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Abstract

The implicit biases of gradient-based optimization algorithms are conjectured to be a major factor
in the success of modern deep learning. In this work, we investigate the implicit bias of gradient flow
and gradient descent in two-layer fully-connected neural networks with leaky ReLLU activations when
the training data are nearly-orthogonal, a common property of high-dimensional data. For gradient flow,
we leverage recent work on the implicit bias for homogeneous neural networks to show that asymptot-
ically, gradient flow produces a neural network with rank at most two. Moreover, this network is an
{5-max-margin solution (in parameter space), and has a linear decision boundary that corresponds to
an approximate-max-margin linear predictor. For gradient descent, provided the random initialization
variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the
rank of the network, and that the rank remains small throughout training. We provide experiments which
suggest that a small initialization scale is important for finding low-rank neural networks with gradient
descent.

1 Introduction

Neural networks trained by gradient descent appear to generalize well in many settings, even when trained
without explicit regularization. It is thus understood that the usage of gradient-based optimization imposes
an implicit bias towards particular solutions which enjoy favorable properties. The nature of this implicit
regularization effect—and its dependence on the structure of the training data, the architecture of the net-
work, and the particular gradient-based optimization algorithm—is thus a central object of study in the
theory of deep learning.

In this work, we examine the implicit bias of gradient descent when the training data is such that the
pairwise correlations |(z;, ;)| between distinct samples x;, z; € R? are much smaller than the Euclidean
norms of each sample. As we shall show, this property is often satisfied when the input dimension d is
significantly larger than the number of samples n, and is an essentially high-dimensional phenomenon. We
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consider fully-connected two-layer networks with m neurons where the first layer weights are trained and
the second layer weights are fixed at their random initialization. If we denote the first-layer weights by
W e R™*4, with rows w]—-r € R?, then the network output is given by,

fla; W) =) ajé((w;, z)),
j=1

where a; € R, j = 1,...m are fixed. We consider the implicit bias in two different settings: gradient flow,
which corresponds to gradient descent where the step-size tends to zero, and standard gradient descent.

For gradient flow, we consider the standard leaky ReLU activation, ¢(z) = max(vz,z). Our start-
ing point in this setting is recent work by Lyu and Li [LL20] and Ji and Telgarsky [JT20] that show
that, provided the network interpolates the training data at some time, gradient flow on homogeneous net-
works, such as two-layer leaky ReLU networks, converges (in direction) to a network that satisfies the
Karush—Kuhn—Tucker (KKT) conditions for the margin-maximization problem,

1
mViVn§||W||§ st. Vien], yif(zgW)>1.

Leveraging this, we show that the asymptotic limit of gradient flow produces a matrix W which is a global
optimum of the above problem, and has rank at most 2. Moreover, we note that our assumption on the
high-dimensionality of the data implies that it is linearly separable. Our leaky ReLU network f(-; W) is
non-linear, but we show that gradient flow converges in direction to W such that the decision boundary is
linear, namely, there exists z € R? such that for all  we have sign(f(x; W)) = sign(zz). This linear
predictor z may not be an /2-max-margin linear predictor, but it maximizes the margin approximately (see
details in Theorem 3.2).

For gradient descent, we consider a smoothed approximation to the leaky ReLLU activation, and consider
training that starts from a random initialization with small initialization variance. Our result for gradient flow
on the standard leaky ReL.U activation suggests that gradient descent with small-enough step size should
eventually produce a network for which W® has small rank. However, the asymptotic characterization of
trained neural networks in terms of KKT points of a margin-maximization problem relies heavily upon the
infinite-time limit. This leaves open what happens in finite time. Towards this end, we consider the stable
rank of the weight matrix W (*) found by gradient descent at time ¢, defined as ||[WW®)||2,/||[W®)||2, the square
of the ratio of the Frobenius norm to the spectral norm of W (). We show that after the first step of gradient
descent, the stable rank of the weight matrix W () reduces from something that is of order min(m, d) to that
which is at most an absolute constant, independent of m, d, or the number of samples. Further, throughout
the training trajectory the stable rank of the network is never larger than some absolute constant.

We conclude by verifying our results with experiments. We first confirm our theoretical predictions for
binary classification problems with high-dimensional data. We then consider the stable rank of two-layer
networks trained by SGD for the CIFAR10 dataset, which is not high-dimensional. We notice that the scale
of the initialization plays a crucial role in the stable rank of the weights found by gradient descent: with
default TensorFlow initialization, the stable rank of a network with m = 512 neurons never falls below 74,
while with a smaller initialization variance, the stable rank quickly drops to 3.25, and only begins to increase
above 10 when the network begins to overfit.

Related work

Implicit bias in neural networks. The literature on the implicit bias in neural networks has rapidly ex-
panded in recent years, and cannot be reasonably surveyed here (see Vardi [Var22] for a survey). In what



follows, we discuss results which apply to two-layer ReLU or leaky ReLLU networks in classification set-
tings.

By Lyu and Li [LLL.20] and Ji and Telgarsky [JT20], homogeneous neural networks (and specifically two-
layer leaky ReLLU networks, which are the focus of this paper) trained with exponentially-tailed classification
losses converge in direction to a KKT point of the maximum-margin problem. Our analysis of the implicit
bias relies on this result. We note that the aforementioned KKT point may not be a global optimum (see a
discussion in Section 3).

Lyu et al. [Lyu+21] studied the implicit bias in two-layer leaky ReLU networks trained on linearly sep-
arable and symmetric data, and showed that gradient flow converges to a linear classifier which maximizes
the 5 margin. Note that in our work we do not assume that the data is symmetric, but we assume that
it is nearly orthogonal. Also, in our case we show that gradient flow might converge to a linear classifier
that does not maximize the {5 margin. Sarussi, Brutzkus, and Globerson [SBG21] studied gradient flow on
two-layer leaky ReLLU networks, where the training data is linearly separable. They showed convergence to
a linear classifier based on an assumption called Neural Agreement Regime (NAR): starting from some time
point, all positive neurons (i.e., neurons with a positive outgoing weight) agree on the classification of the
training data, and similarly for the negative neurons. However, it is unclear when this assumption holds a
priori.

Chizat and Bach [CB20] studied the dynamics of gradient flow on infinite-width homogeneous two-
layer networks with exponentially-tailed losses, and showed bias towards margin maximization w.r.t. a
certain function norm known as the variation norm. Phuong and Lampert [PL.20] studied the implicit bias
in two-layer ReLU networks trained on orthogonally separable data (i.e., where for every pair of labeled
examples (z;,;), (z;,y;) we have x/ x; > 0if y; = y; and 2 z; < 0 otherwise). Safran, Vardi, and
Lee [SVL22] proved implicit bias towards minimizing the number of linear regions in univariate two-layer
ReLU networks. Implicit bias in neural networks trained with nearly-orthogonal data was previously studied
in Vardi, Yehudai, and Shamir [VYS22]. Their assumptions on the training data are similar to ours, but they
consider ReLU networks and prove bias towards non-robust networks. Their results do not have any clear
implications for our setting.

Implicit bias towards rank minimization was also studied in several other papers. Ji and Telgarsky
[JT19; JT20] showed that in linear networks of output dimension 1, gradient flow with exponentially-tailed
losses converges to networks where the weight matrix of every layer is of rank 1. Timor, Vardi, and Shamir
[TVS22] showed that the bias towards margin maximization in homogeneous ReLU networks may induce a
certain bias towards rank minimization in the weight matrices of sufficiently deep ReLU networks. Finally,
implicit bias towards rank minimization was also studied in regression settings. See, e.g., Arora et al.
[Aro+19a], Razin and Cohen [RC20], Li, Luo, and Lyu [LLL21], and Timor, Vardi, and Shamir [TV S22].

Neural network optimization. This work can be considered in the context of other work on developing
optimization guarantees for neural networks trained by gradient descent. A line of work based on the neural
tangent kernel approximation [JGH 18] showed that global convergence of gradient descent is possible if the
network is sufficiently wide and stays close to its random initialization [ALS19; Zou+19; Du+19; Aro+19b;
SJL19; FCG19]. These results do not hold if the network has constant width or if the variance of the random
initialization is small, both of which are permitted with our analysis.

A series of works have explored the training dynamics of gradient descent when the data is linearly
separable (such as is the case when the input dimension is larger than the number of samples, as we consider
here). Brutzkus et al. [Bru+18] showed that in two-layer leaky ReLLU networks, SGD on the hinge loss for
linearly separable data converges to zero loss. Frei, Cao, and Gu [FCG21] showed that even when a constant



fraction of the training labels are corrupted by an adversary, in two-layer leaky ReLU networks, SGD on
the logistic loss produces neural networks that have generalization error close to the label noise rate. As
we mentioned above, both Lyu et al. [Lyu+21] and Sarussi, Brutzkus, and Globerson [SBG21] considered
two-layer leaky ReLLU networks trained by gradient-based methods on linearly separable datasets.

Training of neural networks for high-dimensional data. The training dynamics of neural networks for
high-dimensional data has been studied in a number of recent works. Cao et al. [Cao+22] studied two-
layer convolutional networks trained on an image-patch data model and showed how a low signal-to-noise
ratio can result in harmful overfitting, while a high signal-to-noise ratio allows for good generalization
performance. Shen, Bubeck, and Gunasekar [SBG22] considered a similar image-patch signal model and
studied how data augmentation can improve generalization performance of two-layer convolutional net-
works. Frei, Chatterji, and Bartlett [FCB22a] showed that two-layer fully connected networks trained on
high-dimensional mixture model data can exhibit a ‘benign overfitting’ phenomenon. Frei, Chatterji, and
Bartlett [FCB22b] studied the feature-learning process for two-layer ReLU networks trained on noisy 2-
xor clustered data and showed that early-stopped networks can generalize well even in high-dimensional
settings. Boursier, Pillaud-Vivien, and Flammarion [BPF22] studied the dynamics of gradient flow on the
squared loss for two-layer ReLLU networks with orthogonal inputs.

