
Breaking and
Domino

Fixing Virtual Channels:
Attack and Donner

Lukas Aumayr
TU Wien

lukas.aumayr@tuwien.ac.at

Pedro Moreno-Sanchez
IMDEA Software Institute
pedro.moreno@imdea.org

Aniket Kate
Purdue University / Supra

aniket@purdue.edu

Matteo Maffei
Christian Doppler Laboratory

Blockchain Technologies for the
Internet of Things / TU Wien

matteo.maffei@tuwien.ac.at

Abstract—Payment channel networks (PCNs) mitigate the
scalability issues of current decentralized cryptocurrencies. They
allow for arbitrarily many payments between users connected
through a path of intermediate payment channels, while requiring
interacting with the blockchain only to open and close the chan-
nels. Unfortunately, PCNs are (i) tailored to payments, excluding
more complex smart contract functionalities, such as the oracle-
enabling Discreet Log Contracts and (ii) their need for active
participation from intermediaries may make payments unreliable,
slower, expensive, and privacy-invasive. Virtual channels are
among the most promising techniques to mitigate these issues,
allowing two endpoints of a path to create a direct channel over
the intermediaries without any interaction with the blockchain.
After such a virtual channel is constructed, (i) the endpoints can
use this direct channel for applications other than payments and
(ii) the intermediaries are no longer involved in updates.

In this work, we first introduce the Domino attack, a
new DoS/griefing style attack that leverages virtual channels to
destruct the PCN itself and is inherent to the design adopted by
the existing Bitcoin-compatible virtual channels. We then
demonstrate its severity by a quantitative analysis on a snapshot of
the Lightning Network (LN), the most widely deployed PCN at
present. We finally discuss other serious drawbacks of existing
virtual channel designs, such as the support for only a single
intermediary, a latency and blockchain overhead linear in the
path length, or a non-constant storage overhead per user.

We then present Donner, the first virtual channel construction
that overcomes the shortcomings above, by relying on a novel
design paradigm. We formally define and prove security and
privacy properties in the Universal Composability framework.
Our evaluation shows that Donner is efficient, reduces the on-
chain number of transactions for disputes from linear in the
path length to a single one, which is the key to prevent Domino
attacks, and reduces the storage overhead from logarithmic in
the path length to constant. Donner is Bitcoin-compatible and
can be easily integrated in the LN.

I . INTRODUC TI ON

Payment channels (PCs) have emerged as one of the most
promising solutions to the limited transaction throughput of
permissionless blockchains, with the Lightning Network [32]
being the most popular realization thereof in Bitcoin. A PC

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24370
www.ndss-symposium.org

enables arbitrarily many payments between two users while
requiring to commit only two transactions to the ledger: one to
open and another to close the channel. Aside from payments,
several applications proposed so far benefit from the scalability
gains of 2-party PCs [11], [12], [18]. Recent work [8] has
further shown how to lift any operation supported by the
underlying blockchain to the off-chain setting, thereby further
expanding the class of supported off-chain applications.

Creating PCs between all pairs of users (i.e., a clique) is
economically infeasible, as users must lock coins for each PC
and funding occurs on-chain. On-demand creation of PCs with
any potential partner is also infeasible due to the need for on-
chain transactions for opening and closing each channel, which
results in on-chain fees, long confirmation times (around 1h in
Bitcoin) and again impacts the blockchain throughput. As a
result, single PCs are instead linked together to form PCNs,
using paths of PCs to connect two users instead of opening a
PC between them. The interactions of PCN users can be
classified into synchronization protocols and virtual channels.

Synchronization protocols. Synchronization protocols [9],
[22], [28]–[30], [32] allow a sender to pay a receiver when
they are connected by a path of PCs, atomically updating
the balance of all PCs along the path. Although some of
these synchronization protocols are deployed in practice (e.g.,
for multi-hop payments in the Lightning Network), there are
several drawbacks: (i, online assumption) they require users in
the path to be online; (ii, reliability) each intermediate user
must participate, making the payment less reliable; (iii, cost)
each intermediate charges a fee per synchronization round; (iv,
latency) the latency of the application increases along with the
number of intermediaries (e.g., in the Lightning Network up to
one day latency per channel); (v, privacy) intermediaries are
aware of every single operation; and (vi, efficiency) they can
handle only a limited number of simultaneous payments (e.g.,
483 in the Lightning Network) [4]. Finally, and per-haps
more importantly, current synchronization protocols are
tailored to payments. Supporting 2-party applications (as the
ones mentioned before) would require thus to come up with a
synchronization protocol for each application. Apart from
being a burden, it is not trivial to design such protocols
tailored to applications beyond payments, as exemplified by
the recent quest in the Bitcoin community about the realization
of Discreet Log Contracts across multiple hops [17].

Virtual channels. Virtual channels (VC) [7], [19]–[21], [25],
[27], [31] allow two users connected by a path of PCs to estab-
lish a direct connection, bypassing intermediaries. Intuitively, a

https://dx.doi.org/10.14722/ndss.2023.24370
www.ndss-symposium.org

V C is akin to a PC, but instead of being opened by an on-chain
transaction, it is opened off-chain using funds from the path of
PCs. Therefore, the opening phase involves all intermediaries,
besides the endpoints. Once established, however, updates can
proceed without the involvement of any intermediaries. In
this manner, VCs overcome the aforementioned drawbacks
of synchronization protocols: (i) intermediaries are no longer
required to be online; (ii) the reliability of the channel does
not depend on intermediaries; (iii) intermediaries do not charge
a fee for each usage of the channel (perhaps only once to
create and close the VC); (iv) the latency does not depend on
intermediaries; (v) intermediaries do not learn each single V C
update; (vi) a PC can host several VCs, each of which can be
used to dispense up to 483 payments or potentially more VCs,
bypassing the limitation on the number of payments in PCNs.

Since VCs can be used just as PCs, they constitute the
most promising solution to perform repeated transactions as
well as applications different from payments (e.g., [11], [12],
[18]) between any pair of users connected by a path of PCs.
In fact, applications built on top of PCs can be smoothly
lifted to VCs, which constitutes a crucial improvement over
synchronization protocols.1 For instance, VCs support Discreet
Log Contracts [18], an application that has received increased
attention lately and that intuitively allows for bets based on
attestations from an oracle on real world events. As compared
to PCs, VCs offer the same advantages while requiring no
on-chain transaction for their setup, thereby dispensing from
the associated blockchain delays, on-chain fees, and on-chain
footprints. This makes it possible to keep VCs short-lived, to
frequently close, open, or extend them based on current needs.
For a more detailed discussion see Appendix A.

V C constructions are difficult to design, since the balance
of honest parties needs to be ensured even in the presence
of malicious, and possibly colluding, intermediaries/endpoints.
The first constructions have been proposed for blockchains
supporting Turing-complete scripting languages based on the
account model, like Ethereum [19]–[21]. In such blockchains,
V C constructions are somewhat easier to design: For instance,
stateful smart contracts can resolve conflicts on the current
state of VCs by associating a different version number to
each state update and, in case of conflict, by selecting the
highest number as the valid state. Indeed, Ethereum-based
constructions are based on this idea and do not suffer from
the Domino attack presented in this paper. Unfortunately, this
reliance on Turing-complete scripting languages makes these
constructions incompatible with many of the cryptocurrencies
available today, including Bitcoin itself.

It is not only of practically relevant, but also theoretically
interesting to investigate what is the minimum scripting func-
tionalities necessary to design secure VCs. Therefore, a bit
later V C constructions have been proposed also for blockchains
with a less expressive scripting language and based on the
Unspent Transaction Output (UTXO) model (i.e., Bitcoin-
compatible) [7], [25], [27]. Throughout the rest of this paper,
we investigate VCs built on these blockchains if not specified
otherwise. All of these V C constructions share one common
design pattern: The V C is funded from all underlying PCs.
We refer to this design pattern as rooted VCs and illustrate

1 VCs expose all the functionalities of a PC and can be used interchangeably
as a building block for off-chain applications, see Section V.

TA B L E I: Comparison to other multi-hop V C protocols.

LV P C [25] Elmo [27] Donner
Scripting requirements Bitcoin Bitcoin + Bitcoin

ANYPREVOUT
Multi-hop ✓ ✓ ✓
Secure against Domino attack ✗ ✗ ✓
Path privacy ✗ ✗ yes
Time-based fee model ✓ ✗ ✓
Unlimited lifetime ✗ ✓ ✓
Storage Overhead per party Θ (n)� Θ (n 3) Θ (1)
Off-chain closing ✓ ✗ ✓
Offload: txs on-chain Θ (n) Θ (n) 1
Offload: time delay Θ (n)� Θ (n)� 1

� by synchronizing all channels, this time can be only Θ(log(n)).

it on a high level in Figure 1(a.1). Because VCs are, unlike
PCs, not funded on-chain, they rely on an operation called
offloading, which transforms a V C to a PC. This is important
for honest users so they can enforce their balance in case the
other user misbehaves: first transforming the V C to a PC by
putting the V C funding on-chain, and second using the means
provided by the PC to enforce their balance. Rooted designs
enable both endpoints to offload the VC, but because they are
funded by all underlying PCs, every underlying PC has to be
closed on-chain (see Figure 1(a.2)).

Conceptual advancements in this work. We show that rooted
VCs are by design prone to severe drawbacks including the
Domino attack (see Section III), a new DoS/griefing style
attack in which (i) a malicious intermediary of a V C or
(ii) an attacker establishing a V C with itself over a number
of honest PCs can close the whole path of underlying PCs
and bring them on-chain. Not only are all existing Bitcoin-
compatible V C constructions affected by this attack, in fact
the ideal functionalities against which they are proven secure
do permit this attack, but also this attack is so severe that it
can potentially shut down the underlying PCN, as we show in
Section III-C. As a result, we argue that none of the existing
Bitcoin-compatible V C constructions should be deployed in
practice. Furthermore, the rooted design allows adversaries
to learn the identity of participants other than their direct
neighbors, thereby breaking what we call path privacy (see
Section III-D). Given these security and privacy shortcomings,
we introduce a paradigm shift towards the design of non-rooted
VCs, based on two fundamental ingredients.

First, instead of being rooted, the V C is funded indepen-
dently from the underlying PCs, by one of the V C endpoints.
The underlying PCs are used to lock up some funds (or
collateral) that are paid to the honest V C endpoint if the other
V C endpoint misbehaves. We illustrate this concept on a high
level in Figure 1(b.1). In contrast to rooted designs, VCs can be
offloaded without having to close the underlying PCs, which is
the key to prevent Domino attacks. Since the V C is only
funded by one endpoint, only this funding endpoint has the
means of transforming the V C to a PC (offload). Subsequently,
the other one cannot get their money via offloading in case of
misbehavior. This issue is solved by compensating the non-
funding endpoint in case the funding endpoint has not
transformed the V C to a PC within a channel lifetime T , see
Figure 1(b.2) and (b.3).

This lifetime T is the second crucial aspect where we
depart from the state of the art. Current solutions provide
unlimited lifetime without guaranteeing however that the V C

2

0

0 3

3

0 3

0

1 n

1 2

(rooted) (non-rooted)
(a) State-of-the-art V C (b) Donner V C

(a.1) Construction (b.1) Construction

L3 U0 U3 U0 U3

after T
L2 U0 U1 U2 U3 txvc U0 U1 U2 U3

L1 U0 U1 U2 U3 U0 U1 U2 U3

(a.2) Transform V C to PC (b.2) Transform V C to PC (b.3) Compensation
L3

after T
L2 U0 U3 U0 U1 U2 U3 U0 U1 U2 U3

L1 U0 U1 U2 U3 txvc U0 U1 U2 U3 U0 U1 U2 U3

Fig. 1: Conceptual comparison of (a) state-of-the-art VCs
(rooted) and (b) our protocol (non-rooted) on layers L1
(blockchain), L2 (PCs) and L3 (VCs). Note that the V C in
(a.1) is funded by all the underlying channels In (b.1), the
V C is funded only by U , indirectly via a transaction txvc.
Additionally, in (b.1), a payment is set up from U to U ,
whose outcome depends on whether the V C is offloaded.
Offloading, i.e., the act of forcefully transforming a V C (L3) to
a PC (L2) in (a.2), requires that all the underlying PCs (L2)
are put on-chain (L1). In (b.2), offloading the V C keeps the
PCs open, posting only txvc on-chain (L1). Since offloading
enables U to receive their funds, the payment is refunded then.
However, since in (b), only U can offload, U is compensated
(b.3) after a timeout T via a payment that is executed iff U
has not offloaded the V C (i.e., (b.2) did not happen).

will remain open, as an intermediary node could initiate the
offloading. Instead, our design ensures that the V C is open
until time T , which can be repeatedly prolonged if all involved
parties agree. This allows intermediaries to charge fees based
on the lifetime of the VC, which corresponds to the time they
have to lock up their funds, something that is not possible in
current V C solutions with unlimited lifetime [27]. The
improvements over existing Bitcoin-compatible multi-hop V C
constructions are summarized in Table I. We compare with
single-hop constructions and with those relying on Turing-
complete smart contracts in Table I V in Appendix B.

Our contributions can be summarized as follows:

• We introduce the Domino attack, which allows the adver-
sary to close arbitrarily many PCs of honest users, thereby
destructing the underlying PCN. We argue that any rooted
construction, in particular, all existing Bitcoin-compatible
V C constructions are prone to this attack. We show the
severity of this attack in a quantitative analysis; given
current B T C transaction fees, it suffices for an attacker to
spend 1 B T C to close every channel in the current LN.
Even though V C protocols are not yet used in practice, we
find it crucial to show this attack before any construction
gets implemented, offering instead a secure alternative.

