2004), thus suffering from similar limitations (for the sake of completeness, we
compare to BLEND in Results).

Other works have focused on improving the sensitivity and accuracy of minimap2, at the expense
of speed. Winnowmap (Jain et al. 2020) and Winnowmap2 (Jain et al. 2022b) use weighted minimizer
sampling and minimal confidently-alignable substrings to better align in highly-repetitive regions,
e.g., centromeres of chromosomes. Winnowmap2 is around 15x slower than minimap2 end-to-end,
yet uses around 3x less memory.

In recent years, many research groups focusing on low-level and/or hardware-specific accelera-

tion have proposed ways to accelerate minimap2. mm2-fast (Kalikar et al. 2022), a CPU acceleration
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of minimap2 developed by Intel, achieved a 1.5x acceleration over minimap2, end-to-end on HiFi
reads. The bulk of the speed-up was obtained in the alignment phase, not in the seeding-chaining
phase (Figure 1 in Kalikar et al. 2022). The domain-specific language Seq was developed to speed
up genomic sequence analysis, and achieved two orders of magnitude improvement in the homology
table reconstruction of the CORA read mapper (Yoriikoglu et al. 2016; Shajii et al. 2021).

There also exist efficient implementations that employ specialized hardware. mm2-ax (Sadasivan
et al. 2023), a recent GPU acceleration of minimap2 developed by NVIDIA, achieved 2.5x to 5.4x
acceleration over mm2-fast in the chaining step. Guo et al. also proposed GPU and FPGA
accelerations of minimap2 that respectively achieve 7x and 28x speed-ups on the distinct task of
detecting pairwise read overlaps (Guo et al. 2019). These specialized hardware accelerators are
outside the scope of this work. Methods that accelerate short-read alignment, e.g., using cloud
computing resources (Schatz 2009), or optimized k-mer indexing (Almodaresi et al. 2021) are also

not considered here, given that they do not support long reads.

Results

Why use k-min-mers as alignment seeds instead of k-mers?

To motivate why k-min-mers are superior alignment seeds, compared to k-mers, for accurate long
reads, we formulate and verify the following two hypotheses: (1) Long exact k-mer seeds are
inadequate for accurate long-read alignment due to lack of sensitivity, whereas (2) k-min-mers are
adequate and also offer near-perfect specificity. An empirical analysis on actual HiFi reads with
average error rate of 0.1% over the entire human genome justifies these observations (Figure 1).
In the experiments that follow, we compared Jellyfish (Marcais and Kingsford 2011), DSK (Rizk
et al. 2013), rust-mdbg (Ekim et al. 2021) and mapquik. All code and data are available in the
mapquik repository (experiments/figure-seeds/ folder).

To assess hypothesis (1), we examined the specificity of k-mers and k-min-mers as seeds (Fig-
ure 1, left panel) by recording their number of occurrences in the CHM13v2.0 as a proxy for the

number of potential mapping locations. The z-axis reports the seed weight, which for k-mers cor-
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Median number of occurrences of seeds Average number of reference locations
from the reads in the reference genome per read using unique k-min-mers as seeds
10 1.30
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k-min-mers
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Figure 1. Increased sensitivity and specificity of k-min-mers versus long k-mers. Both panels
use the human reference genome CHM13v2.0 and the HG002 DeepConsensus HiFi reads. Left panel: Each
continuous line indicates the median abundance of read k-mers (darker blue line) and k-min-mers (lighter
orange line) in the reference, averaged across all reads (the closer to 1, the better). The vertical dashed
darker blue line (respectively, the lighter orange line) corresponds to the seed length chosen by minimap?2
(respectively, by mapquik). The median is computed from a random sub-sample of 50,000 HG002 reads.
Right panel: Average number of reference genome locations indicated by seed matches for each read using
k-min-mers (the closer to 1, the better). K-min-mer parameters are £ = 31, 6 = 0.01 with & = 2 to 10 (left)
and 2 to 15 (right). Regular k-mer lengths are k = 12 to 500.

responds to their length, and for k-min-mers corresponds to ¢ x k, i.e., the total number of bases
in the k-min-mer minimizers. As indicated by the plot, k-mer seeds either have too many matches
in the reference (from tens to thousands in the £ = 10 to 100 range), or too few (below one match
for k£ > 300). Notably, minimap2 uses a default k& value of 19 for HiFi reads, reflecting that it has
to sift through hundreds of false matches for each read on average. On the other hand, k-min-mers
have orders-of-magnitude fewer potential matches to examine, on average one to tens depending
on k, owing to their longer lengths being less affected by genomic repetition.

