OptRand: Optimistically Responsive Reconfigurable
Distributed Randomness

Nibesh Shrestha”
nxs4564 @rit.edu

Adithya Bhat"
abhatk @purdue.edu
Purdue University

Abstract—Public random beacons publish random numbers
at regular intervals, which anyone can obtain and verify. The
design of public distributed random beacons has been an exciting
research direction with significant implications for blockchains,
voting, and beyond. Distributed random beacons, in addition
to being bias-resistant and unpredictable, also need to have
low communication overhead and latency, high resilience to
faults, and ease of reconfigurability. Existing synchronous random
beacon protocols sacrifice one or more of these properties.

In this work, we design an efficient unpredictable synchronous
random beacon protocol, OptRand, with quadratic (in the num-
ber n of system nodes) communication complexity per beacon
output. First, we innovate by employing a novel combination
of bilinear pairing based publicly verifiable secret-sharing and
non-interactive zero-knowledge proofs to build a linear (in n)
sized publicly verifiable random sharing. Second, we develop a
state machine replication protocol with linear-sized inputs that
is also optimistically responsive, i.e., it can progress responsively
at actual network speed during optimistic conditions, despite the
synchrony assumption, and thus incur low latency. In addition, we
present an efficient reconfiguration mechanism for OptRand that
allows nodes to leave and join the system. Our experiments show
our protocols perform significantly better compared to state-of-
the-art protocols under optimistic conditions and on par with
state-of-the-art protocols in the normal case. We are also the
first to implement a reconfiguration mechanism for distributed
beacons and demonstrate that our protocol continues to be live
during reconfigurations.

I. INTRODUCTION

The use of public random numbers is fundamental to
many secure privacy-preserving systems where protocol par-
ties have tamper-proof access to these random values (or
common coins). Voting, lotteries, blockchains, and financial
services depend on public randomness, and generating public
randomness [47] has been an active area of research for the
last four decades [55], [26], [49], [50], [14], [35], [34], [21],
[33], [46], [18], [10]. Among these efforts, NIST’s randomness
beacons project [22] and Drand organization’s beacon [28]
have emerged in the last few years as real-world systems
towards catering to this need for randomness beacons.

*Contributed equally and listed alphabetically

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA

ISBN 1-891562-83-5

https://dx.doi.org/10.14722/ndss.2023.24832
www.ndss-symposium.org

Rochester Institute of Technology

Aniket Kate
aniket@purdue.edu
Purdue University / Supra

Kartik Nayak
kartik @cs.duke.edu
Duke University

Informally, these systems offer random beacons, which
are regular outputs of bias-resistant and unpredictable public
random numbers. Bias-resistance ensures that the adversary
cannot affect any future beacon value, say, for instance, affect
the beacon to win a lottery, and unpredictability ensures that
the adversary cannot predict any future beacon value, say, for
example, bet on a favorable number in a lottery.

Distributing trust across multiple nodes such that only a
minority of those can be compromised allows us to mitigate
single-point-of-failures. Here, a distributed coin-tossing proto-
col combines randomness from multiple nodes to generate ran-
dom beacons, which has been explored both theoretically [29],
[15], [14], [32] and on the systems front [S5], [50], [28], [10],
[49], [35].

A common approach to designing random beacons involves
a set of n nodes each sharing a random value such that a
random value is computed by combining a subset of these in-
dividual values. To share the value, protocols typically require
every node (called a dealer or leader) to use a verifiable secret
sharing (VSS) scheme where the node commits to a value with
the guarantee that if it is successful, it can be reconstructed by
honest nodes even if the dealer is malicious (Byzantine). By
utilizing at least ¢ + 1 such dealers, where ¢ is the maximum
number of compromised nodes, we are guaranteed that the
reconstructed value is uniformly random since the contribution
from an honest node is uniformly random.

There are several ideal properties that protocols in the
literature have aimed to optimize. In an n-node system tol-
erating ¢ Byzantine faults, a secure coin-tossing protocol
should aim for (i) bias-resistance, (ii) unpredictability, (iii)
optimal resilience, (iv) low latency, (iv) high scalability, and
(v) friendliness towards reconfiguration (allowing efficient
addition and removal of nodes). In this work, we focus on
the synchronous network setting where messages sent by the
sender will arrive at the receiver within a known bounded delay
A. Synchronous protocols have the advantage of tolerating up
to a minority corruption. While a myriad of random beacon
protocols [14], [55], [50], [10], [49] have been proposed in
this setting, existing solutions fall short in one or more of
these directions. For example, Cachin et al. [14] is efficient
in terms of communication complexity with O(kn?), but their
distributed (cryptographic) setup makes its expensive in term
of reconfiguration especially as n increases. Randrunner and
similar approaches instead employ the use of verifiable delay
functions (VDFs) frequently to generate beacons and possibly
tolerate dishonest majority of faults. However, VDFs are com-
putationally expensive and these protocols cannot offer low

TABLE 1. Comparison of related works on Random Beacon protocols.

Protocol Net. Res. Comm. Compl. Unpred. Reusable Resp Crypto Setup
Best Worst Setup Assumption® Assumption’

Cachin et al./Drand [14], [28] sync 50% O(kn?) O(kn?) 1 X X Uniq. Sig, CDH SRS
Dfinity [35], (2] sync. 50% O(kn?) O(kn3)* O(k) X X Unigq. Sig, CDH SRS
HERB [21] sync. 33% O(kn3) O(kn3) 1 X X DDH SRS
RandHerd [55] sync. 33% O(kc?logn)® O(kn?) O(k) X X DL SRS
RandChain [34] sync. 50% O(kn?) O(kn?) O(k) X X VDF, PoW SRS
RandHound [55] sync. 33% O(xc2n)T O(kc?n?)T 1 v X DL SRS
RandShare [55] async. 33% O(kn3) O(kn?) 1 v v DL SRS
RandRunner [49] sync. 50% O(kn?) O(kn?) O(k) v X tVDF, DL SRS
HydRand [50] sync. 33% O(kn?) O(kn?) min(k,t41) v X DDH CRS
SPURT (23] psync. 33% O(kn?) O(kn?) 1 v v DBS CRS
GULL [17] sync. 50%" O(kn3) O(kn3) 1 X X DDH CRS
STROBE [7] sync. 50% O(kn?) O(kn?) 1 X v RSA, DL SRS
GRandPiper [10] sync. 50% O(kn?) O(kn?) min(k,t41) v X g-SDH, SXDH SRS
BRandPiper [10] sync. 50% O(kn?)! O(kn?) 1 v X q-SDH, SXDH SRS
OptRand sync. 50% O(kn?) O(kn?) 1 v v/** q-SDH, SXDH SRS

Net. refers to the network assumption. Res. refers to the number of Byzantine faults tolerated in the system. Unpred. refers to the unpredictability of the
random beacon, in terms of the number of future rounds a rushing adversary can predict. Reusable Setup refers to a setup that can be reused when a node is
replaced in the system. Resp. refers to responsiveness, i.e., if commit latency is a function of the network speed §. *All of these protocols assume Random
oracles. TAll of these protocols assume Public Key Infrastructure (PKI). *probabilistically O(xn3) when ©(n) consecutive leaders are bad. 3¢ is the average

(constant) size of the groups of server nodes. lc is is a client specified parameter to obtain client-specific randomness.
of faults f = O(1) < t. *optimistically responsive during optimistic conditions.

latency [26], [49]. HydRand [50], with its use of publicly ver-
ifiable secret sharing (PVSS) [16] can be made reconfiguration-
friendly while simultaneously achieving quadratic communi-
cation complexity in the best case; however, it works in a
synchronous network and its resilience to faults, ¢ < n/3, is
sub-optimal. Finally, Randpiper set of protocols [10], while
offering quadratic communication complexity in the best case
and reconfiguration-friendliness, is communication-inefficient
in the presence of faults and outputs a beacon value every 11A
time.

A natural question is whether we can achieve all of
the above mentioned desirable properties simultaneously. Our
work, OptRand, answers this question affirmatively. In par-
ticular, OptRand is a bias-resistant and unpredictable random
beacon, with an O(xkn?) communication complexity and toler-
ating one-half Byzantine faults in a synchronous network. In
fact, under optimistic conditions when the number of faults are
< n/4 and a “leader” is honest, the protocol is responsive, i.e.,
it advances at the speed of the network, thus achieving low
latency. Compared to the state-of-the-art in the synchronous
setting, RandPiper [10], this protocol has better communication
complexity (always O(xn?)) and optimistically-responsive la-
tency.

A. Our Approach, Key Ideas and Results

Our protocol is a novel combination of aggregatable PVSS
and a state machine replication (SMR) to achieve an optimisti-
cally responsive random beacon protocol. We elaborate on the
key features of OptRand and our approach to achieving them.

Towards an always quadratic communication random
beacon protocol. An approach to obtaining random values
is to combine random secrets from more than ¢ nodes, at least
one of whom is honest. Thus, every node commits to its secrets
using a publicly verifiable secret sharing (PVSS) scheme [16],

lin conditions where the actual number

which, naively, requires sharing O(kn)-sized information per
node with every other node, making the communication com-
plexity at least cubic. Thus, the crux of the challenge is to
route this information through a “leader” such that the (i)
communication complexity is quadratic while (ii) still allowing
nodes to verify the correctness of the shares (iii) even when
the number of faults is ¢ < n/2. We achieve this using
the aggregation property of PVSS [16] employing bilinear
pairings: in particular, unlike non-interactive zero-knowledge
(X2 protocol) proofs, pairing-based aggregate verification can
be an efficient local process.

While the approach of routing the PVSS instance through
the leader has been considered recently [23] to tolerate ¢t < n/3
faults, the higher resilience of ¢t < n/2 forces us to solve the
problem differently. For instance, SPURT [23] can tolerate ¢
honest nodes from never receiving a share. However, when
n = 2t 4+ 1, this is not-acceptable. In particular, to deal
with Byzantine leaders efficiently, similar to [10], we take a
two-pronged approach: (i) we employ pipelined state machine
replication (SMR) that piggybacks consecutive consensus in-
stances, and (ii) we buffer secrets shared using PVSS for
each node, and reconstruct the last shared secret/beacon for
the Byzantine leader before removing it from subsequent
proposals.

Towards optimistically responsive random beacons. While
using the above discussed cryptographic approach and substi-
tuting it in RandPiper can offer us always quadratic commu-
nication complexity, RandPiper [10] still requires 11A latency
in each epoch (a duration coordinated by a distinct leader)
for beacons — even under optimistic conditions, their beacon
protocol cannot progress at the network speed.

The key challenges to obtain responsiveness are (i) efficient
propagation of large messages, and (ii) efficient synchroniza-
tion of all the nodes when some nodes move to the next

epoch. RandPiper [10] uses erasure coding and cryptographic
accumulators along with waiting for ©(A) time to check for
possible misbehavior from the current leader to efficiently
propagate large messages. In OptRand, we design a new tech-
nique to efficiently propagate large messages without checking
for misbehavior from the current leader; hence, do not require
Q(A) wait to ensure propagation.

In synchronous protocols, synchronization refers to all the
nodes starting the protocol within A of each other. When com-
mitting responsively at speeds independent of A, the nodes can
easily go out-of-sync. Typically, such synchronization between
all the nodes is performed by multicasting synchronization
proofs to all other nodes [24], [1]; in the absence of threshold
signatures, these proofs tend to be O(n)-sized, making the
communication cubic again. In OptRand, we instead broadcast
reconstructed secrets opened in a verifiable manner in an epoch
to synchronize all the nodes. The size of the reconstructed
secret is O(k) bits and thus, the communication complexity
stays quadratic.

In particular, OptRand combines this ability to move re-
sponsively to the next epoch with responsive propagation of
large messages to obtain an optimistically responsive random
beacon. The resulting random beacon protocol can output
beacon values responsively whenever more than 3n/4 nodes
and the leader of the epoch are honest, and otherwise, emits
the next beacon value every 11A time.

Reconfiguration mechanism. Additionally, we also present a
reconfiguration mechanism that allows a new node to enter the
system with a latency of ¢ 4+ 1 epochs, which is 2¢ 4 2 epochs
(explained later) faster than RandPiper [10]. The added benefit
of responsiveness means the ¢ 4- 1 epochs can be responsive
leading to even faster reconfiguration. A key improvement is
in the synchronization mechanism [24], [1] to allow the new
node to synchronize with all the existing honest nodes; while
prior work required 2¢ 4 2 epochs to perform this, we use a
more efficient synchronization mechanism at the end of every
epoch to synchronize the new node.