• We present Donner, a new V C protocol that departs from
the rooted paradigm by funding the V C from outside of
the underlying PC path. In addition to being secure
against the Domino attack, it significantly improves in
terms of efficiency and interoperability over state-of-the-
art V C protocols (see Table I).

• We introduce the notion of synchronized modification, a
novel subroutine allowing parties to atomically change the

value or timeout of a synchronization protocol, a contribu-
tion of independent interest. Synchronized modification,
non-rooted funding, and the pay-or-revoke paradigm [9]
are the core building blocks of Donner.

• We conduct a formal security and privacy analysis of
Donner in the Universal Composability framework.

• We conduct experimental evaluations to quantify the
severity of the Domino attack and demonstrate that Don-
ner requires significantly less transactions than state-of-
the-art VCs; Donner decreases the on-chain costs for
offloading VCs from linear in the path length to a single
one and the storage overhead per PC from linear or
logarithmic in LVPC [25] (depending on how the V C is
constructed) or cubic in Elmo [27] to constant.

I I . BAC K G RO U N D AND NOTAT I ON

A. UTXO based blockchains

We adopt the notation for UTXO-based blockchains
from [8], which we shortly review next. In UTXO-based
blockchains, the units of currency, i.e., the coins, exist in
outputs of transactions. We define such an output as a tuple θ
: = (cash, ϕ); θ.cash contains the amount of coins stored in this
output and θ.ϕ defines the condition under which the coins can
be spent. The latter is done by encoding such a condition in the
scripting language of the underlying blockchain. This can range
from simple ownership, specifying which public key can spend
the output, to more complex conditions (e.g., timelocks, multi-
signatures, or logical boolean functions).

Coins can be spent with transactions, resulting in the
change of ownership of the coins. A transaction maps a list of
outputs to a list of new outputs. For better readability, we
denote the former outputs as transaction inputs. Formally, we
define a transaction body as a tuple tx : = (id, input, output).
The identifier tx.id � {0, 1}� is assigned as the hash of the
other attributes, tx.id : = H(tx.input, tx.output). We model
H as a random oracle. The attribute tx.input is a non-
empty list of the identifiers of the transaction’s inputs and
tx.output : = (θ , ..., θ) a non-empty list of new outputs. To
prove that the spending conditions of the inputs are known,
we introduce full transactions, which contain in addition to the
transaction body also a witness list. We define a full transaction
tx : = (id, input, output, witness) or for convenience also
tx : = (tx, witness). Valid transactions can be recorded on
the public ledger L called blockchain, with a delay of ∆ . A
transaction is valid if and only if (i) all its inputs exist and
are not spent by other transaction on L ; (ii) it provides a valid
witness for the spending condition ϕ of every input; and (iii)
the sum of coins in the outputs is equal (or smaller) than the
sum of coins in the inputs.

There are several conditions under which coins can be
spent. Usually they consist of a signature that verifies w.r.t.
one or more public keys, which we denote as OneSig(pk)
or MultiSig(pk , pk , ...). Additional conditions could be any
script supported by the scripting language of the underlying
blockchain, but in this paper we only use relative and absolute
time-locks. For the former, we write RelTime(t) or simply
+t, which signifies that the output can be spent only if at
least t rounds have passed since the transaction holding this
output was accepted on L . Similarly, we write AbsTime(t)

3

1 n

A : x

B

P

P

0

n

i i�[1,n−1]

j j + 1 j

0

ϵi

n

i i + 1 i

i

i
p
ii + 1 i i

i
ϵi i

i

i i

i

or simply ≥ t for absolute time-locks, which means that the
transaction can be spent only if the blockchain is at least t
blocks long. A condition can be a disjunction of subconditions ϕ
= ϕ � ... � ϕ . A conjunction of subconditions is simply
written as ϕ = ϕ1 � ... � ϕn.

To visualize how transactions are used in a protocol,
we use transaction charts. The charts are to be read from
left to right. Rounded rectangles represent transactions, with
incoming arrows being their inputs. The boxes within the
transactions are the outputs and the value in them represents
the amount of output coins. Outgoing arrows show how outputs
can be spent. Transactions that are on-chain have a double
border (see, e.g., Figure 9 in Appendix C.1).

B. Payment channels

Two users can utilize a payment channel (PC) in order
to perform arbitrarily many payments, while putting only two
transactions on the ledger. On a high level, there are three
operations in a PC operation: open, update and close. First, to
open a channel, both users have to lock up some money in a
shared output (i.e., an output that is spendable if both users give
their signature) in a transaction called the funding transaction
or txf . From this output, they can create new transactions called
state or txs which assign each of them a balance. Once the
funding transaction is on the ledger, the users can exchange
arbitrarily many new states (balance updates) in an off-chain
manner, thereby realizing the update phase of the channel.
Once they are done, they can close the channel by posting the
final state to the ledger.

In this work, we use PCs in a black-box manner and refer
the reader to [8], [28], [29] for more details. We abstract away
from the implementation details and instead model the state of
the channel as the outputs contained in a transaction txs, which is
kept off-chain. For simplicity, we assume that this is the only
state that the users can publish and abstract away from how
the dishonest behavior is handled. In practice, it is possible
that a dishonest user publishes a stale state of the channel and
current constructions come with a way to handle this case (e.g.,
through a punishment mechanism that compensates the honest
user [8]). We illustrate this abstraction in Figure 2.

C. Payment channel networks

A payment-channel network (PCN) [28] is a graph where
the nodes represent the users and the edges represent the PCs.
The Lightning Network [32] is the state of the art in both PCs
and PCNs for Bitcoin, and the largest PCN in terms of coins
locked within its channel fundings, currently having around
81k channels, 19k active nodes and a total capacity of 3k B T C
(around 130M USD).

txf (A , B)

x A + x B
B : x

A

Fig. 2: We abstract PCs using a squiggly line to hide details
that are not needed in this work. P : x indicates that user
P owns x coins in the state txs, written as (A, B). The box
containing x A + x B indicates the shared output of A and B .

In a PCN, any two users connected by a path of channels
can perform what is called a multi-hop payment (MHP).
Assume that there is a sender U who wants to pay α coins
to a receiver U , but they do not have a direct channel.
Instead, they are connected by a path of channels going
through intermediaries {U } , such that any pair of
neighbors U and U have a channel γ , for j � [0, n−1]. A
mechanism synchronizing all channels on the path is required
for a payment, such that each channel is updated to represent
the fact that α coins moved from left to right. We give an
example in Figure 10 in Appendix C.2.

D. Blitz
There exist many different MHP protocols that synchronize

the updates of channels. In particular, the Blitz [9] protocol is
useful for this work. In Blitz, the PC updates are dependent on
a transaction called txer, which acts as a global event. The PCs
are synchronized in the following way: If txer is posted on-
chain, the updates are reverted, otherwise, they are successful.
In other words, the sender sets up a MHP conditioned on a
“refund enabling” transaction txer in a way that the refund
can be triggered, if anything goes wrong. If all channels
participated honestly, the sender does not post txer and the
MHP goes through (see Figure 3). In a bit more detail, Blitz
consists of four operations:

1) Setup. The sender U creates a synchronization transaction
txer as depicted in Figure 3b, which has an output θ
holding ϵ coins for each user except the receiver U .
The value ϵ is set to the smallest possible value that the
underlying blockchain allows (ideally zero); these outputs
are merely to enable other transactions.

2) Open. Each channel sequentially, from sender to receiver,
sets up a payment whose success or refund is conditioned
on a time T or transaction txer, as conceptualized in
Figure 3a and shown in detail in Figure 3c. In a nutshell,
two users U , U update their channel γ to a state where
the amount to be paid α (more precisely α which encodes a
per-hop fee) coming from U can be spent as follows: Either
by U using tx after time T or by U using txr if txer is
posted on-chain. Since each txr uses the corresponding
output θ of txer, the UTXO model ensures that txr can
only be posted if txer has been posted before.

3) Finalize. After the receiver has successfully set up the
payment, she sends back a confirmation to the sender con-
taining txer. If the sender receives a confirmation containing
the txer she created in the setup phase within some time, she
goes idle. Otherwise, she posts txer, initiating the refunds
(see respond).

4) Respond. Every user U monitors the blockchain if txer

appears. In case it appears before T , the user will publish
the refund transaction txr for her channel γ . If the two
users in γ collaborate, both updates and refunds can always
be performed off-chain.

In this work, we utilize a slightly modified version of Blitz
as a building block. We mark the modification in green in
Figure 3b and describe it in Section V-C.

E. State-of-the-art virtual channels
A virtual channel (VC) allows two users to establish

a direct channel, without putting any transaction on-chain.

4

U U U U U0 1 2 3 4

tx

ϵ

ϵ

pkU0

pk

tx
c+ t + ∆

pk

(b)

ϵ

U Ui i + 1

pk

txi

i

txi

pk

pkUi

c

Ui

pk

0

0 2

1 0 1 1 2

0 2

0

1

pun 0 2

α

α

1 U 1

2 U 2

0

0 2

> t

α
1U : α

α

U : α

4 U4

0 4

α

α
...

3 4

α
tx
α

U : α

α
txf

α
3U : α

3

0U : α

4

0 2

0

2

1 1

0 1

1 2

0 2

txer/txvc

er
txer/txvc ...

+ t + ∆ txr

in
α pkU0 , pkUn ...

pkUi + ∆ αi + ϵ Ui

pk , pk
≥ T ≥ T ≥ T ≥ T n · ϵ+α s p

Fig. 3b Fig. 3c ...
U0 ...

+tc + ∆ αi ≥ T αi U i + 1

U n − 1 xU i − α i pk Ui
U i + 1 U i + 1

(a) x U i + 1 Ui + 1
U i + 1

(c)
Fig. 3: (3a) Illustration of the Blitz synchronization protocol; (3b) Off-chain synchronization transaction spending from an output
under U ’s control and linking to the collateral in each channel. (i) Without the green part: txer in Blitz. (ii) With the green part:
txvc used for funding the V C in this work; (3c) Two-party contract used within each channel

Indeed, the fundamental difference between a PC and a V C
is that in a VC, the funding transaction txf does not go on-
chain in the honest case. To still ensure that users do not lose
their funds in case of dispute, this requires a new operation: In
addition to the three operations open, update and close of
PCs, we need the operation offload, which allows a user of the
V C to put the funding transaction txf on-chain, transforming
the V C into a PC in case of a dispute.

To understand how VCs work, let us look at an example
following a state-of-the-art V C construction [25]. This example
is depicted in Figure 4. Assume U and U want to construct
a V C via U , i.e., there exist PCs (U , U) and (U , U), and
they wish to build a V C (U , U). To open a VC, the main
idea is to take the desired V C capacity α and lock it in both
channels, such that α coins come from U and α coins from the
intermediary U . These 2·α coins are used both for funding the
V C and as collateral; these coins can be spent in the following,
mutually exclusive ways:

(i) by putting the funding transaction txf on-chain, which
simultaneously funds the V C and refunds the interme-
diary its collateral α, or

(ii) if both α coins are not spent by a chosen punishment
time t , U and U can each claim α coins, which is
the maximal amount they could hold in the V C

Clearly, U1, who is part of both channels, is incentivized to

(U0, U1) U : α Funding

α > tpun

U0 : xU 0 − α (U , U)

U1 : xU 1
txf

U0 : zU0

(U1, U2) U1 : α U2 : α − zU0

U : y − α
Punishment

Collateral

U : y
U2 : α

pun

Fig. 4: Illustration of a V C construction over a single interme-
diary. The V C funding txf is rooted in the underlying channels
is the only way for the intermediary to get its collateral back.
txf and the the punishment are mutually exclusive.

(U0, U1) U0 : α U0 : α

... txf (U0, U2)
(U1, U2) ... f (U0, U3)

...
... (U , U)

(U2, U3) 2 2 U0 : vU0

U : v
U : α

(U , U)
α U : α
...

Fig. 5: Illustration of a rooted V C via multiple hops. The
yellow lines indicate how the V C is rooted. All transactions
connected to and to the left of txf need to be put on-chain in
the case the rightmost V C is offloaded.

put txf on-chain, as this is the only way to get her collateral
back. Simultaneously, the two end-users U and U , who are
only part of one of the channels, are ensured that either txf

goes on-chain, or else they receive the full α.

Putting txf on-chain is called offloading and is a safety
mechanism to ensure that users can claim their rightful balance
in case of a dispute. Offloading can be initiated by either U
or U (by closing their respective channel and threatening to
take the collateral if U does not react), or by U by simply
closing both channels. We emphasize that the money of txf

comes from both underlying channels, i.e., it can only exist
on-chain, if both underlying channels have been put on-chain
(closed). We call this design a rooted VC.

If there is no dispute, the transactions depicted in Figure 4
remain off-chain and the underlying channels (U , U) and (U
, U) remain open. The update of the V C requires no
interaction of the intermediaries, the end-users simply update
the channel (U , U) as they would a PC. Finally, to close the
VC, the final balance of the V C has to be mapped into the base
channels so that in the end both V C endpoints receive the latest
balance of the V C and the intermediaries do not lose coins.
Note that with the exception of offload, which requires at least
one on-chain transaction (i.e., the funding), all other operations
require no on-chain transaction. This single-intermediary idea
can be used to construct a tree-like structure over a path of
arbitrary intermediaries to get VCs of arbitrary length. We
show this concept in Figure 5.