2 Preliminaries

Notations. For a vector = we denote by ||z|| the Euclidean norm. For a matrix W we denote by ||V || »
the Frobenius norm, and by || ||, the spectral norm. We denote by 1-] the indicator function, for example
1]t > 5] equals 1 if ¢ > 5 and 0 otherwise. We denote sign(z) = 1 for z > 0 and sign(z) = —1 otherwise.
For an integer d > 1 we denote [d] = {1,...,d}. We denote by N(u,0?) the Gaussian distribution. We
denote the maximum of two real numbers a, b as a V b, and their minimum as a A b. We denote by log the
logarithm with base e. We use the standard O(-) and €2(-) notation to only hide universal constant factors,
and use O(-) and Q(-) to hide poly-logarithmic factors in the argument.

Neural networks. In this work we consider depth-2 neural networks, where the second layer is fixed and
only the first layer is trained. Thus, a neural network with parameters W is defined as

FlaW) =Y a;é(w] ),
j=1

where 2 € R? is an input, W € R™*? is a weight matrix with rows wlT, ...,w,, the weights in the second

layer are a; € {£1/y/m} for j € [m], and ¢ : R — R is an activation function. We focus on the leaky
ReLU activation function, defined by ¢(z) = max{z,~yz} for some constant v € (0, 1), and on a smooth
approximation of leaky ReLU (defined later).

Gradient descent and gradient flow. Let S = {(z;,4:)}"; C R? x {£1} be a binary-classification
training dataset. Let f(-;1W) : R? — R be a neural network parameterized by W. For a loss function
¢ : R — R the empirical loss of f(-; W) on the dataset S is

E(W) = -3ty (i W)
=1

4



We focus on the exponential loss ¢(q) = e~ and the logistic loss ¢(q) = log(1 + e~ ?).
In gradient descent, we initialize [W(O)]ivj iLd N(O, w?nit) for some wjyit > 0, and in each iteration we
update

WD — w® — 0wy L(w®),

where o > 0 is a fixed step size.

Gradient flow captures the behavior of gradient descent with an infinitesimally small step size. The
trajectory W (t) of gradient flow is defined such that starting from an initial point W (0), the dynamics of
W (t) obeys the differential equation dvgt(t) = —VwL(W(t)). When L(W) is non-differentiable, the dy-
namics of gradient flow obeys the differential equation dvgt(t) € —9°L(W (t)), where 8° denotes the Clarke
subdifferential, which is a generalization of the derivative for non-differentiable functions (see Appendix A

for a formal definition).

3 Asymptotic Analysis of the Implicit Bias

In this section, we study the implicit bias of gradient flow in the limit £ — oo. Our results build on a theorem
by Lyu and Li [LL20] and Ji and Telgarsky [JT20], which considers the implicit bias in homogeneous neural
networks. Let f(x;6) be a neural network parameterized by 6, where we view 6 as a vector. The network
f is homogeneous if there exists L > 0 such that for every 3 > 0 and x, § we have f(z;36) = BL f(x;0).
We say that a trajectory 0(t) of gradient flow converges in direction to 6* if lim_, o, % = ”z:”. Their
theorem can be stated as follows.

Theorem 3.1 (Paraphrased from Lyu and Li [LL20] and Ji and Telgarsky [JT20]). Let f be a homogeneous
ReLU or leaky ReLU neural network parameterized by 0. Consider minimizing either the exponential or the
logistic loss over a binary classification dataset {(x;,y;)}7, using gradient flow. Assume that there exists
time ty such that E(@(to)) < @. Then, gradient flow converges in direction to a first order stationary
point (KKT point) of the following maximum-margin problem in parameter space:

1
meiniH¢9||2 st. Vi€ [n] yif(zi;0) >1.

Moreover, L(6(t)) — 0 and ||0(t)| — oo as t — .

We focus here on depth-2 leaky ReLLU networks where the trained parameters is the weight matrix
W e R™*4 of the first layer. Such networks are homogeneous (with I = 1), and hence the above theorem
guarantees that if there exists time to such that L(W (to)) < @, then gradient flow converges in direction
to a KKT point of the problem

1
mmi/n§HWH% st. Vie[n] yif(z; W) >1. (1)

Note that in leaky ReLU networks Problem (1) is non-smooth. Hence, the KKT conditions are defined using
the Clarke subdifferential. See Appendix A for more details of the KKT conditions. The theorem implies
that even though there might be many possible directions ﬁ that classify the dataset correctly, gradient
flow converges only to directions that are KKT points of Problem (1). We note that such a KKT point is

not necessarily a global/local optimum (cf. [VSS21; Lyu+21]). Thus, under the theorem’s assumptions,



gradient flow may not converge to an optimum of Problem (1), but it is guaranteed to converge to a KKT

point.
We now state our main result for this section. For convenience, we will use different notations for
positive neurons (i.e., where a; = 1/4/m) and negative neurons (i.e., where a; = —1/+/m). Namely,
m mi 1 mo 1
. _ , TN _ L TN LT

Note that m = my + mo. We assume that my, mo > 1.

Theorem 3.2. Let {(xi,yi)}, C RY x {+1} be a training dataset, and let Rq, = max; ||z;||, Rpin =
min; ||z;|| and R = Ryax/Rmin. We denote I :=[n], Iy :={iel:y;=1}andI_ :={iel:y, = —1}.
Assume that

min

R2. > 3y R’nmax|(z;, ;)| .
i#]

Let f be the leaky ReLU network from (2) and let W be a KKT point of Problem (1). Then, the following
hold:

L yif(xy; W) =1foralli€ I

2. All positive neurons are identical and all negative neurons are identical: there exist v,u € R such
thatv =v; = ... = Uy, and u = Uy = ... = Up,. Hence, rank(W) < 2.

3. v = \/—% Ziel+ \iTi — ﬁ Yoicr. Nixi and u = ﬁ Yicr NiTi — ﬁ Zieu \iz;, where \; €
(ﬁ, ﬁ) for every i € I. Furthermore, for all i € I we have y;v" x; > 0 and y;u' x; < 0.

max ‘min

4. W is a global optimum of Problem (1). Moreover, this global optimum is unique.

5. The pair v, u from item 2 is the global optimum of the following convex problem:

..ooma 2, M2 2
— — 3
min L ol + 22 u] ()
. mi1 T ma T
Viel, : —v' x;—vy—u x; >1
+ ,—m 7 Y /*m =
Viel_ ﬂuTaci — ’yﬂvai >1.

vm vm
6. Let z = %U - %u For every x € R% we have sign (f(x; W)) = sign(z ' x). Thus, the network
f(; W) has a linear decision boundary.

7. The vector z may not be an {s-max-margin linear predictor, but it maximizes the margin approximately
in the following sense. For all i € I we have y;z"'x; > 1, and ||z|| < 2= ||2*||, where k :=

K+
min{mi,ma} L . ~ =T .
\/ max{mrme} @nd 27 := argmin; 2|l s.t. yiZ "' x; > 1 foralli € I.

Note that by the above theorem, the KKT points possess very strong properties: the weight matrix is of
rank at most 2, there is margin maximization in parameter space, in function space the predictor has a linear
decision boundary, there may not be margin maximization in predictor space, but the predictor maximizes

the margin approximately within a factor of R% Note that if x = 1 (i.e., m; = myg) and ~ is roughly 1,



then we get margin maximization also in predictor space. We remark that variants of items 2, 5 and 6 were
shown in Sarussi, Brutzkus, and Globerson [SBG21] under a different assumption called Neural Agreement
Regime (as we discussed in the related work section).'

The proof of Theorem 3.2 is given in Appendix B. We now briefly discuss the proof idea. Since W
satisfies the KKT conditions of Problem (1), then there are A1, ..., A, such that for every j € [m] we have

wi =Y AV, Wif (@i W) = a; > Nt o, i

el i€l

where (j);wj is a subgradient of ¢ at w;—xl Also we have A\; > 0 for all 4, and \; = 0 if y; f (x;; W) # 1. We
prove strictly positive upper and lower bounds for each of the A;’s. Since the A;’s are strictly positive, the
KKT conditions show that the margin constraints are satisfied with equalities, i.e., part 1 of the theorem. By
leveraging these bounds on the A;’s we also derive the remaining parts of the theorem.

The main assumption in Theorem 3.2 is that R%, > 3y 3R%*nmax;; |(z;,z;)|. Lemma 3.3 below
implies that if the inputs z; are drawn from a well-conditioned Gaussian distribution (e.g., N(0, 1)), then

it suffices to require n < O(’y?’ d ), ie., d > Q (n2) if v = Q(1). Lemma 3.3 holds more generally

logn
for a class of subgaussian distributions (see, e.g., Hu et al. [Hu+20, Claim 3.1]), and we state the result for
Gaussians here for simplicity.

Lemma 3.3. Suppose that z1, . .., xy, are drawn i.i.d. from a d-dimensional Gaussian distribution N(0, X),
where Tr[Y] = d and |2, = O(1). Suppose n < d°0). Then, with probability at least 1 — n~'° we have

—”‘Z”Q =14+ 0(4/ locgl")for all i, and w = O(\/lo%)for all i # j.

The proof of Lemma 3.3 is provided in Appendix C.

By Theorem 3.2, if the data points are nearly orthogonal then every KKT point of Problem (1) satisfies
items 1-7 there. It leaves open the question of whether gradient flow converges to a KKT point. By Theo-
rem 3.1, in order to prove convergence to a KKT point, it suffices to show that there exists time ¢y where

E(W(to)) < %. In the following theorem we show that such ¢ exists, regardless of the initialization of
gradient flow (the theorem holds both for the logistic and the exponential losses).

Theorem 3.4. Consider gradient flow on a the network from (2) w.r.t. a dataset that satisfies the assumption
from Theorem 3.2. Then, there exists a finite time to such that for all t > to we have L(W (t)) < log(2)/n.

We prove the theorem in Appendix D. Combining Theorems 3.1, 3.2 and 3.4, we get the following
corollary:

Corollary 3.5. Consider gradient flow on the network from (2) w.r.t. a dataset that satisfies the assumption
from Theorem 3.2. Then, gradient flow converges to zero loss, and converges in direction to a weight matrix
W that satisfies items 1-7 from Theorem 3.2.