Implementation and Evaluation. We implement and eval-
vate the performance of our protocols and compare it with
state-of-the-art synchronous random beacon protocols. In our
evaluation, we observe that our protocol generates beacons at
significantly higher rate than other protocols under optimistic
conditions. Under non-optimistic cases, our protocol offers
comparable performance. Additionally, we also implement and
evaluate our reconfiguration protocol. We find that our system
can seamlessly generate beacons even when removing and
adding new nodes with good performance.

In summary,

v" We present an efficient random beacon protocol assuming
broadcast channels in Section

v' We present an optimistically responsive random beacon
protocol with O(kn?) communication in Section [V} The
resulting protocol is reconfiguration-friendly and can be
used as an optimistically responsive BFT SMR protocol.

v" We present our reconfiguration scheme in Section

V" We evaluate our OptRand protocol in Section

Related Work. Table |I| compares the related beacon proto-
cols comprehensively. Although several protocols with always

quadratic communication complexity exist [14], [34], [49],
[23], [7], [10], they lack responsiveness or reconfiguration-
friendliness. Most protocols [14], [35], [21], [34], [49], [17],
[7] are not reconfiguration-friendly and assume a threshold
setup that needs to be re-generated every time any node in the
system changes. To the best of our knowledge, our study shows
that responsive and reconfiguration-friendly synchronous ran-
dom beacons with optimal communication complexity and
fault-tolerance were not explored previously and OptRand is
the first protocol to achieve them.

II. RELATED WORK
A. Related Works in the Random Beacon Literature

There has been a long line of work on distributed public
randomness starting from Blum’s two-node coin-tossing proto-
col [11]. Due to its practical application, the problem has been
studied under various system models [S5], [26], [17], [49],
[50], [14], 135], [34], [21], [23]. We review the most recent and
closely related works below. Compared to all of these proto-
cols, OptRand has optimal resilience, perfect unpredictability,
incurs O(xkn?) communication per beacon output and has a
reusable setup. Moreover, OptRand is optimistically responsive
i.e., it can make progress at the speed of actual network delay
0 during optimistic conditions despite synchrony assumption.

The protocols by Cachin et al. [14], Drand [28] and
Dfinity [35] require DKG [54] to setup threshold keys among
participating nodes. STROBE [7] uses a similar threshold-RSA
based setup to generate beacons. Although these protocols
have optimal resilience, perfect unpredictability, and quadratic
communication complexity per beacon output, these protocols
do not have reusable setup i.e., replacing a single node in
the system involves re-running the setup all over again which
blows up communication.

HERB [21] and GULL [17] use partial homomorphic
ElGamal encryption scheme to generate random numbers.
HERB [21] tolerates only ¢ < n/3 failures despite synchrony
assumption and uses bulletin boards to post random shares. Mt.
Random [17] uses PVSS and threshold ElGamal, protocols
from Cachin et al. [14], VRG and assumes bulletin boards
to realize their random beacons. Instantiating bulletin boards
using Byzantine Consensus primitives trivially incurs O(kn?).
Moreover, both protocols use a variant of threshold setup and
thus lack a reusable setup.

RandShare [55] assumes an asynchronous network and
requires executing n concurrent instances of Byzantine Agree-
ment with a worst case communication of O(xn*). Rand-
Herd [55] improves on RandShare by sampling the system into
smaller groups of size c resulting in a communication com-
plexity of O(kc?logn) in the common case. RandHound [55]
further improves on RandHerd by building tree-based hier-
archy among the nodes and executes leader-based Byzantine
Consensus among sub-trees. The resulting construction has a
communication of O(kc?logn) when all leaders are honest.
With a sequence of Byzantine leaders, the communication
worsens to O(kn?).

RandChain [34] has optimal resilience of ¢ < n/2, and
incurs O(kn?) per beacon output. However, they use com-
putationally expensive sequential Proof-of-Work, and VDFs

along with Nakamoto consensus for consistency and has high
computation cost.

RandRunner [49]] uses trapdoor Verifiable Delay Functions
- VDFs with strong uniqueness properties that produces unique
values efficiently for the node that has the trapdoor, but takes
time 7' to produce an output for the nodes that do not have
the trapdoor. This allows the beacon to output bias-resistant
outputs in every round. While RandRunner has qudratic com-
munication per round, it has worst case unpredictability of t+41
rounds.

Most relevant to our protocol are Hydrand [50], Rand-
Piper [10] and SPURT [23]. HydRand [50] tolerates only
t < n/3 faults despite assuming synchrony. While Hydrand
has low computation overhead and a reusable setup due to its
use of PVSS scheme, it incurs O(kn?) communication in the
worst case and an unpredictability of £+ 1 rounds in the worst
case.

RandPiper [10] improved upon Hydrand by designing a
communication efficient BFT SMR protocol. Using the SMR
protocol, they obtain a random beacon protocol with optimal
resilience, quadratic communication and reusable setup but
with worst case unpredictability of ¢ + 1 rounds. To provide
perfect unpredictability, they propose BRandPiper [10] using
VSS scheme to share n secret in each round. The resulting
construction has O(kfn?) communication where f < t is
the actual number of faults. However, when f = O(n), the
communication is O(kn3). Moreover, their construction incur
large latency to generate random beacons.

Recently, Das et al. proposed SPURT [23] in the par-
tial synchronous model with perfect unpredictability, reusable
setup and responsiveness and an always O(kn?) communica-
tion. They use aggregatable PVSS scheme to combine ¢ + 1
PVSS vector in each round and provide perfect unpredictability
with O(kn?) communication.

B. Related Works in the BFT SMR Literature

There has been a long line of work in improving communi-
cation complexity of consensus protocols [37], [29], [1], [57],
[4], [43] and round complexity of consensus protocols [25],
[11, (8], 291, [31], [37], [47]. We review the most recent
and closely related works below. Compared to all of these
protocols, our protocol incurs O(xn?) communication per con-
sensus decision while avoiding the use of threshold signatures.
Moreover, our protocol is optimistically responsive with a
responsive commit latency of 46 and synchronous commit
latency of 4A 4+ 30 in common case (or 7A in the worst case).
Our protocol follows rotating leader paradigm and can change
leaders in optimistically responsive manner.

With respect to the communication complexity, the state-of-
the-art synchronous BFT SMR protocols [1], [3], [52], [5], [6]
incur quadratic communication per consensus decision while
using threshold signatures. Without threshold signatures, they
incur cubic communication per consensus decision. To the
best of our knowledge, the only optimally resilient protocol to
achieve O(kn?) communication without threshold signature is
BFT SMR protocol of RandPiper [10]. However, their protocol
is not responsive even under optimistic conditions and commits
a decision every 11A time.

With respect to optimistic responsiveness, protocols due
to Thunderella [45] and Sync HotStuff [3] are presented in
a back-and-forth slow-path—fast-path paradigm. If started in
the wrong path, these protocol cannot commit responsively.
Recent work such as PiLi [19], OptSync [52] and Hybrid-
BFT [42] achieve simultaneity between responsive and syn-
chronous modes. However, they incur cubic communication
without the use of threshold signatures. Ours is the first work
that achieves simultaneity under synchrony assumption with
O(kn?) communication while avoiding threshold signatures.

OptSync. OptSync [52] presents an optimistically responsive
protocol with optimal 24 latency during responsive commit and
2A synchronous latency. However, their protocol follow stable
leader paradigm and incur synchronous delay of 2A while
changing leaders. They also provide a separate protocol that
support changing leaders in optimistically responsive manner
in O(0) time. Compared to their protocol, our protocol can
change leaders responsively only when the new leader has
highest ranked certificate; otherwise our protocol incurs 2A
wait.

Hybrid-BFT. Hybrid-BFT [42] presents an optimistically re-
sponsive protocol with both responsive and synchronous com-
mit paths existing simultaneously. They also follow rotating
leader paradigm and has responsive commit latency of 2§ and
synchronous commit latency of 2A + 24. Similar to our work,
their protocol can also change leaders in responsive manner
only when the new leader has highest ranked certificate;
otherwise the protocol waits for 2A time.

III. SYSTEM MODEL AND DEFINITIONS

We consider a system P := {py,...,p,} consisting of n
nodes with reliable, authenticated point-to-point links, where
up to ¢ < n/2 nodes can be Byzantine faulty and can behave
arbitrarily. We assume static corruption. A node that is not
corrupted is considered to be honest and executes the protocol
as specified.

Communication links between nodes are synchronous. If an
honest node p; sends a message x to another node p; at time
T, p; receives the message by time 7+ 6. The delay parameter
4 is upper bounded by A. The upper bound A is known, but &
is unknown to the system. § can be regarded as an actual delay
in the real-world network. We assume all honest nodes have
clocks moving at the same speed. They also start executing
the protocol within A time from each other. This can be easily
achieved by using the clock synchronization protocol [1] once
at the beginning of the protocol.

We employ digital signatures and public-key infrastructure
(PKI) to prevent spoofing and validate messages. Message x
sent by a node p; is digitally signed by p;’s private key and
is denoted by (z);. We use H(x) to denote the invocation of
the random oracle hash H on input x.

A. Definitions

Pairings. We assume a Type-III pairing e : G; X Go — Gr,
where G1, G and G are cyclic groups of prime order ¢. Let
Z be its scalar field. We will use the multiplicative notation

of groups for group operations in this paper. Let g; € G; and
92, g5 € G2 be independent generator

State Machine Replication—SMR. We consider a SMR
protocol defined as follows:

Definition III.1 (Byzantine Fault-tolerant SMR [51]). A
Byzantine fault-tolerant SMR protocol commits client requests
as a linearizable log to provide a consistent view of the log
akin to a single non-faulty server, providing the following two
guarantees:

1) Safety. Honest nodes do not commit different values at
the same log position.

2) Liveness. Each client request is eventually committed by
all honest nodes.

Random beacon. We consider the following definition of a
secure random beacon:

Definition IIL.2 (Secure random beacon [23]). A random bea-
con protocol is secure if for any PPT adversary A corrupting
at most t nodes in an epoch, A has a negligible advantage in
the following security game played against a challenger C.

1. C sends the setup parameters of the system.

2. A compromises up to t nodes and notifies C of these nodes.

3. C creates the remaining public parameters (such as public
keys) and sends them to A.

4. A sends the remaining public parameters (such as public
keys).

5. C and A execute the protocol per epoch:

— C sends messages on behalf of the honest nodes to A

— A decides on the delivery of messages, and sends (or
does not send) its messages.

— The above steps are run interactively until an epoch
ends and an honest node outputs the protocol transcript
transcript.

6. C samples a random bit b € {0,1} and sends either
the beacon output based on transcript or a random Gr
element.

7. A outputs a guess bit b’

The advantage of A is defined as |Prob [b =] — 1/2|.

While we define all notations as we introduce them, we
also include a notations summary in the appendix in Table

B. Employed Primitives

1. Linear erasure and error correcting codes. We use
standard (n,b) Reed-Solomon (RS) codes [48]. This code
encodes b data symbols into code words of n symbols using the
ENC function and can decode the b elements of code words
to recover the original data using the DEC function defined as
follows:

e ENC. Given inputs mq,...,mp, an encoding function
ENC computes (s1,...,8,) = ENC(my,...,m;), where
(s1,...,5p) are code words of length n. A combination of
any b elements of the code word uniquely determines the
input message and the remaining of the code word.

By independent generators, we mean that the adversary controlling ¢ nodes
does not know a value x € Zg such that e(g1, 1g,)* = e(lg,,92) and
similarly a value y € Z4 such that gg = gh.

e DEC. The function DEC computes (mq,...,mp) =
DEC(s1, ..., Sn), and is capable of tolerating up to ¢ errors
and d erasures in code words (sq,...,Sy), if and only if
n—b>2c+d.

In our protocol, we instantiate the RS codes with n equal
the number of all nodes, and b equal to [n/4] + 1.

2. Cryptographic accumulators. An accumulator scheme
constructs a value called the accumulator to prove membership
of elements using the Eval function, and produces a witness for
each value in the accumulator using the CreateWit function.
Given the accumulation value and a witness, any node can
verify if a value is indeed in the set using the Verify function.
An example accumulator is Merkle trees, where the root is
the accumulator, and the paths are witnesses to leaves. In this
paper, we employ collision-free bilinear accumulators from
Nguyen [44] which generates constant-sized witness and accu-
mulators. The bilinear accumulators of Nguyen [44] requires ¢-
SDH assumption. Merkle trees [41] can be used instead, at the
expense of O(logn) multiplicative communication complexity.