5

0 4

1

2 3

0 1 3 4

0 4

0 1

1 2 2 3 3 4

4 3 4

3 4

0 4 4

3

3 4 4

0 3

0 4

0 4 3

0 3 3 2 3

2

2 3 0 3

2

0 2 1 2

3

I I I . T H E DOMINO AT T A C K

A. Reasons that lead to the attack

Observation 1: Balance security for V C endpoints. Inde-
pendently of its inner workings, any V C construction must
ensure that honest V C endpoints Alice and Bob can cash
out the coins they hold in the V C (i.e., get their coins on-
chain). As discussed in Section II-E, VCs are akin to payment
channels (PCs), with the difference of having their funding
transaction off-chain. This means that both endpoints can no
longer directly claim their latest balance as in a PC. Instead,
the V C funding transaction first needs to be put on-chain
through the operation offload, which can be initiated by the
V C endpoints and in some existing V C protocols [27] even by
the intermediaries.

Observation 2: V C funding transaction is rooted in all
underlying base channels. We recall that to enable the offload
operation, the V C funding takes as inputs (either directly or
indirectly, via intermediate transactions) outputs of each of the
underlying base channels. We denote such a V C as being
rooted in the base channels.2 At a first glance, this seems
the most natural approach since it allows both endpoints to
offload the V C and the intermediaries to unlock their collateral.
However, a rooted funding implies that it can be posted on-
chain if and only if all underlying PCs are closed. This feature is
the source of the Domino attack, as shown next.

B. Attack description

The Domino attack is essentially a DoS or griefing style
attack. It follows directly from the two observations mentioned
above and can proceed in the following phases: (i) an adversary
controlling two nodes opens two PCs encasing a path of victim
channels; (ii) the adversary opens a V C to herself via these
victim paths; and (iii) she initiates the offloading of the VC.

The effect of this attack is to force the closure of every
channel on this path, i.e., the two the attacker created and the
channels on the victim path. Anyone not closing their channel
risks losing their money. In stark contrast to payment protocols
in PCNs such as Lightning or Blitz where closing one channel in
the payment path still allows channels in the rest of the path to
remain open, in current V C constructions there is no way that
honest nodes can settle their channels honestly off-chain and
keep them open. They are forced to close every channel, as the
V C funding can only exist on-chain if all base channels are
closed.

Example. Assume an attacker controlling nodes U and U
who wants to perform a Domino attack on the victim path U ,
U and U , see Figure 5. If not already opened, the attacker
opens the channels (U , U) and (U , U). Then, she constructs
a V C between her own nodes U and U recursively, as, e.g.,
established in the LV PC protocol [25]. After the attacker is
done with this step, the transaction structure among different
users is as in Figure 5. The attacker can now unilaterally force
the closure of all underlying channels, i.e., the PCs (U , U),
(U , U), (U , U) and (U , U) as well as the intermediate
VCs (U0, U2), (U0, U3) and the offloading of (U0, U4).

2By base channel we mean either a PC or a V C that was used for opening
a VC, to capture the fact that VCs can be constructed recursively.

First, U closes the PC (U , U), which she can do on her
own. In the rooted V C example of Figure 5 (e.g., this could
be LVPC), the output in the state of (U , U) which is used to
fund the V C (U , U) goes to U , unless it is first consumed by
the VC. This means that an honest U will lose money in the
channel (U , U) to U by means of the punishment transaction
on the bottom right in Figure 5 (dubbed Punish transaction in
the LV PC protocol), unless she closes the channel (U , U) and
claims its money by posting txf , i.e., the transaction funding
the V C (i.e., offloading) (U , U), dubbed Merge transaction
in LVPC.

However, to post txf for (U , U), U first needs close
(U , U). U initiates the offloading by first closing (U , U).
This triggers a similar response from U , who is now at risk
of losing the coins in (U , U), unless she offloads (U , U)
by putting the corresponding txf . But to do that, U first needs to
close (U , U). This is done, finally, by closing (U , U), which
forces U1 to close also (U0, U1).

In the end, all channels are closed. We illustrate this in
the extended version of this work [10]. Let us clarify that by
closing the underlying channels we mean that at least two
transactions per channel have to be put on-chain, one for
closing the channel and another one to spend the collateral
locked for the VC. Due to the fact that LV PC first splits
the channel into two subchannels before using one of them to
fund the VC, closing the initial channel simultaneously
spawns a new channel (i.e., the remaining subchannel) that has a
capacity reduced by the amount put in the collateral funding the
VC. The Domino attack works regardless of how the
recursion was applied, as well as on Elmo [27]. In LV PC some
(U in the example above) and in Elmo all intermediaries can
carry out this attack. The Domino attack can also be launched if
the attacker controls only one of the endpoints, assuming the
other one agrees to open a V C with her over the victim path.
We remark that LV PC and Elmo are modelled in the UC
framework, however, their ideal functionalities explicitly allow
for the Domino attack.

C. Quantitative analysis of the Domino attack

To quantify the severity of the Domino attack, we perform
the following simulation. We take a current (March 2022)
snapshot of the Lightning Network (LN) [5]. In this snapshot,
there are 83k channels, 20k nodes and 3284 B T C (around
150M USD) locked in channels (of the largest connected
component). The nodes’ connectivity varies in the LN. There
are leaf nodes having only one open channel, and there are
nodes with almost 3000 channels. Additionally, entities can
control multiple nodes. The entities can be linked by their alias,
as pointed out in [33], something we follow in this simulation as
well.

Clearly, differently connected nodes can launch the
Domino attack with more or less devastating effect. The better
connected a node is, the more channels can be closed down.
Note that for this attack, it does not matter how many coins
are locked in the channels under control of the attacker and not
even the number of nodes the attacker control, but instead the
number of open channels and the kind of paths which exist to
another node under the attacker’s control; the source and
destination may be the same node.

6

[0,500)
[500,1k)

[1k,1.5k)
[1.5k,2k)

[2k,2.5k)

[2.5k,85k)

0.4

Pe
rc

en
ta

ge
 o

f n
od

es 100 k

of

 h
on

es
t c

ha
nn

el
s

cl
os

ed Adv. budget
0.2 B T C

0.6 80 k 0.5 B T C
1 B T C

60 k
0.2

0 40 k

20 k

Channels an attacker can close 0 k 2 4 6 8 10 12

(a) Maximum allowed length of VCs

(b)

Fig. 6: Simulated effect of the Domino attack.

Analyzing existing nodes. To measure the damage that can
be caused by existing nodes in the LN with two or more
open channels, we do the following. Assuming each node, or
more precisely, each alias, is performing the Domino attack.
This means, using the open channels the attacker tries to
close as many channels as possible. Computing the optimal
set of VCs the attacker would need to open to maximize the
channels is computationally expensive and out of the scope of
this simulation. Instead, we settle for a simpler heuristic. The
attacker computes the cycle basis for a root node controlled by
the attacker, yielding paths starting and ending at one node
under the attacker’s control. The attacker chooses the longest
one and proceeds to close the channels by performing the
Domino attack. Now, on the new network with fewer channels,
the attacker repeats these steps, until all of the attacker’s
channels are closed and they can do no further damage.

We count the channels an attacker can close with this
approach for each alias. Each node can close 1284 channels
on average, which amounts to around 1.5% of all channels in
the LN. However, note that around 8% of all nodes can close
no channels at all, while the most well-connected entity can
close around 53k channels, which more than 60% of the LN.
We visualize our results in Figure 6a, where for a given
interval of how many channels an entity can close, we show
the percentage of nodes that falls into this category. The source
code and raw results of this simulation can be found at [6].

To make matters worse, an attacker can target specific
channels with this. This allows the attacker to perform attacks
similar to Route Hijacking [36], a DoS attack where an attacker
strategically places a channel in a topologically important
location and announces low fees. Subsequently, users will route
their payments through the attacker’s channel who can then
drop the requests. In the worst case this can (temporarily)
disconnect parts of the network from one another. In the
Domino attack, an attacker can disconnect parts of the network
directly, by closing all edges that connect the two subgraphs.

Analyzing newly placed nodes. In this second analysis, we
let the attacker create new channels instead of assuming an
existing node is corrupted. Clearly, without any restrictions, an
attacker can do more damage than in the previous simulation,
i.e., by opening the same (and more) channels as the the best
performing node which had a bit less than 3000 channels.
Taking a current average fee of 0.000031 B T C (1.27 USD)
per transaction [2], this would cost an adversary around 0.186
BTC. In more detail, 0.093 B T C are needed for opening
these channels and again 0.093 B T C for closing them after

establishing the according VC, triggering the Domino attack.
Note that the latter amount is also needed if the channels are
already there (in the previous simulation).

We therefore put some restrictions on the attacker. We
assume that an adversary has a certain budget to spend on
fees for establishing channels over the network. Further, the
adversary constructs VCs of a length of up to n � [2, 11] to
herself, i.e., the adversary is the first and last node. We set the
maximum V C length n to 11, the diameter of the LN snapshot,
i.e., at this length every nodes can reach every other node.

The adversary needs to post 3 on-chain transactions per
V C with the associated fees, two for establishing the two
PCs encasing the victim path and one to close one of these
channels. Further, for the V C itself, a certain minimum amount
is needed to open it, similar to LN payments. However, since
this amount is presumably not only very small, but also the
adversary gets it back, we omit it in our simulation and say
instead that the adversary performs this attack in sequence.
Finally, we note that the effect of this attack is likely to be
even more severe in reality, since in existing V C constructions,
not only does the channel need to be closed, but subsequent
transactions making up the rooted funding of the V C need to be
posted as well.

We present our results in Figure 6b. Using only 1 B T C for
fees, the adversary can close up to 97k honest channels, which is
more than all channels in our LN snapshot (83k), and cause a
cost of at least 6 B T C to the involved nodes. Budgets in the
order of 0.2, 0.5, and 1 B T C are not unrealistic, as there are
1501, 799, and 453 nodes, respectively, holding this money
within the LN, assuming equal balance distribution in the
channels, i.e., 0.5% of nodes in the LN have enough balance
to shut down the whole network. If we consider all Bitcoin
addresses (even outside the LN), there exist 815k addresses
owning 1 B T C or more [3].

We remark that since VCs are not used in practice, we
cannot evaluate this in the real world. However, previous work
has already shown the feasibility of similar DoS or griefing
attacks and how they transfer to the real world [24]. For a
discussion on why it is infeasible to deter this attack with
fees, we refer to Appendix B. From our simulation it follows
that this attack is too severe for the adaption of current V C
solutions in PCNs such as the LN. In order to make VCs usable
in practice, it is essential to prevent the Domino attack.

D. More drawbacks of current VC constructions

Unlimited lifetime. Existing V C constructions such as
Elmo [27] offer VCs with an a priori unlimited lifetime. On a
high level, unlimited lifetime of a V C means that if every party
agrees (including endpoints and intermediaries), the V C can
remain open potentially forever. While existing work highlights
unlimited lifetime as a desirable feature for both PCs and VCs,
we view it as a drawback in the context of VCs. Indeed, there is
an important difference between VCs and PCs: in a V C funds
are locked up not only by the endpoints, but also by the
intermediaries of the underlying path. Without a lifetime,
intermediaries could have their collateral locked up forever,
unless they decide to go on-chain, which however forces them
to close their PCs. Related to that, intermediaries should charge a
fee proportional to the collateral and the time this collateral is

7

0 n

i

0 0

0

0

n

0 n

0

0 n

n 0

n

0 n

0

0

n

n

i

i − 1 i i i + 1

i

i

i

locked (analogously to the LN): without a lifetime, the second
parameter cannot be estimated nor enforced without closing
the base PCs.

We therefore propose a new approach: instead of having an
a priori unlimited lifetime, we fix a certain lifetime at the point
of creation. When this lifetime expires, users have the option
to prolong it for another fixed lifetime if everyone agrees or
to close it. Prolonging it means that the V C remains active
and any applications hosted on top of can be kept on being
used smoothly. In addition, every intermediary can charge a
lifetime-based fee every time they prolong the VC. While all
agree, they can repeat this process indefinitely. If one party
wants to stop it, the party can unlock their funds without having
to close any channel on-chain. We explain this concept in more
detail in Section IV.

Recursiveness. The last issue we point out comes from how
the V C funding is rooted in the underlying channels. In current
V C constructions, the V C funding is built by recursively
combining two channels at a time, forming a tree with the
V C funding transaction being the root of the tree and the
underyling channels being the leaves. This has two negative
implications. First, in addition to closing all PCs (which
requires at least one on-chain transaction per channel), i.e.,
the leaves of the tree, a linear number of transactions needs
to go on-chain in order to offload a channel, i.e., the non-leaf
nodes of the tree. Second, depending on how the recursiveness
has been applied, the time it takes to offload a V C is also either
linear (in case of an unbalanced tree) or logarithmic (in case
of a balanced tree) in the number of underlying channels. In
our construction, offloading involves only a constant number
of on-chain transaction as elaborated in the next section.

Lack of path privacy. State-of-the-art V C constructions create
the rooted funding by connecting outputs of pairs of channels in
a recursive way. However, this requires interaction of some
intermediaries with more than their direct neighbors on the
path. In our construction, intermediaries on the path only learn
about their direct neighbors in the honest case, exactly as in
the Lightning Network.