4 Non-Asymptotic Analysis of the Implicit Bias

In this section, we study the implicit bias of gradient descent with a fixed step size following random ini-
tialization (refer to Section 2 for the definition of gradient descent). Our results in this section are for the

!n fact, the main challenge in our proof is to show that a property similar to their assumption holds in every KKT point in our
setting.



logistic loss ¢(z) = log(1 + exp(—=z)) but could be extended to the exponential loss as well. We shall
assume the activation function ¢ satisfies ¢(0) = 0 and is twice differentiable and there exist constants
v € (0,1], H > 0 such that

0<vy<d¢(2) <1, and |¢"(z)| < H.

We shall refer to functions satisfying the above properties as ~y-leaky, H-smooth. Note that such functions
are not necessarily homogeneous. Examples of such functions are any smoothed approximation to the leaky
ReLU that is zero at the origin. One such example is: ¢(z) = vz + (1 — 7)log (3(1 + exp(z))), which
is y-leaky and 1/4-smooth (see Figure 3 in the appendix for a side-by-side plot of this activation with the
standard leaky ReL.U).

We next introduce the definition of stable rank [RV07].

Definition 4.1. The stable rank of a matrix W € R™*% js StableRank(W) = ||W||%/||W||3.

The stable rank is in many ways analogous to the classical rank of a matrix but is considerably more
well-behaved. For instance, consider the diagonal matrix TV € R%*¢ with diagonal entries equal to 1 except
for the first entry which is equal to € > 0. As € — 0, the classical rank of the matrix is equal to d until €
exactly equals 0, while on the other hand the stable rank smoothly decreases from d to d — 1. For another
example, suppose again W € R%*? is diagonal with Wi 1 =1and W;; = exp(—d) fori > 2. The classical
rank of this matrix is exactly equal to d, while the stable rank of this matrix is 1 + og(1).

With the above conditions in hand, we can state our main theorem for this section.

Theorem 4.2. Suppose that ¢ is a y-leaky, H-smooth activation. For training data {(x;,y;)}7—; C R? x
{£1}, let Ryax = max; ||z;i|| and Ruyin = min; ||x;||, and suppose R = Riax/ Ruin is at most an absolute
constant. Denote by C := 10R?>y~2 + 10. Assume the training data satisfies,

R2. > 57_QCanax|<xi,xj>].

i#j
There exist absolute constants C1,Co > 1 (independent of m, d, and n) such that the following
holds. For any § € (0,1), if the step-size satisfies o < ~v*(5nR2, R*Crmax(1, H)) !, and winix <

Y2 Rpyin(T2RCrnr/mdlog(4m/5)) L, then with probability at least 1 — & over the random initialization
of gradient descent, the trained network satisfies:

1. The empirical risk under the logistic loss is driven to zero:

~ Cin
nt>1, LWwW®)< :
forallt > ( ) < R ol
2. The 05 norm of each neuron grows to infinity:
forall j € [m), ij(»t)Hz — 00.

3. The stable rank of the weights throughout the gradient descent trajectory satisfies,

sup {StabIeRank(W(t))} < Oy
t>1



We now make a few remarks on the above theorem. We note that the assumption on the training data is
the same as in Theorem 3.2 up to constants (treating -y as a constant), and is satisfied in many settings when
d > n? (see Lemma 3.3).

For the first part of the theorem, we show that despite the non-convexity of the underlying optimization
problem, gradient descent can efficiently minimize the training error, driving the empirical risk to zero.

For the second part of the theorem, note that since the empirical risk under the logistic loss is driven
to zero and the logistic loss is decreasing and satisfies £(z) > 0 for all z, it is necessarily the case that the
spectral norm of the first layer weights ||W®) |5 — co. (Otherwise, L(W () would be bounded from below
by a constant.) This leaves open the question of whether only a few neurons in the network are responsible
for the growth of the magnitude of the spectral norm, and part (2) of the theorem resolves this question.

The third part of the theorem is perhaps the most interesting one. In Theorem 3.2, we showed that for
the standard leaky ReLLU activation trained on nearly-orthogonal data with gradient flow, the asymptotic true
rank of the network is at most 2. By contrast, Theorem 4.2 shows that the stable rank of neural networks
with v-leaky, H-smooth activations trained by gradient descent have a constant stable rank after the first
step of gradient descent and the rank remains bounded by a constant throughout the trajectory. Note that
at initialization, by standard concentration bounds for random matrices (see, e.g., Vershynin [Ver10]), the
stable rank satisfies

StableRank(W () ~ ©(md/(m+va)?) = Q(m A d),

so that Theorem 4.2 implies that gradient descent drastically reduces the rank of the matrix after just one
step.

The details for the proof of Theorem 4.2 are provided in Appendix E, but we provide some of the main
ideas for the proofs of part 1 and 3 of the theorem here. For the first part, note that training data satisfying
the assumptions in the theorem are linearly separable with a large margin (take, for instance, the vector
> i yiz;). We use this to establish a proxy Polyak—Lojasiewicz (PL) inequality [FG21] that takes the form
IVLW)|p > cG(WD) for some ¢ > 0, where G(W ) is the empirical risk under the sigmoid loss
—0'(z) = 1/(14+exp(z)). Because we consider smoothed leaky ReLU activations, we can use a smoothness-
based analysis of gradient descent to show ||VL(W®)||p — 0, which implies G(W®) — 0 by the proxy
PL inequality. We then translate guarantees for CA}’(W(t)) into guarantees for E(W(t)) by comparing the
sigmoid and logistic losses.

For the third part of the theorem, we need to establish two things: (i) an upper bound for the Frobe-
nius norm, and (i7) a lower bound for the spectral norm. To develop a good upper bound for the Frobe-
nius norm, we first establish a structural condition we refer to as a loss ratio bound (see Lemma E.4).
In the gradient descent updates, each sample is weighted by a quantity that scales with the sigmoid loss
—0'(y; f (zi; W®)) € (0,1). We show that these —¢' losses grow at approximately the same rate for each
sample throughout training, and that this allows for a tighter upper bound for the Frobenius norm. Loss
ratio bounds were key to the generalization analysis of two previous works on benign overfitting [CL21;
FCB22a] and may be of independent interest. In Proposition E.10 we provide a general approach for prov-
ing loss ratio bounds that can hold for more general settings than the ones we consider in this work (i.e.,
data which are not high-dimensional, and networks with non-leaky activations). The lower bound on the
spectral norm follows by identifying a single direction i := > " | y;x; that is strongly correlated with every
neuron’s weight wj, in the sense that (wi") lw |, i) is relatively large for each j € [m]. Since every neuron
is strongly correlated with this direction, this allows for a good lower bound on the spectral norm.
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Figure 1: Relative reduction in the stable rank of two-layer nets trained by gradient descent for Gaussian
mixture model data (cf. (4)). The rank reduction happens more quickly as the dimension grows (left; ini-
tialization scale 50x smaller than default TensorFlow, o = 0.01) and as the initialization scale decreases
(right; d = 10%, o = 0.16).

S Implications of the Implicit Bias and Empirical Observations

The results in the preceding sections show a remarkable simplicity bias of gradient-based optimization when
training two-layer networks with leaky activations on sufficiently high-dimensional data. For gradient flow,
regardless of the initialization, the learned network has a linear decision boundary, even when the labels
y are some nonlinear function of the input features and when the network has the capacity to approximate
any continuous function. With our analysis of gradient descent, we showed that the bias towards producing
low-complexity networks (as measured by the stable rank of the network) is something that occurs quickly
following random initialization, provided the initialization scale is small enough.

In some distributional settings, this bias towards rather simple classifiers may be beneficial, while in
others it may be harmful. To see where it may be beneficial, consider a Gaussian mixture model distribution
P, parameterized by a mean vector i € RY, where samples (z, ) ~ P have a distribution as follows:

y ~ Uniform({£1}), zly ~yu+z, 2~ N(0,Iy). )

The linear classifier z +— sign({u, z)) performs optimally for this distribution, and so the implicit bias
of gradient descent towards low-rank classifiers (and of gradient flow towards linear decision boundaries)
for high-dimensional data could in principle be helpful for allowing neural networks trained on such data to
generalize well for this distribution. Indeed, as shown by Chatterji and Long [C1.21], since ||z; || =~ d+ |||
while |(x;, ;)| ~ ||ul|? + V/d for i # j, provided ||u|| = ©(d®) and d > nT% \ n? for B € (0,1/2), the
assumptions in Theorem 4.2 hold. Thus, gradient descent on two-layer networks with y-leaky, H-smooth
activations, the empirical risk is driven to zero and the stable rank of the network is constant after the
first step of gradient descent. In this setting, Frei, Chatterji, and Bartlett [FCB22a] recently showed that
such networks also achieve minimax-optimal generalization error. This shows that the implicit bias towards
classifiers with constant rank can be beneficial in distributional settings where linear classifiers can perform
well.

On the other hand, the same implicit bias can be harmful if the training data come from a distribution
that does not align with this bias. Consider the noisy 2-xor distribution Dy, defined by x = z + £ where
z ~ Uniform({£pu1, £us}), where uq, po are orthogonal with identical norms, £ ~ N(0, 1), and y =
sign(|(u1, )| — [{u2, z)|). Then every linear classifier achieves 50% test error on Dy,,. Moreover, provided

10



default init. small init.

-1.00

200- -0.75
X
5 8
I ©  m=m stablerank
o -0.505 .
5 o == train_acc
£ 100- = == val_acc
/ o
O- ' ' l l 1 ' -000
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
step

Figure 2: Stable rank of SGD-trained two-layer ReLLU networks on CIFAR-10. Compared to the default
TensorFlow initialization (left), a smaller initialization (right) results in a smaller stable rank, and this effect
is especially pronounced before the very late stages of training. Remarkably, the train (blue) and test (black)
accuracy behavior is essentially the same.