To verify hypothesis (2), we showed that selecting all the k-min-mers that are seen only once
in the reference genome is a viable indexing strategy (Figure 1, right). Indeed, the reads have, on
average, 1.05 to 1.30 candidate reference genome locations when all their k-min-mers are queried
on such an index. This finding hints that a read mapping algorithm based on k-min-mers is likely
to immediately identify the correct genome location by querying all read k-min-mers, only paying

attention to those that occur once in the genome. This algorithm potentially would not even
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require a subsequent chaining step, given the low number of false matches to remove. This is in
stark contrast with existing k-mer-based algorithms, for which colinear chaining removes hundreds

of false seed matches per read.

Overview of minimizer-space read mapping with mapquik

To allow computation in minimizer space (Figure 2), we here develop mapquik, a read mapper based
on k-min-mer seeds. mapquik follows a seed-and-extend strategy used by most read mappers, with
two exceptions: (1) Only the k-min-mers that appear exactly once in all reference sequences are
indexed (Figure 2E-F), and (2) unlike a typical colinear chaining procedure that makes use of a
dynamic programming formulation (Figure 2A-D), e.g., in minimap2 (H Li 2018), a linear-time
recursive extension step is performed for each initial k-min-mer match between the query and
the reference, followed by a novel, provably linear-time step we call pseudo-chaining that ensures
k-min-mer matches are approximately colinear. Figure 2G-I depicts the idea behind our pseudo-
chaining algorithm. Given a set of maximal k-min-mer matches, we chain only the k-min-mer
matches that are colinear with the match with the highest score (k-min-mer count). Unlike the
DP formulations used in regular colinear chaining, this step can be performed in linear time by
identifying the k-min-mer match with the highest score, and checking colinearity with the other
matches through a linear scan. Note that the matches in the output chain after this step are not
guaranteed to be pairwise colinear; however, thanks to the low number of k-min-mer matches,
pseudo-chaining performs adequately in practice while offering a substantial speed-up over classical
colinear chaining. The philosophy behind these drastic changes is that mapping long and accurate
reads to close reference genomes is “easy enough” that long minimizer-space seeds are sufficient for
the vast majority of the reads. The remaining few unmapped reads can in principle be fed to a

more sensitive, albeit slower, read mapper such as minimap2 or Winnowmap2 (see Discussion).

Datasets and mapping evaluation

We used the complete human reference genome CHM13v2.0 for our evaluations. We constructed

a simulated dataset of long reads with 99% base-level accuracy and 24 kbp mean length using
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classical read mapping with minimizer seeds and colinear chaining

b BAC —— 16 d
= AGT —— (3.,0),(3,10)
et Do CGA ——  (7,14)
ATC > 6 AGT —— (13,0),(13,10)
— 4 .
i o query reference index
build reference minimizer index and chain colinear matches
a c
ATC AAC BES
AGT ATA  AGT CGAACG AGT CGA  AGT
AGTGATATCCAGTTCGAACGAGT TCCAGTTCGACCGAGT
A A A A A AA A TAA A
obtain reference minimizers obtain query minimizers
AGTGATATCCAGTTCGAACGAGT TCCAGTTCGACCGAGT
reference sequence query sequence
e g cc e aliicy
TC AG TC AC AG
TCCAGTTCGACCGAGT
AA AA A AA  AA

obtain query k-min-mers
and query index to find matches

generate reference k-min-mers h l
from random minimizers CCCAG (0,51) —X(7,11,3)| . (0,6,1)
[ (1,6,2) —X, (8,12, 4) %X (7,12, 3)
AC (4,10,4) —>Xg(11, 18, 6)
CCAGGT (10, 15,7)— X, (8,12, 4)

(@5

f X ——— (1,9,2) maximally extend consecutive
Xg —— (7,11, 3) k-min-mer matches
Xy —» (8,12,4)
Xs ——> (11,18, 6) l

ﬁ’ —(132L7) I CCCAGGT (0,6,1) — XX, (7,12, 3)
,B ar. 2,2‘ 8 GTTCAC (4,10,4) . X (11,18,6)
build reference index CCAGGT (10,15, 7) — X, (8,12,4)
from unique k-min-mers pseudo-chain matches colinear with
the match with the highest k-min-mer count