I V. DONNER: K E Y I D E A S

We describe the core ideas of Donner by assuming that a
slight variant of the previously described Blitz construction is
used as underlying MHP protocol. As detailed below, our con-
struction is parameterized over it, so that other functionality-
equivalent MHP protocols could be deployed instead.

High level architecture. Let us assume U and U , connected
via U for i � [1, n − 1], wish to open a bidirectional V C
with capacity α and time T fully funded by U . First, U
starts with a slightly modified version of the Setup phase of a
Blitz payment of α coins, as explained in Section II-D, let us
call it Setup*. In this modified phase, U proceeds to create a
transaction txvc as depicted in Figure 3b (this time, including
the green part) instead of txer. txvc takes an input from U and
creates an output holding α coins and like in the Setup phase, an
output holding ϵ coins for each user except the receiver U .
This transaction will serve two purposes: (i) it will be the
funding of the V C and (ii) it will be used to synchronize a
Blitz payment.

Next, U and U proceed to create the initial state (see
Section II-B) txs of the V C using txvc as a funding. We
emphasize that this process is exactly the same as for a PC, the
only difference being that the funding transaction txvc has these
additional outputs holding ϵ and we do not intend to publish
txvc on-chain. After this step is successful, U initiates the
remaining phases of Blitz (Open, Finalize and Respond) using
txvc. After completion, a Blitz payment of value α is open
between U and U conditioned on txvc, i.e., it is refunded if
txvc is posted and otherwise successful after time T .

Intuition security. At this point, the V C is considered open
and can be used exactly like a PC. The careful readers might be
wondering why this V C is safe to use. After all, we detached
the funding from the underlying PCs and removed the receiver U
’s ability to offload the VC. However, the sender U did set
up a Blitz payment to U of α coins, which is the full
capacity of the VC. By putting the V C funding inside the
synchronization transaction of Blitz, we make the two actions
offload the VC and refund the Blitz payment atomic. In other
words, if U does not offload, U will automatically receive the
full V C capacity via the payment after T .

Getting rid of the Domino attack. We recall the causes for
the Domino attack: (i) the V C funding has to be enforceable
on-chain by offloading and (ii) the V C funding is rooted in
all underlying PCs. To prevent the attack, we got rid of (ii):
The funding txvc comes solely from U , i.e., it is independent
(or detached) from the PCs underlying the VC. The V C can
be offloaded without closing the underlying PCs, simply by
U posting txvc. Once posted, all PCs can be honestly settled,
updating the PC to reflect the refund or the success of the Blitz
payment, as in Blitz itself or other synchronization protocols.

Closing the VC . One of the most essential operations of the
V C operation is closing the V C honestly, i.e., off-chain. This is
challenging, because closing needs to proceed in a way, such
that no one is at risk of losing funds. To solve this challenge,
we first observe that if the receiver U already owns all α
coins in the VC, the V C endpoints need merely wait until the
Blitz timeout T runs out. At this point, the Blitz payment
will be successful automatically. But what about when U
owns 0 ≤ α′ < α coins in the VC? We need a protocol that
atomically changes the value of the Blitz transaction from α
to α′ . To solve this issue, we introduce a new protocol, called
synchronized modification, which given a payment of value α
tied to transaction txvc and a timeout T , allows for updating
the payment to a value α′ such that 0 ≤ α′ < α. This is
illustrated in Figure 7.

Synchronized modification works as follows. We can update
individual 2-party Blitz contracts to the new value α′ from
right to left. An intermediary U is sure to not lose money,
because the atomicity of Blitz ensures that in both the left
(U , U), having locked α, and the right channel (U , U),
having locked α′ , the payment is either refunded or succeeds.
In the former case, U does not lose money, as both payments
are reverted. In the latter case, U gains α while paying α′ , so
U gets some money. We can incentivize the participation of
intermediary users with fees. Alice is incentivized to publish
txvc if the correct updates do not reach her (paying more money
than she owes otherwise), thereby ensuring the atomicity of the
synchronized modification. If all the channels are updated, they
can simply go idle waiting for the payment to be successful

8

4

α α α α

4

α α α α

4

α α α α

≤ 0

1 n

after T , or they can finalize this payment instantly by using
the fast track functionality [9].

Fair unlimited lifetime. The timeout parameter T serves an
additional purpose here: It is the lifetime of the VC. V C
endpoints need to close the V C before T expires. Interestingly,
we can use the aforementioned synchronized modification
operation also for extending this lifetime. In particular, besides
updating the contracts in each channel to a smaller amount, as
shown in Figure 7, we can in fact update the timeout T in
each channel. Before the initial timeout T expires, the V C
endpoints can run a synchronized modification update from
receiver to sender. If everyone agrees, they can update to the
time T ′ > T , and intermediaries would charge a fee for
this. Intuitively, users are incentivized to agree as they are
fine to to pay their money later (at T ′) to their right while
receiving it earlier (at T) on their left. This solves the problem
of the a priori unlimited lifetime of prior V C constructions.
The endpoints have the guarantee that the V C remains virtual
until a pre-defined timeout, while the intermediaries have a
guarantee that they can unlock their collateral after at most
a pre-defined timeout without going on-chain and they can
prolong it if everyone agrees for as long as they wish. Since the
time for which the V C is prolonged is known, intermediaries
can adopt a fee model that is based on time, which is not
possible in existing solutions.

V. DONNER: PROT O C O L D E S C R I P T I O N

A. Security and privacy goals

We informally define three security and three privacy
goals for our V C construction. For formal definitions of these
properties and proofs, we refer to the extended version of this
work [10]. We mark security goals with an S and privacy
goals with a P. Side channel attacks (e.g., probing and balance
discovery) constitute a significant privacy threat for PCNs [26].
Here, we rule out side channels from the attacker model to
reason about the leakage induced by the design of the V C
construction itself.

(S1) Balance security. Honest intermediaries do not lose any
coins when participating in the V C construction.

Case (i): U ’s balance is reflected in payment.
txvc: U4 owns α

U0 ≥ T
U1 ≥ T

U2 ≥ T
U3 ≥ T

U4

Case (ii): Discrepancy between U ’s balance and payment.
txvc: U4 owns α′

U0 ≥ T
U1 ≥ T

U2 ≥ T
U3 ≥ T

U4

Case (iii): Synchronized modification to reflect U ’s balance in payment
txvc: U4 owns α′

′ ′ ′ ′

U0 ≥ T
U1 ≥ T

U2 ≥ T
U3 ≥ T

U4

Fig. 7: Synchronized modification: Safely modify the contract
tied to a transaction txvc in each channel atomically. Note that
txvc is the same transaction in all three cases.

(S2) Endpoint security. No user can steal the sender’s balance
of the VC. Additionally, the receiver is always guaranteed to
get at least its V C balance.

(S3) Reliability. No (possibly colluding) intermediaries can
force two honest endpoints of a V C to close or offload the V C
before the lifespan T of the V C expires.

(P1) Endpoint anonymity. In an optimistic V C execution,
intermediaries cannot distinguish if their left (right) user is the
sending (receiving) endpoint or merely an honest intermediary
connected to the sending (receiving) endpoint via other, non-
compromised users.

(P2) Path privacy. In an optimistic V C execution, intermedi-
aries do not learn any identifiable information about the other
intermediaries, except for their direct neighbors.

(P3) Value privacy. The users on the path learn only about
the initial and the final balance of the VC, not the value of the
individual payments.

The careful readers may have noticed that P1 and P2 hold
only for the optimistic case. Indeed, like in any other off-chain
protocol (e.g., the Lightning Network), the channels have to go
on-chain in order to resolve disputes in the worst case. This
means that anyone observing the blockchain can reconstruct
the path. Note, however, that this happens rarely, as the
optimistic case is less costly for the participants. Designing off-
chain protocols that achieve privacy even in case of disputes is
an interesting open question.

B. Assumptions and prerequisites

Digital signatures. A digital signature scheme is a tuple
of algorithms Σ : = (KeyGen, Sign, Vrfy). On a high level,
(pk, sk) ← KeyGen(λ) is a PPT algorithm that on input a
security parameter λ generates a keypair (pk, sk). The public
key pk is publicly known, while the secret key sk is only known
to the user who generated that keypair. σ ← Sign(sk, m)
is a PPT algorithm that on input a secret key sk and a
message m � {0, 1}� generates a signature σ of m. Finally,
{0, 1} ← Vrfy(pk, σ, m) is a DPT algorithm that on input a
public key pk, a message m and a signature σ outputs 1 iff the
signature is a valid authentication tag for m w.r.t. pk. We use a
EUF-CMA secure [23] signature scheme Σ as a black-box
throughout this work.

Payment channel notation. We model each payment channels
as a tuple: γ : = (id, users, cash, st). The attribute γ.id �
{0, 1}� uniquely identifies a channel; γ.users � P 2 identifies
the two parties involved in the channel out of the set of all
parties P . Moreover, γ.cash � R denotes the total monetary
capacity (i.e., the coins) of the channel and the current state is
stored as a vector of outputs of txstate: γ.st : = (θ , ...θ). In
this work, we use channels in paths from a sender to a receiver.
For simplicity, we say that γ.left � γ.users refers to the user
closer to the sender, while γ.right � γ.users refers to the user
closer to the receiver. The balance of both users can always be
inferred from the current state γ.st. For convenience, we say
that γ.balance(U) gives the coins owned by U � γ.users in this
channel’s latest state γ.st. Finally, we define a channel skeleton γ
for a channel γ, as γ : = (γ.id, γ.users).

Ledger and channels. We use the ledger (or blockchain) and
a PCN (both introduced in Section II) as black-boxes in our

9

ii

i i
i u

i i

i

i

0 n vc

vc 0 n

U

0 n

0 n

0 n i

0

vc

0 n ϵi

i c

i vc

0 n

vc 0 n

vc

vc 0 n

0 n

0 1

0 1

0 1

1 0

0 0
ϵ0

0

1 2

n

n − 1

vc

i vc i
vc

i

0

0 n

n

n − 1 n

i − 1 n

n − 1 n

n n − 1
n − 1

n − 1 n − 1 n − 1

n − 1

construction. The ledger keeps a record of all transactions
and balances and is append-only. The PCN supports opening,
updating and closing of PCs. We assume the PCs involved in
VCs to be already open. We interact with ledger and PCN
through the following procedures.

publishTx(tx): The transaction tx is posted on-chain after
at most ∆ time (the blockchain delay), if it is valid.

updateChannel(γ , txstate): This procedure initiates an up-
date in the channel γ to the state txstate, when called by a user
� γ .users. The procedure terminates after at most t time and
returns (update−ok) in case of success and (update−fail) in
case of failure to both users. We call this function also to
update our V C hosted on txvc.

closeChannel(γ): This procedure closes the channel γ ,
when called by a user � γ .users. The latest state transaction
txstate appears on the ledger after at most tc time.

preCreate(txvc, index, U , U): Pre-creates the V C γ , ex-
changing the initial state transactions with the other user in
γ .users : = (U , U) based on the output identified by index
of the funding transaction txvc that remains off-chain for now.
It finally returns γvc.

Assumptions and remarks. In our construction, we assume
that every user U has a public key pk to receive transactions.
Additionally, we assume that honest parties stay online for the
duration of the protocol, like in the Lightning Network. A path
finding algorithm to identify a payment path can be called by
pathList ← GenPath(U , U). This will return a path in the
PCN from U to U . Path finding algorithms are orthogonal
to the problem tackled in this paper and we refer the reader
to [34], [35] for more details. Finally, we assume fee to be
a publicly known value charged by every user. Note that in
practice, every user can charge an individual fee. We reuse the
pseudo-code definitions of Setup, Open, Finalize and Respond
from [9] in Figure 8.

C. Detailed construction and pseudocode

Recall the setting, where U and U , connected via U for
i � [1, n −1], wish to open a bidirectional V C with capacity α
fully funded by U . We consider the different phases of Don-
ner: OpenVC, UpdateVC, CloseVC, ProlongVC and Respond.
We show the used macros in Figure 8(a), the procedure for
updating individual PCs for the close or prolong V C phase
in Figure 8(b), and the whole protocol in Figure 8(c). For
completeness, we explain the protocol including the operations
of Blitz [9] below in prose, while in Figure 8(c) we show
a modularized protocol based on the operations setup, open,
finalize and respond. We remark that in this work, we could use
any other construction providing the same functionality, e.g.,
this can be achieved by smart contract enabling UTXO-based
chains such as the EUTXO model used in Cardano [15]. For
better readability we simplify the protocol, e.g., we omit ids
required for routing VCs concurrently. For the formal protocol
description in the UC framework, we defer to the extended
version of this work [10].

OpenVC. This phase makes use of a modified Blitz Setup
phase (Setup*) and Open/Finalize of Blitz. Setup*: The sender
U0 starts by creating a transaction txvc that contains an

output θ holding α coins spendable under the condition
MultiSig(U , U) and n outputs θ holding ϵ coins each
spendable under the condition OneSig(U) + RelTime(t + ∆) ,
one for every user U for i � [0, n − 1]. Spending from θ ,
U and U create commitment transactions for the V C with
γ : = preCreate(txvc, 0, U , U). This function pre-creates the
V C γ , exchanging the initial state transactions with the other
user in γ .users : = (U , U) based on the output with index 0
of the funding transaction txvc that remains off-chain for now.
It finally returns γvc.

Open (Blitz): Then, each pair of users from U to U
performs 2pSetup of [9], which we briefly summarize as
follows. Sender U presents its neighbor U with txvc and
an update of their channel to a state, where α coins of U
are spendable under the condition ϕ = (OneSig(U) �
AbsTime(T)) � (MultiSig(U , U) � RelTime(∆)). Passing
along txvc does not violate privacy, due to the usage of stealth
addresses, see Appendix D.1.