] = O(d?) for B < 1 /2, by the same reasoning in the preceding paragraph the assumptions needed

for Theorem 3.2 are satisfied provided d >> nﬁ v n2. In this setting, regardless of the initialization, by
Theorem 3.2 the limit of gradient flow produces a neural network which has a linear decision boundary and
thus achieves 50% test error.

Thus, the implicit bias can be beneficial in some settings and harmful in others. Theorem 4.2 and
Lemma 3.3 suggest that the relationship between the input dimension and the number of samples, as well
as the initialization variance, can influence how quickly gradient descent finds low-rank networks. In Fig-
ure 1 we examine these factors for two-layer nets trained on a Gaussian mixture model distribution (see
Appendix F for experimental details). We see that the bias towards rank reduction increases as the dimen-
sion increases and the initialization scale decreases, as suggested by our theory. Moreover, it appears that
the initialization scale is more influential for determining the rank reduction than training gradient descent
for longer. In Appendix F we provide more detailed empirical investigations into this phenomenon.

In Figure 2, we investigate whether or not the initialization scale’s effect on the rank reduction of gradient
descent occurs in settings not covered by our theory, namely in two-layer ReLU networks with bias terms
trained by SGD on CIFAR-10. We consider two different initialization schemes: (1) Glorot uniform, the
default TensorFlow initialization scheme with standard deviation of order 1/v/m + d, and (2) a uniform
initialization scheme with 50x smaller standard deviation than that of the Glorot uniform initialization. In
the default initialization scheme, it appears that a reduction in the rank of the network only comes in the
late stages of training, and the smallest stable rank achieved by the network within 10° steps is 74.0. On the
other hand, with the smaller initialization scheme, the rank reduction comes rapidly, and the smallest stable
rank achieved by the network is 3.25. It is also interesting to note that in the small initialization setting, after
gradient descent rapidly produces low-rank weights, the rank of the trained network begins to increase only
when the gap between the train and test accuracy begin to diverge.

6 Conclusion
In this work, we characterized the implicit bias of gradient flow and gradient descent for two-layer leaky

ReLU networks when trained on high-dimensional datasets. For both gradient flow and gradient descent, we
proved convergence to near-zero training loss and that there is an implicit bias towards low-rank networks.

11



For gradient flow, we showed a number of additional implicit biases: the weights are (unique) global maxima
of the associated margin maximization problem, and the decision boundary of the learned network is linear.
For gradient descent, we provided experimental evidence which suggests that small initialization variance
is important for gradient descent’s ability to quickly produce low-rank networks.

There are many natural directions to pursue following this work. One question is whether or not a
similar implicit bias towards low-rank weights in fully connected networks exists for networks with different
activation functions or for data which is not high-dimensional. Our proofs relied heavily upon the ‘leaky’
behavior of the leaky ReLU, namely that there is some v > 0 such that the activation satisfies ¢'(z) > v
for all z € R. We conjecture that some of the properties we showed in Theorem 3.2 (e.g., a linear decision
boundary) may not hold for non-leaky activations, like the ReL.U.
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A Preliminaries on the Clarke Subdifferential and the KKT Conditions

Below we review the definition of the KKT conditions for non-smooth optimization problems (cf. Lyu and
Li [LL20] and Dutta et al. [Dut+13]).

Let f : R? — R be a locally Lipschitz function. The Clarke subdifferential [Cla+08] at z € R? is the
convex set

1—00

0° f(x) := conv { lim Vf(x;) ‘ lim x; = x, fis differentiable at xz} .
1—00

If f is continuously differentiable at = then 9° f (x) = {V f(x)}. For the Clarke subdifferential the chain rule
holds as an inclusion rather than an equation. That is, for locally Lipschitz functions 21, ..., z, : R — R

13



and f : R” — R, we have
9°(f o z)(x) C conv {Z aihi ca € 0°f(z1(x),...,zn(x)), hi € (")Ozi(q:)} .
i=1
Consider the following optimization problem
min f(z) st Vn € [N] gu(x) <0, )

where f,g1,...,9n : R* — R are locally Lipschitz functions. We say that z € R? is a feasible point of
Problem (5) if z satisfies g, () < 0 for all n € [IN]. We say that a feasible point x is a KKT point if there
exists Ai, ..., Ay > 0 such that

1.0 € aof(l’) + ZnG[N] )\naogn(ﬂf),
2. For all n € [N] we have A\, g, (z) = 0.

B Proof of Theorem 3.2

We start with some notations. We denote p = max;; |(x;,x;)|. Thus, our assumption on n can be written

3 2 2. . . ..
asn < % . % . %. Since W satisfies the KKT conditions of Problem (1), then there are Aq, ..., A, such

that for every j € [m;]| we have

1 /
v = AV, (Wif(zi; W) = Jm > A, i ©

i€l el

where ¢;,vj is a subgradient of ¢ at UJT.TZ‘, ie., if v;rxi > 0 then ‘]5;‘,1)]- =1, if v;rxi < 0 then ¢;v%‘ =7
and otherwise qﬁ;m]_ is some value in [, 1]. Also we have \; > O for all ¢, and \; = 0 if y; f(x;; W) # 1.
Likewise, for all j € [mg] we have

uj = Z AV, (yif(xi; W)) = \/1% Z /\i(—yi)czﬁ;u]mi , (7)

icl icl
where ¢;,uj is defined similarly to <b;7vj. The proof of the theorem follows from the following lemmas.

Lemma B.1. Foralli € I we have Zje[mﬂ Ai¢;,Uj+Zje[m2] )‘i@,uj < 3M_ Furthermore, \j < =g

2vR 272 R2
foralli e 1.

‘min ‘min

Proof. Let §& = maxges (Zjé[ml] Aq@g; + 2 jema )\ngfLuj) and suppose that £ > 2’?;%% . Letr =

‘min

argmax e s (Zje[ml] AqPgv; + 2 jelmal )\qufwj). Since § > 2’?1%“ > 0 then A\, > 0, and hence by the
KKT conditions we must have y,. f(z,; W) = 1.
We consider two cases:

14



Case 1: Assume that » € I_. Using (6) and (7), we have

Vmfas W)=Y dlvja) — Y ou] @)

j€[ma] j€[ma]
- Z gb(\/»Z)‘qugﬁqvj Ty ) Z (17(\/»2)‘ ~Yq QZ)un qZ )
JE€m] qel j€[ma2] qel
1
= Z ¢ ( Tyr¢rv I’ Ty + ﬁ Z )‘quqbq,vj q )
Jj€lma] gel\{r}
B Z ¢ ( yT)¢ru]xT Ty + ﬁ Z )‘ )(b:],u]w;—-rr)
j€[me] qeN\{r}
1
= Z ¢ (AT(ﬁr vj m1n + ﬁ Z )‘qu(b;,vjx;xfr)
j€[m] gel\{r}
- Z ¢ ( 7”¢r \Uj mm \/> Z A yq (qu,uj q ) .
J€[ma] qe\{r}

Since the derivative of ¢ is lower bounded by 7, we know ¢(21) — ¢(z2) > v(z1 — 22) for all 21, zo € R.
Using this and the definition of &, the above is at most

Z |: (\/ﬁ Z )\qud)qvj q® ) \/1*’7 )‘T¢ij min

J€[ma] gel\{r}

- Z <\/> Z /\ ~Yq (bqu] q® )+\/1>7 )‘Tqﬁru] mln]

J€[ma] gel\{r}
DR =N SRRV C AL

JE[m2] qGI\{r}

\F Z Z ‘ —Yq ¢q,u] qZ

j€[ma] geI\{r}

_T’ngmm + Z

Jje€ ml]

\/» Z Aqu¢q v]xq T
qe\{r}

_T éRmm \/* Z Z ‘)\qu(;sq,vjxq Ly

j€lma] gel\{r}

IN
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Using |x;—xr\ < p for q # r, the above is at most

_Ty,ngm \f YD MNdhupt——= \F D Adyup

Jj€lma] qel\{r} j€[ma] g€I\{r}
= \/*fngmm \/> Z Z )\‘I¢:170j + Z /\q(b/%uj
gel\{r} \j€[mi] Jj€[mz]
1 p
< —T mem ﬁ an 'qug}‘ Z )‘ngqvg + Z )‘qdz,uj
J€[ma] JE€[ma2]
= ngm + 7”5 = _i(’yRmm - p) .

f vm vm

By our assumption on n, we can bound the above expression by

_i ’YR2' —p- lg Rr2n1n . R12n1n — ngln vy — lg Rr2n1n
min 3 p R, Jm 3
§Rm1n g
ST Um (-3)
ngm 21
Jm 3
S R, 2

2’yRmm vm 3

Thus, we obtain f(z,; W) < —1 in contradiction to y, f (z,; W) = 1.
Case 2: Assume that » € I,. A similar calculation to the one given in case 1 (which we do not repeat
for conciseness) implies that f(z,; W) > 1, in contradiction to y, f (z,; W) = 1. It concludes the proof of

- —Vm.

5 < 2,YR2 .
Finally, since £ < > R2 and the derivative of ¢ is lower bounded by ~, then for all i € I we have
3 > )\lgbz U + >\l¢z yUj 2 m>\’L’Y 9
2fyR
min j€[ma] j€[ma2]
and hence \; < —5o0—. ]

2v2RZ.

‘min

Lemma B.2. Foralli € I we have Zje[ml] )‘i@,vj + Zje[mg] )\igzﬁfwj > 2R2a Furthermore, \; > 2R’2W
foralli e 1.