mapquik: k-min-mer seeds and pseudo-chaining

Figure 2. Overview of the long-read mapping pipeline using mapquik and comparison with state-
of-the-art methods using minimizers as seeds. State-of-the-art read mappers such as minimap2 and
Winnowmap?2 (top, pink shaded) build an index for a reference sequence by computing window minimizers (k =
3, w =5) (a), and storing the positions of the minimizers in the index (b). In order to map a query sequence
using the reference index (top right, nucleotide C in blue denotes a sequencing error), mappers compute the
minimizers on the query sequence (c), and find matches between the minimizers of the query and those
in the reference index. Once minimizer matches are found, minimap2 and Winnowmap2 perform a colinear
chaining step to output a high-scoring set of matches, using dynamic programming (d). In contrast, mapquik
(bottom, green shaded) indexes reference sequences by generating k-min-mers, k consecutive, randomly-
selected minimizers of length ¢ (k = 3, £ = 2) (e), and storing only the k-min-mers that appear exactly
once in the reference (f). mapquik stores the start and end position of each k-min-mer, along with the
order in which the k-min-mers appear. To map a query sequence using the k-min-mer index, mapquik first
obtains matches between the query and the reference index by querying the index with each query k-min-mer
(g). k-min-mer matches are extended if the next immediate pair of k-min-mers also match (h). Instead of
a colinear chaining step, mapquik performs a linear-time pseudo-chaining step to locate matches that are
colinear with the match with the highest number of k-min-mers (i).
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pbsim (Ono et al. 2013), mimicking HiFi reads at 10x genome coverage. We also used real HiFi
reads for the HG002 individual corrected using DeepConsensus (Baid et al. 2022), at 30x genome
coverage. For maize, we simulated reads from the maize RefSeq genome (GCF_902167145.1) at 30x
coverage using the same protocol as the human simulated reads. mapquik was run with default
parameters (k =5, £ =31, 6 =0.01, =4, p =11, e = 2000); we provide an extensive evaluation
of the parameters k, ¢, and ¢ in Supplemental Note S8 and Supplemental Figure S3, and of 5 and
u in Figure 3. All other tools were run with default parameters in HiFi mapping mode. Command
lines and versions are given in Supplemental Note S2.

For simulated reads, we assessed mapping accuracy using the mapeval command of the paftools
software distributed in the minimap2 package. A read is considered to be correctly mapped if the
intersection between the true and mapped reference intervals is at least 10% of their union. For
real reads, we evaluated the concordance between the alignments of minimap2 and mapquik using
a custom script (experiments/intersect_pafs.py in the GitHub repository and Supplemental
Code), similar to mapeval. In our evaluation of both the simulated and real datasets, we focus
on reads of the highest mapping quality (Q60). Mappers report a mapping quality metric for
each read, indicating their confidence that the read is mapped at the right location, as an integer
between 0 and 60 where 60 corresponds to the highest confidence. Reads with low mapping quality
are less frequent and are often removed in downstream applications (e.g., the popular variant
calling pipeline GATK (McKenna et al. 2010) filters out reads with MAPQ < 20 by default). With
minimap?2 results, mapeval reports only two mapping quality groups (QO0 and Q60), with no value
in-between. With mapquik, we report a MAPQ of 60 if the output pseudo-chain has score > u or

length > 3, and 0 otherwise.

mapquik achieves faster and accurate mapping of HiFi reads to the human and

maize genomes

Table 1 demonstrates the enhanced overall performance of mapquik and other evaluated methods
(minimap2, mm2-fast, Winnowmap2, and concurrently-developed BLEND) on mapping simulated and

real PacBio HiFi reads to the human and maize genomes. We demonstrate mapquik’s 37x and 975x
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relative speedup over state-of-the-art mapping methods minimap2 and Winnowmap2, respectively,
for both simulated and real HiFi reads from the human genome. We further apply mapquik to
mapping simulated HiFi reads from the highly-repetitive maize genome, and demonstrate a 410x
speed-up over minimap2, with remarkably no loss of sensitivity nor accuracy.

On the simulated human dataset, mapquik is 54 x faster than minimap2. mapquik maps 95.8%
of reads at a MAPQ score of 60 (Q60), indicating a high-confidence match, with 2 errors. In
contrast, other mappers map 96.1% to 98.6% of reads at Q60 with also no/almost no error. On
the real dataset from HGO002, a similar trend is observed. mapquik outperforms all mappers except
Winnowmap2 in terms of percentage of reads mapped (96.1%), as opposed to 92.2 to 97.9% for
the other tools. The concordance of minimap2 and mapquik mappings is 99.8% on the Q60 reads
mapped by minimap2. In Supplemental Table S1, we provide the fraction of the reference genome
covered by each tool for all experiments. All mappers required less than 14 gigabytes of memory
on the human genome (MashMap2 was not further evaluated as it took over 13 wall-clock hours on
the simulated human dataset, and does not output mapping quality scores.)

A highlight of mapquik is a 410x mapping speed-up compared to minimap2 on the maize
genome. Remarkably, this speed-up comes with near-perfect precision for mapquik and no loss of
sensitivity, as mapquik reports the second highest number of mapped reads at mapping quality 60
across all tools after Winnowmap2. Of note, Winnowmap2 has faster performance on maize than the
human genome and than that of minimap2 on the maize genome.

We further investigated why some reads were mapped at lower qualities than Q60 or were not
mapped at all. Out of 58,004 reads from the simulated human dataset that were not mapped at Q60
by mapquik, 94.4% of these reads intersected with centromeric/satellite regions of chromosomes, as
reported by BEDTools (Quinlan and Hall 2010) using the chm13v2.0_censat_v2.0.bed annotation
from the Telomere-to-Telomere (T2T) consortium. Thus, the vast majority of reads not aligned at
Q60 correspond to challenging genomic regions that would likely have been masked in downstream
analyses, making their lack of alignment potentially inconsequential. We hypothesize that similar
conclusions hold on real data, but this cannot be ascertained as the true reference interval of each

read is not known.