Before actually updating the channel, U gives U its
signature for txr . txr takes as inputs the output holding α of
the aforementioned proposed state update and the output θ of
txvc holding ϵ under U ’s control. After receiving the signature,
they perform this update and revoke their previous state. In the
same fashion, U continues this procedure with its neighbor U
and this continues with its neighbor until the receiver U has
successfully updated its channel with its left neighbor U .
Then, Un sends a confirmation to U0 (Finalize).

UpdateVC. At this point the V C γ is considered to be open
and ready to be used. An update can be performed by creating
a new state txstate and calling updateChannel(γ , txstate).
This function updates the V C γ , changing the latest state
transaction to txstate and revoking the previous one. In case of
a dispute, the users wait until the V C is offloaded. At this time,
the V C is closed.

In the beginning, the whole balance lies with U , but once
the balance is redistributed, the channel is usable in both
directions. Should they wish to construct a channel where they
both hold some balance initially, they can start the construction
in the other direction for a second time, as we discuss in
Appendix B. When they have rebalanced the money inside
the V C and definitely before time T , they proceed to the next
phase, the closing phase.

CloseVC/ProlongVC (Synchronized modification). For clos-
ing the VC, assume its final balance is α − α′ belonging to
U and α′ to U (and T ′ = T). For prolonging the lifetime,
assume the new time is T ′ > T (and α′ : = α). In either case,
pairs of users from perform the new functionality 2pModify
from right to left, which we outline as follows. U starts
the following update process with its left neighbor U . U
presents a state, where (instead of α) only α′ coins from
U are spendable under the condition ϕ = (OneSig(U) �

AbsTime(T))�(MultiSig(U , U)�RelTime(∆)) (closing)
or the time in this condition is changed to T ′ (prolong). For
this new state, U creates a transaction txr spending this
output and the output of txvc belonging to U and gives its
signature for this new txr to U . After U checks that
the new state and new txr are correct, they update their
channel to this new state and revoke the previous one (cf.
Figure 8(b)).

10

n − 1

n − 2 0 0

0 n

0

0

i

i
i

p

i i
state
ip

i
state state
i i

i i + 1
state
i ϵ i

vc r
i

txstate
i i

vc
ϵ i.output 0] and θ � tx .out ut. The calling use U makes

i
r
i i i

state

i

i ϵ i − 1

i − 1
from 2pSe up e ecuted i

th Open [9] pha
i

′ ′

i − 1 i
′

i − 1 ϵ i − 1

′

i − 1
′

i − 1 U i

′

i − 1

′

i − 1
r′ r′

i i − 1 i
′

i − 1 i
′

i
r′

i
′

i − 1
′

i − 1
′

i − 1 i − 1ϵ i

i − 1
′

i − 1
u

i − 1 i i − 1
r′

i

i − 1
r p

′

i − 1
r′ p′ ′

i − 1

vc
vc 0 n n

vc

i vc vc
state state

i
′ ′

′
i i i

vc ′ ′

′ ′ ′ ′

i

′
c

′
vc vc ′

User U continues this process with its left neighbor
U and so on, until the sender U is reached. U checks
that the balance in the state update is actually the balance that
U owes U in the VC, α′ . If it is not the same, or no such
request reaches the sender, U simply publishes txvc on-chain
and claims txr before the currently active timeout T expires.
In the case where the correct request reaches the sender, they
can either continue using the V C until T ′ (prolong) or in the
case of closing, they wait until T expires, at which the money
α′ automatically moves from left to right to the receiver, or
they perform the fast-track mechanism of [9] to immediately
unlock their funds (cf. Appendix B). V C endpoints do not need
to wait until T , but can close the V C well before if they wish to
do so.

Respond. This phase corresponds to the phase with the same
name of Blitz, which proceeds thus. Participants have to
monitor the ledger if txvc is published. In case it is published
and its outputs are spendable before T , each user U for
i � [0, n − 1] needs to refund the money they staked in their
right channel. They can either do this off-chain if their right
neighbor is cooperating or in the worst case, forcefully on-
chain via txr. Similarly, after time T has expired without txvc

being published on-chain, each user U for i � [1, n] can claim
the money from their left channel. Again, this can happen
honestly off-chain or forcefully via txi .

Remarks. Because we detached the funding transaction from
the underlying channels, we additionally get rid of the other
issues presented in Section III-D. Since the funding can be
published independently from the channels and the collateral
outcome depends on the funding, we give back the possibility to
intermediaries to resolve their channels honestly. Addi-
tionally, as the funding is not constructed by combining the
outputs of the underlying channels in sequence, we eliminate
the additional linear on-chain transactions (needing only one)
and reduce the linear (or logarithmic) time delay for publishing
the funding transaction to a constant. Further, as we discuss in
Section VI, Donner achieves a better level of privacy. For a
formal privacy treatment as well as an illustration of the full
Donner construction along with the offload operation, we defer
the reader to the extended version of this work [10].

V I . S E C U R I T Y A N A LY S I S

A. Informal security analysis

Balance security. When the V C is opened, a Blitz [9]
collateral payment is simultaneously opened from sender to
receiver. A Blitz payment provides balance security to the
intermediaries. An intermediary is merely involved in a pay-
ment, the outcome of which is atomically determined by
whether or not txvc is posted. For both of these outcomes,
the intermediary does not lose money. As already argued in
Section I V the synchronized modification operation does not
put an intermediary at risk.

Endpoint security. An honest sender can always enforce the
V C that holds its correct balance by posting txvc and thereby
offloading the VC. By doing so, the refunding of the collateral
along the path is triggered, including the one of the sender
itself. This means that in case of a dispute or someone not
cooperating, the sender can always use the offloading before T
to ensure its balance. An honest receiver will get its rightful

(a) Macros: genState (α , T , γ):. Generates and returns a new
channel state carrying transaction tx from the given parame-
ters. genPay(tx). Returns tx , which takes tx .output[0]
as input and creates a single output : = (α , OneSig(U)).
genRef(tx , tx , θ). Return tx , which takes as input

sure that this
[
output belongs to an

p
address under U ’s

r
control. It

creates a single output tx .output : = (α + ϵ, OneSig(U)), where
αi , Ui , U i + 1 are taken from txi .

(b) 2-party operation: 2pModify(γ i , txvc , α′ , T ′)
Let T be the timeout, α the amount and θ be the output used
for the two

t
party

x
contract

n
set

e
up between U

se.
and Ui , known

Ui : txstate : = genState(α′ , T ′ , γ i − 1) , txr
−1 : =

genRef(txstate , θ), then send (txstate , txr ,σ (txr))
to U i − 1 //θϵ i−1 known as θϵ x from 2pSetup
U i − 1 upon (txstate , tx i−1 , σU i (tx i−1)) :

1) Extract α′ and T ′ from txstate′ . Check that α′ ≤ αi , T ′ ≥ T and
txstate = genState(α′ , T ′ , γ i−1) . I f U i − 1 = U0, ensure that
α i ≤ x + n · fee where x is the final balance of Un in the virtual
channel. Check that σU (tx i − 1) is a correct signature of
U for txr . Check that txr = genRef(txstate , θ) //α ,
T and θ ϵ i − 1 from 2pSetup

2) updateChannel(γ , txstate)
3) If, after t time has expired, the message (update−ok) is

returned, replace variables txstate and txr
−1 with txstate′ and

tx i−1 , respectively. Return (�, α′ , T ′). Else, return �.
Ui : Upon (update−ok), replace variables txstate, tx i −1 and
tx i − 1 with txstate , tx i −1 and tx i − 1 : = genPay(txstate),
respectively.
(c) Protocol: OpenVC

(i) Setup� (see also Appendix D, Figure 11), as in [9], except:

• Create txvc instead of txer as shown in Figure 3b
• γ : = preCreate(tx , 0, U , U) together with U after creat-

ing tx , to create the V C commitment transactions.
(ii) Open and Finalize (see also Appendix D, Figure 11) as in [9]

UpdateVC

Either user U � γ .users can update the V C γ by creating a
new state txi and calling updateChannel(γvc, txi).

CloseVC/ProlongVC (synchronized modification)

(i) InitClose/InitProlong

Un : Let α′ be the final balance of Un in the virtual channel and
T = T (Close) or let T > T be the new lifetime of the V C
and leave α = α (Prolong). Execute 2pModify(γ , tx ,α , T)
U i − 1 upon (�, α i , T): If U i − 1 = U0, let α i − 1 : = α i + fee.
Execute 2pModify(γ i−2 , txvc , α′

−1 , T ′)

(ii) Emergency-Offload

U0: If U0 has not successfully performed 2pModify with the
correct value α (plus fee for each hop) until T − t − 3∆ ,
publishTx(tx , σU0

(tx)). Else, update T : = T

Respond (see also Appendix D, Figure 11) as in [9]

Fig. 8: (a) macros, (b) 2-party operation, (c) protocol

balance either when the channel is offloaded or, if it is not,
after time T through the collateral, which is moved from left to
right along the path.

Reliability. Only the sender is able to offload the VC. This

11

Ledg er

clock

G D C C h a n n e l

V C

V C

V C

V C

Ledg er clock G D C

C h a n n e l

i

i

p
i

means that if sender and receiver are honest, no one can force
them to offload the V C before T .

Endpoint anonymity and path privacy. txvc is constructed,
as in Blitz, based on fresh and stealth addresses and the
endpoints of the V C rely on fresh addresses too. Hence, an
intermediary observing txvc learns no meaningful information
about the sender, the receiver, and the path. This holds only in
the optimistic case. In the pessimistic case, it might be possible
to link (parts of) the path to txvc and also link the V C to
sender/receiver, like in any other off-chain protocol, including
the Lightning Network.

Value privacy. Similarly to how payments between users of
a payment channel (PC) are known only to those users, also
V C updates are only known to the endpoints. There occur no
on-chain transactions in the optimistic case throughout the
protocol. Any two users connected in the PC network can open a
VC, and apart from their open and close balance, the amount and
nature of the individual updates remains known only to them,
even in the pessimistic case.

B. Security model

We rely on the synchronous, global universal composability
(GUC) framework [14] to model the Donner protocol. We
make use of some preliminary functionalities commonly used
in the literature [7]–[9], [19], [20]. The global ledger L is
maintained by the functionality G , which is parame-
terized by a signature scheme Σ and a blockchain delay ∆ ,
i.e., an upper bound on number of rounds it takes for a valid
transaction to appear on L , after it is posted. The notion of
time (or computational rounds) is modelled by G and the
communication by F . Finally, a functionality F
handles the creation, update and closure of PCs as well as the
preparation and update of the VCs.

We define an ideal functionality F that models the
idealized behavior of our V C protocol, stipulating input/output
behavior, impact on the ledger as well as possible attacks by
adversaries. In the ideal world, F is a trusted third party.
Additionally, we formally define the real world hybrid protocol
Π and show that Π emulates (or realizes) F . For this,
we describe a simulator S that translates any attack of any
adversary on Π into an attack on F V C .

To show that the protocol Π realizes F , we need to
show that no PPT environment E can distinguish between
interacting with the real world and interacting with the ideal
world with non-negligible probability. This implies, that any
attack that is possible on the protocol is also possible on the
ideal functionality. Intuitively, it suffices to output the same
messages and add the same transaction to the ledger in both
the real and the ideal world in the same rounds. We refer to
the extended version of this work [10] for the preliminaries,
the ideal functionality, the formal protocol, the simulator, the
formal proof of Theorem 1 and the formalization of the security
and privacy goals of Section V-A as well as the proof that F V C
has these properties.

Theorem 1. For functionalities G , G , F ,
F and for any ledger delay ∆ � N, the protocol Π
UC-realizes the ideal functionality F V C .

TA B L E II: Communication overhead of Donner for the whole
path (not per party) for the different operations, assuming a
V C across n channels. In the pessimistic offload, k � [0, n] is
the number of channels where there is a dispute. Only in the
Offload case transactions are posted on-chain.

txs size (bytes) on-chain cost (USD)
Open 4 · n + 2 34 · n 2 + 1240 · n + 695 0
Update 2 695 0
Close 3 · n 1048 · n 0
Offload (Optimistic) 1 192 + 34 0.25 + 0.04 · n
Offload (Pessimistic) 3k + 1 1048 · k + 192 + 34 · n 1.36 · k + 0.25 + 0.04 · n

V I I . E VA L UAT I O N AND C OMPAR I S ON

Communication overhead. We implemented a small proof-of-
concept that creates the raw Bitcoin transactions necessary for
Donner [1]. We use the library p y t h o n - b i t c o i n - u t i l s
and Bitcoin Script to build the transactions and tested their
compatibility with Bitcoin by deploying them on the testnet.
We show the results for the operations Open, Update, Close,
Offload in Table II. For transactions that go on-chain, we
provide additionally the expected cost in USD at the time of
writing. For this evaluation we assume generalized channels [8]
as the underlying payment channel (PC) protocol, but note
that Donner is also compatible with Lightning channels (as
we discuss at the end of this section).