Formally, given a parameter ~, and a set D of n values
di,...,d,, an accumulator has the following interface:

e Gen(1”,n): takes a parameter x and an accumulation thresh-
old n (an upper bound on the number of values that can be
accumulated securely), returns an accumulator key ak. The
accumulator key ak is part of the trusted setup and therefore
is public to all nodes.

e Eval(ak,D): takes an accumulator key ak and a set D of
values to be accumulated, returns an accumulation value z
for the value set D.

e CreateWit(ak, z,d;, D): takes an accumulator key ak, an
accumulation value z for D and a value d;, returns L if
d; € D ,and a witness w; if d; € D.

e Verify(ak, z, w;, d;): takes an accumulator key ak, an accu-
mulation value z for D, a witness w; and a value d;, returns
true if w; is the witness for d; € D, and false otherwise.

The bilinear accumulator satisfies the following property:

Lemma 1 (Collision-free accumulator [44]). The bilinear
accumulator is collision-free. That is, for any set of size n
and a probabilistic polynomial-time adversary A, the following
function is negligible in k:

ak + Gen(1%,n)
({di,...,dp},d v

Pr A(1%, n,ak),
z + Eval(ak,{dy, ...

e | (@ g {dr, o da A
(Verify(ak, z,w',d") = 1)
+dn})

3. Discrete log proof of knowledge. Let g,u € G be public
values with Z, as the scalar field. A prover P who knows
the value x € Z, such that u = g%, and wants to prove this
non-interactively in zero-knowledge runs the algorithm 7w <
NIZKPK(z, g, u) to generate a non-interactive zero-knowledge
(NIZK) proof 7. The proof 7 can be verified using {0,1} «
Verify(m, g, u) by anyone.

We will also use the same notation 7 —
NIZKPK(z, g1, u1, g2, u2) to prove knowledge of s € Z,
for public values gij,u; € Gy and go,us € Go and
{0,1} « Verify(m, g1, u1,g2,us2). The same proof technique

from [20] is used to prove discrete log equality of logarithms,
i.e., prove that log, u; = log,, us.

4. SCRAPE PVSS [16]. OptRand relies on a modified
version of the pairing based PVSS scheme introduced in
SCRAPE (|16, Section 4]). We refer interested readers to
the full version [9, Appendix] for a summary of the original
SCRAPE pairing-based PVSS scheme.

Setup: Let e : G1 xGo — Gy be an efficient pairing group with
independent generators! g1 € Gy, g2, 95 € Go which can be
derived assuming a common reference string assumption [40].
Every node p; € P has a secret key sk; < Z, and public
keys pk; = gfk'i. We denote the public keys of all the nodes
as follows pk := {pk,,pk,,...,pk,}. The setup for keys is
realized using a PKI assumption.

The protocol consists of the following algorithms:

Sharing phase: Here, the dealer L € P chooses a random
value s € Z, and creates a polynomial p(z) € Z,[x] of degree
t with p(0) = s. Without loss of generality, we employ indices
from 1,...,n such that the shares s; for node p; is p(4).

Commitment: In SCRAPE, the dealer commits to poly-
nomial p(z) by producing a commitment vector: v =
{95",95%,...,95" }. SCRAPE [16] Section 2] observes that if
C = {p(1),...,p(n)} where p(x) is a degree ¢ polynomial,
then there exists a dual code C+ = {u1f(1),..., pnf(n)},
where y; = [[}_, ,,; 7 and f(z) is a random polynomial
of degree up to n — ¢, such that their dot-product is zero.

This check easily ensures that the commitment vector v is
also a commitment to a t degree polynomial by checking the
following:

n L
¢ 1 L
Hvi *1(@27 {01,62,,..

i=1

ep}€CT (1)

Encryption: Along with the commitments, the dealer creates
encryptions ¢ = {pkj',pk3?,...,pki~} for all the nodes.
Nodes check the correctness of the encryptions by checking
e(pki,v;) = e(ci, g2) both of which are e(gy, go)**i%i.

—1
Decryption: Every node computes d; cfk = ¢;'. Nodes
verify decryptions d; from others by checking e(d;, g2) =
e(g1,v;) both of which are e(gi, g2)%.

Reconstruction: In this phase, the nodes reconstruct B <— gf =
gf(o) and compute S < e(g3, g5) as the secret S. The INDI-
secrecy definition requires that an adversary is not able to tell
whether the sharing is for the secret S even if S was provided
to the adversary. Thus, it is important the secret is defined as
S € Gr and not g3, as the latter directly reveals whether the
sharing is for S.

IV. WARM-UP: RANDOM BEACONS USING A BROADCAST
CHANNEL

In this section, we will describe a warm-up random bea-
con protocol using a pairing-based publicly verifiable secret-
sharing scheme in the broadcast-channel model with the fol-
lowing security properties:

Definition IV.1 (Warm up beacon). Let L. € P be a dealer.
The warm-up beacon guarantees the following:

1) Weak agreement. Let I3 be the space of all beacon values.
Then all honest nodes output the same value in BU L.

2) Value validity. If an honest node outputs v # 1, then v is
uniformly random in B.

3) Validity. If L is honest, then the value v output by all the
honest nodes satisfies v # L.

In Fig.|1|we describe our broadcast channel based protocol
satisfying Definition Weak agreement allows honest
nodes to output L if the leader is Byzantine. Value validity
guarantees that if an honest node outputs v # L, then it must
uniformly random even if the leader is Byzantine. The scheme
in Fig. {1} which is a combination of techniques from Gurkan
et al. [32]], Das et al. [23], and SCRAPE [16], allows us to
realize OptRand in Section

We consider Fig. |[1| to be a warm-up as it misses two
factors: first, the honest nodes can output | when L is
Byzantine; secondly, we also need to implement the broadcast
channel using a responsive SMR with the constraint that the
communication complexity cannot exceed O(xn?) in an epoch.
We will overcome these limitations using rotating leaders,
buffering of shares, and a novel optimistically responsive SMR
with the desired properties in the next section.

A. Our Protocol

Our protocol (Fig.[T) satisfies Definition and consists
of a designated leader L € P, who acts as the coordinator.
When the leader is honest, all the honest nodes obtain a
secret share, which when used for reconstruction outputs a
unique and unpredictable element S € G7. When the leader
is Byzantine, either all the honest nodes commit shares for
an element g7 from which we build a random unpredictable
element S € G, or all the honest nodes abort, i.e., output L.

Decomposition proofs. When using a leader as the coordi-
nator, if we use SCRAPE naively, we need a mechanism to
prevent the possibility that a leader can simply cancel the
contributions of honest nodes by proposing a PVSS vector
where every element is raised to —1. We mitigate this by
adding a simple cryptographic proof of knowledge of the
shared secret 7 called decomposition proof. Here, a node
proves that it knows the secret (or p(0)) using the discrete
log proof of knowledge [20] algorithm NIZKPK discussed in
Section This proves to everyone non-interactively that
the proposer knows the secret being shared without revealing
it.

Our protocol forces the leader to propose the combined
commitments and encryptions and produce at least £+ 1 proofs
of knowledge 7 values. These proofs are O(1) sized making
the whole proposal O(n) sized. Since n —t > ¢, we know that
there must always be ¢ 4 1 valid shares. So an honest leader
will always have sufficient proofs to propose. Therefore, if a
leader does not propose, it must be Byzantine. Since any valid
proposal from a leader must include ¢+ 1 proofs of knowledge,
at least one of them is a sharing for a random number, we can
intuitively guarantee Value validity (Property [2).

Sharing phase. The sharing phase consists of three steps:
(1) Commitment, (ii) Aggregation, and (iii)) Commit steps. We
detail the steps below.

Let L € P be the leader. Every node p; € P does the following:
Sharing Phase

Commitment
1. Generate a random degree ¢ polynomial p;(x) and compute the
shares for every j € [n] as follows:

sj < pi(§), v = g5’ ¢cj < Dk’
vi {vi,...,on}, ¢ < {c1,...,cn}

2

2. Compute a signed knowledge proof 7; using
i (95 NIZKPK(pi(0), g2, 95") 3)

3. Send (v;,c;,7;) to the leader L.
Aggregation
The leader does the following:
1. Collect t + 1 S; := (v;,c;,7;) from p; satisfying the
following:
n 1
a) [Jvy =1lg,, {ct,c7,...

i=1
b) e(pki, g2) = e(ci, vi)
c) Verify(yp, 92, Ya) With 7; := (Ya, ys)
d) y, = Interpolate(v;) with T; := (Ya, ys)
e) Verify signed 7; with verification key of node p;
2. Aggregate valid shares as follows:

ecn}eCH

Vvt vy,
c<c1+ -+ cCiy, 4)
o {m, . T)

3. Post (v, c,7) on the broadcast channel.
Commit
1) For the aggregated sharing (v, c,), check

L
a) H v;t =lg,, {ct,¢3,...,cp} € Ct

i=1
b) e(pks,vi) = e(ci, g2)
¢) Verify(yvi, 92, Yai) With T := (Yai, Ypi)V €
d) V7 = (Yai, Yvi) € 7, [[, Ya: = Interpolate(v)
e) Verify signed m; € w with verification key of node p;
2) If a valid (v, c,) is posted in time, commit (v, c).
Otherwise, commit L.

_, Reconstruction Phase
Send d; + cjk’ to all the nodes.
. Collect ¢+ 1 shares d; which satisfy e(d;, g2) = e(g1, v;) from
node p; € P in the set S.
3. Using Lagrange interpolation compute B < Interpolate(S).
4. Compute the beacon value S < e(S, g5).

[N

Fig. 1: A warm up beacon protocol using a modified pairing bases
SCRAPE PVSS [16] and broadcast-channels.

1. Commitment. In this step, each node p; computes the
publicly-verifiable shares for every nodes using Step 1 in
the sharing phase in Fig. [1| The node also signs and sends
the decomposition proof 7;. Finally, all the nodes send their
commitments and encryptions to the leader L.

2. Aggregation. The leader receives valid ¢t + 1 PVSS vectors
from nodes in set I. In this step, the leader combines it
to produce the final PVSS vector for a random polynomial
P. This consists of the combined commitments, combined
encryption and aggregated proofs (Eq. (4)) for j € I and for
all the nodes p; € P.

After combining the PVSS vectors, the leader broadcasts
(v,c, 7). Note that this post has a size of O(n).

3. Commit. In the commit step, all the nodes observe the
sharing (or its lack thereof within sufficient time) on the
broadcast channel and decide to commit, or to abort by
checking (i) the v is a valid (n,t) sharing, (ii) the shares for
all the nodes are correct, (iii) all the constituent decomposition
proofs are valid, and finally (iv) the interpolated values for v
and the product of all the first elements in 7r are the same. If
the leader was honest, then all the honest nodes commit. If the
leader was Byzantine, the sharing will still include at least one
honest node’s contribution and if committed by all the honest
nodes, is secure.

Reconstruction phase. The nodes decrypt their shares by
cancelling the secret key sk; from the exponent in ¢;. The
decrypted share d; is then sent to all the nodes who can
non-interactively verify the validity. On collecting ¢ + 1 valid
decryption shares, the nodes reconstruct B < g] using to
obtain the final secret S + e(B, g5).

Verifiable beacon. The pairing-based PVSS scheme allows
for any node to verify the correctness of the reconstructed
unpredictable secret. In particular, on reconstructing B < g7,
any node can confirm that this is the correct beacon value
against a sharing, by checking e(B,g2) = e(g1,95), where
g5 can be generated using Lagrange interpolation on v. This
property is critical to obtain optimistic responsiveness in the
next section.

Security analysis. We defer the security analysis to Section [B|
and Section

Note that the protocol described in Fig. can result
in nodes aborting the beacon generation when the leader is
Byzantine. This can make the protocol violate guaranteed
output delivery. In the next section, we overcome the problem
while maintaining quadratic communication complexity using
pipelined SMRs [57], [3] and pre-processing.

V. OPTIMISTICALLY RESPONSIVE RANDOM BEACON

In this section, we present OptRand, an optimistically
responsive random beacon protocol. Our protocol is a novel
combination of a state machine replication (SMR) protocol
and a random beacon protocol to achieve an optimistically
responsive random beacon. Our protocol uses the generated
random beacons to achieve responsiveness. In particular, we
use aggregated secrets to synchronize between honest nodes
and achieve responsiveness.

