
Conclusion
1. The SMART software demonstrated that physiological information can be inferred with detailed color analysis. Here we showed that zinc toxicity levels, leaf surface temperature 

and the degree of leaf wilting under heat stress as applications. 
2.   We observed a likely predictable and correctable bias in the leaf surface temperature measurements.
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Abstract

Challenge :
Most plant imaging systems focus predominantly on monitoring morphological traits. The 
challenge is to relate color information to measurements of physiological processes. 

Question:
Can the color of individual leaves be measured and quantified over time to infer physiological 
information about the plant? 

Solution: 
We developed the open source and affordable plant phenotyping software pipeline for 
Arabidopsis thaliana. SMART (Speedy Measurement of Arabidopsis Rosette Traits) that 
integrates a new color analysis algorithm to measure leaf surface temperature, leaf wilting and 
zinc toxicity over time. 

Data Collection:
We used public datasets to develop the algorithm [1] and validate morphological measurements. 
We also collected top-view images of the Arabidopsis rosette with the Open-Leaf imaging robot 
[2] and top-view setups for heat stress to validate physiological measurements.

SMART Application 1

Quantifying toxicity levels of zinc accumulation in individual leaves over time 

SMART pipeline overview

Color analysis of individual leaves

SMART: An open and affordable plant phenotyping system for leaf-specific color analysis of the Arabidopsis Rosette
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Figure 7: SMART can estimate the temperature of Arabidopsis over time using the color 
difference between temperature sticker and the plant surface color. (a) One sample top view 
RGB image of an Arabidopsis with a temperature sticker. (b) Color distribution of the whole
plant in a pie chart, with the percentage of each color and its color name. (c) Individual leaf
detection result.

Figure 6: Availability of nutrients dictates the fate of individual leaves within the Arabidopsis 

rosette. (a) SMART pipeline can track individual leaves over plant development. Changes in 
the Fe/Zn ratio have a severe impact on (b) individual leaf size and (c) color. The leaf color 
clustering results generated by SMART were consistent with the leaf developmental stage [2]. 
Examples of individual leaf color clustering into four dominant colors shown in (c) allowed for 
dynamic tracking of color transitioning over time. Each bar plot represents the proportional 
distribution of each dominant color in individual leaves. The plots are representative of one 
experiment and similar results were obtained in three independent experiments. 
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Figure 2: Schematic overview of the SMART pipeline. (a) A top-view plant image taken from [1].
(b) Segmentation of the plant into white foreground and black background (c) Geometric traits
describing the whole rosette such as convex hull, diameter and eccentricity. (d) segmentation of
the rosette into individual leaves. (e) Measuring individual leaf traits such as area and length. (f)
Color distribution of the four dominant greens of the whole plant and (g) the four dominant
shades of green represented as a pie chart with its corresponding hex value. (h) The two largest
leaves were selected to show the original color distribution of the leaves (i) Visual
representation of the color quantization of the two leaves shown in (h) computed with the
dominant color analysis method.

Figure 5: Individual leaf color distributions. (a) A top-view image of Arabidopsis thaliana. (b)
The segmented individual leaves, each leaf is labelled with a unique color. (c) For each leaf the
size is computed. (d) All the leaves are sorted by size and a color distribution pie chart is
computed for each leaf.

SMART Application 2

Estimating the average leaf surface temperature of the rosette

SMART Application 3

Quantifying leaf wilting in response to heat stress

Figure 10: SMART can detect unusual colors. (a) SMART can detected different shades of 
green on the leaf surfaces of the healthy plant. (b) SMART detected a brown color, which 
helped to quantify the heat stress exposure of the plant. 
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Figure 8: Temperature validation results between manual measurements and SMART 
computation results. The image data was collected using OPEN Leaf imaging robot in Figure 1
over 15 consecutive days (a) Comparison of manual temperature measurement with a 
temperature gun (blue line) and the SMART temperature estimation (orange line) for genotype 
1. Each manual measurement point is the average of five temperature measurements at 
different locations per plant over four replicates. (b) correlation analysis between manual 
measurement versus SMART computation results revealed R!> 0.81 for this genotype. 

Figure 9: SMART can capture leaf color changes over time to quantify wilting by matching 
individual leaf colors to a standard color palette.
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Figure 1: (a) The OPEN Leaf imaging robot developed at the DMC lab at the University of
Missouri [2] using Allied Vision Mako G-503B 1/2.5" Monochrome CMOS Camera, it can capture
RGB images automatically over time and upload the data to collaborators using shared online
storage Cyverse [3]. (b) the Raspberry Pi imaging system used at Rothamsted Research to
capture RGB top view image data; it enables the real time monitoring the growth of rosette
with high resolution in growth chamber. (c) The imaging setup used at Hofstra University,
developed in the Tara Enders lab using a NIKON D7200 digital cameras controlled by laptops. to 
A standard color palette was used to setup a reference color when comparing the color change  
of plant surface.  

Color transformation to compute dominant shades of green

Figure 4: Color transformation from RGB space to LAB space. (a) A top-view image of
Arabidopsis thaliana in RGB color space. We extracted the R, G, and B channels and display
them as individual images in (b),(c), and (d). We convert the image in (a ) from RGB color space
to CIE L*a*b* color space. L*, a*, and b* channels are extracted and displayed in (e), (f), and
(g) respectively.

Principle of dominant color clustering

Figure 3: Dominant color clustering was to partition data points into different clusters  Ck . For 
example, (a) is an RGB image, and (b) shows all colors of (a) in RGB space. Every point in (b) 
corresponds to a pixel and its color in (a). The size of each point is proportional to the number of 
pixels of that color. In dominant color clustering process, each of the RGB color points will be 
assigned to a cluster with the spatially closest mean in a Cartesian space equipped with a 
Euclidean metric. The mean of each cluster is defined as its centroid. Color data points inside a 
cluster Ck are assigned to the same cluster centroid. This method uses an iterative refinement 
technique to their corresponding cluster centroid by minimizing the least-squares of distances 
between points. The optimal number of clusters is estimated by the Elbow method [4]. The result 
of the dominant cluster method applied to (a) would result in four clusters denoting an average 
red, green, blue and yellow.

a b

a                        

b                                                                   

a                                          b                                          c  

Time Elapsed (hours) 