For opening a virtual channel (VC), each of the n under-
lying PCs needs to exchange 4 transactions: txvc, txr and two
transactions for updating the state. Since txvc has an output for
every intermediary and the sender, its size increases with the
number of channels on the path n and is 192 + 34 · n bytes. txr

has a size of 306 bytes, and a channel update to a state holding
this contract is 742 bytes. tx does not need to be exchanged,
since the left user of a channel can generate it independently.
This totals to 1240 + 34 · n bytes of off-chain communication
per channel for the open phase. Then, we require to exchange
the initial state of the VC, which is 2 transactions or 695 bytes.
This totals 4 · n + 2 transactions or 34 · n2 + 1240 · n + 695
bytes for the path.

For honestly closing a VC, the payment needs to be
updated from right to left. However, txvc does not need
to be exchanged anymore, so we only need to exchange
3 transactions or 1048 bytes for each of the n underlying
channels. To update a VC, the two endpoints need to exchange 2
transactions with 695 bytes, the same as a PC update.

Finally, for offloading, only the transaction txvc needs to be
posted on-chain and nothing per channel. This means 192+34·
n bytes and costs 0.25 + 0.04 · n USD. Note that if individual
users on the path do not collaborate, regardless if the V C is
offloaded or successfully closed, these channels may need to
be closed as well. We argue that this is also the case during the
normal PC execution, e.g., when routing multi-hop payments.
However, for every channel that does need to be closed, the
three transactions exchanged in the close phase need to be
posted additionally. If there are k channels with such a dispute,
this results in a total of 3k + 1 transactions or 1048 · k + 192 +
34 · n bytes, which costs 1.36 · k + 0.25 + 0.04 · n USD for the
whole path. We mark this as the pessimistic case in Table II.

Efficiency comparison. We compare our construction to
LVPC [25] and Elmo [27] (cf. Table III), the only current

12

0 n

i = 2

i = n − 1 i = 2 i = n − 1

P

i

TA B L E III: Comparison of LVPC, Elmo and Donner for a
V C over from U to U .1In the pessimistic offload in Donner,
k � [0, n] is the number of channels where there is a dispute.

txs off-chain
Open LV P C [25] 7 · (n − 1) ✓

Elmo [27] Θ (n 3) ✓
Donner 4 · n + 2 ✓

Update LV P C [25] 2 ✓
Elmo [27] 2 ✓
Donner 2 ✓

Close LV P C [25] 4 · (n − 1) ✓
Elmo [27] 3 · n + 3 ✗

Donner 3 · n ✓
Offload LV P C [25] 5 · (n − 1) ✗
(Optimistic) Elmo [27] 3 · n + 1 ✗

Donner 1 ✗
Offload LV P C [25] 5 · (n − 1) ✗
(Pessimistic) Elmo [27] 3 · n + 1 ✗

Donner1 3 · k + 1 ✗

Bitcoin-compatible V C solutions over multiple hops. As al-
ready mentioned, LV PC and Elmo have rooted V C funding
transactions. We evaluate, in particular, the off-chain and on-
chain costs of the core V C operations (open, update, close,
and offload), concluding that Donner is better in each case.

LVPC is constructed recursively; there are different ways
of doing the recursion. Each combination leads to the same
minimum number of VCs required for a path of n base
channels: One for each of the n − 1 intermediaries. The storage
overhead per intermediary is linear in the number of layers on
top of a user, which in turn is in the worst case linear and in
the best case logarithmic in the path length (more on this in
the extended version of this work [10]).

In the open phase across the whole path, Donner requires
4 · n + 2 off-chain transactions for the whole path. In LVPC,
7 off-chain transactions per V C are needed, so 7 · (n − 1).
Similar, for closing, we need to store 4 transactions per V C in
LVPC, so 4 · (n − 1). Elmo requires to store n − 2 + χ +
χ + (i − 2 + χ) (n − i − 1 + χ) � Θ(n2) (where
χ is 1 if P is true and 0 otherwise) for the i t h intermediary
(and 1 for the endpoints), resulting in a storage overhead of
Θ(n3) for the whole path. Closing honestly (i.e., off-chain) is
not defined for Elmo, so it needs to be closed on-chain,
resulting in 2 transactions per channel (n) for closing plus 1
transaction per user (n + 1) plus 2 transactions to close the V C
or 3 · n + 3 on-chain transactions. Donner requires the close
operation per underlying channel, so 3 · n transactions. The
update phase is the same in all constructions.

The interesting case again is the offload case. As we
already pointed out, a fully rooted, recursive V C construction
requires to close all underlying channels. This means in LVPC,
we require 2 transactions per underlying channel, of which
we have n PCs and n − 2 VCs (all but the topmost one).
Additionally, we need to publish n − 1 funding transac-
tions of the VCs including the topmost one. This results in 2 ·
(2n − 2) + n − 1 = 5 · n − 5 transactions that have to be
posted on-chain along with the fact that all involved channels
have to be closed in the case of a dispute. In Elmo, we need
3 · n + 1, i.e., the number of transactions to close minus the 2
transactions required to put the V C state on-chain.

In Donner, only 1 transaction has to be posted on-chain. For
the pessimistic offload, there need to be 3 · k + 1 transactions
posted in Donner, where k is the number of channels where
there is a dispute. We show an application example in the
extended version of this work [10], where we analyze how
Donner can be used to connect a node better to a network via
VCs, compared to no VCs and LVPC.

Compatibility with L N channels. To simplify the formal-
ization of this work, we built our V C construction on top of
generalized payment channels (GC) [8], which have one sym-
metric channel state. However, it is also possible to construct
Donner on top of LN channels, which have two asymmetric
channel states. The (one-hop) B C V C [7] constructions rely on
GCs as well, while the recursive LV PC [25] relies on simple
channels that have only one state, but each update reduces the
limited lifetime of the channel. (Elmo [27] needs the opcode
ANYPREVOUT that is not supported in Bitcoin or in the LN.)

As LN channels are the only ones deployed in practice so
far, it is interesting to investigate the effect of building VCs on
top of LN channels. We point out that building Donner on top
of LN channel is not difficult, as the collateralization in the
underlying base channels is similar to a MHP. In fact, the
only two differences for implementing Donner on top of LN
channels instead of GCs is that (i) for each of the
two asymmetric states per channel we now need to create a
txr transaction, so two instead of one, and (ii) a punishment
mechanism has to be introduced per output instead of per state
(e.g., similar to how HTLCs are handled in LN).

The LV PC construction is not as straightforward to im-
plement on top of LN channels. Similarly to Donner, we
need to introduce a punishment mechanism (ii). However,
the more difficult part is handling the two asymmetric states
(i). Since the V C needs to be able to be posted regardless
of which of the two states are posted, there needs to be a
unique funding transaction (called Merge in [25]) for each
possible combination of states in the underlying channels.
This implies that in a LV PC like construction which is built on
top of LN channels, the storage overhead per party is
exponential in the layers of VCs that are constructed over
this party. In fact, using channels with duplicated states this
exponential growth is present in every rooted, recursive V C
construction. This follows from the evaluation in [8]. For each
of these exponentially many copies of the VC, commitment
transactions need to be exchanged for an update, so there is an
exponential communication overhead too. Note that the storage
overhead for Donner on top of LN channels is constant as is
the communication overhead for updates.

V I I I . CO N C L US I O N

Payment channel networks (PCNs) have emerged as suc-
cessful scaling solutions for cryptocurrencies. However, path-
based protocols are tailored to payments, excluding novel and
interesting non-payment applications such as Discreet Log
Contracts, while creating direct PCs on-demand is expensive,
slow and infeasible on a large scale. VCs are among the
most promising solutions. We show that all existing UTXO-
based constructions are vulnerable to the Domino attack, which
fundamentally undermines the underlying PCN itself.

13

´ ´

´ ´

´ ´

Hence we introduce a new V C design, the first one to
be secure against the Domino attack, besides the only one
achieving path privacy and a time-based fee model. Our per-
formance analysis demonstrates that Donner is more efficient:
It only requires a single on-chain transaction to solve disputes,
as opposed to a number that is linear in the path length, and
the storage overhead is constant too, as opposed to linear.

Overall, Donner offers an easy-to-adopt, LN-compatible
V C construction enabling new applications such as Discreet
Log Contracts or fast and direct micropayments, without the
need to create a direct PC. Unlike the underlying PCNs, the
VCs are not susceptible to liveness and privacy attacks by the
intermediaries and do not require fees per payment.

Acknowledgements. This work has been supported by the
European Research Council (ERC) under the Horizon 2020
research (grant 771527-BROWSEC); by the Austrian Science
Fund (FWF) through the projects PROFET (grant P31621)
and the project W1255-N23; by the Austrian Research
Promotion Agency (FFG) through the Bridge-1 project
PR4DLT (grant 13808694) and the COMET K1 S BA and
COMET K1 ABC; by the Vienna Business Agency through
the project Vienna Cybersecurity and Privacy Research
Center (VISP); by CoBloX Labs; by the Austrian Federal
Ministry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Development and
the Christian Doppler Research Association through the
Christian Doppler Laboratory Blockchain Technologies for
the Internet of Things (CDL-BOT); by the National Science
Foundation (NSF) under grant CNS-1846316; by Madrid
regional government as part of the program S2018/TCS-4339
(BLOQUES-CM) co-funded by E IE Funds of the European
Union; by the project HACRYPT (N00014-19-1-2292); by
grant IJC2020-043391-I/MCIN/AEI/10.13039/501100011033
and European Union NextGenerationEU/PRTR; by
PRODIGY Project (TED2021-132464B-I00) funded by
MCIN/AEI/10.13039/501100011033/ and the European Union
NextGenerationEU/PRTR; by SCUM Project (RTI2018-
102043-B-I00) MCIN/AEI/10.13039/501100011033/ERDF A
way of making Europe.

R E F E R E N C E S

[1] “Donner vc evaluation of the communication overhead,” 2021, https:
//github.com/donner-vc/overhead.

[2] “Bitcoin avg. transaction fee historical chart,” Jan. 2022, https://
bitinfocharts.com/comparison/bitcoin-transactionfees.html.

[3] “Bitcoin rich list,” Jan. 2022, https://bitinfocharts.com/
top-100-richest-bitcoin-addresses.html.

[4] “Bolt #2: Peer protocol for channel management,” Mar. 2022,
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#
rationale-7.

[5] “Ln snapshot,” Jan. 2022, https://ln.fiatjaf.com/.
[6] “Simulation of domino attack,” 2022, https://github.com/donner-vc/

simulation.
[7] L . Aumayr, O. Ersoy, A. Erwig, S. Faust, K . Hostakova, M. Maffei, P.

Moreno-Sanchez, and S. Riahi, “Bitcoin-Compatible Virtual Chan-
nels,” in IEEE Security and Privacy, 2021.

[8] ——, “Generalized channels from limited blockchain scripts and adap-
tor signatures,” in Asiacrypt, 2021.

[10] ——, “Breaking and Fixing Virtual Channels: Domino Attack and
Donner,” Cryptology ePrint Archive, Report 2021/855, 2021, https:
//eprint.iacr.org/2021/855.

[11] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in CRYPTO, 2014.

[12] C. Burchert, C. Decker, and R. Wattenhofer, “Scalable funding of
bitcoin micropayment channel networks,” in Stabilization, Safety, and
Security of Distributed Systems, 2017, pp. 361–377.

[13] J. Camenisch and A. Lysyanskaya, “A formal treatment of onion
routing,” in Advances in Cryptology CRYPTO, 2005, pp. 169–187.

[14] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally composable
security with global setup,” in TCC, vol. 4392, 2007, pp. 61–85.

[15] M. M. Chakravarty, J. Chapman, K . MacKenzie, O. Melkonian, M. Pey-
ton Jones, and P. Wadler, “The extended utxo model,” in FC. Springer,
2020, pp. 525–539.

[16] G. Danezis and I. Goldberg, “Sphinx: A compact and provably secure
mix format,” in IEEE Security and Privacy, 2009.

[17] “DLC over Lightning,” [dlc-dev] Mailing List, Nov. 2021, available at
https://mailmanlists.org/pipermail/dlc-dev/2021-November/000091.
html.

[18] T. Dryja, “Discreet Log Contracts,” 2017, available at https://adiabat.
github.io/dlc.pdf.

[19] S. Dziembowski, L . Eckey, S. Faust, J. Hesse, and K. Hostakova,
“Multi-party Virtual State Channels,” in Eurocrypt, 2019, pp. 625–656.

[20] S. Dziembowski, L . Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 106–123.

[21] S. Dziembowski, S. Faust, and K. Hostakova, “General State Channel
Networks,” in Computer and Communications Security, CCS, 2018.

[22] C. Egger, P. Moreno-Sanchez, and M. Maffei, “Atomic multi-channel
updates with constant collateral in bitcoin-compatible payment-channel
networks,” in ACM CCS, 2019, p. 801–815.

[23] S. Goldwasser, S. Micali, and R. L . Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal on
computing, vol. 17, no. 2, pp. 281–308, 1988.

[24] J. Harris and A. Zohar, “Flood & loot: A systemic attack on the
lightning network,” in Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies, ser. A F T ’20, 2020.

[25] M. Jourenko, M. Larangeira, and K. Tanaka, “Lightweight Virtual
Payment Channels,” in 19th International Conference on Cryptology
and Network Security (CANS), 2020.

[26] G. Kappos, H. Yousaf, A. Piotrowska, S. Kanjalkar, S. Delgado-Segura,
A. Miller, and S. Meiklejohn, “An empirical analysis of privacy in the
lightning network,” in FC, 2021, pp. 167–186.

[27] A. Kiayias and O. S. T. Litos, “Elmo: Recursive virtual payment
channels for bitcoin,” https://eprint.iacr.org/2021/747.