223

224

225

226

227

228

229

230

231

Downloaded from genome.cshlp.org on August 4, 2023 - Published by Cold Spring Harbor Laboratory Press

Tool name Mapped Q60 | Q < 60 or missed | Wrong Q60 ‘ Memory (GB) ‘ Time (s) ‘ Speed-up
CHM13 10x coverage simulated 24 kbp HiFi reads
minimap?2 1,340,993 27,819 0 13.1 978 1x
mm2-fast 1,340,993 27,819 0 13.1 805 1.21x
Winnowmap2 1,350,016 18,796 6 11.8 21,009 0.05x
BLEND 1,315,676 53,136 1 6.8 188 5.2x
mapquik 1,310,808 58,004 2 12.2 18 54.33x
HGO002 30x coverage real 24 kbp HiFi reads (DeepConsensus)
minimap2 3,611,990 303,304 N/A 10.8 3,146 1x
mm2-fast 3,611,983 303,311 N/A 10.8 2,693 1.17x
Winnowmap2 3,835,225 80,069 N/A 8.8 83,180 0.04x
BLEND 3,708,582 206,712 N/A 6.0 626 5.03x
mapquik 3,760,677 154,617 N/A 12.1 85 37.01x
Maize 30x coverage simulated 24 kbp HiFi reads
minimap2 2,807,058 58,730 1 15.1 17,194 1x
mm2-fast 2,807,059 58,729 1 15.0 14,693 1.17x
Winnowmap2 2,854,041 11,747 93 14.1 15,376 1.12x
BLEND 2,836,244 29,544 5 4.8 349 | 49.27x
mapquik 2,837,524 28,264 2 13.1 42 | 409.38x

Table 1. Mapping statistics of mapquik and other evaluated methods (minimap2, mm2-fast, Winnowmap?2,
BLEND) on simulated and real HiFi human reads, and simulated maize HiFi reads. Only reads with reported
mapping quality over 60 were included in columns 1 and 3. Incorrectly-aligned reads were detected using
paftools mapeval. “Time” column consists of wall-clock times and includes on-the-fly reference indexing.
Reads were ungzipped. Tools were run on 10 threads. For Winnowmap2, the time for reference k-mer counting
(meryl) was not included. The last column indicates the speed-up over minimap?2 taken as a baseline.

Efficient genome indexing using k-min-mers

Table 2 demonstrates the computing resources necessary to index a human genome for mapquik as
compared to minimap2, mm2-fast, Winnowmap2 and the concurrently-developed BLEND. Although
indexes created by the alternative mapping methods to mapquik are different in nature, a similar
order of magnitude of numbers of sequences (tens to hundreds of millions) end up being indexed.
minimap2 and mm2-fast index positions of windowed minimizers. Those minimizers are different
from the (¢,¢)-minimizers defined in this article. Winnowmap2 indexes weighted minimizers to
increase the accuracy of seeds. BLEND (in HiFi mapping mode) indexes a locality-sensitive seed

built from strobemers (Sahlin 2021), which are chains of consecutive windowed minimizers (Roberts
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et al. 2004), different in nature from k-min-mers.

mapquik indexing is 9x faster than minimap2 and 6x faster than BLEND. The mapquik seeding
strategy provides ultra-fast construction of an index that records unique k-min-mer positions across
the reference genome. This index is of independent interest, for example, for indexing larger
databases such as RefSeq (W Li et al. 2021). We anticipate that this index will have other uses
beyond long-read mapping, such as large-scale sequence search. We have already demonstrated the
usefulness of performing k-min-mer search in anti-microbial resistance tracking (Ekim et al. 2021),

albeit in earlier work that did not benefit from the speed-up of such an index presented here.

Tool name Indexed sequences Singletons Memory (GB) Wall-clock (seconds)
minimap2 215,125,355 92% 10.1 33
mn2-fast 215,125,355 92% 10.1 28
Winnowmap?2 23,616,987 41% 2.6 64
BLEND 111,799,540 97% 5.3 23
mapquik 39,603,738 100% 12.1 3.4

Table 2. Indexing a reference human genome using mapquik and other evaluated methods (minimap?2,
mm2-fast, Winnowmap2, BLEND). The CHM13v2.0 reference sequence was given as input to each tool. Tools
were run using 10 threads with warm cache, i.e., the reference genome file was already pre-loaded in memory.
The “Indexed sequences” column indicates the number of distinct sequences that are keys of the final index.
The “Singletons” column indicates how many indexed sequences have only one position in the reference
genome.

Comparison with BLEND

While concurrently-developed, we compare to BLEND in Tables 1 and 2 for completeness, and demon-
strate that mapquik achieves a 7x speed-up overall (indexing plus chaining) over BLEND on human

data.