The underlying SMR protocol includes an optimistic path
that can make progress at the network speed i.e., in O(J) time
during optimistic condition when the leader and > 3n/4 nodes
behave honestly. A quorum of |3n/4] + 1 nodes are required
for an optimistically responsive protocol [45]. Under standard
conditions, i.e., when only > n/2 nodes behave honestly,
the SMR protocol makes progress in Q2(A) time. We follow
the optimistic responsive paradigm of OptSync [52], i.e., our
protocol does not require explicit back-and-forth switching
between slow synchronous mode and fast optimistic mode
employed in [45], [3]. Similar to the optimistically responsive
view-change protocol in OptSync, our protocol changes leaders
in an optimistically responsive manner.

Epochs. Our protocol progresses through a series of numbered
epochs with epoch r coordinated by a distinct leader L,

rotated in a round-robin manner every epoch. During optimistic
conditions, the system progresses through epochs responsively,
i.e., in O(0) time; otherwise each epoch lasts for O(A) time.

Blocks and block format. We represent a proposal in an epoch
in the form of a block. Each block references its predecessor
to form a blockchain with the exception of the genesis block
which has no predecessor. We call a block’s position in the
blockchain as its height. A block B, at height h has the
format, By, := (b, H(Bp—_1)) where by, denotes the proposed
payload at height h and H(By,_1) is the hash digest of Bj,_1.
The predecessor for the genesis block is L. In our protocol,
the payload by is set to the aggregated PVSS commitment
and encryption. A block By is said to be valid if (1) its
predecessor block is valid, or if A = 1, predecessor is L,
and (2) the payload in the block is a valid PVSS vector, i.e.,
the verification algorithm outputs a 1 (discussed in Commit
step in Fig. . A block By, extends a block B; (h > 1) if B,
is an ancestor of Bj,.

Certified blocks, and locked blocks. A block certificate
represents a set of signatures on a block in an epoch by a
quorum of nodes. We use two types of signed vote messages:
a responsive vote resp-vote and a synchronous vote sync-vote.
Accordingly, we consider two fypes of block certificates. A

responsive certificate Cf/ 4(Bh) for a block Bj consists of
[3n/4] + 1 distinct resp-vote on Bj in epoch r. Similarly,

a synchronous certificate Cy'* (Bp,) consists of ¢ + 1 distinct
sync-vote on By in epoch r. Whenever the distinction is not
important, we will represent the certificates by C,.(Bp,).

Certified blocks are ranked by epochs, i.e., blocks certified
in a higher epoch have a higher rank. We do not rank between
responsive and synchronous certificate from the same epoch.
During the protocol execution, each node keeps track of all
certified blocks and keeps updating the highest ranked block
certificate to its knowledge. Nodes will lock on highest ranked
block certificate and do not vote for blocks that do not extend
highest ranked block certificates to ensure safety of a commit.

Equivocation. Two or more messages of the same fype but
with different payload sent by an epoch leader are considered
an equivocation. In this protocol, the leader of an epoch r sends
propose, resp-cert, and sync-cert messages (explained later)
to all other nodes. In order to facilitate efficient equivocation
checks, the leader sends the payload along with signed hash of
the payload. When an equivocation is detected, broadcasting
the signed hash suffices to prove equivocation by L,..

Background: Dissecting BFT SMR protocol of Rand-
Piper [10]. A key component of RandPiper is a communication
efficient BFT SMR protocol that incurs O(kn?) communi-
cation per decision to decide on O(n)-sized input without
using threshold signatures. The efficient communication was
achieved by making use of erasure coding schemes, crypto-
graphic accumulators and broadcast of equivocating hashes
(if any). In their protocol, they use (n,t 4+ 1) RS codes to
encode large messages. When a node receives a valid proposal
from the leader, they use RS codes to encode the proposal
into n code words (s1, ..., S,) and compute corresponding
cryptographic witnesses (w1, ...,wy), and send each code
word and witness pair (s;, w;) to node p; Vp; € P. A
node votes for the proposed block only if it does not detect
any equivocation for 2A time. The 2A wait before voting

ensures (i) no honest node received an equivocating proposal
and conflicting (s}, w}) before receiving (s;,w;) (ii) all honest
nodes receive at least t + 1 code words for the proposed block
sufficient to reconstruct the proposal.

To ensure safety of a committed block, in general, SMR
protocols ensure that all honest nodes receive and lock a
certificate for the proposed block. A certificate consisting of
t + 1 signatures for the proposed block is linear in size in the
absence of threshold signatures. Thus, an all-to-all broadcast of
the certificate trivially incurs cubic communication. The BFT
SMR protocol of RandPiper solves the issue using following
technique. First, nodes send their vote only to the leader.
The leader is expected to collect ¢ + 1 votes, form a single
certificate and send it to all nodes. Second, in order to ensure
the certificate is propagated among all honest nodes, instead
of broadcasting it to all nodes, they use RS codes to encode
the certificate, send the code word and witnesses and wait for
2A to check for an equivocation before making a commit.

Achieving optimistic responsiveness. The techniques em-
ployed by the BFT SMR protocol enables communication effi-
cient consensus on O(n)-sized input. However, their technique
requires waiting for 2(A) time to detect equivocation before
making a decision.

In this paper, we propose a new technique that allows
us to responsively make decision and change leaders without
relying on equivocation detection. We modify RandPiper in the
following manner: First, we use (n, [n/4] + 1) RS codes to
encode large messages (in the Deliver primitive in Fig.[2). This
allows decoding with |n/4] + 1 code words at the expense of
doubled code word size. Second, a node sends a responsive
vote to the leader as soon as it receives a valid block proposal.
The node also sends the RS coded code words and witnesses to
all other nodes. The leader collects |3n/4] 41 votes to form a
responsive certificate and sends the responsive certificate to all
nodes. The nodes broadcast an ack message in response to the
responsive certificate and commit on receiving > 3n/4 distinct
ack messages. In addition, they also send RS coded code words
and witnesses for the responsive certificate. The existence
of > 3n/4 ack messages ensures that all honest nodes can
decode the proposed blocks and the responsive certificate.
In particular, at least [n/4] + 1 honest nodes must have
received the block proposal and the responsive certificate for
the committed block and they have forwarded their code words
to all nodes. Thus, all honest node must receive |n/4] + 1
code words sufficient to decode the proposed blocks and the
responsive certificate.

Responsively changing epochs. The above technique allows
an honest node to responsively commit a decision. In order
to responsively change epochs, a synchronization primitive
is required to signal all honest nodes to move to a higher
epoch. Prior works [3]], [52], [5] perform an all-to-all broadcast
of certificates to synchronize between epochs which incurs
cubic communication without threshold signatures. In this
protocol, we broadcast aggregated secret opened in an epoch
to synchronize all the nodes. The size of aggregated secret
is O(1) bits and all-to-all broadcast of O(1)-sized aggregated
secret does not blow up communication.

In cases when optimistic conditions are not met, the
underlying consensus mechanism works similar to the BFT

Deliver(mtype, m, z,,7):

1) Partition input m into |n/4| + 1 data symbols. Encode the
|n/4]41 data symbols into n code words (s1, . . ., S») using the
ENC function. Compute witness w; Vs; € (s1,...,Sn) using
CreateWit function. Send (codeword, mtype, s;, w;, zr, T)p; tO
node j Vj € [n].

2) If 4" node receives the first valid code word
(codeword, mtype, s;, w;, z»,7) for the accumulator z,,
forward the code word to all the nodes.

3) Upon receiving |n/4] + 1 valid code words for a common
accumulator z,, decode m using the DEC function.

Fig. 2: Deliver function

SMR in RandPiper except we use (n, [n/4| + 1) RS codes.

A. Protocol Details

Deliver function. We first present a Deliver function (re-
fer Fig. |2) that is used by an honest node to propagate long
messages received from the epoch leader. The Deliver function
enables efficient broadcast of long messages using erasure
coding techniques and cryptographic accumulators. The input
parameters to the function are a keyword mtype, long message
m, accumulation value z, corresponding to message m and
epoch r in which Deliver function is invoked. The input
keyword mtype corresponds to message type containing long
message m sent by leader L,. In order to facilitate efficient
leader equivocation, the input keyword mtype, hash of long
message m, accumulation value z;., and epoch r are signed by
leader L,..

This function is similar to that in RandPiper [10] except
that we use (n, |[n/4| + 1) RS codes instead of (n,t + 1)
RS codes used in [10]. As a result, the size of code word is
doubled and the communication is increased by a factor of 2.
However, this does not linearly blow up the communication
complexity and the communication complexity still remains

O(kn?).

Our beacon protocol is described in Fig. |3} Nodes maintain
a chain of blocks to add blocks proposed by leaders, a queue
Q() to store a recently committed PVSS vector proposed by an
epoch leader and set P, to keep track of removed nodes. The
queue Q() holds one PVSS vector per node. Before the start of
the beacon protocol execution, a setup phase is executed where
we establish PVSS parameters (namely g; € Gq, g2, ho € Go),
and public keys pk, for every node p; € P. We also buffer one
secret share for aggregated PVSS tuples for every node p;, i.e.,
fill Q(p;) for p; € P. This ensure the beacons are generated
from the first epoch. The nodes in P\ P, are selected as leaders
in a round-robin manner.

After the setup phase, the nodes execute following steps in
each epoch r.

Epoch advancement. Each node keeps track of epoch duration
epoch-timer,. for epoch r. A node p; enters epoch r (i) when its
epoch-timer,._; expires, or (ii) when it receives a round r — 1
aggregated secret R,_; and a round r — 1 block certificate
Cr—1(Bi). Upon entering epoch 7, node p; generates PVSS
vector (v;,¢;, Tk ;) (defined in Commitment phase of Fig.
and sends the PVSS tuple and its highest ranked certificate to
the leader L,.. In addition, it aborts all timers below epoch r
and sets epoch-timer, to 11A and starts counting down.

Propose. Upon entering epoch r, if Leader L, has C._1(B)),
it proposes as soon as it receives t + 1 PVSS tuples; oth-
erwise, it waits for 2A time to ensure it can receive the
highest ranked certificate from all honest nodes. Upon re-
ceiving t + 1 PVSS tuples from I C [n], it aggregates
the PVSS tuples to obtain aggregated PVSS committments
v, aggregated encrypted secret shares ¢ and NIZK proofs
{7k, }icr denoted as Tx. The leader L, constructs a block
By, by extending on the highest ranked certificate C, (B;)
known to L, with payload b;, set to (v,c,7x) and sends
proposal p, := (propose, By,,C,(By), 2pa,T) L, to node pj,
Vp; € 'P. Here, z,, is the accumulation value for the
pair (Bp,C,(By)). While conceptually, the leader is send-
ing (propose, By, Cy/(By), Zpa, 1) L,.. to facilitate equivocation
checks it instead sends (propose, H(B,Cy (Bi)), Zpa,T)L,
with (By, C(By)) sent separately. The size of the signed
message is O(1) and hence can be broadcast during equivo-
cation or while delivering proposal p,. without incurring cubic
communication overhead.

Vote. If node p; receives a proposal p, =
(propose, By, Cri(By), Zpa,)L, it first checks PVSS
verification for (v,c,7g) is valid (refer Commit step
in Fig. [I). We call such a proposal valid. If node p;
receives a valid proposal and the proposed block By
extends the highest ranked certificate known to the
node such that its epoch-timer, > T7A, then it invokes
Deliver(propose, p,, zpq,) and sends a responsive vote
(resp-vote, H(B},),r),, immediately to L,. In addition,
the node sets its vote-timer, to 2A and starts counting
down. When vote-timer,, reaches 0 and detects no
epoch r equivocation, the node sends a synchronous vote
(sync-vote, H(B},),7)p, to L. If block Bj, does not extend
the highest ranked certificate known to the node or node p;
does not receive a proposal p, when its epoch-timer,. < 7A,
the node simply ignores the proposal and does not vote for
By,.

Resp cert. When the leader L, receives |3n/4| +
1 distinct resp-vote messages for the proposed block
By in epoch r, denoted by c¥ 4(Bh), L, broadcasts
(resp-cert,Cf’M(Bh),zm,r>LT to all nodes where z,, is the
accumulation value of Cff 4(Bh). Similar to the proposal, the
hash of the certificate C2/ *(By,) is signed to allow for efficient
equivocation checks. Since our protocol requires the certificate
to be delivered to all nodes in case of a commit, we require
two different certificates for the same block shared by a leader
to be considered an equivocation.