Proof. Suppose that there is ¢ € I such that de[ml] il o T Z]E[mz] ¢l ay S 2R2 . Using (6) and (7),
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we have

vm < |Vmf(zs W)| = Z o(v] ;) — Z d(u) z;)| < Z ‘va:rz

Z‘u T

jE€[ma] j€[ma2] JjE€[mi1] j€[ma2]
T
= Z fz)‘qu(ﬁqvgqu’ + Z \ﬁZA ~Yq %,ug q®
j€[ma1] q€el jE€[ma2] q€el
< f S | Pt el w] + D Paabhe,eq e
j€[m1] qel\{i}
1

t Do vl @+ Y ‘A( Ya) By, T Ti

J€[ma] qel\{i}

Using |95 x| < pforq#iand z] x; < R%,,. the above is at most

\/1% Z )\Z‘(ng’vj mdx+ Z /\q¢qvjp + = Z )‘igb/i,uj max+ Z /\q(z)qu]

J€[ma] qel\{i} Je[mz qel\{i}
1 / 1 / /
= ﬁ Z )\i¢i,vj max + Z )‘Z¢z uj max + ﬁ Z Z Aflgz)q,vjp =+ Z )‘qd)q,ujp
j€[ma] J€[ma2] ge\{i} \j€lma] j€[ma]
R; X / / b
= \/m% Z Aigbi,vj + Z Al’d)i,uj + \/m Z Z >‘q¢qv + Z >‘Q¢q uj
J€[ma] JEma2] ge\{i} \Jj€lm] JE€ma]
R? m P
< Tmax + I max (Y Agdh, + D Agd
— 2 a7 qv; qY¥q,u;
\/ﬁ 2Rmax \/ﬁ 9e! j€[ma] j€[ma2] ’

Combining the above with our assumption on n, we get

m 3p R? 3m
> 0 > max
nélealx Z )\q%’vﬂ + Z /\quq’uﬂ ~ 2np — 2p V3R2. " RZ ~ 2yR2.

j€[mi] jE€[ma] 'min ‘min ‘min

in contradiction to Lemma B.1. It concludes the proof of > ge (ma] i@, o T > j€ima] ¢ w3 1?12 .

Finally, since ) _; icfma] )\lgbwj + > j€imal Zgbwj spz— and the derivative of ¢ is upper bounded by
1, then for all 7 € I we have

<D Nl Y N, <mA,

J€[ma] JE€ma2]

2R2

max
and hence \; > 3 Rrgn . O

Lemma B.3. Foralli € I we have y; f(x;; W) = 1.
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Proof. By Lemma B.2 we have A\; > 0 for all # € I, and hence by the KKT conditions we must have
yzf(xz, W) =1. ]

Vl=...=Up, = Z)\xl Z)\xl,

Z€I+ 261_

Lemma B.4. We have

and

UL = ... =Upy = fZAxl_fZsz'

el i€l
Moreover, for all i € I we have: yzvj—rxl > 0 for every j € [my], and yiuj x; < 0 forevery j € [ma].

Proof. Fix j € [my]. By (6) for all i € I we have

UJ' i = \/“ Z )‘qu%,v] q®

qel

1 - 1 -
q 4

1
> L ng ——— > A
1,05 rnm q,0;

vm v

By Lemma B.1 and Lemma B.2, and using gzﬁf]’vj € [v,1] for all ¢ € I, the above is larger than

1 L gL 3 YR 1 9% Ry, Ry, 3 »
\/m 2Rr2ndx min \/m 2R[2nln o 2\/>Rmax \/> 3 p Rr2nax 2R12nm
_ R YR
2\/>R1’I18.X 2meax
Thus, vaa?i > 0, which implies gbgﬂ}j =1.
Similarly, for all 7 € I_ we have
vy i = \F > A, 0% T
qel
— L)\.y,gf,( ) T+ 1 Z NYo®dl )z
- LIV v M T q999%¥q,v;*"q "
\/ﬁ vm qel\{i}
< - Z¢z V5 I'Illl’l +—= Z )‘QQZ):],vjp
\F vm qel\{i}
By Lemma B.1 and Lemma B.2, and using qﬁ’q,vj € [, 1] for all ¢ € I, the above is smaller than
— 1 1 ,-YR 1 n- 3 P < — fylen + 1 73 R12nln Rr2mn 3 D
\/m 2Rr2nax mm \/m 272R12nm o 2\/>Rmax \/> 3 b ernax 272R12nm
— ’YRI’IIIII + PYlen — 0

2 meax 2 \/>Rmax
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Thus, vaxi < 0, which implies gzﬁgwj = .
Using (6) again we conclude that

v = \ﬁz)‘lyqu“’] = Z)\xl Z)\xl.

el z€I+ zEL

Since the above expression holds for all j € [m1] then we have v; = ... = vy, .
By similar arguments (which we do not repeat for conciseness) we also get

UL =...= Z)\:cz— Z)\ml.

ZGI_ Z€I+
and y;u z; < 0foralli € Iand j € [mo]. O

By the above lemma, we may denote v := v; = ... = vy, and u 1= U} = ... = Uyy,, and denote
o ML, M2,
TVm vm
Lemma B.S. The pair v, u is a unique global optimum of the Problem (3).

Proof. First, we remark that a variant of the this lemma appears in Sarussi, Brutzkus, and Globerson
[SBG21]. They proved the claim under an assumption called Neural Agreement Regime (NAR), and
Lemma B.4 implies that this assumption holds in our setting.

Note that the objective in Problem (3) is strictly convex and the constraints are affine. Hence, its KKT
conditions are sufficient for global optimality, and the global optimum is unique. It remains to show that
v, u satisfy the KKT conditions.

Firstly, note that v, u satisfy the constraints. Indeed, by Lemma B.4, for every i € I, we have v'xz; > 0
and u " z; < 0. Combining it with Lemma B.3 we get

mp msa msa

b= s W) = o ) = Zoulw) = Zele =0T Zul ®)

Similarly, for every ¢ € I_ we have vz, <0andu'z; > 0. Together with Lemma B.3 we get

my ma mi ms2
—1=f(zsW) = ﬁqﬁ(va) - ﬁqﬁ(uTxi) = 'yﬁvT:Ei - ﬁUTl‘Z’ . 9)
Next, we need to show that there are ji1, .. ., upn > 0 such that
mlv—zm\r%‘f‘z#z Z)a
7,€I+ iel_
mau = Z ,ui( + Z ,Uz
i€l i€l

By setting p; = A; for all 7 € I, Lemma B.4 implies that the above equations hold.
Finally, we need to show that u; = 0 for all 7 € I where the corresponding constraint holds with a strict
inequality. However, by (8) and (9) all constraints hold with an equality. ]

Lemma B.6. The weight matrix W is a unique global optimum of Problem (1).
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Proof. Let W be a weight matrix that satisfies the KKT conditions of Problem (1), and let

U1, ..., Omy, U1, .., Unm, be the corresponding positive and negative weight vectors. We first show that
W = W, i.e., there is a unique KKT point for Problem (1). Indeed, by Lemma B.4, for every such W we
have o1 = ... = Uy, =0 and 4y = ... = Uy, = U, and by Lemma B.5 the vectors ¥, 4 are a unique

global optimum of Problem (3). Since by Lemma B.5 the vectors v, u are also a unique global optimum of
Problem (3), then we must have v = v and u = .

Now, let W* be a global optimum of Problem (1). By Lyu and Li [LLL20], the KKT conditions of this
problem are necessary for optimality, and hence they are satisfied by W*. Therefore, we have W* = W.
Thus, W is a unique global optimum. O

Lemma B.7. For every x € R? we have sign (f(x; W)) = sign(z " z).
Proof. First, We remark that a variant of the this lemma appears in Sarussi, Brutzkus, and Globerson
[SBG21]. They proved the claim under an assumption called Neural Agreement Regime (NAR), and
Lemma B.4 implies that this assumption holds in our setting.

Let 2 € RY. Consider the following cases:

Case 1: If v’z > 0 and w'z > 0 then flz; W) = %vTaz - %UTQ: = 2"z, and thus
sign (f(z: W) = sign(= "),

Case2: If v’z > Oand u'z < O then f(z; W) = MyTy — %%ﬁm >0and z 'z = ylg —

Vi Vi
%u—rx > 0.
Case3: Ifv'z < Oand u'x > 0 then f(z; W) = %’vaaj - %UT:C <Oand z'x = %’UTCC -
%uTx < 0.
Case 4: If v’z < Oand u'z < O then f(a; W) = %’}/UTZ' — %yuTx = ~z'z, and thus
sign (f(z; W)) = sign(z " z). O

Lemma B.8. The vector z may not be an {5-max-margin linear predictor.

Proof. We give an example of a setting that satisfies the theorem’s assumptions, but the corresponding
vector z is not an {3-max-margin linear predictor. Let v = % and suppose that m; = mo := m/. Let

r1 = (—1,0,0)", 22 = (¢,v/1 —¢2,0)7, and 23 = (0,0,1) ", where ¢ > 0 is sufficiently small such that
E 2 2
the theorem’s assumption holds. Namely, since we need n < %3 . % . % and we have Ryjp = Rmax = 1

‘max

and p = ¢, then ¢ should satisfy 3 < ﬁ. We also let y; = —1, yo = y3 = 1. Let W be a KKT point
of Problem (1) w.r.t. the dataset {(;,y;)}?_;, and let vy, ..., Uy, u1, ..., Uy be the corresponding weight
vectors. By Lemma B.4 and Lemma B.5 we havev =v; = ... = v,y and u = u; = ... = u,, where v, u
are a solution of Problem (3). Moreover, by Lemma B.4 and Lemma B.2 we have

1 1 1
v = 2! ()\25624‘)\3.1‘3—’7)\1:61):\/% <)\2$2+)\3x3—2-)\1x1> s (10)
L (A A A323) ! <)\ L L ) (11)
U= —— xr1 — T — xr3) = —— L1 — =+ A2L9 — — * A3 ,
\/Tm’ 1T1 — YA2T2 — YA3TL3 \/Tm’ 171 B 222 B 373

where A; > 0 for all <. Since x1, x2, z3 are linearly independent, then given v, u there is a unique choice of
A1, A2, A3 that satisfy the above equations.
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Since v, u satisfy the KKT conditions of Problem (3), we can find A, A2, A3 as follows. Let 1, po, 3 >
0 be such that the KKT conditions of Problem (3) hold. From the stationarity condition we have

/

mv = Ho———— ' To + U3— ' — YU —F— m r,
2m/ 2m’ vV2m/

mu = NlL/fl‘l m’ WLBL/% .
2m/ \/ 2m/

Since x1, x2, x3 are linearly independent, combining the above with (10) and (11) implies p; = A; > 0 for
all 7. Therefore, all constraints in Problem (3) must hold with an equality. Namely, we have