Robustness of mapping shorter reads with mapquik

We next asked how mapquik would perform on smaller reads than those offered by HiFi, which are
currently available for lengths ranging from 10 kbp to 25 kbp. Future technologies may also offer
long high-accuracy reads, although HiFi is currently the only high-throughput solution available.
To determine whether mapquik is also suitable for mapping HiFi reads shorter than 24 kbp, we

tested mapquik on other datasets with overall shorter reads using both real and simulated data.
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To assess mapquik’s robustness in mapping reads of varying length, we ran mapquik on real HG002
HiFi 16 kbp length reads from DeepConsensus (Baid et al. 2022), using identical parameters as
in the run with 24 kbp read length. mapquik’s performance on 16 kbp reads is strikingly similar
to that on 24 kbp reads: the running time increased by only 4%, memory usage remains nearly
identical, and the concordance with minimap2 remains 99.8%.

To determine if mapquik is still robust to larger variation in read length, we simulated seven
samples with 10x coverage from CHM13, using the same protocol, except that a different average
read length is selected for each sample (from 2 kbp to 14 kbp, by 2 kbp increments). Supplemental
Figure S2 reports that both minimap2 and mapquik map over 93% of the reads at Q60 in sam-
ples having read lengths of 10 kbp or higher, remarkably without tuning their parameters. Both
minimap2 and mapquik are challenged by read lengths of 2 kbp; with their default HiFi parame-
ters, they respectively map 89% and 27% of the reads at Q60. Note that mapquik maps 63% of
the remaining 2 kbp reads at QO0, with a low mapping error rate (1%) as reported by mapeval. We
expect mapquik has more difficulty mapping these 2 kbp reads due to its longer seed weight than

minimap2.

Limitations of our study

We evaluated the limitations of our method with respect to several aspects: the choice of k, inter-
nal cut-off parameters, and the requirement of having low divergence between the reads and the
reference.

As seen in Table 1, mapquik is unable to map some of the reads, mostly in low-complexity regions
of the genome, partially because no indexed k-min-mer exists, but also because of the lack of a long
enough (i.e., high-scoring) pseudo-chain. We examined the magnitude of the second effect. Figure 3
(left) shows the total number of reads (y-axis) whose highest pseudo-chain score is given on the
zr-axis. Read numbers follow approximately a Gaussian distribution, confirming the soundness of
filtering out the leftmost tail containing erroneous pseudo-chains. Figure 3 (right) depicts filtering
thresholds by showing the percentage of reads mapped correctly (y-axis) at each pseudo-chain score

per read (x-axis), depending on the choice of k. The monotonically-increasing relationship suggests

12



277

278

279

280

281

282

284

285

286

287

Downloaded from genome.cshlp.org on August 4, 2023 - Published by Cold Spring Harbor Laboratory Press

30000 A
w004k
— 5
6
25000 1 — 7
— 8
80
12}
1 k|
20000 s
8 3
< aQ
o a
©
S 15000 4 60
S 15000 £
5 =
E e
= S
Z 10000 o
o 40
S
5000
20
01 —
0 50 100 150 200 250 2 1 6 8 10 12 14
Maximal pseudo-chain score per read Maximal pseudo-chain score per read

Figure 3. Effect of pseudo-chain score on mapping accuracy. The z-axis in both subfigures
corresponds to the score of the maximal pseudo-chain per read; on the left, the y-axis denotes the total
number of reads with the corresponding maximal pseudo-chain score, and on the right, the percentage of
reads that are correctly mapped (assessed by paftools mapeval) with the corresponding maximal pseudo-
chain score. Only the scores below a threshold s, where s denotes the maximum score at which a read was
mapped incorrectly, are plotted. The parameters used for mapquik were k =5 to 8, £ = 31, § = 0.01.

that the pseudo-chain score is a reliable proxy for evaluating mapping accuracy. Mapping accuracy
plateaus around pseudo-chain scores of 9 to 11. In our implementation, we apply a threshold of
pseudo-chain score > p with g = 11 by default (Algorithm 3 in Supplemental Note S1).

The mapping performance of mapquik degrades markedly when identity between reads and the
reference is lower than 97%, and less than 1% of the reads are mapped at Q60 for identities below
93% (Supplemental Figure S1). Therefore, mapquik is not suitable for mapping PacBio CLR reads,
and potentially also Oxford Nanopore reads until base-calling consistently reaches identity levels

above 98%. Remarkably, the mapping error rate at Q60 remains negligible at all identity levels.

Discussion

Our work demonstrates that minimizer-space computation can be successfully applied to read
mapping, and overcomes a significant barrier to real-time analysis of sequencing data that simply

using longer k-mers or minimizers as seeds cannot. We show for the first time that indexing
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only the long minimizer-space seeds (k-min-mers) that occur uniquely in the genome is sufficient
for sensitive and specific mapping. By leveraging the high specificity of these seeds, we are able
to devise a provably O(n) time (heuristic) pseudo-chaining algorithm, which improves upon the
subsequent best O(nlogn) runtime of all other known colinear chaining methods (Jain et al. 2022a),
without loss of performance in practice.