Sync cert. When leader L, receives t 4 1 distinct sync-vote
messages for the proposed block Bj in epoch r, denoted by

Ci/Q(Bh), L, broadcasts (sync-cert, C;/Z(Bh)7 Zsa,T) L, to all
nodes where z,, is the accumulation value of Ci/ 2(Bh). Again,

the hash of the certificate C,’ *(By) is signed to allow for
efficient equivocation checks.

Ack. When a node p; receives a responsive -certificate
rc := (resp-cert, 63/4(Bh), Zra,T)L, While in epoch r, it in-
vokes Deliver(resp-cert, rc, 2.4, 7) to deliver rc and broadcasts
(ack, H(B},), Zra,T)p; to all nodes. If epoch-timer, < 3A,
node p; sets commit-timer,. to 2A and starts counting down.

Commit. The protocol includes two commit rules that commits

Let r be the current epoch, L, be the leader of epoch r and P, be the set of removed nodes. For each epoch r, node p; € P

performs following operations:

1) Epoch advancement. Node p; advances to epoch r using following rules:

a) When epoch-timer, _; reaches 0, enter epoch r.

b) On receiving aggregated secret R,._1, broadcast R,._;. Wait until C,_1(B;) is received and enter epoch r.

Upon entering epoch r, send PVSS tuple (v;,¢;, Tk ;) and highest ranked certificate C,»(B;) to L,. Set epoch-timer,. to

11A and start counting down.

Propose. Wait for ¢t + 1 PVSS tuples and either C,._1(B;) or 2A time after entering epoch r. Upon receiving ¢ + 1 valid

PVSS tuples, L, aggregates them to obtain (v,c, 7k) (refer Aggregation Step in Fig.[1). Set by := (v, ¢,Tx) and send

(propose, By, Cr/(B1), Zpa,) L, to node p; Vp; € P where By, extends B; and C,/(B;) is the highest ranked certificate

known to L,..

Vote. If epoch-timer,, > 7A and node p; receives the first proposal p, := (propose, By,,Cp/(B}), Zpa,T)L,, check the

validity of the aggregated PVSS tuple (refer Commit Step in Fig. [I). If valid and B}, extends a highest ranked certificate,

invoke Deliver(propose, p;, zpq,7) and send (resp-vote, H(By,), r)p, to L. Set vote-timer,. to 2A and start counting down.

When vote-timer,. reaches 0, send (sync-vote, H(B},),T)p, to L.

4) Resp cert. On receiving [3n/4] + 1 resp-vote for By, L, broadcasts (resp—cert,Cf/ Y(Bh), zra,)1

5) Sync cert. On receiving t + 1 sync-vote for By, L, broadcasts <sync-cert,CT1/2 (Bh)s ZsasT) L

6) Ack. Upon receiving the first responsive certificate

Deliver(resp-cert, rc, zq, 1) and broadcast (ack, H(B},), Zra, T)p; -

Commit. Node p;, commits using one of the following rules:

a) Responsive. If epoch-timer, > 2A and node p; receives (ack, H(B},), zrq,7) from |3n/4| + 1 distinct nodes and
detects no equivocation, commit B, and all its ancestors.

b) Synchronous. If epoch-timer, > 3A and node p; receives the first certificate (either responsive or syn-
chronous), set commit-timer,, to 2A and start counting down. If the received certificate is synchronous i.e.,
sc := (sync-cert, Cﬁ/Q(B;L), Zsa, T') L., invoke Deliver(sync-cert, sc, z4q, 7). When commit-timer,. reaches 0, if no epoch-
r equivocation has been detected, commit B;, and all its ancestors.

Update, reconstruct and output. When node p; commits or when epoch r ends, perform following operations:

a) Commit block B, proposed in epoch r — t if the highest ranked chain extends By (if By has not been committed).

b) If block By proposed by L,._; has been committed by epoch r, update Q(L,_;) with (v, c, Tk) shared in by. Otherwise,
remove L,_; from future proposals, i.e., P, < P, U {L,_+}.

¢) Obtain (v, c,Tk) corresponding to block committed in Dequeue(Q(L,)). Broadcast decrypted share d;. On receiving

2)

3)

e

e

(resp-cert, C?M(Bh), Zra,T)L

re invoke

ro

7)

8)

e(Ba 92) = 6(91, 95)
d) Compute and output O, <— H(R,).

share d; from another node p;, ensure that Sthfy(p/cj, ¢;,d;) = 1. On receiving ¢ + 1 valid shares in S, reconstruct
B and R, < Recon(S). Broadcast (B, R,). On receiving (B, R,) from others, accept R, if R, = e(B,hz) and

9) (Non-blocking) Equivocation. Broadcast equivocating hashes signed by L, and stop performing epoch r operations,
except Step [8] If epoch-timer,. > 2A, reset epoch-timer,. to 2A and start counting down.

Fig. 3: Optimistically responsive random beacon protocol with O(xn?) bits communication per epoch.

proposals made in the same epoch and an additional commit
rule that commits proposals made ¢+1 epochs earlier. A replica
commits using the rule that is triggered first. In responsive
commit, a replica commits block B} and all its ancestors im-
mediately when it receives at least |3n/4|+1 ack messages for

a responsive certificate c / 4(Bh) with a common accumulation
value z,., such that its epoch-timer,. is large enough (2A). Note
that a responsive commit happens at the actual speed of the
network (6).

In synchronous commit, when node p; receives a
valid epoch r certificate when its epoch-timer, is large
enough (3A), it sets commit-timer, to 2A and starts
counting down. If the received certificate is synchronous
ie, sc (sync-cert, Crl/z(Bh),zsa,ﬂLr, it invokes
Deliver(sync-cert, sc, zsq,7) and sets commit-timer,. to 2A.
When commit-timer,. reaches 0, if no epoch-r equivocation
has been detected, node p; commits B, and all its ancestors.
Invoking Deliver() on the sync-cert ensures that all honest
nodes have received C,.(Bj) before quitting epoch r.

10

In addition to above commit rules, we include an additional
commit rule. We consider a block B, proposed in epoch r —
t proposed by L,_; committed if the highest ranked chain
at the end of epoch r extends B, even though none of the
blocks that extends B, proposed after epoch r — t have been
committed using either of the above commit rules. This commit
rule helps in committing safe blocks possibly uncommitted due
to responsively moving to higher epoch.

We note that if an honest node commits a block Bj, in
epoch r using one of the commit rules, it is not necessary that
all honest nodes commit B}, in epoch r using the same rule, or
commit By, at all. Depending on how Byzantine nodes behave,
only some honest nodes may receive > 3n/4 ack messages
and commit using responsive commit rule while some other
honest nodes may commit using synchronous commit rule. It
is also possible that only some honest node commits B;, while
no commit rules are triggered for rest of the honest nodes. For
example, an honest node commits a block Bj responsively
but all other nodes detect equivocation in the epoch. In such
a case, we ensure that all honest nodes receive and lock on a

certificate for By, i.e., C.(By,), to ensure safety of a commit.
Eventually after ¢ 4+ 1 epochs, all honest nodes will commit
By, using our third commit rule.

Equivocation. At any time in epoch r, if a node p; detects
an equivocation, it broadcasts equivocating hashes signed by
leader L,. Node p; also stops performing epoch r operations
except update, reconstruct and output steps described below. In
addition, if epoch-timer, > 2A, node p; resets epoch-timer,.
to 2A to assist in terminating a faulty epoch faster.

Update. The update step ensures that the leaders failing to
commit a block in ¢ + 1 epochs are removed the active set
of nodes, i.e., if the leader L,_; of epoch r — ¢ fails to add
a new block by the end of epoch r, L,_; is removed from
future proposals, i.e., P,. < P,.U{L,_;}. On the other hand, if
block By proposed by L,_;_; has been committed by epoch r,
update Q(L,_;) with (v, ¢, Tx) shared in b,. This step ensures
that our protocol produces a random beacon in each epoch.

Reconstruct and output. Node p; starts to reconstruct ag-
gregated secret [?, when node p; commits or when its
epoch-timer, expires. It obtains (v, c, 7k) corresponding to
block committed in Dequleue(Q(LT)) and decrypts the share

by computing d; = cjki . It then broadcasts d; to all other
nodes. On receiving share d; from another node pj, it verifies it
using ShVrfy(g1, g2, €5, d;). On receiving a set S of t+1 valid
shares, it reconstructs R, < Recon(gi,gs,S). In addition,
it also broadcasts the aggregated secret R,. Any node can
verify the correctness of beacon value without reconstruction
by checking e(g1, R,) = e(g5, g2). An epoch r beacon output
O, is the hash of the aggregated secret R,, i.e., O, < H(R,).

Observe that the size of aggregated secret R, is O(1) and
all-to-all broadcast of the aggregated secret does not blow up
communication. Moreover, the aggregated secret R, cannot be
reconstructed without an honest node sending its secret share.
Thus, we use the aggregated secret R, to synchronize all other
nodes and responsively change epochs.

Latency and communication complexity. When the epoch
leader is Byzantine, not all honest nodes may be locked on
a certificate for a common block at the end of the epoch.
When the epoch leader is honest, at least one honest node
commits block B}, proposed by an honest epoch leader and all
honest nodes lock on a certificate for common block B}, and do
not act on block proposals that do not extend B;, afterwards.
Thus, block By, and all its ancestors are finalized in an honest
epoch. Due to round-robin leader selection, there will be at
least one honest leader every ¢+ 1 epochs and all honest nodes
finalize on common blocks up to the honest epoch. Thus, our
protocol has a commit latency of ¢ 4+ 1 epochs. Our protocol
has communication cost of O((k + w)n?) bits per epoch.

Why is it safe to commit a block B, proposed ¢ + 1
epochs earlier if the highest ranked chain extends B,?
The round robin leader selection policy ensures that there will
be at least one honest leader in last £ + 1 epochs. An honest
epoch leader L, ensures it extends the highest ranked block
certificate from all honest nodes. Our protocol ensures that the
block By, proposed by the leader L, is committed by at least
one honest node in epoch r and all honest nodes receive and
lock on a certificate for block B;,. Thus, no honest node acts
on the future block proposals that do not extend By, and the

11

highest ranked chain after epoch r always extends By, and all
its ancestors. This concludes that if block B, proposed ¢t 4 1
epochs earlier is extended by the highest ranked chain, there
will never be an equivocating chain that does not extend B,
and it is safe commit a block By.

Optimistically responsive BFT SMR for free. While our
protocol designs an optimistically responsive random beacon
protocol, the same protocol can be used as optimistically
responsive rotating leader BFT SMR protocol by simply
adding additional payload that meets application level validity
conditions to bj. Rotating leader protocols provide better
fairness and censorship resistance compared to stable leader
protocols [3], [52]. Compared to prior optimistically responsive
schemes, our BFT SMR protocol has a communication cost of
O(kn?) without using threshold signatures.

An example execution is presented in Fig. 4| Due to space
constrains, we present detailed security analysis in the full
version of the paper [9].

VI. RECONFIGURATION

In this section, we present a reconfiguration scheme for
our beacon protocol to restore the resilience of the protocol
after some Byzantine nodes have been removed. We adapt the
reconfiguration scheme of RandPiper [10] and make efficiency
improvements in terms of the number of epochs before a new
joining node becomes an active participant in the system. We
make following modifications to obtain this efficiency.

A reconfiguration scheme for a synchronous protocol re-
quires new joining nodes to synchronize with all other nodes
such that the clocks of all honest nodes differ by at most
A time. In RandPiper, they designed a clock synchronization
primitive to sychronize the joining nodes. In the clock synchro-
nization primitive, they first secret shared ¢ + 1 secrets from
distinct leaders using verifiable secret sharing (VSS) scheme.
To ensure all the nodes agree on the shared secret, the clock
synchronization protocol had to be executed for 2¢ 4 2 epochs.
The agreed upon ¢+1 secrets were homomorphically combined
to obtain a aggregated secret that is used to synchronize
new joining nodes. In our protocol, the reconstructed secret
is already a aggregated secret combined using ¢ + 1 secrets
from different nodes. Moreover, we are generating and using
the aggregated secret to synchronize in every epoch. Thus,
the same aggregated secret can be used to synchronize the
new joining nodes and avoid the need to execute a separate
clock synchronization primitive. In the process, the new joining
nodes can become active 2t + 2 epochs earlier than RandPiper.
In addition, due to optimistic responsiveness, the length of
each epoch is considerably shorter during optimistic conditions
and new nodes can join the system much quicker. In this
regard, our reconfiguration scheme is strictly better compared
to RandPiper.