B (-4

- =|v —gv
1 1 1 1 1 T
= o= [)\1331 — 3" A2To — 3 A3T3 — = <)\2562 + A3x3 — 3 )\11171” x1
T
1 5 1 5
— 2. _ _ — 2N 1 — Aol —€) — \a -
o/ (4 )\1.291 )\2%‘2 )\3$3> X1 Gy <4 )\1 )\2( 6) )\3 0>
1 5
" Ve (4%1 +A26> ’
2m/ 1
771 = <UT — 2uT> T9
m
1 1 1 T
= A2To + A3w3 — = - A1 — 3 AMT1 — 5 - Aawo — 3 A3T3 T2
1 5 5 5
5 <4 “Agwo + 1 A3x3 — )\1561) T2 = <4 ‘A2 +0— )\1(5))
1 5
5 /<4'>‘2+/\16>’
m
and
V2! + 1 1 /5 5 T 1 5
= (v - U >x3: 5 <4~)\2$2+4')\3$3—/\1$1> 8= = 'Z')\:?,'

Solving the above equations, we get Ay = Ay = and A3 = 2

4€+5 ’
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Thus, a KKT point of Problem (1) must satisfy (10) and (11) with the above \;’s. Now, consider

/
2m \ T, el iel_ i€l

3

We need to show that z does not satisfy the KKT conditions of the problem

1

min 12| st Vie{1,2,3} yiZ'azi>f, (12)
z

for any margin 5 > 0. A KKT point Z of the above problem must satisfy Z = —\|z1 + Ayx2 + Njz3, where

)\g > ( for all ¢, and /\g =0if inTxi = f3. Since z is a linear combination of the three independent vectors

x1, x2, x3 where the coefficients are non-zero, then if z is a KKT point of Problem (12) we must have A, # 0

for all ¢, which implies yizT:vZ» = [ for all ¢. Therefore, in order to conclude that z is not a KKT point, it

suffices to show that z " g # 2 z3.

We have
2y = 7m+—x—ix Tx—L—i-O—i- b _ Gt
2T \4e+5 P55 T det5 ) TP 45 de+5  de+5
and
ZTl’_LJI—FQx—G a:T:x—§
ST \4e+5 P 4ers ) T 5
Using the above equations, it is easy to verify that z Tz # 23 for all € > 0. O

Lemma B.9. For all 1 € I we have inTCL"Z' > 1, and HZH < 52T'y HZ*H’ where =¥ — argmin; HzH o1
yiZ @, > 1foralli e 1.

Proof. By Lemma B .4, forall i € I, we have v' x; > 0 and v 2; < 0. Hence

ma mo
1< flap W) = ﬁéb(UTl‘i) - ﬁéf)(UTl‘i)
oy ma g
v T m
< %UT% — %uTmi = zTa:i .
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Likewise, by Lemma B .4, for all : € I_ we have viz; <0andw'z; > 0. Hence

ma mo
miq mo
= Y T
mi ma

Thus, it remains to obtain an upper bound for || z||.
Assume w.l.o.g. that m; > mg (the proof for the case m; < my is similar). Thus, Kk = , /%. Let

z* € R such that y;(2*) "z; > 1 foralli € I. Let

o Vmo 1

vt =2 —— ,
my K+
NGO

ut =z .
mg K+ 7y

Note that v*, u™* satisfy the constraints in Problem (3). Indeed, for ¢ € I_ we have

Ii(z*)TCL‘Z’_ '(z*)Txi S K 1 _1

mi
K+ K+vy T K+v 7 /i+7_

() Ty =y (0 T = —

Jm Tm

For ¢ € I we have

(%) Ty n w(2*) T - 1 n kK 1+9k

mi ma v =
K4y K+vy — K+ K4y K+

Vim Vm
where the last inequality is since 0 < (1 — k)(1 =) =1+ Ky — Kk — 7.
By Lemma B.5 the pair v, u is a global optimum of Problem (3). Hence

>1,

(U*)TZL‘Z'— (’LL*)TZL‘Z:

my [Jol|* + me [[ull* < ma [[o*|* + ma o)

LS . N Ry Y
=mi--—5 - —||2 mo - — ——= ||2
mi  (5+7)? ms3 (1 +7)?
m|z*P [ 1 K2
= —— = |—+—
(k+7)2 [m1 ma
w112
_mlE? 2
(k+7)?% m
Therefore, we have
2
2 2 2 2 o _ m|z¥
miv||” + ||meu||” < mi||v||" +mime ||u||” < —— -
[mavl|” + Imoul|” < m7 ||v]| 1ma || H—(H_i_,y)g
Hence,
I L e (e e e - (I Wﬂrlﬂ<4ww
z||* = || —=v — —=u — —u == (|lmiv matl —_—
Jm vm ||~ \Vm Jm m )= (e +9)?
which implies ||z]| < %7” as required. O
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C Proof of Lemma 3.3

According to the distribution assumption in the lemma, we can write z; = %'/2%; where ; ~ N(0, I,).”
By Hanson-Wright inequality [RV 13, Theorem 2.1], we have for any ¢ > 0,

Pr HHEUQ@H _ Hzl/z”F‘ > t} < 2exp (—Q (@)) )

Pr [[la:ll = V| > 1] < 2exp (-2 (12)).

i.e.,

Let t = C'y/logn for a sufficiently large constant C' > 0. Taking a union bound over all i € [n], we have
that with probability at least 1 — n~29, ||z;]| = v/d = O(/Tog n) for all i € [n] simultaneously.
For i # j, we have (xz;, z;)|x; ~ N(O, x;—ij). Hence we can apply a standard tail bound to obtain

42
Because we have known that x;-rExj = O(||z]|*) = O(d+logn) = O(d) with probability at least 1 —n 20,
we have
2
Pr[|(zi, x;)] > t] <n 20+ 2exp <—Q (d)) .
Then we can take t = C+/dlogn for a sufficiently large constant C' and apply a union bound over all ¢, j,
which gives |(z;, 2;)| = O(v/dlogn) for all i # j with probability at least
1 —n? (n_20 + 2 exp(—Q(C? log n))) >1- n~15,

This completes the proof.

D Proof of Theorem 3.4

To prove Theorem 3.4, we need to show that for some to > 0, L(W (t)) < log2/n for all t > to. To do so,
we will first show a proxy PL inequality [FG21], and then use this to argue that the loss must eventually be
smaller than log 2/n.

We begin by showing that the vector i := Y ;" | y;x; correctly classifies the training data with a positive
margin. To see this, note that for any & € [n],

n
<Z yiﬂ?uykﬂ?k> = [lzxl” + Z@z‘wi, YkTk)
i=1

i#k
> min [|z;]|* — nmax | (z;, ;)|
i 17

(i) 3
> <1 - 7) min ||z]|?
3 i

(i1) 2
> gmmesz (13)

2The proof below holds more generally when Z; has independent subgaussian entries.
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Inequality (i) uses the theorem’s assumption that 3n max;; |(z;, z;)| < 3 min, ||z;]|?. Inequality (i)
uses that v < 1. To show how large of a margin z gets on the training data, we bound its norm. We have,

n
E YiZ;
i=1

2
<

lll® + > i )]

i=1 i#£j

sl + D [, 25))

n

I
.M:

@
Il
—

JFi

-

@
I
-

il +nmax!<xul‘j>l]
L i#£]

2 ’73 . 2
(EA] +§mj1nllﬂfj|!

NE

1t

.
Il

< 2nmax |z,
K

Denoting Rpin := min; ||z;||, Rmax = max; ||z;]|, and R = Rpax/Rmin, substituting the above display
into (13) we get for any k € [n],

~ 2 2. .
< A ym> > /3Rinin \/iRmm. (14
7]l V2nR2. 3Ryn

Let us now define the matrix Z € R™*4 with rows,

~

Zj = 40@.
122l

Since a? = 1/m for each j, we have || Z||% = 1, and moreover we have for any k € [n] and W € R™*¢,

Tkt = Yy a?d ((w;, x i x
910 9).2) = 3l k>><”ﬁ”,yk k>

where the first inequality uses (14) and the last inequality uses that ¢/(z) > ~. If £ is the logistic or
exponential loss and we define

o) = ~C(), GOV(D) = -3 gl (s WD),
k=1
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then since g(z) > 0 the above allows for the following proxy-PL inequality,

IVEW@)lle > (VEW (1), ~Z)

- % > =y f (e W) yi(V f (xx; W (L)), Z)
k=1

\/iRmin'y ~

> e GV ). (15)

By the chain rule, the above implies

LEww) = —IVEw )2

dt
<- (fjfjg”éwu))) .

Let us now calculate how long until we reach the point where G(W (t)) < log2/(3n). Define
7 =inf{t: G(W(t)) < log2/(3n)}.

Then for any ¢ < 7 we have

2
\/iRmin7 . log 2
3R/n  3n '

SLOV() < - (

Integrating, we see that

2R2. v*log?(2)t
- 81Rn?
Since L(W(t)) > 0, this means that 7 < S1L(W(0))R2n®/(272R2, log®(2)) <
85L(W (0))R2n3/(v2R2, ). Attime 7, we know that G(W (7)) < log 2/(3n) and thus y; f (z;; W (7)) > 0
for each . For z > 0, both the logistic loss and the exponential loss satisfy ¢(z) < 2 - —¢'(z), and so for
either loss, we have

L(W (1)) < L(W(0))

n

W () = - S i (as W(n) < 2 S0~ (yaf s W) = 26(W (7)) <
=1

=1

Since L(W (t)) is decreasing, we thus have for all times ¢ > 7, we have L(W (t)) < L(W (7)) < log(2)/n.

E Proof of Theorem 4.2

In this section, we provide a proof of Theorem 4.2. An overview of our proof is as follows.
1. In Section E.1 we provide basic concentration arguments about the random initialization.