We previously used minimizer-space computation for fast and accurate genome assembly; how-
ever, long-read mapping is entirely different as no de Bruijn graph is constructed. This work thus
establishes the versatility of k-min-mers in algorithms for biological sequences. As sequencing reads
are getting longer and more accurate, we anticipate that our approach will particularly benefit from
technological advances: longer reads will be increasingly easier to map with minimizer-space seeds.

A potential concern with providing a faster alignment method is the loss of sensitivity in “hard-
to-map” regions, such as centromeres or structural variant breakpoints. In Supplemental Note S9
and Supplemental Figures S4 and S5, we investigated the missed genomic regions by both minimap2
and mapquik and found that they overlap by more than 90%. One could partially mitigate this
concern by performing a conservative, but fast alignment of reads using mapquik, and remapping
the unmapped reads with minimap2 or Winnowmap2 to increase alignment sensitivity, while keeping
the efficiency of mapquik. Another possible direction would be to use a pangenomic reference to
provide more indexable k-min-mers.

Future extensions of this work include implementing base-level alignment, which will allow
the design of a complete single-nucleotide variant calling pipeline, as well as one with structural
variant calling built on top of mapquik. Currently, mapquik is directly usable for quickly finding
genomic positions of HiFi reads, which enables many downstream applications such as sorting reads
by genome position, separating them by chromosome, filtering non-human reads, etc. Since the
k-min-mer matches have k exact matches of minimizers of length ¢, only the regions in-between
minimizers and in-between neighboring k-min-mer matches would need to be aligned, which po-
tentially lowers both the memory usage and runtime of the alignment step. Another potential
improvement to mapquik would be to refine the mapping quality scores, in light of the observa-

tions made in Figure 3 that the pseudo-chain score reliably tracks mapping accuracy. We expect
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minimizer-space computation to further mitigate challenges in other sequencing data analysis tasks,

such as sequence-to-graph alignment, metagenomic binning, and similarity search.

Methods

Although Figure 2 and Algorithm 1 describe the steps of mapquik, we go into more detail below.

Algorithm 1 The mapquik algorithm

Input: A collection of reference sequences R and a collection of query sequences ). We assume

global parameters k, £, §, €, u, 5, f, and ¢ are pre-defined.

Output: Query-to-reference mappings S.
1: function MAP(R, Q)

10:
11:
12:
13:
14:
15:
16:

17:

2
3
4
5:
6:
7
8
9

I+ {} > Empty hash table of reference k-min-mers
L+ {} > Empty hash table of sequence lengths
S+ {} > To store mapping results
for r € R do
X, < EXTRACT(T) > Extract k-min-mers from reference sequence into a list
Lirp] < |r| > Store length of r

for every zi € X, do
if ! is not a key in I then

I[pt] « (rip, s, ek, mt, i) > Record the reference ID rip and tuple of z?
else I[pl] « () > Assign empty entry

for ¢ € Q do
Ligip] < |q| > Store length of ¢
X, < EXTRACT(q) > Extract k-min-mers from query sequence into a list
H + MAarcH(Xy, I, gip) > Generate maximal k-min-mer matches

Slq] + PSEUDOCHAIN(H, ¢ip, L, &, i, ) > Pseudo-chain generated k-min-mer matches

return S

Methodological formalization

For a fixed integer £ > 1, let f : ¢+ [0, H] be a random hash function that maps strings of length

¢ to integers between 0 and H. In practice, we use a 64-bit hash function. Moreover, we require

f to be invariant with respect to reverse-complements, i.e., an f-mer and its reverse complement

map to the same integer. For a density 0 < § < 1, we define Uy s as the set of all /-mers m with

f(m) < - H. We refer to the elements of Uy s as (¢, 6)-minimizers. Note that whether an ¢-mer is

a (¢,0)-minimizer does not depend on any sequence besides the ¢-mer itself.
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Let S be a sequence of length > ¢. We define its minimizer-space representation Mg as an
ordered list of (¢,0)-minimizers that appear in S. Since the contents of Uy s only depend on f, and
as long as the same hash function f is used, Mg will always be a subset of Uy 5. We omit S from
the subscript when it is obvious from the context.

Let M be a minimizer-space representation of S and let £ > 0 be a fixed integer parameter.
We define a k-min-mer x' of S as an ordered list of k consecutive minimizers in M starting from
index i, i.e., z° = (my,...,miyx_1). We denote the ordered list of all k-min-mers (20, ... ,x‘M‘_k)
of S as Xg. We omit S from the subscript when it is obvious from the context.

