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Abstract SMART pipeline overview Color transformation to compute dominant shades of green

(c) (d)
Challenge : ;

Most plant imaging systems focus predominantly on monitoring morphological traits. The
challenge is to relate color information to measurements of physiological processes.

Question:
Can the color of individual leaves be measured and quantified over time to infer physiological
information about the plant?

Solution:

We developed the open source and affordable plant phenotyping software pipeline for Figure 2: Schematic overview of the SMART pipeline. (a) A top-view plant image taken from [1].

Arabidopsis thaliana. SMART (Speedy Measurement of Arabidopsis Rosette Traits) that (b) Segmentation of the plant into white foreground and black background (c) Geometric traits Figure 4: Color transformation from RGB space to LAB space. (a) A top-view image of

integrates a new color analysis algorithm to measure leaf surface temperature, leaf wilting and describing the whole rosette such as convex hull, diameter and eccentricity. (d) segmentation of Arabidopsis thaliana in RGB color space. We extracted the R, G, and B channels and display

zinc toxicity over time. the rosette into individual leaves. (e) Measuring individual leaf traits such as area and length. (f) them as individual images in (b),(c), and (d). We convert the image in (a ) from RGB color space
Color distribution of the four dominant greens of the whole plant and (g) the four dominant to CIE L*a*b* color space. L*, a*, and b* channels are extracted and displayed in (e), (f), and
shades of green represented as a pie chart with its corresponding hex value. (h) The two largest (g) respectively.

Data Collection:

leaves were selected to show the original color distribution of the leaves (i) Visual
We used public datasets to develop the algorithm [1and validate morphological measurements.

- . . _ . . representation of the color quantization of the two leaves shown in (h) computed with the
We also collected top-view images of the Arabidopsis rosette with the Open-Leaf imaging robot dominant color analysis method. Color analysis of individual leaves

[2Jand top-view setups for heat stress to validate physiological measurements.

Principle of dominant color clustering

Figure 3: Dominant color clustering was to partition data points into different clusters C, . For

Figure 1: (a) The OPEN Leaf imaging robot developed at the DMC lab at the University of example, (a) is an RGB image, and (b) shows all colors of (a) in RGB space. Every point in (b)

Missouri ?lusing Allied Vision Mako G-503B 1/2.5" Monochrome CMOS Camera, it can capture corresponds to a pixel and its color in (a). The size of each point is proportional to the number of

RGB images automatically over time and upload the data to collaborators using shared online pixels of that color. In dominant color clustering process, each of the RGB color points will be

storage Cyverse Pl (b) the Raspberry Pi imaging system used at Rothamsted Research to assigned to a cluster with the spatially closest mean in a Cartesian space equipped with a

capture RGB top view image data; it enables the real time monitoring the growth of rosette Euclidean metric. The mean of each cluster is defined as its centroid. Color data points inside a

with high resolution in growth chamber. (c) The imaging setup used at Hofstra University, cluster C, are assigned to the same cluster centroid. This method uses an iterative refinement Figure 5: Individual leaf color distributions. (a) A top-view image of Arabidopsis thaliana. (b)
developed in the Tara Enders lab using a NIKON D7200 digital cameras controlled by laptops. to technique to their corresponding cluster centroid by minimizing the least-squares of distances The segmented individual leaves, each leaf is labelled with a unique color. (c) For each leaf the
A standard color palette was used to setup a reference color when comparing the color change between points. The optimal number of clusters is estimated by the Elbow method 4. The result size is computed. (d) All the leaves are sorted by size and a color distribution pie chart is
of plant surface. of the dominant cluster method applied to (a) would result in four clusters denoting an average computed for each leaf.

red, green, blue and yellow.

SMART Application 1 SMART Application 2 SMART Application 3
Quantifying toxicity levels of zinc accumulation in individual leaves over time Estimating the average leaf surface temperature of the rosette Quantifying leaf wilting in response to heat stress
3 Day One Day Five Day Nine
Wildtype - -a /D Q i’:\}
@ O 14
| = Figure 7: SMART can estimate the temperature of Arabidopsis over time using the color
J_ & ¢ k_f;’ ’ . e difference between temperature sticker and the plant surface color. (a) One sample top view
Zitic Toxicity ¢ : | 4 { Q &' ,; . am RGB image of an Arabidopsis with a temperature sticker. (b) Color distribution of the whole
B ({ y ) ) plant in a pie chart, with the percentage of each color and its color name. (c) Individual leaf
¢ ¢ L N y €& .
> L A detection result.

Comparison between manual measurement (Temperature gun) of leaf surface
b a temperature changes and SMART estimation results.
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Figure 6: Availability of nutrients dictates the fate of individual leaves within the Arabidopsis SAMRT temperature estimation results, unit: Fahrenhet (°F) light skin: 22.00%
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rosette. (a) SMART pipeline can track individual leaves over plant development. Changes in Figure 8: Temperature validation results between manual measurements and SMART
the Fe/Zn ratio have a severe impact on (b) individual leaf size and (c) color. The leaf color computation results. The image data was collected using OPEN Leaf imaging robot in Figure 1
clustering results generated by SMART were consistent with the leaf developmental stage [?. over 15 consecutive days (a) Comparison of manual temperature measurement with a
Examples of individual leaf color clustering into four dominant colors shown in (c) allowed for temperature gun (blue line) and the SMART temperature estimation (orange line) for genotype Figure 10: SMART can detect unusual colors. (a) SMART can detected different shades of
dynamic tracking of color transitioning over time. Each bar plot represents the proportional 1. Each manual measurement point is the average of five temperature measurements at green on the leaf surfaces of the healthy plant. (b) SMART detected a brown color, which
distribution of each dominant color in individual leaves. The plots are representative of one different locations per plant over four replicates. (b) correlation analysis between manual helped to quantify the heat stress exposure of the plant.
experiment and similar results were obtained in three independent experiments. measurement versus SMART computation results revealed R?> 0.81 for this genotype.
Conclusion Software Download Funding

1. The SMART software demonstrated that physiological information can be inferred with detailed color analysis. Here we showed that zinc toxicity levels, leaf surface temperature
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and the degree of leaf wilting under heat stress as applications.
2. We observed a likely predictable and correctable bias in the leaf surface temperature measurements.
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