2. In Section E.2 we show that the neural network output and the logistic loss objective function are
smooth as a function of the parameters.
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3. In Section E.3 we prove a structural result on how gradient descent weights the samples throughout
the training trajectory. In particular, we show that throughout gradient descent, the sigmoid losses
—0(y; f (z5; W®)) grow at approximately the same rate for all samples.

In Section E.4 we leverage the above structural result to provide a good upper bound on ||[WW®) | 5.

In Section E.5 we provide a lower bound for ||V ® .

SANEE

In Section E.6 we show that a proxy-PL inequality is satisfied.

7. We conclude the proof of Theorem 4.2 in Section E.7 by putting together the preceding items to bound
the stable rank StableRank(W®)) = [W®)||2,/|W®)|3 and to show that L(W®)) — 0.

Let us denote by Cg := 10R?/+% + 10, where R = Ruax/Rmin and Rmax = max; ||z, Rmin =
min; ||z;||. For a given probability threshold 6 € (0, 1), we make the following assumptions moving for-
ward:

(A1) Step-size a < »? (5nR2

max

R?Crmax(1,H)) ~! where ¢ is H-smooth and ~-leaky.

-1
(A2) Initialization variance satisfies winiz < > Rmin (72RC’Rn\/md log(4m/ 5)) .

We shall also use the following notation to refer to the sigmoid losses that appear throughout the analysis
of gradient descent training for the logistic loss,

1

92) =~ = Tremny GV = S ot W), o = gl W) a6
i=1

E.1 Concentration for random initialization

The following lemma characterizes the ¢2-norm of each neuron at intialization. It also characterizes how
large the projection of each neuron along the direction i := Y ;" , y;x; can be at initialization. We shall
see in Lemma E.13 that gradient descent forces the weights to align with this direction. In the proof of
Theorem 4.2, we will argue that by taking a single step of gradient descent with a sufficiently large step-
size and small initialization variance, the gradient descent update dominates the behavior of each neuron at
initialization, so that after one step the z direction becomes dominant for each neuron. This will form the
basis of showing that W (*) has small stable rank for ¢t > 1.

Lemma E.1. With probability at least 1 — § over the random initialization, the following holds. First, we
have the following upper bounds for the spectral norm and per-neuron norms at initialization,

IWOly < Cownie(vm + Vd), and forall j € [m], [wl”|? < 5wl dlog(4m/6).

init

Second, if we denote by ji € R? be the vector Y 1, yizi/|| Yoty yizi

(w0, i)| < 2winie\/log(4m/3).

Proof. For the first part of the lemma, note that for fixed j € [m], there are i.i.d. z; ~ N(0, 1) such that

, then we have

d

d

0 0

g1 = D)2 = whin 3 2F ~ e x*(@).
=1 i=1

27



By concentration of the x? distribution [LM00, Lemma 1], for any ¢ > 0,

1
P <2|w]('0)||2 —d> 2\/d>t+ 2t> < exp(—t).
w

init

In particular, if we let ¢ = log(4m/J), we have that with probability at least 1 — §/4, for all j € [m],
el 2 < wye (d+ 20/dlog(4m/3) +2log(4m /) ) < 5ulydlog(4m/d).

For the second part, note that <w§0), i)y ~ N(0,wZ.). We therefore have }P’(|<w](-0),,a>| > t) <
2exp(—t?/2w? ). Choosing t = winit\/log(4m/5) we see that with probability at least 1 — §/2, for
all 7, |(w](-0) , 1) < 2winit/log(4m/§). Taking a union bound over both events completes the proof. O

E.2 Smoothness of network output and loss

In this sub-section, we show that the network output and the logistic loss satisfy a number of smoothness
properties, owing to the fact that ¢ is H-smooth (i.e., ¢ exists and |¢”(2)| < H).

Lemma E.2. For an H-smooth activation ¢ and any W,V € R™*? and z € R,

Hlz|? 2
. _ . _ . _ < _ .
Proof. This was shown in Frei, Chatterji, and Bartlett [FCB22a, Lemma 4.5]. O

We next show that the empirical risk is smooth, in the sense that the gradient norm is bounded by the
loss itself and that the gradients are Lipschitz.

Lemma E.3. For an H-smooth, 1-Lipschitz activation ¢ and any W,V € R™*% if ||z;|| < Rpax for all i,

1

= IVIZ(W)|lr < GOV) < LW) AL,

where G(W) is defined in (16). Additionally,

~ ~ H
L(W)-VL <R (1+—= — V2.
IVEGY) - VEW )l < R (14 7= ) I - V1

Proof. This follows by Frei, Chatterji, and Bartlett [FCB22a, Lemma 4.6]. The only difference is that in that
paper, the authors use ||2;||> < Cyp (in their work, x; € RP) to go from equations (5) and (6) to equation
(7), while we instead use that ||z;||> < R2 O

max*

E.3 Loss ratio bound
In this section, we prove a key structural result which we will refer to as a ‘loss ratio bound’.

Lemma E4. Let ¢ be a vy-leaky, H-smooth activation. Define R = max; j |ill/|z;||, and let us denote
Cr = 10R?y~2 + 10. Suppose that for all i € [n), we have,

[i]|* > 57 *Crn max [(w;, o).
#i
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Then under Assumptions (Al) and (A2), we have with probability at least 1 — 6,

O (yi f (zi; WO
Sup ¢ max (y UG )) < Cg.
>0 |ideln) ¢ (y; f(x;; W®))

This lemma shows that regardless of the relationship between x and y, the ratio of the sigmoid losses
—0'(yif (x5; W®)), where —'(z) = 1/(1 + exp(z)), grows at essentially the same rate for all examples.

Our proof largely follows that used by Frei, Chatterji, and Bartlett [FCB22a], who showed a loss
ratio bound for gradient descent-trained two-layer networks with ~y-leaky, H-smooth activations when
the data comes from a mixture of isotropic log-concave distributions. We generalize their proof tech-
nique to accommodate general training data for which the samples are nearly orthogonal in the sense that
|2i||* > nmaxg; |(x;, zx)|. Additionally, we provide a more general proof technique that illustrates how
a loss ratio bound could hold for activations ¢ for which ¢/(z) is not bounded from below by an absolute
constant (like the ReLU), as well as for training data which are not necessarily nearly-orthogonal. We begin
by describing two conditions which form the basis of this more general proof technique. The first condition
concerns near-orthogonality of the gradients of the network, rather than the samples as in the assumption
for Theorem 4.2.

Condition E.5 (Near-orthogonality of gradients). We say that near-orthogonality of gradients holds at time
t if, for a some absolute constant C' > 1, for any i € [n],

IV f s W) = C’m}gngVf(ﬂfi; W),V f (i W),

Note that for linear classifiers—i.e., m = 1 with ¢(z) = z—near-orthogonality of gradients is equivalent
to near-orthogonality of samples, since in this setting V f (z;; W) = x;. It is clear that this is a more general
condition than near-orthogonality of samples.

The next condition we call gradient persistence, which roughly states that the gradients of the network
with respect to a sample has large norm whenever that sample has large norm.

Condition E.6 (Gradient persistence). We say that gradient persistence holds at time ¢ if there is a constant
¢ > 0 such that for all i € [n],
IV f (@i WO = el

Gradient persistence essentially states that there is no possibility of a ‘vanishing gradient’ problem.

Next, we show that Lipschitz activation functions that are also ‘leaky’ in the sense that ¢'(z) > v > 0
everywhere, allow for both gradient persistence and, when the samples are nearly-orthogonal, near-
orthogonality of gradients.

Fact E.7. Suppose ¢ is such that ¢/ (z) € [, 1] for all z for some absolute constant v > 0. Suppose that for
some C > ~72, foralli € [n] we have,

lil|* > Cnmax|(zi, k).

Then for all times t > 0, the gradients are nearly-orthogonal (Condition E.5) with C' = C~? and gradient

persistence (Condition E.6) holds for c = 72.
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Proof. For any samples i, k € [n] and any W € R™*4,
1 m
(Vf(@is W),V f(ar; W)) = (@i, 2x) - — > & (wy )¢ (w, zp))-
j=1

Since ¢'(z) € [y, 1] for all 2, we therefore see that gradient persistence holds with ¢ = v

1 m
IV £ Gows WIE = llel® - — Y ((wy,2i))? = 57|l .
j=1
Similarly, we see that the gradients are nearly-orthogonal, since
() (i) 2 —2 2
O (V£ (@ W), ¥ (i W)| < Cromae| ()] < [l <472V F (s W)

where (i) uses that ¢ is 1-Lipschitz and (é¢) uses the assumption on the near-orthogonality of the samples.
O

We can now begin to prove Lemma E.4. We remind the reader of the notation for the sigmoid loss,

1
g(z) == —l(z) = m’ gZ(t) = g(yif(xi; W(t))).
We follow the same proof technique of Frei, Chatterji, and Bartlett [FCB22a], whereby in order to control
the ratio of the sigmoid losses we show instead that the ratio of the exponential losses is small and that
this suffices for showing the sigmoid losses is small. As we mention above, we generalize their analysis
to emphasize that near-orthogonality of gradients and gradient persistence suffice for showing the loss ratio
does not grow significantly.

Lemma E.8. Denote R := Ryuac/ Ryin where Ry = max; ||z;|| and Ryin = min; ||z;|, and let ¢ be an ar-
bitrary 1-Lipschitz and H-smooth activation. Suppose that near-orthogonality of gradients (Condition E.5)
holds for some C' > 1 and gradient persistence (Condition E.6) hold at time t for some ¢ > 0. Provided
a < [BHRZ, n(10R?/c+10)]"t and C" > 25R?/c + 25, then for any i, j € [n] we have,

exp ((— yif(zi; WD) < &P (—yif(zi; W)
exp (= y;f(a;; WD) = exp (—y;f(z;; WH))

gVacR2,, (g R
Ol T U
9;

aR? ~
max . (t)
X exp ((10R2/c+ 0y, ¢ ))

Proof. 1t suffices to consider ¢ = 1 and j = 2. For notational simplicity denote
_ exp(=y1fz;; W)
exp(—y2f(z2; W)

We now calculate the exponential loss ratio between two samples at time ¢ 4 1 in terms of the exponential
loss ratio at time ¢.