[28] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in ACM
CCS, 2017.

[29] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M.
Maffei, “Anonymous multi-hop locks for blockchain scalability and
interoperability,” in NDSS Symposium, 2019.

[30] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites: Payment
channels that go faster than lightning,” CoRR, vol. abs/1702.05812,
2017. [Online]. Available: http://arxiv.org/abs/1702.05812

[31] “Perun network,” 2020, https://perun.network/.
[32] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Off-

Chain Instant Payments,” Jan. 2016, draft version 0.5.9.2, available at
https://lightning.network/lightning-network-paper.pdf.

[33] M. Romiti, F. Victor, P. Moreno-Sanchez, P. S. Nordholt, B. Haslhofer,
and M. Maffei, “Cross-layer deanonymization methods in the lightning
protocol,” in FC. Springer, 2021, pp. 187–204.

[34] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” in NDSS Symposium, 2018.

[9] L . Aumayr, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Blitz:
Secure Multi-Hop Payments Without Two-Phase Commits,” in USENIX
Security, 2021.

[35] V. Sivaraman, S. B. Venkatakrishnan, K . Ruan, P. Negi, L . Yang, R. Mit-tal,
G. C. Fanti, and M. Alizadeh, “High throughput cryptocurrency
routing in payment channel networks,” in NSDI, 2020, pp. 777–796.

14

https://github.com/donner-vc/overhead
https://github.com/donner-vc/overhead
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#rationale-7
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md#rationale-7
https://ln.fiatjaf.com/
https://github.com/donner-vc/simulation
https://github.com/donner-vc/simulation
https://eprint.iacr.org/2021/855
https://eprint.iacr.org/2021/855
https://mailmanlists.org/pipermail/dlc-dev/2021-November/000091.html
https://mailmanlists.org/pipermail/dlc-dev/2021-November/000091.html
https://adiabat.github.io/dlc.pdf
https://adiabat.github.io/dlc.pdf
https://eprint.iacr.org/2021/747
http://arxiv.org/abs/1702.05812
https://perun.network/
https://lightning.network/lightning-network-paper.pdf

[36] S. Tochner, A. Zohar, and S. Schmid, “Route hijacking and dos in off-
chain networks,” ser. AFT, 2020.

[37] N. Van Saberhagen, “Cryptonote v 2.0 (2013),” URL:
https://web.archive.org/web/20201028121818/https://cryptonote.
org/whitepaper.pdf . White Paper.

AP P E N D I X A
WHEN TO U S E V I RT U A L C H A N N E L S

In the state of the art on off-chain protocols, we can
distinguish between generic 2-party applications and simple
payments. The former require a direct channel between the
parties and therefore it is interesting to compare VCs and direct
PCs in this setting. In the latter, PCNs have already been shown
to offer improvements over constructing a direct channel and
therefore it is worth to compare V C against PCN payments.
Next, we highlight use cases of VCs in these two settings.

VCs vs PCs for 2-party applications. Imagine that two
arbitrary users that do not share a PC or a V C decide to execute
a 2-party application between them. The first disadvantage of
using a PC over a V C is that over their lifespan they would pay
twice as many fees per on-chain transaction (i.e., to open and
close the channel). At the current average Bitcoin transaction
cost of 4100 satoshi (or 0.000041 B T C or 1.73 USD), the
overall cost would be 8200 satoshi (3.46 USD).

Since VCs are currently not being used in practice, there is
no fee model for them. To put the cost of opening a V C into
perspective, we can compare it to payments over the PCN. Say
Alice and Bob are connected by a path of payment channels
that has 3 hops (we take the average shortest distance of a
current LN snapshot). Taking the current average fees of the
LN, and, say, an average transaction amount of 50, 000 satoshi
(21.10 USD), Alice and Bob could perform 1115 payments in
the LN for the same fee of 8200 satoshi (3.46 USD). This
means that in this example, the fees paid to intermediaries for
operating a VC, i.e., opening and closing, is cheaper in terms
of fees, if these V C operating fees are less than the fees of
1115 LN payments.

More generally, we can compare the cost of V C versus
PC as follows. We introduce x as a factor by which VCs are
more expensive than PCN payments. A V C channel is cheaper
if l · (BF+RF·a)·x < 2·TF holds, where l is the number of hops
in the path between the two V C endpoints. Further B F and RF
are the two types of fees charged in PCN implementation such
as the LN, where B F is a base fee charged by intermediaries
for forwarding payments and RF a relative fee based on the
payment amount. We compare this to the transactions fee on-
chain TF, paid twice in the lifespan of a PC. For instance,
taking the concrete values from the example above we can
write the following: 3 · (1 + 0.000029 · a) · x < 8200.

Secondly, creating direct PCs on-demand for applications
such as Discreet Log Contracts instead of VCs is again
not scalable. Doing so would incur a continuous on-chain
transaction load for opening and closing channels. This is
against the purpose of PCs and PCNs, which aim at reducing
the on-chain load.

Finally, and perhaps still more importantly, it is not possible
to open a short-lived PC, since it requires to wait for the
confirmation of the funding transaction on the blockchain,
which is around 1 hour in Bitcoin. So for applications that

are time-critical, direct PCs are not an option. Applications
such as betting on a sports event, say, half an hour before they
end are simply impossible with direct PCs.

VCs vs PCN payments. Due to the limited transaction size in
Bitcoin, current Lightning channels are limited to hold 483
concurrent payments, which becomes especially critical in a
micropayment setting. VCs can be used to overcome this issue.
Simply, instead of a payment, an output can be used to
collateralize a VC, which in turn can be used to again hold
483 payments or further VCs, effectively helping to mitigate
this limitation.

In terms of fees, VCs are more desirable than payments
over a PCN in the context of micropayments. This is due to
the fact that in a PCN, the intermediaries charge a fee for
every payment, while for a VC, the fee is charged only once.
We can therefore say that a V C is cheaper, if the (simplified)
inequality l · (BF + RF · a) · x < l · (n · BF + RF · a) holds, where
similar to above we use the base fee B F and relative fee RF of
the LN. a is the sum of the amounts of all micropayments, n
the number of micropayments and x again the factor by which a
V C is more expensive than a payment. We stress that for any
given x there is a number of payments n, such that the use of
V C becomes cheaper than payments over the PCN, because
the base fee B F is paid for each of the n micropayments in
the PCN setting and only once in the V C setting.

Offline users. Routing multi-hop payments (MHPs) through
the network requires active participation from the intermedi-
aries. However, users may want to go offline and then cannot
route MHPs. To still lend their capacity in a productive way
and generate some fees, they can allow other nodes to build a
V C over them, using watchtowers to ensure their balance.

AP P E N D I X B
E X T E N D E D COM PARI S O N AND DI S C US S I O N

1. Extended comparison to the state of the art in VCs

Dziembowski et al. [20] proposed the first construction of
VCs over a single intermediary. Recursive constructions [21]
followed up allowing for creating VCs on top of other VCs (or a
pair composed of a V C and a PC), thereby supporting arbi-
trarily many intermediaries. Dziembowski et al. [19], [31] fur-
ther extended the expressiveness of VCs proposing the notion
of multi-party VCs, where a set of n participants build an n-
party channel recursively from their pair-wise payment/virtual
channels. Unfortunately, all the aforementioned constructions
rely on the expressiveness of Turing-complete scripting lan-
guages such as that of Ethereum and are based on the account
model instead of Unspent Transaction Output (UTXO) model;
thus, they are incompatible with many of the cryptocurrencies
available today, including Bitcoin itself. Aumayr et al. [7] have
later shown how to design a Bitcoin-compatible V C through a
carefully crafted cryptographic protocol in the UTXO model,
supporting however only one intermediary.

Jourenko et al. [25] have recently introduced the first
Bitcoin-compatible construction over multiple intermediaries,
called Lightweight Virtual Payment Channels (LVPC), where
a V C over one hop is applied recursively to achieve a V C
between two users separated by a path of any length. More
recently, Kiayias and Litos have introduced Elmo [27], a V C

15

https://web.archive.org/web/20201028121818/https://cryptonote.org/whitepaper.pdf
https://web.archive.org/web/20201028121818/https://cryptonote.org/whitepaper.pdf

0

n

i i�[1,n−1]
0

c

c

1 2

0 n i i�[1,n−1]

TA B L E IV: Comparison to other virtual channel protocols. We denote dispute as the case where a party needs to enforce their
V C funds or be compensated. In the UTXO case, this means offloading. � by synchronizing all channels, this time can be reduced
to Θ(log(n)). † for single-hop constructions n is constant, however, since the action/storage overhead/time delay is per user, we

write Θ(n). ‡ This depends on using indirect/direct dispute.

Scripting req.
Multi-hop
Domino attack
Path privacy
Storage Overhead per party
Time-based fee model
Unlimited lifetime
Off-chain closing
Dispute: txs on-chain
Dispute: time delay

Perun [20]
Ethereum

no
no
no

Θ (n) †

yes
no
yes
1

Θ (n) †

GSCN [21]
Ethereum

yes
no
no

Θ (n) �

yes
no
yes
1

Θ (n) �

MPVC [19]
Ethereum

yes
no
no

Θ (n)�/Θ (1) ‡

yes
no
yes
1

Θ (n)/1 ‡

BCVC-V/BCVC-NV [7]
Bitcoin

no
yes
no

Θ (n) †

no/yes
yes/no

yes
Θ (n) †

Θ (n) †

LV P C [25]
Bitcoin

yes
yes
no

Θ (n)�

no
no
yes

Θ (n)
Θ (n)�

Elmo [27]
Bitcoin + ANYPREVOUT

yes
yes
no

Θ (n 3)
no
yes
no

Θ (n)
Θ (n)�

Donner
Bitcoin

yes
no
yes

Θ (1)
yes
yes
yes
1
1

construction that does not rely on creating intermediate VCs,
by instead relying on scripting functionalty not present in
Bitcoin, i.e., the opcode ANYPREVOUT. In Table I V we
compare Donner to existing V C protocols, including those that
rely on a Turing-complete scripting language or are limited to
a single intermediary.

2. Extended discussion

Deterring the Domino attack with fees. One might think that
the Domino attack could deterred by fees. I.e., intermediaries
charge fees high enough to be compensated for having to
close and reopen their channel, as well as having to claim the
collateral put into the VC, in total at least three transaction per
intermediary, in addition to the fees charged for the V C usage. It
becomes clear, that this is an infeasible deterrence strategy and
is in opposition to the aim of VCs to provide scalable and cheap
payments: No user would pay three times an on-chain fee per
intermediary for a VC. They would simply post an on-chain
transaction or open a new direct PC.

Unidirectionally funded. Similar to current PCs in the Light-
ning Network, our VCs are only funded by U , whom we
call the sending endpoint or sender. User U is the receiving
endpoint or receiver and the intermediaries are {U } .
Even though the V C is only funded by U , once some money
has been moved, they can use the channel also in the other
direction. Moreover, if they want to have a channel funded
from both endpoints, they can simply construct another channel
from Un to U0.

Choosing the lifetime. The lifetime T is chosen by the two
endpoints of the VC, depending on how long they plan to
use the V C . They propose this to the intermediaries who can,
based on this time and the amount they need to lock as a
collateral, charge a fee. Note that this T has to be larger than
the time it takes to settle the Blitz contracts, T ≥ 3∆ + t ,
where ∆ is an upper bound on the time it takes for a valid
transaction to appear on the ledger (i.e., modelling the block
delay as mentioned in Section II) and t is the time it takes to
close a channel. Intermediaries can prolong the lifetime if they
agree and they can charge a fee based on time and amount.

Properties inherited from Blitz. The fee mechanism of Blitz
can be reused here as well, i.e., the intermediary nodes forward
fewer coins than they receive. Additionally, the outputs ϵ of
txvc represent a small number. Since they cannot be 0, they

are the smallest possible value, one dust (546 satoshi), i.e.,
something that is insignificant in value to the sender. If a
V C is closed (honestly) before the lifetime expires, parties
do not need to wait until the lifetime expires to unlock their
money. They can unlock it right away by using the fast track
mechanism of Blitz. We refer the reader for these details
to [9]. Finally, reusing the stealth address and onion routing
mechanism as in [9] we achieve our desired privacy properties.

AP P E N D I X C
E X T E N D E D BAC K G RO U N D

1. Transaction graphs

In this section we give a more in-depth explanation and
example (Figure 9) of our transaction graph notation. Rounded
rectangles represent transactions, if they have a single border
it means they are off-chain, with a double border on-chain.
Incoming arrows to a transaction represent its inputs. The
boxes within transactions denote outputs, the outgoing arrows
define how an output can be spent.

More specifically, below an arrow we write who can spend
the coins. This is usually a signature that verifies w.r.t. one or
more public keys, which we denote as OneSig(pk) or
MultiSig(pk , pk , ...). Above the arrow, we write additional
conditions for how an output can be spent. This could be any
script supported by the scripting language of the underlying
blockchain, but in this paper we only use relative and absolute
time-locks. For the former, we write RelTime(t) or simply
+t, which signifies that the output can be spent only if at
least t rounds have passed since the transaction holding this
output was accepted on the blockchain. Similarly, we write
AbsTime(t) or simply ≥ t for absolute time-locks, which
means that the transaction can be spent only if the blockchain is
at least t blocks long. A condition can be a disjunction of
conjunction of subconditions.