Observe that in OptRand, nodes in P \ P, are rotated in
round robin manner and when some node p; becomes an epoch
leader in an epoch, the secrets node p; shared the last time it
became an epoch leader is used. To be specific, the secrets
in Q(p;) is used. Thus, our reconfiguration scheme needs to
ensure that when some node pj joins the system, all nodes
P\ P, have Q(py,) filled with aggregated PVSS tuple before
pr becomes an epoch leader. We accomplish this by having

(O Honest node @ B5yzntine node @ Leader Q} send-all CE multicast
-
¢ o o0 pé . o

—QQ
—oo
—oo
-

send PVSS ! propose ! deliver + I resp-cert | deliver + I commit +

send PVSS I propose I deliver + sync-vote sync-cert deliver commit +
tuple resp-vote ack reconstruct tuple resp-vote reconstruct
epochr epoch r+1

Fig. 4: An example execution of two epochs of OptRand. Here, epoch r is responsive and epoch r + 1 is synchronous. send-all implies a node
sending different messages to different nodes. This differs from multicast as multicast involves sending same message to all nodes.

A new node py, that intends to join the system uses following procedure to join the system.

1) Inquire. Node pj, inquires all nodes in the system to send the set of active nodes, i.e., P \ P,. Upon receiving the inquire
request, an honest node p; responds to the request only if n; > 0. Node p; sends set P \ P, along with PVSS tuple
(vi, ¢, T ;) at the end of some epoch ' in which the inquire request was received. Node pj, waits for at least ¢ + 1
consistent responses from the same epoch ' and forms an inquire certificate. An inquire certificate is valid if it contains
t 4+ 1 inquire responses that belong to the same epoch 7’ and contains the same set of active nodes. In addition, node py
aggregates ¢t + 1 PVSS tuples to obtain (v, c, 7k) (refer Aggregation Step in Fig. .

2) Join. Node py, sends a join request with the inquire certificate and aggregated PVSS tuple (v, ¢, Tk) to node p; Vp; € P\P;.
3) Accept. Upon receiving the join request with valid inquire certificate and aggregated PVSS tuple (v, c, Tk) , node p; checks
the validity of the received PVSS tuple (refer Commit Step in Fig. |1). If valid, send (accept, H (v, c) T)p, to node py.

4) Accept Cert. Upon receiving ¢ + 1 accept messages, node py, broadcasts the accept certificate to all nodes P \ P

5) Propose. Upon receiving the join request with valid inquire certificate, aggregated PVSS tuple and accept certificate, the
leader L, of current epoch r adds the join request containing inquire certificate, PVSS tuple and accept certificate in its
block proposal By, if (i) L, does not observe a block proposal with a join request in last £ + 1 epochs in its highest ranked
chain and (ii) no new node has been added since epoch 1.

6) Update. If the block Bj with the join request from node p; proposed in epoch r gets committed by epoch r + ¢, update
n¢ < ny — 1 in epoch r + ¢, update Q(p,) with aggregated PVSS tuple (v, c) and send set P \ P, to node pj,. Henceforth,
node p; becomes a passive node and receives all protocol messages from active nodes.

7) Synchronize. The first time node p; receives a valid aggregated secret R, it

- resets its epoch-timer,.,,,; to the beginning of epoch r + ¢ + 1.
- broadcasts aggregated secret R, to all other nodes.
Node pj becomes an active node when it has Q(p;) # L Vp; € P\ P,.
If node py, fails to join the system, it restarts reconfiguration process again after some time.

Fig. 5: Reconfiguration protocol

the joining node aggregate ¢ + 1 PVSS tuple and send it to all round robin leader election, node p; will have a full queue
nodes P \ P, before it can join the system. after n 4t + 1 epochs.

The reconfiguration protocol is presented in Fig. 5| Each
node maintains a variable n; that records the number of
additional nodes that can been added to the system. Variable
ny is incremented each time a Byzantine node is added to set
P, and is decremented by one when a new node joins the
system. The value of n, can be at most ¢.

Due to space constraints, we present detailed security
analysis in the full version [9].

VII. PERFORMANCE EVALUATION
Node py, that intends to join the system uses the reconfig-

uration protocol to join the system. All nodes update Q(py) In this §ection, we ev?lluate the performance of our proto-
with the aggregated PVSS tuple provided by node py once the ~ C€Ols at various system sizes. For OptRand, we evaluate the
join request from node pj get committed. throughput for fast optimistic mode and slow synchronous

mode. For reconfiguration, we evaluate throughput and latency

Node pj becomes an active node when it has Q(p;) # when nodes leave and join the system. We also compare the

1Vp; € P\P,. This happens when all nodes in P\ P, becomes performance of our protocols with state-of-art synchronous
a leader at least once after node pj joins the system. Due to random beacon protocols Drand [28] and RandPiper [10].

12

A. Implementation Details

We implement a prototype of OptRand in C++. We also
implement our reconfiguration scheme. Our implementation
is publicly available at our github repository [53] for artifact
evaluation. Our implementation uses the open source imple-
mentation of HotStuff [57] and their networking library.

Instantiation. We instantiate pairings with the Type-III pairing
BN128 [38] family by the team at Zcash. We use the provided
default values for g; and go. We generate and use config files
with the PVSS public keys and secp256kl [56] public keys
for digital signatures. We also pre-populate n PVSS sharing
for queue Q.

Optimizations. We make the following optimizations:

(1) Swap groups. BN128 curve being a Type III pairing,
has two different groups Gy and Gs. A point in G, is roughly
equal to 2 G, points, and the underlying curve for G, is more
complex than the curve in G;. Thus, computations in G4 are
more expensive, and our protocol if implemented as is, will be
inefficient. We swap the groups in our implementation leading
to improved performance.

(2) Share buffering. In every epoch r, the leader L, needs
to collect t + 1 PVSS sharings and aggregate them before
proposing. This is an O(nt) computational overhead in the
critical path of the protocol. We remove this computation from
the critical path by buffering the aggregate PVSS vectors for
each node. Nodes send PVSS vector for a future epoch 7’
and the leader L, will verify and aggregate the PVSS vectors
over the course of n epochs. The leader L, then proposes
these aggregated PVSS vectors in epoch r’.

(3) Multi-exponentiation. Multi-exponentiation is a tech-
nique where [] g% for 1 < i < n for g € G can be computed
efficiently using pre-computation involving g for any n scalars
x;. We use this for efficient commitment generation, and for
reconstruction by pre-computing tables for g, g2 and gb.

(4) Reduce pairings. We significantly reduce the overhead
of pairings from the critical path of the consensus by replacing
a pairing check with a discrete log proof of equality. A pairing
check for decryption e(d;, g2) = e(g1, v;) can be replaced with
a discrete log proof of equality NIZKPK(sk;,d;,e;) thereby
reducing the pairing operations performed. Where pairings
cannot be avoided, we use a partial pairing optimization. A
pairing consists of two almost equally expensive steps: (i)
miller loop, and (ii) full exponentiation. To check pairing
equalities, it is sufficient to perform two miller loops, and then
subtracting the partial results and then finally performing the
final exponentiation once and checking if it is 1g,., reducing
computational overheads by = 25%.

(5) Merkle trees as cryptographic accumulators. We use
computationally efficient Merkle trees as a cryptographic
accumulator instead of bilinear accumulator at the cost of
increasing communication complexity by O(xlogn) factor.

B. Experiments

Experimental setup. We evaluate our implementation of
OptRand and the baselines on Amazon Web Services (AWS)
t3-medium Ubuntu 18.04 virtual machine (VM) with one node
per VM. All VMs have two vCPUs and 4 GB RAM. We

13

distributed the n nodes equally across eight different AWS
regions: N. Virginia, Ohio, Oregon, N. California, Canada,
Ireland, Singapore, and Tokyo. When spawning n nodes, we
spawn node 1 in region 1, node 2 in region 2, and so on.

Baselines. We compare OptRand with the two state-of-the-art
random beacon protocols: BRandPiper [10] and Drand [28].

Drand. Drand is a synchronous random beacon protocol
inspired by Cachin et al. [14]. It is a synchronous protocol
using the unique-signature and random oracle assumptions.
It implements the protocol in Golang over BLS-12-381 [13]
family of curves. We use their open-source public implemen-
tation [27] for comparison.

BRandPiper. BRandPiper is a synchronous random beacon
protocol offering immediate unpredictability with an amortized
communication complexity of O(fxn?) where f < t is the
actual number of faults. BRandPiper also has a constant latency
of 11A per beacon. We used their Rust implementation [39]
for comparison.

C. Random Beacon Performance

Fig. 6 shows the performance of OptRand and the base-
lines.

Drand. Drand uses a parameter period; in every period
one beacon is produced. Their practical deployment uses a
period of 30 seconds using a system consisting of n = 9
nodes. To more accurately capture what their system could
achieve, we measure a value logged by the protocol called time
discrepancy ms, which is documented to be the time from the
start of the epoch until the beacon is reconstructed. Giving the
benefit of doubt, we use 99% percentile of this number across
all the nodes to estimate the throughput of the system. Note
that the actual performance at this high throughput can vary
as the implementation is in Go-lang whose garbage collector
can violate synchrony.

We observe that Drand generally has constant throughput,
except when n = 9. As shown in Fig. 6, in this case, the time
discrepancy was lower. We repeated the experiment several
times but got the same anomaly. A possible reason for this
could be the centralization of the servers towards the American
sub-continent due to the presence of 6 nodes.

400
350

—&— OptRand-Opt
OptRand-Sync

—6— Drand(99%)

—— BRandPiper

N W
S =}
(=R

1 1

200

—

ot

(=}
1

100
50
OA

Throughput (Bpm)

R

T T
59
Number of nodes (n)
Fig. 6: Performance of random beacon protocols: Drand and
BRandPiper in contrast to OptRand. Drand uses time discrep-
ancies, i.e., time from the start of a proposal to the time the beacon
is produced to indirectly measure throughputs.

BRandPiper. BRandPiper produces a beacon every 11A
similar to OptRand in the slow mode. We run the experiments

for decreasing values of A until no warnings show up in
the logs, indicating with high confidence that the chosen A
is correct and safe. We use this value of A to estimate the
throughput. We observe that as n increases, the throughput
drops. This is due to increased synchronization overheads and
cryptographic overheads incurred by the round-robin nature of
the protocol as a single slow node can slow the system down.

50

—&— OptRand-NR-n9
—A— OptRand-R-n9
OptRand-NR-n17
—#— OptRand-R-n17
0 T T T T T T T T T T T
0 15 30 45 60 75 90 105 120 135 150 165
Time(s)
Fig. 7: Throughput in beacons per 15 seconds during reconfigu-
ration.

Beacons per 15 seconds

OptRand. Compared to both baselines, our protocol gen-
erates beacons at significantly higher rate during optimistic
conditions (denoted by OptRand-Opt in Fig. 6). This is because
our protocol progresses at the network speed while other
protocols depend on pessimistic delay A for their progress.
The throughput is significantly higher in proportion when
n = 5. This is because all the nodes are in US and Canada
and have low network latency between them.

For the non-optimistic mode (denoted by OptRand-Sync
in Fig. 6), our protocol generates a beacon every 11A time. To
learn the best throughput we can obtain, similar to Drand, we
choose value of A where the system does not report any timing
errors. In this mode, our protocol performs slower than Drand,
as Drand can output a beacon in every round (which is 2A
time) whereas our protocol outputs a beacon every 11A time.
The performance of our protocol in non-optimistic mode is
similar compared to BRandPiper which also generates beacons
every 11A time.

D. Reconfiguration

While reconfiguration-friendliness is discussed by recent
random beacon protocols [10], [23], the treatment was theo-
retical in nature. We implement and measure throughput and
latency of reconfiguration in the optimistic path.

There are two important aspects of our implementation.
First, while our reconfiguration scheme expects ¢+ 1 identical
responses from the same epoch as a response to the inquiry, in
the optimistically responsive mode, we may not get responses
from the same epoch. In our implementation, the new joining
node just waits for a consistent set of active nodes from ¢ +
1 nodes, irrespective of the epoch. This is sufficient if the
churn in active nodes is not a lot. Second, the new joining
node needs to download the entire blockchain from the genesis
from the active nodes. In our implementation, this happens
online causing other nodes to wait until the blockchain has
been downloaded. Consequently, to account for this wait and
prevent active nodes from removing the new joining node due
to delay in proposing, we set A to be slightly larger (e.g., 2
seconds). In practice, this deficiency can be fixed by requiring
the joining node to download the blockchain ahead of time.