In order to avoid explicitly storing nucleotide sequences of minimizers, we use a random hash
function ¢ that maps sequences of k -mers to 64-bit hash values. We define ¢ so that it is invariant
to reversing the order of the k-min-mer, i.e., p(z°) = p(REV(2')), where REV(z®) denotes the list of
minimizers of z° with the order reversed. This is achieved by hashing #° and REV(2?), and taking
©(z*) to be the minimum value.

Then, instead of storing X as an ordered list of k-min-mer sequences, we store the i*" k-min-mer

2’ of X as a tuple (i, ', s*, e, 7'), where

e iis the rank of 2% in X,

i

. ' =p(ah),

e s’ and e’ the nucleotide start and end positions of z?, i.e., the start position of minimizer m;

and the end position of minimizer m;x—_1, respectively, on S,

« 7' a Boolean variable that evaluates to 1 if, in the construction of ¢, the hash of REV(2?) was

smaller than that of %, and 0 otherwise.

We call this the tuple of z*. When the sequence S is not obvious from the context, we add it as
a subscript in the above notation, e.g., 7ng. The hash functions f and ¢ are instantiated prior to
constructing the k-min-mer lists for the input sequences. We consistently use the same functions f
and ¢ when selecting minimizers and consequently building k-min-mer lists for both the reference

and query sequences throughout.
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Indexing reference sequences

The mapquik index [ is a hash table that associates a k-min-mer x to its unique position in the
reference genome, whether or not it appears reverse-complemented, and its rank in the list of k-
min-mers X. As described in “Methodological formalization”, this information is represented by a
tuple in the form (rip, s?,e’, 7%,4). We construct I using a two-pass approach. First, we call the
EXTRACT function. It builds the list X by a linear scan through the reference sequence, during
which it identifies minimizers and outputs each k consecutive minimizers, together with their hash
values. We use the same efficient algorithm as rust-mdbg (Ekim et al. 2021), which runs in O(| X|)
time, so we do not include the pseudo-code for EXTRACT here. Second, we load every entry of X
into a hash table I, indexed by the hash value. In this step, we discard from [ any k-min-mer that
appears in more than one reference location. Therefore, the hash table holds a single value per

distinct k-min-mer key.

Locating and extending query-to-reference k-min-mer matches

Informally, a k-min-mer match is a stretch of k-min-mer seeds which appear consecutively both in
the reference and the query (under the hash function used). Note that all matches are unique, in
the sense that all seed k-min-mers appear only once in the genome, by definition. Given a query
q and a reference r, we formally define a match as a triple (7, 7,¢) such that 0 < i < |X,| — ¢,
0<j<|X,|—¢,e>1,and, forall0 < ¢ < e, cp?“’:/ = <pf;+cl. A match (4, , ¢) is said to be mazimal
if cannot be further extended to the right or left, i.e., (1) either i =0, j = 0, or gpf]_l #* cpﬁ'*l, and
(2) either i + ¢ = |X,], j + ¢ = |X,|, or @it¢ # gite,

For each query ¢, the mapquik algorithm first builds the list of £-min-mers X, sorted in increas-
ing order of location (line 14). Then, it runs the MATCH routine (line 15), which finds all maximal
matches between ¢ and the reference. MATCH works by scanning through X, and, for each seed
x € Xy, using the reference index I to see if x exists in the reference. If it does, then it marks
the start of a match and proceeds to extend the match to the right as long as the seeds continue
to match. Since we only have to query the index with the hash value of each k-min-mer in X,

the extension procedure can be done during a single linear pass over the elements of X, and thus
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takes O(]|X,|) time (assuming O(1) hashing, look-ups, and insertions). Care must be taken due to
reverse complements, which can change the direction of matching, but we omit these details. For
completeness, the full algorithm (Algorithm 2) and the proof of maximality of k-min-mer matches
(Supplemental Note S7) are in Supplemental Material.

In theory, generating a single 64-bit hash value for each unique k-min-mer could lead to hash
collisions and, consequently, lead to false k-min-mer matches. However, since a k-min-mer match
can only be extended with a consecutive k-min-mer match, k-min-mers that match an entry in the
reference due to a hash collision are likely to be singletons and get filtered out in the pseudo-chaining

step, with no decrease in final accuracy.

From maximal k-min-mer matches to pseudo-chains

Recall that k-min-mer matches are extended based solely on whether the next immediate k-min-
mer of ¢ matches the next immediate k-min-mer of r. However, k-min-mer matches on ¢ might
occur in multiple non-overlapping positions on r (due to sequencing errors or biological variation
in q), i.e., for two matches (i,7,¢) and (i/,j’, ) between ¢ and r, it is not necessarily true that
i =gl =1i" =7

In order to output a list of matches that are likely to be true positives while avoiding a
computationally-expensive dynamic programming procedure, mapquik uses a pseudo-chaining pro-
cedure which finds k-min-mer matches between a query ¢ and a reference r that are gap-bounded
colinear, but not all pairwise colinear.