2. Synchronization example

A multi-hop payment (MHP) allows to transfer coins from
U to U through {U } in a secure way, that is,
ensuring that no intermediary is at risk of losing money. A
mechanism synchronizing all channels on the path is required
for a payment, such that each channel is updated to represent
the fact that α coins moved from left to right. We give an
example of what we mean in Figure 10.

16

x

x

B

2

1

B 1

2

A B 2

2

2

U U U U U

0

4 1 2 3

′
0 0OneSig(U), that is spendable by an unu ed address of U ,

vcfund tx), the sende will pay any superfluous oins back to a
fresh dd ess of itself.

0Check tha channelList fo ms a valid path from U via ome
n

ntwice. If not, return �. Else re urn U .

return �. O herwise, return �.

1) Let outputList : = � and rList : = �

U i

U i

cRelTime(t + ∆))

i i iγ �channelList

Shu fle ou putList and rList.

i�[0,n]i i
vc

i i�[0,n]

�

0 i i i + 1
i + 1

i1 U i i

i i + 1U U i i + 1

state
i

�
i

i i i
vc

vc
i + 1 i + 1

vc

0 it must hold that:
• cash = ϵ

i
fϵ i

c
vc

it must hol

that

U i
f

U i U i

U i

fU i iϵ i i + i + 15) Return (sk θ , R , U , onion)

≥ t 1 ϕ1

tx

1
pk B

+ t tx ′ x 2
ϕ2

2
pk A , pk B

ϕ3 � ϕ4

Fig. 9: (Left) Transaction tx has two outputs, one of value
x that can be spent by B (indicated by the gray box) with
a transaction signed w.r.t. pk at (or after) round t , and one
of value x that can be spent by a transaction signed w.r.t.
pk and pk but only if at least t rounds passed since tx
was accepted on the blockchain. (Right) Transaction tx′ has
one input, which is the second output of tx containing x coins
and has only one output, which is of value x and can be spent by
a transaction whose witness satisfies the output condition ϕ1 �
ϕ2 � (ϕ3 � ϕ4). The input of tx is not shown.

7, 12 8, 2 11, 7 9, 0
0 3, 16 1 4, 6 2 7, 11 3 5, 4 4

Fig. 10: Example of a MHP in a PCN. Here, U pays 4
coins (disregarding any fees) to U , via U , U and U . The
lines represent payment channels. We write balances as (x, y),
where x is the balance of the user on the right, and y the
balance of the user on the left. Above we write the channel
balances before and below after the payment. In an MHP, this
change of balance should happen atomically in every channel
(or not at all).

AP P E N D I X D
E X T E N D E D M AC RO S, P R E R E Q U I S I T E S AND P ROT O C O L

In this section, discuss the prerequisites stealth addresses
and onion routing. We give extended pseudo-code for the used
subprocedures used in our protocol. Further, we spell out the
full protocol pseudocode, including the parts taken from. For
the protocol see Figure 11, for the two party protocols used
therein see Figure 12. To be transparent about the similarities
to [9] and highlight the novelties of this work, we mark the
latter in green color.

Subprocedures

checkTxIn(txin , n, U0 , α):

1) Check that txin is a transaction on the ledger L .
2) If txin.output[0].cash ≥ n · ϵ + α and txin.output[0].ϕ =

return

a

�.

r

Otherwise,
r
return �. When using

s
this

c
transaction (to

checkChannels(channelList, U0):

intermediaries
t
to a receiver

,
U

r

t
and that no users are in the

s
path

checkT(n, T):

Let τ be the
t
current round. If T ≥ τ + n(3 + 2t u) + 3∆ + t c + 2 + t o ,

genTxVc(U0, channelList, txin):

2) For every channel γ i in channelList:
• (p k f , R i) ← GenPk(γi .left.A, γi .left.B)
• outputList : = outputList �

(ϵ, OneSig(pk f)

�

• rList : = rList � R i
3) Let P : = {γ .left, γ .right} and let nodeList be a

4)
list,

f
where

t
P is sorted from sender to receiver. Let n : = |P|.

5) Let txvc : = (txin.output[0], outputList)
6) Create a list [msg] , where msg : = H(tx)
7) onion ← CreateRoutingInfo(nodeList, [msg])
8) Return (txvc, rList, onion)

genState(α i , T , γ i) :

1) For the users Ui : = γi .left = and U i + 1 : = γi .right, create the
output vector θ i : = (θ0, θ1 , θ2), where
• θ : = (α , (MultiSig(U , U) � RelTime(T)) �

(OneSig(U) � AbsTime(T)))
• θ : = (x − α , OneSig(U))
• θ2 : = (x U i + 1 , OneSig(Ui+1))
where x and x is the amount held by U and U in
the channel, respectively.

2) Let tx be a channel transaction carrying the state with
txstate.output = θi . Return txstate.

checkTxVc(Ui , a, b, txvc , rList, onioni):

1) x : = GetRoutingInfo(onion , U). If x = �, return �. If U is the
receiver and x = H(tx) , return (�, �, �, �, �). Else, if x = (U

, H(tx), onion), return �.
2) For all outputs (cash, ϕ) � tx .output except output with index

• ϕ = OneSig(pkx)�RelTime(tc + ∆) for some identity pkx
3) For exactly one output θ : = (ϵ, OneSig(U) �

RelTime(t
d

+ ∆)) � tx .output and one element R i � rList

• Let p k f be the corresponding public key of OneSig(Ui)
• s k f : = GenSk(a, b, pk f , R i) must be the corresponding

secret key of p k f

4) If the checks
,
in 2 or 3 do

1
not hold, return �

1. Prerequisities

Stealth addresses. In order to hide the underlying path, we use
stealth addresses [37] for the outputs in the transaction txvc.
On a high level, every user U controls two private keys a and
b. The respective public keys A and B are publicly known. A
sender can use these public keys controlled by U to create a
new public key P and a value R . The user U and only the
user U knowing a and b can use R , P together with a and b to
construct the private key p. In particular, also the sender is
unaware of p. This new one-time public key is unlinkable to U
by anyone observing only R and P [37].

Onion routing. Like in the Lightning Network, we rely on
onion routing [13] techniques like Sphinx [16] to allow users
communicate anonymously with each other. This allows users
to route the V C correctly through the desired path, while
ensuring that intermediaries remain oblivious to the path except
for their direct neighbors. On a high level, an onion is a layered
encryption of routing information and a payload. Each user

17

0
0

0

0
vc

vc 0 n n
fU 0 0

0 0 0
vc

i + 1
and dle.

vc

0 U n Un nvc
vcphase. If not, or if tx was hanged, or no uch con irmation was

vc
′

vc

i vc vc
state state

n i n

′
i i i

vc ′ ′

′ ′ ′ ′

′

′
c

vc
′

vc ′

x c
i

statecloseChann l(γ) nd afte is accep ed on the
cr

iLet σ) be a signature using the secret k y skf fU Ui i
(t .

U i i i + 1
r r r r

x i − 1 i − 1
r p p

i ii�[1,n] i�[1,n]

i i�[1,n]
i i

ii + 1 i + 1

i i i
r
i

state
i ϵ ivc state r

i

i + 1 i + 1 i + 1
i + 1

U i + 1

i
ig e n S t t e α , T γi

ϵx
vc r

i
state

return �.
i ir

i

U i + 1 i i + 1 i

i
state
i

u
ret rned r urn �. El e return �.

vc
i + 1

i

i ϵ i − 1

i − 1
from 2pSe up e ecuted i th Open [9] pha

i − 1 i
′

i − 1
′

i − 1 i − 1 i − 1ϵ ϵ ϵx

state r r′ ′ ′

i − 1
r′ r′

′
i − 1 i

′

i − 1 i
2pSetup

i − 1 i
nbala of U in the virtual hannel.

′

i − 1
′

i − 1 ϵ ϵi − 1 i − 1

i
r r′ ′

i − 1
′

i − 1
u

i − 1 i i − 1
′

i − 1 i

state r p

p′′ ′ ′

i − 1 i i − 1

OpenVC

Setup

U0 upon receiving (setup, channelList, txin, α, T)

1) Let n : = |channelList|. If checkTxIn(txin , n, U) = �
or checkChannels(channelList, U) = � or
checkT(n, T) = �, abort. Else, let α : = α + fee · (n − 1)

2) (txvc, rList, onion) : = genTxVc(U , channelList, txin)
3) γ := preCreate (tx , 0, U , U) together with U
4) (sk , θϵ , R0, U1, onion1) : =

checkTxVc(U , U .a, U .b, txvc, rList, onion)
5) 2pSetup(γ0 , tx , rList, onion1, U1, θϵ0 , α0 , T)
Open

U i + 1 upon receiving (txvc , rList, onioni+2 , Ui+2 , θϵ i+1 , α i , T)

6) If U
go i

is the receiver Un , send (conf i rm, σU n (txvc)) ,−→ U0

7) 2pSetup(γ i+1 , tx , rList, onioni+2 , Ui+2 , θϵ i + 1 , αi − fee, T)

Finalize
U : Upon (conf irm, σ (txvc)) ←−- U , check that σ (txvc) is

Un ’s valid signature for the
c

transaction tx
s

created
f
in the Setup

received until T − tc − 3∆ , publishTx(tx , σU0
(tx)).

UpdateVC

Either user U � γ .users can update the virtual channel γ by
creating a new state txi and calling preUpdate(γvc, txi).

CloseVC/ProlongVC (synchronized modification)

InitClose/InitProlong

U : Let α′ be the final balance of U in the virtual channel and
T ′ = T (Close) or let T ′ > T be the new lifetime of the V C
and leave α = α (Prolong). Execute 2pModify(γ , tx ,α , T)
U i − 1 upon (�, α i , T): If U i − 1 = U0, let α i − 1 : = α i + fee and
2pModify(γ i−2 , txvc , α i−1 , T ′)

Emergency-Offload

U0: If U0 has not successfully performed 2pModify with the
correct value α (plus fee for each hop) until T − t − 3∆ ,
publishTx(tx , σU0

(tx)). Else, update T : = T

Respond (executed by Ui for i � [0, n] in every round)

1) If τ < T − t − 2∆ and txvc on the blockchain,

blockchain
x

e
within

a
at

,
most

r
t
txi

rounds, wait
t
∆

e
rounds.

publishTx(txi , (σ f (txi), σU (txi), σU (txi))).
2) If τ > T , γ is closed and txvc and txstate is on the

blockchain, but not tx i−1 , publishTx(txi − 1 , (σUi (tx i − 1))) .

Fig. 11: Pseudocode of the protocol.

in turn can peel off one layer, revealing the next user on
the path, the payload meant for the current user and another
onion, which is designated for the next user. For simplicity,
we use onion routing by calling the following two functions:
onion ← CreateRoutingInfo({U } , {msg }) gen-
erates an onion using the public keys of users {U }
on the path, while the procedure GetRoutingInfo(onion , U)
returns the tuple (U , msg , onion) when called by the
correct user Ui , or � otherwise.

2pSetup(γi , txvc , rList, onioni+1 , θϵ i , α i , T): (see [9])

Ui

1) txstate : = g en S t a t e (α , T , γ)
2) tx : = genRef(tx , θ)
3) Send (tx , rList, onioni+1 , tx , txi) to U i + 1 (= γi .right)

U i + 1 upon (txvc, rList, onioni+1, txstate, txr) from Ui

4) Check that checkTxVc(U , U .a, U .b, txvc, rList,
onion) = �, but returns some values
(s k ^ , θ ϵ i + 1 , R i + 1 , Ui + 2 , onioni + 2)

5) Extract
a
α i

(
and

,
T

)
from txstate and check txstate =

6) Check that for one output θ � tx .output it holds that tx : =
genRef(tx i , θϵx). If one of these previous checks failed,

7) txp : = genPay(txstate)
8) Send (σU i + 1 (txi)) to U i + 1

Ui upon (σ U i + 1 (txr))

9) If σ (txr) is not a correct signature of U for the txr

created in step 2, return �.
10) updateChannel(γ , tx)
11) If,

u
after

,
t
et

time has
s

expired, the message (update−ok) is

Ui + 1 : Upon (update−ok), return
(tx , rList, onioni+2 , Ui+2 , θϵ , α i , T). Else, upon
(update−fail), return �

2pModify(γ i , txvc , α′ , T ′)

Let T be the timeout, α the amount and θ be the output used
for the two

t
party

x
contract

n
set

e
up between U

se.
and Ui , known

Ui

1) txstate′ : = genState(α′ , T ′ , γ i − 1)
2) txr : = genRef(txstate , θ) //θ known as θ from

2pSetup
3) Send (tx i − 1 , tx i−1 , σU i (tx i −1)) to U i − 1

U i − 1 upon (txstate′ , tx i−1 , σU i (tx i −1))

1) Extract α i and T ′ from txstate′ and check that α′ ≤ αi , T ′ ≥
T and txstate = genState(α′ , T ′ , γ i − 1) //αi and T from

2) If U
nce

= U0, ensure that α′

c
≤ x + n · fee where x is the final

3) Check that txr = genRef(txstate , θ) //θ from
2pSetup

4) Check that σU (tx i − 1) is a correct signature of Ui for tx i −1

5) updateChannel(γ , txstate)
6) If, after t time has expired, the message (update−ok) is

returned, replace variables txstate and txr
−1 with txstate′ and

txr , respectively. Return (�, α′ , T ′).
7) Else, return �.
Ui : Upon (update−ok), replace variables tx i − 1 , tx i −1 and tx i −1

with txstate , txr
−1 and tx i −1 : = genPay(txstate), respectively.

Fig. 12: Protocol for 2-party channel update.

18