14

Additionally, we remove an optimization where nodes send
their PVSS transcripts to the leader some k epochs earlier.
This is because as the active set of nodes change, the leaders
for future epochs can not be determined beforehand. Hence,
the leaders need to verify the PVSS transcripts and perform
aggregation in the critical path of the protocol; thus reducing
the throughput.

In the evaluation, we show latency and throughput when an
old node leaves and a new node joins the system. We evaluate
the performance of our implementation during reconfiguration
and in steady state when no reconfiguration occurs. In the
reconfiguration experiment, we first remove an active node
after around 100 beacons have been generated and then add a
new node. Our evaluation shows that we can seamlessly add
and remove nodes without halting the system. Fig. 7 shows the
throughput as a function of time under steady state (denoted
by OptRand-NR) and when reconfiguration occurs (denoted by
OptRand-R) for system sizes of 9 and 17. As shown in Fig. 7,
the throughput decreases slightly during reconfiguration, this
is because when the old node leaves the system, it does
not propose in its epoch and the system cannot progress
optimistically; thus incurring 11A in an epoch. Additionally,
the new joining node needs to download the blockchain before
it proposes. Afterwards, the throughput is similar to the steady
state.

Fig. 8a shows the throughput with no reconfiguration
(denoted by OptRand-NR) and when the reconfiguration oc-
curs (denoted by OptRand-R). As shown in Fig. 8a, the
throughput of the system remains consistent before and after
reconfiguration as the beacons are generated with minimal
interruption. However, for n = 5, the throughput reduces
slightly. This is because the first 5 active nodes are in US
and Canada while the new joining nodes is in Ireland and the
node in Ireland has higher network latency.

Additionally, we also measure the time taken for a new
joining node to be active from the time it sends its inquire
request at various system sizes. As shown in Fig. 8b, the nodes
join the system in a matter of seconds. The latency to join the
system varies slightly across various system sizes and depends
on various factors such network latency of the joining node and
the time taken to download the prior blockchain.

VIII. ACKNOWLEDGEMENTS

We thank Sourav Das and Ling Ren for helpful discussions
on SPURT [23]. This research was supported in part by grants
by VMware Research and Novi Research. This work has been
partially supported by the Army Research Laboratory (ARL)
under grant W91 1NF-20-2-0026, the National Institute of Food
and Agriculture (NIFA) under grant 2021-67021-34251, and
the National Science Foundation (NSF) under grant CNS-
1846316.

REFERENCES

[1] I Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren, “Synchronous
byzantine agreement with expected O(1) rounds, expected O(n?)
communication, and optimal resilience,” Financial Cryptography and

Data Security (FC), 2019.

I. Abraham, D. Malkhi, K. Nayak, and L. Ren, “Dfinity consensus,
explored.” IACR Cryptol. ePrint Arch., vol. 2018, p. 1153, 2018.

(2]

w

(=3

[=)
1

2

2

—

1

Beacons per minute

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

—&— OptRand-NR
—A— OptRand-R

50
00
50

00

[
(=] o
1

17

Number of nodes (n)

(a) Throughput vs n

25

—A— OptRand-R

20

15 4

10 4

Latency (s)

(U T T T
17 33

Number of nodes (n)

(b) Latency of reconfiguration vs n.

Fig. 8: Throughput and latency of reconfiguration at various system sizes.

I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync hotstuff:
Simple and practical synchronous state machine replication,” in 2020
1IEEE Symposium on Security and Privacy (SP), 2020, pp. 654—667.

I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous byzantine agreement,” in Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, 2019,
pp. 337-346.

I. Abraham, K. Nayak, L. Ren, and Z. Xiang, “Optimal good-case
latency for byzantine broadcast and state machine replication,” arXiv
preprint arXiv:2003.13155, 2020.

1. Abraham, K. Nayak, and N. Shrestha, “Optimal good-case latency for
rotating leader synchronous bft,” in 25nd International Conference on
Principles of Distributed Systems (OPODIS 2021). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2021.

D. Beaver, K. Chalkias, M. Kelkar, L. K. Kogias, K. Lewi, L. de Nau-
rois, V. Nicolaenko, A. Roy, and A. Sonnino, “Strobe: Stake-based
threshold random beacons,” Cryptology ePrint Archive, 2021.

M. Ben-Or, “Another advantage of free choice (extended abstract)
completely asynchronous agreement protocols,” in Proceedings of the
second annual ACM symposium on Principles of distributed computing,
1983, pp. 27-30.

A. Bhat, N. Shrestha, A. Kate, and K. Nayak, “Optrand: Optimistically
responsive distributed random beacons,” Cryptology ePrint Archive,
2022.

A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak, “Randpiper
— reconfiguration-friendly random beacons with quadratic communica-
tion,” ACM SIGSAC CCS 2021, 2021.

M. Blum, “Coin flipping by telephone a protocol for solving impossible
problems,” ACM SIGACT News, vol. 15, no. 1, pp. 23-27, 1983.

D. Boneh and V. Shoup, “A graduate course in applied cryptography,”
2017, http://toc.cryptobook.us/book.pdf.

S. Bowe, “Bls12-381: New zk-snark elliptic curve construction,” Zcash
Company blog, URL: hittps://z. cash/blog/new-snark-curve, 2017.

C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography,”
Journal of Cryptology, vol. 18, no. 3, pp. 219-246, 2005.

R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement
with optimal resilience,” in ACM Symposium on Theory of computing
(STOC), 1993, pp. 42-51.

I. Cascudo and B. David, “Scrape: Scalable randomness attested by

public entities,” in International Conference on Applied Cryptography
and Network Security. Springer, 2017, pp. 537-556.

I. Cascudo, B. David, O. Shlomovits, and D. Varlakov, “Mt. random:
Multi-tiered randomness beacons,” Cryptology ePrint Archive, Report
2021/1096, 2021, https://ia.cr/2021/1096.

“Generate random numbers for smart contracts using chainlink
vrf,” https://docs.chain.link/docs/chainlink-vrf. [Online]. Available:
https://docs.chain.link/docs/chainlink- vrf

T.-H. H. Chan, R. Pass, and E. Shi, “Pili: An extremely simple
synchronous blockchain.” JACR Cryptology ePrint Archive, vol. 2018,
p- 980, 2018.

15

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in

Annual international cryptology conference. Springer, 1992, pp. 89—
105.

A. Cherniaeva, 1. Shirobokov, and O. Shlomovits, “Homomorphic
encryption random beacon.” IJACR Cryptol. ePrint Arch., vol. 2019, p.
1320, 2019.

L T. L. Computer Security Division, “Interopera-
ble randomness beacons: Csrc,” https://csrc.nist.gov/projects/
interoperable-randomness-beacons. [Online]. Available: https://csrc.
nist.gov/projects/interoperable-randomness-beacons

S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable distributed
randomness beacon with transparent setup,” in 2022 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2022, pp. 2502-2517.

D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, “Dynamic fault-
tolerant clock synchronization,” Journal of the ACM (JACM), vol. 42,
no. 1, pp. 143-185, 1995.

D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine
agreement,” SIAM Journal on Computing, vol. 12, no. 4, pp. 656-666,
1983.

J. Drake, “Minimal vdf randomness beacon. ethereum research post
(2018),” https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566.

Drand, “drand.” [Online]. Available: https://github.com/drand/drand

“Drand - a distributed randomness beacon daemon,” https:
//github.com/drand/drand. [Online]. Available: https://github.com/drand/
drand

P. Feldman and S. Micali, “An optimal probabilistic protocol for syn-
chronous byzantine agreement,” SIAM Journal on Computing, vol. 26,
no. 4, pp. 873-933, 1997.

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Conference on the theory and
application of cryptographic techniques. Springer, 1986, pp. 186-194.

M. Fitzi and J. A. Garay, “Efficient player-optimal protocols for strong
and differential consensus,” in Proceedings of the twenty-second annual
symposium on Principles of distributed computing, 2003, pp. 211-220.
K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu, “Aggregatable distributed key generation,” Cryptology
ePrint Archive, Report 2021/005, 2021, https://eprint.iacr.org/2021/005,
Appearing in EUROCRYPT °21.

M. Haahr, “True random number service,” https://www.random.org/.
[Online]. Available: https://www.random.org/

R. Han, H. Lin, and J. Yu, “Randchain: Decentralised randomness
beacon from sequential proof-of-work,” Cryptology ePrint Archive,
Report 2020/1033, 2020, https://eprint.iacr.org/2020/1033.

T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology overview
series, consensus system,” arXiv preprint arXiv:1805.04548, 2018.

S. Heidarvand and J. L. Villar, “Public verifiability from pairings in
secret sharing schemes,” in International Workshop on Selected Areas
in Cryptography. Springer, 2008, pp. 294-308.

J. Katz and C.-Y. Koo, “On expected constant-round protocols for

byzantine agreement,” in Annual International Cryptology Conference.
Springer, 2006, pp. 445-462.

[38] “scipr-lab/libff: C++ library for finite fields and elliptic curves.”
[Online]. Available: https://github.com/scipr-lab/libff

[39] Z. Luo, “zhtluo/randpiper-rs,” https://github.com/zhtluo/randpiper-rs,

[40] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
knowledge snarks from linear-size universal and updatable structured
reference strings,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 2111-2128.

[41] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369-378.

[42] A. Momose, J. P. Cruz, and Y. Kaji, “Hybrid-bft: Optimistically
responsive synchronous consensus with optimal latency or resilience.”
IACR Cryptol. ePrint Arch., vol. 2020, p. 406, 2020.

[43] A. Momose and L. Ren, “Optimal communication complexity
of byzantine consensus under honest majority,” arXiv preprint
arXiv:2007.13175, 2020.

[44] L. Nguyen, “Accumulators from bilinear pairings and applications,” in
Cryptographers’ track at the RSA conference. Springer, 2005, pp.
275-292.

[45] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic instant
confirmation,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2018, pp. 3-33.

[46] “blockchain oracle service, enabling data-rich smart contracts,”
https://provable.xyz/, [Online]. Available: https://provable.xyz/

[47] M. O. Rabin, “Randomized byzantine generals,” in 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983). 1EEE, 1983,
pp. 403-409.

[48] I.S.Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300-304, 1960.

[49] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. Weippl,
“Randrunner: Distributed randomness from trapdoor vdfs with strong
uniqueness,” Cryptology ePrint Archive, Report 2020/942, https://eprint.
iacr. org/2020/942, Tech. Rep., 2020.

[50] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Hydrand: Practical
continuous distributed randomness,” in 2020 [EEE Symposium on
Security and Privacy (SP). IEEE, 2020.

[51] F B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys (CSUR),
vol. 22, no. 4, pp. 299-319, 1990.

[52] N. Shrestha, I. Abraham, L. Ren, and K. Nayak, “On the Optimality of
Optimistic Responsiveness,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp. 839—
857.

[53] N. Shrestha and A. Bhat, “Optrand implementation.” [Online].
Available: https://github.com/nibeshrestha/optrand

[54] N. Shrestha, A. Bhat, A. Kate, and K. Nayak, “Synchronous distributed
key generation without broadcasts,” Cryptology ePrint Archive, vol.
2021, p. 1635, 2021.

[55] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,”
in 2017 IEEE Symposium on Security and Privacy (SP). leee, 2017,
pp. 444-460.

[56] B. Wiki, “Secp256kl,” Accessed: Feb, vol. 11, 2016.

[571 M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and 1. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347-356.

APPENDIX A
EXTENDED PRELIMINARIES

co-Decisional Bilinear Squaring assumption. This is a mod-
ified version of the symmetric pairing based assumption in
SCRAPE and related works [16], [36]. We formally show that
this is the correct generalization of the DBS assumption for
Type-1II pairings by showing that it implies the Decisional
Bilinear Diffie Hellman (DBDH) assumption in Definition[A.2]

Definition A.1 (co-Decisional Bilinear Squaring (co-DBS)
Assumption). Let e : G1 x Gy — G be an efficient pairing
scheme, with g1 € Gy and g» € Gy being two independent
generators. We say that the co-DBS assumption holds if the
following is true for any PPT adversary A:

o, B,y s Zg,b < {0,1},
up < g7, u2 < g3,
U1 <_9167
Ty + e(g1,92)*?,

Ty < e(g1,92)7,
b/ — A(917927u17u27vlva)

b =b| < negl(x)

Prior works such as SCRAPE [16] define the problem
in the symmetric pairing setting where G; = G,. However,
no known explicit construction exists for the asymmetric
pairing definitions, although most of these works argue that the
generalization is easy. SCRAPE and its sources [36] mention
that it is easy to generalize it to the Type III pairings. In this
work, we make explicit the assumption and show implication
to the known Decisional Bilinear Diffie Hellman (DBDH)
assumption.