Concretely, let h = (i,7,¢) and b = (¢/,j', ') be two matches, and consider the coordinates
(84,€q,m) and (s;,e,,m) of respectively the first and last Ak-min-mers of h, and (sj,eg,n’) and

(sh.,el,m") for the k-min-mers of h'. Let g > 0 be a fixed-integer gap upper bound. We say that h

ry Crs

and h' are gap-bounded colinear if
« the matches are on the same relative strand, i.e., 7 = 7,

« the reference start positions of the matches agree with the order of the matches, i.e., if 7 = 0,

sp < shyorif =1, s, <s,, and
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e the length of the gap between the two matches in the query is similar to that on the reference,

iLe,if m=0,|(s; —eq) — (s, —er)| <gsorif m=1,|(s; —eg) — (sr —€)] < g

This last gap length difference condition, on top of the traditional definition of colinearity (the
first two conditions), ensures that the regions outside the matches are similar in length. A similar
parameter (€) is used in minimap (H Li 2016).

Let H be the list of all maximal k-min-mer matches between a read ¢ and a reference sequence
r. We define a pseudo-chain U as the list of all matches in H that are colinear with the i*" match
in H; we say that ¥’ is anchored at i. Note that even though every match in W is colinear with
the i match in H, it is not necessarily true that every pair of matches in ¥’ are pairwise colinear,
thus U’ does not satisfy the criteria of chains as defined in other works (e.g., H Li 2018).

The score of a pseudo-chain W is the number of matching k-min-mers in ¥, i.e.,

SCORE(T) = Y~ c(h)

hewt

where c(h) denotes the number of matching k-min-mers in match h. Since the maximal matches
in W' are guaranteed to not share any query k-min-mers because both the start and end locations
of each maximal match are distinct, the cumulative sum of the number of matching k-min-mers in

each match in U’ equals the number of total matching k-min-mers in W?.

Computing high-scoring pseudo-chains in linear time

We now introduce a novel algorithm for computing a single high-scoring pseudo-chain W* for a query
q given a list of maximal matches, and prove that it runs in O(n) time. The match extension step
outputs a hash table H of maximal k-min-mer matches per reference, indexed by their reference
identifier. In the pseudo-chaining step, however, the objective is to output a single list of matches
between ¢ and a single reference, even though H might contain matches between ¢ and more than
one reference sequence. We first initialize ¥* = [], and iterate over the key-value tuples in H,
processing each list of maximal matches H, , for a single reference r one by one. In every iteration,

we obtain a candidate pseudo-chain W, from the list of maximal matches H,, by computing
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the pseudo-chain anchored at the match in H,, with the highest number of matching k-min-
mers. After computing ¥,,, we compare its score to that of ¥*, and replace ¥* with ¥, , if
SCORE(¥, ) > SCORE(¥*). At the end of the loop, ¥* will be the highest-scoring pseudo-chain
out of all possible candidate pseudo-chains per reference sequence in H.

Finally, if the pseudo-chain ¥* has score > p or length > §, where p and 8 are user-defined
parameters, we retrieve the query and reference coordinates of the region covered by the matches
in U*. The final query and reference coordinates for a mapping between query ¢ and reference r
is computed by extending the start and end coordinates of the first and last matches in ¥* to the
length of the query. In Supplemental Material, Algorithm 3 provides a complete description of the

pseudo-chaining procedure, and Algorithm 4 describes the coordinate computation step.

Proof of pseudo-chaining algorithm’s complexity. The complexity of computing pseudo-
chain ¥’ for each read ¢ is as follows. Let n be the total number of matches in H. To determine
U* each candidate pseudo-chain W, , for a single reference sequence r needs to be computed.
Computing a single pseudo-chain ¥, , requires determining the match with the highest number
of matching k-min-mers and comparing each match in H,, to this match, which can both be
performed in ©(|Hy,,|) time. Moreover, every single candidate pseudo-chain (for every reference
in H) needs to be computed to determine W*. Then, the running time of the pseudo-chaining
procedure is O3, . |Hyr|). Note that |H, .| < n, and the number of reference sequences that
appear in H is upper bounded by the total number of reference sequences, which is O(1). Hence,
the pseudo-chaining procedure runs in O(n) time, where n is the total number of matches in H.
Note that colinear chaining (as implemented by state-of-the-art read mappers) has an asymp-
totic complexity of O(nlogn). We also implemented two alternative heuristics that (1) computes
¢ pseudo-chains anchored at ¢ matches with the highest number of k-min-mers (thus running in
O(cn) time), and (2) sets ¢ = n and computes all possible pseudo-chains (thus running in O(n?)
time). However, we observed that the runtime of the O(n) pseudo-chaining procedure is faster in
practice: In our tests, the O(n) pseudo-chaining procedure performed ~ 20% — 50% faster than the

other heuristics, with little decrease in accuracy.
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Software availability

The data and source code are freely available as Supplemental Material, and on GitHub at https:

//github.com/ekimb/mapquik, under the MIT License.
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