Definition A.2 (Decisional Bilinear Diffie Hellman (DBDH)
Assumption [12]). Let Gy X Gy — G be an efficient non-
degenrate Type-IlI pairing. Let g1 € Gy and gy € Go be two
independent generators. The assumption is said to hold if for
any PPT adversary A the following is true:

a, B,7,0 <= Zg,b s {0,1}
Uy < g7, u2 < g5
vl 4 gb,wa 4 gg
Pr By
Ty < e(91,92)”

Ty + e(91,92)°
b A(gl,gg,ul,UQ,vl,wg,Tb)

b =0b| < negl(k)

Lemma 2. The co-DBS assumption implies the DBDH as-
sumption.

Proof: Given an instance of co-DBS (g1,g2,u1,u2,v1,T}),
we can construct a correct DBDH instance using
(91,927U17U2,01,WQ — g;»TI; «— Tl;y) fOV a randomly
chosen vy <=s Zgq. If b = 0, then it is the correct instance of
DBDH with T}, = e(g1, g2)*?". If b = 1, then it is the correct
instance of DBDH with T{ = e(¢1, 92)7'7 where +' originated
from Ty in the original co-DBS instance.]

Chaum-Pedersen Scheme for NIZKPK. Concretely,

Let (g,u) € G* be public values with u < g° for some s € Z,.
A prover P runs the following interactive protocol:

(1) P first sends to V, the values a <— g for a randomly drawn
W <—=s Zyq.

(2) The verifier V' chooses a random c <—s Z,, and sends c to the
prover P.

(3) The prover sends r <— w +cs to V.

(4) The verifier checks if g" = au® and outputs the result.

Fig. 9: Interactive discrete log Proof of Knowledge protocol for

NIZKPK

Using Fiat-Shamir heuristic [30], we transform this into
a non-interactive proof (assuming Random Oracle Model) by
setting ¢ + H(u,a) and proof 7 < (a, 7).

https://github.com/scipr-lab/libff
https://github.com/zhtluo/randpiper-rs
https://provable.xyz/
https://provable.xyz/
https://github.com/nibeshrestha/optrand

TABLE II: Summary of notation.

Symbol Meaning Symbol Meaning

A PPT Adversary A The security parameter

b Number of data shards in RS K The normalized message size

C Linear Error Correcting Code (m)p, A message m along with a signature by node p;
C Challenger for cryptographic games negl() A negligible function

o Dual of the Linear Error Correcting Code space C' O- The beacon output for round r

c SCRAPE Ciphertexts/Encryptions pk SCRAPE Public Keys

d SCRAPE decryptions n Total number of nodes

D Distinguishing adversary P The set of all the nodes in the system
NIZKPK Alg. to prove knowledge x satisfying g* = u. i The i node of the system

Verify() Algorithm that verifies the above relation T Rounds of the Random Beacon Protocol

1) The actual network speed sk SCRAPE Secret Keys

A The worst case maximum network delay q The prime order of all the pairing groups

e Type III Bilinear Pairing function t Max. number of faults tolerated in the system
f Actual number of faults in the system T Time instants

G1,G2,Gr The pairing groups of e v SCRAPE Commitments

H The random oracle Zq The scalar field of all the groups of e

Note. This can be easily extended to prove that given
(g1, 92,u1,u2) € G*, a Prover knows s such that gi = uy
and g5 = ug by duplicating all the steps except generating
the challenge c. The challenge can be generated together as
¢ < H(uq,us,a1,as). The same technique can also be used to
prove equality of discrete logarithms, i.e., log, u; = log,, us.

APPENDIX B
SECURITY ANALYSIS, IND1-SECRECY

Indistinguishability of secrets (IND1-Secrecy) refers to
notion that when the dealer of a PVSS scheme is honest,
the (computational) adversary does not learn any information
about the secret. Formally, it is defined by Heidarvand et
al. [36]] in the game defined in Definition[B.1] It assumes that a
PVSS scheme consists of the following four phases: (i) Setup,
(i1) Distribution, (iii) Verification, and (iv) Reconstruction.

Definition B.1 ((INDI-secrecy) Indistinguishability of se-
crets [36]). We say that an (n,t + 1) threshold PVSS scheme
is INDI-secret if any PPT adversary A has a negligible
advantage in the following game played against a challenger
C. During the game, A can corrupt a new node at any time,
but up to t nodes in total. When A corrupts a node, he receives
his secret key (only after the setup). A list of corrupted nodes
is maintained during the game.

1. C runs the setup subprotocol and sends the public param-
eters to A along with the public keys of still uncorrupted
nodes. C stores the secret keys of those nodes.

2. A sends the public keys of already corrupted nodes.

3. C picks two random secrets xq, x1 and a random bit
b € {0,1}. Then C runs the distribution subprotocol for
secret xo and sends all the resulting information to A,
along with xy.

4. C runs reconstruction subprotocol for the set of all
uncorrupted nodes and sends all the messages exchanged
via public channels (if any) to A. No new corruptions are
allowed from this point.

17

5. A outputs a guess bit .

The advantage of the adversary A in this game is defined
as |Prob [t/ = b] — 1|.

Note. In this work, we will assume a static variant of this game
where the adversary 4 corrupts up to ¢ nodes before Step
of the game.

A. Proof of INDI-Secrecy of our modified PVSS

Theorem 3 (IND1-Secrecy for sharing). Assuming that the
hash function H is random oracle and that co-DBS assumption
holds, the protocol in Fig.[I|achieves INDI-Secrecy for sharing
against any t—bounded PPT adversary A.

Proof: We show that if a ¢-bounded static PPT adversary
A has a non-negligible advantage ¢ 4 in breaking the INDI-
secrecy of our protocol in Fig. 1} then there exists a PPT ad-
versary Appgs that has a non-negligible advantage in breaking
the co-DBS assumption.

The Appg simulates our modified sharing to A when given
an instance of co-DBS (g1,g2,u1 + gf,us < ¢5,v1
g7, T;) as follows:

1. Apps sends v; € Gy and g9, us € Go as the generators
for the group.

2. The static adversary A corrupts up to ¢ nodes and sends
their public keys. WLOG, we assume that the corrupted
nodes have indices 1 < j <'t.

3. Appgs sends the public keys for the honest nodes pk, <
gf” for t+1 < i < n, where r; <—s Z,. (This is equivalent
to setting the secret key sk; = R;/[3.)

.For1 <4 <t Apps sets v; < g5' and ¢; < pk;’
without knowing « since it knows uy = ¢5. For t +1 <
i < n, Apps sets v using Lagrange interpolation of a

. . . _ RzPa(l)
polynomial using us = g5'; and sets ¢; = v where
P, (i) is an (n,t+ 1) polynomial evaluating to «, which
is constructed by first producing vf «(9) using r; used for

¢; for ¢ € [t], and then raising to the secret key.

5. For the NIZK proof NIZKPK(a,g2,v < g%), Apps
chooses r,c <—s Z,, sets a < go/v° by simulating the
random oracle and setting ¢ < H(g2,v,a) and outputs
proof 7 := (a,r).

6. Finally, Apps sends T to A.

7. A outputs a bit V.

If ¥ =1, Apps outputs b = 1, i.e., that T, = T} a random
element in Gr.

Observe that this is a secret sharing of e(v, ug) =
e(g1,92)* ? and the information sent by Appgg is distributed
exactly like an actual secret sharing instance. When given
Ty, the adversary A can detect the correct sharing with
non-negligible probability €4, and with the same probability,
Apps can make a correct guess with probability ¢ 4.

Thus, if our scheme is not IND1-secret then we can break
the co-DBS assumption, leading to a contradiction.]

APPENDIX C
POSTPONED CRYPTOGRAPHIC PROOFS

A. Proof for Warm-up Beacon Security

We use RO to refer to Random Oracles. We capture the
security of our protocol in the following theorem:

Theorem 4 (Warm-up beacon Fig. [1). Assuming RO and the
co-DBS assumptions hold, the protocol in Fig. |l|is secure as

per Definition [IV.]]

Proof: Weak agreement. follows trivially due to the
guarantees of the broadcast channel. The coding check and
the failure of the digital signatures introduces a negligible
probability that an honest node may accept an invalid share.

Validity. also follows from the construction, and correctness
follows from existing works [16], [20].

Value-validity Assume an adversary exists that can violate
this property, i.e., it can make an honest node output a value
that is not uniform.

Any t-bounded adversary must select ¢ + 1 valid secret
sharings. The final vector (from which an honest node outputs
the beacon) must satisfy:

(i) Discrete log equality. For any j € [n], the combined
commitment v; € v with respect to g» has the same discrete
log as the combined encryption ¢; € ¢ with respect to g;.

(ii) Unique degree-t polynomial. With high probability
(1 — 1/q, where q is the order of the groups), due to coding
scheme used from SCRAPE [16], we know that the polynomial
P encoded in ¢ when reconstructed using any ¢+ 1 decryption
will reconstruct to a unique secret S = e(g5, gb).

18

Let P be the polynomial in the commitments. We know
that the (n,t + 1) sharing is a valid degree ¢ polynomial, and

that the product of gfj(o) and ¢ other values produce gf(o).
We know that P(0) = p;(0) + X, where X can be known by

the adversary if it picks its own ¢ sharings.

Let some adversary A construct P(0) such that all the
checks pass but P(0) is not a function of some s;, and g;’
knowledge proof along with ¢ o} ers are included in the set 7.
We know that], =97" = g; . So we get a contradiction
that P(0) is not a function of g}’. Intuitively, the only way
to remove g¢7* is having knowledge of it or randomly but its
probability is negligible.

Since no ¢t—bounded adversary can know P(0), P which
is a function of s; is also unpredictable for any ¢—bounded
adversary. From Theorem (3, we know that this is not the case,
leading to a contradiction.

From the decomposition proof, we know that the final
polynomial being shared (from which B is derived) contains
contributions from at least one honest node whose input
is uniformly random. Therefore, the value-validity condition
holds. The only way an adversary can bias this distribution is
by learning some information about the value shared by some
honest node.]

B. Proof for Beacon Unpredictability

Theorem 5 (Beacon unpredictability). Assuming RO and the
co-DBS assumptions hold, the protocol in Fig. |l| produces an
unpredictable beacon.

Proof: From Theorem |4, we know that in the broadcast
channel world, it guarantees Value validity. In OptRand, we re-
alize this and counter the weak-agreement property by making
sure the beacon is constructed from a random sharing proposed
by the same leader last time.

Formally, to prove security via reduction in Definition III.2}
any adversary that breaks the security of OptRand must violate
synchrony, can only do so by breaking the cryptography, which
remains secure with high probability.

Concretely, any adversary that wins the game defined in
Definition can be simulated to by a simulator to either
break Theorem |3| or the underlying digital signature scheme.
The adversary A outputs b’ with probability e4 = epg +
€iND1, Where epg is the probability of breaking the digital
signature scheme (say EU-CMA), and 7 p; is the probability
of breaking the INDI1-secrecy. If €4 is non-negligible, then
it must be the case that it has learned a sharing of one of
the honest nodes, which we use to win the co-DBS game
(similar to the IND1-secrecy) simulation, implying e;nyp1 is
non-negligible, or win the digital signature security, implying
eps is non-negligible.]

	Introduction
	Our Approach, Key Ideas and Results

	Related Work
	Related Works in the Random Beacon Literature
	Related Works in the BFT SMR Literature

	System Model and Definitions
	Definitions
	Employed Primitives

	Warm-up: Random Beacons Using a Broadcast Channel
	Our Protocol

	Optimistically Responsive Random Beacon
	Protocol Details

	Reconfiguration
	Performance Evaluation
	Implementation Details
	Experiments
	Random Beacon Performance
	Reconfiguration

	Acknowledgements
	References
	Appendix A: Extended Preliminaries
	Appendix B: Security Analysis, IND1-Secrecy
	Proof of IND1-Secrecy of our modified PVSS

	Appendix C: Postponed Cryptographic Proofs
	Proof for Warm-up Beacon Security
	Proof for Beacon Unpredictability