A
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Recall the notation ggt) i= —0'(yi f(x; W®)), and introduce the notation

Vi = V(s W),
We can calculate,

exp(—y1f(z1; WD)
exp(—yaf(z; W ”1)))
fi (WO — aVL(W®)))
f2 (WO — aVI(W)))

Appr =

exp

1
exXp | —Y2

S
e
(

(@) &) T (@
© 1S (@:WO) + ya (VAT VIV )) exp <HRI2nax S IVEW (t))HQ)
" exp (—yof (22; WO) + o <Vf2(t),Vf(W(t))>> vm
O oT t

i exp (y1a (Vf”, VLIW®) 2
(:) At' ( ! < 1 - >) exp <HRmax ||VL( (t))HQ)

exp <yga <Vf2(t) VL(W(t))>) vm
g At .

exp <_QZZ—1 gk <y1Vf2 7ykvfk

exp (——Zk 1gk <y1vf1 ,kafk )) <HR12nax HVL( (t))||2>
2
F

= A-exp (== (o IVA"F - oIV A1)
(6
X exp (n (Z oV B VD) = gl <y1Vf1(t),kaf,§t)>))
k#2 k#1

R2
X exp (\;“EHVL( <t>)\2> . (17)

Inequality (i) uses Lemma E.2 while (i7) uses the definition of A;. We now proceed in a manner similar
to Frei, Chatterji, and Bartlett [FCB22a] to bound each of the three terms in the product separately. For the
first term, since gradient persistence (Condition E.6) holds at time ¢, we have for any i € [n],

IV N2 > el > eR

'min*

On the other hand, since ¢ is 1-Lipschitz we also have
1 m
¢ t
IVEO1 = il = 3 o () 2:)? < ol < R
i=1

Putting the preceding two displays together, we get

R < VD)% < R, (18)
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Therefore, we have

(t) (®)
B 90 (91 o s0)2 ()2
exp (—— <g1 val H 92 HVfg H )> = exp (_ n (gét)HVfl HF_va2 HF))

(i) (t) (t)
< exp (_92 “ (g%t) ' CRIQnin - R12nax
n g5
(®) 2 (t) 2
acRZ, R
92

Inequality (7) uses (18), and the equality uses the definition R = Ryax/Rmin. This bounds the first term
in (17).

For the second term, we use the fact that the gradients are nearly orthogonal at time ¢ (Condition E.5)
and the lemma’s assumption on C’ to get for any ¢ # k,

1951 2 Cnmax|(V 1, V)| 2 (25 e+ 25 mmax (VA VA o)

This allows for us to bound,

o
exp | —— Zg;(f)@zvfét),ykv ) Zg VI V)

k#2 k#1
<o [ 430UV TN + &S GOV 1))
k£1 s
(i) 1 a 1
(ON )2 (t) )2
< - = . .
exp( D% mmmrer o VA I 20 Gy IV
k£1 k2
zzz (t) 1 1 9
< exp | — Z 2 max + - E 2 Rmax
( ] (25R?/c + 25)n " (25R?/c+ 25)n
20 R? ~
< max . () . 21
_eXp<(25R2/0+25)n Gw )> @D

Inequality (7) uses the triangle inequality. Inequality (ii) uses (20). The inequality (i77) uses (18).
Finally, for the third term of (17), we have

ex Rr2nax HV’L\(W(t))HQ (2 anax 2G W(t)
Pl s e | —0 (W)

(i) aR? ~
< mx Ay
= &P (2(25R2/c o & )> 22)

Inequality (i) uses Lemma E.3, while (i7) uses the lemma’s assumption that « is smaller than
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[5H R2

max

(t) 2 () 2
acRZ. R

Apiq < Ay - exp <_g2mm (% _ ))
n g8 c

20R3 At (D)
e ((251-‘52 et 2 G
O‘RrQnax A ()
* exp (2(25R2/c omm GV

(®) 2 (1) 2 2
A G acky, (g1 BT DAl Ay
= Ay - exp ( - (gét) - )) exp <2(25R2/c+ ) G(W'") (23)

n(10R%/c + 10)]~L. Putting (19), (21) and (22) into (17), we get

This completes the proof. O

Lemma E.8 shows that if the sigmoid loss ratio gl(t) / g§t) is large, then for a small-enough step-size,
the exponential loss ratio will contract at the following interation. This motivates understanding how the
exponential loss ratios relate to the sigmoid loss ratios. We recall the following fact, shown in Frei, Chatterji,
and Bartlett [FCB22a, Fact A.2].

Fact E.9. Forany z1,29 € R,

and if z1, z9 > 0, then we also have
exp(—z1) _,9(21)
exp(—22) = g(22)

This fact demonstrates that if we can ensure that the inputs to the losses is positive, then we can essen-
tially treat the sigmoid and exponential losses interchangeably. Thus, if the network is able to interpolate the
training data at a given time ¢, we can swap the sigmoid loss ratio appearing in Lemma E.8 with the exponen-
tial loss, and argue that if the exponential loss is too large at a given iteration, it will contract the following
one. This allows for the exponential losses to be bounded throughout gradient descent. We formalize this in
the following lemma.

Proposition E.10. Denote R := R4y / Ryin where Ry = max; ||x;|| and Ry = min, ||x;||. Let ¢ be an
arbitrary 1-Lipschitz and H-smooth activation. Suppose that,

* Gradient persistence (Condition E.6) holds at time t for some ¢ > 0, and
s Near-orthogonality of gradients (Condition E.5) holds at time t for some C' > 25R? /c + 25,

* For some p > 5R2 /¢ + 5, an exponential loss ratio bound holds at time t with,

— oy 17 ()
max €xp ( yzf(x'z: w )) <.

w7 exp (= y; f(x;; W)

* The network interpolates the training data at time t: y; f (z;; W(t)) > 0 for all 7.
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Then, provided the learning rate satisfies a« < [5HR2,n(10R%/c + 10)]7L, we have an exponential loss
ratio bound at time t + 1 as well,

— i f (wy; WD
iy SR (il (@ ) <n

b exp (= y; f(x;; WD)

Proof. As in the proof of Lemma E.8, it suffices to prove that the ratio of the exponential loss for the first
sample to the exponential loss for the second sample is bounded by p. Let us again denote

A S f (2 W)
CT exp(—yaf (wy; WH))

and recall the notation gi(t) = —0'(y; f(x; W®)). By Lemma E.8, we have,

(t) 2 ) 2 2
gy acRy [ gy R aR% .« )
< . _J2 “ " min [ J1 7 . .
A1 < Ay -exp ( - (ggt) - )) exp ((1OR2/0+ 0)n G(W™) (24)

We now consider two cases.

Case 1: ggt) / gét) < % p. Continuing from (24), we have,

(3) g(t)aRQ- R? aR? . R
A1 < Ay -exp <2nmm - exp <(10R2/ij_ 10)nG(W(t)))

(t) p2 2 At
92 Rmax RmaxG(W )
pr— A . .
P <O‘ ( n | (10R?/ct10)m

(i2)
< 1.24,

Above, inequality (¢) follows since gy) / gét) > 0. The equality uses that R = Ryax/Rmin- Inequality (i7)

uses that gz-(t) < 1, the lemma’s assumption on the step-size, « < [5HR2_ n(10R?/c + 10)]~!, and that
exp(0.1) < 1.2. The inequality (7i7) uses the proposition’s assumption that the network interpolates the
training data at time ¢, so that the ratio of exponential losses is at most twice the ratio of the sigmoid losses

by Fact E.9. The final inequality (iv) follows by the case assumption that g%t) / gét) < % p.

Case 2: ggt) / gét) > % p. Continuing from (24), we have,
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() 2 (t) 2 2
9o CVCRmin g1 R aRmax A ()

< ] _J2 “lmin Jr 7 . :

A1 < Ap-exp n (t) c P ((10R2/C +10)n a
92

(i) oPacR2, (2 R? aliy G

4 exp [~ (2 BTN o W

< A, exp< " <5P - > exp <(1OR2/c+10)n G(W )>

= Ay exp | 222 <5p - ) |\ R 0 % s

(i1) g(t)()ch2 ~ 2 R? aR?
< A, - _ 92 @fin (2 ) ) max O
= oD ( n <5p c ) P <(10R2/c+ 10y 92 7P

ey [ cRY, (2 B2 R 1
- e n 577 ¢ ¢ b5R%?/c+5 p

(ii3)
< A <op.

Inequality (i) uses the Case 2 assumption that ggt) / gét) > %,0. Inequality (i7) uses the proposition’s as-
sumption that the exponential loss ratio at time ¢ is at most p, so that the sigmoid loss ratio is at most 2p by
Fact E.9 (note that the sigmoid loss ratio is at least 2p/5 > 2 by the case assumption and as p > 5). The
equality uses that R = Ryax/ Rmin. The final inequality (iii) follows as we can write

2 R? R? 1 2 1 5R?/c R?
5p_c_c'5R2/c+5‘p:5p( _2’5(R2/c+1)>_c
L2, 1 B
-5 2 c
> 0.

The first inequality above uses that |z/(1 + )| < 1 for x > 0, and the final inequality follows by the
assumption that p > 5R?/c + 5 > 5R?/c. This proves (iii) above, so that in Case 2, the exponential loss

ratio decreases at the following iteration.
O

In summary, the preceding proposition demonstrates that a loss ratio bound can hold for general Lips-
chitz and smooth activations provided the following four conditions hold for some time #¢:

(1) an exponential loss ratio bound holds at time #g;

(2) near-orthogonality of the gradients holds for all times £ > %p;
(3) gradient persistence holds at all times ¢ > %g; and

(4) the network interpolates the training data for all times ¢ > t.

This is because the proposition guarantees that once you interpolate the training data, if the gradients are
nearly-orthogonal and gradient persistence holds, the maximum ratio of the exponential losses does not
become any larger than the maximum ratio at time ¢y. Note that the above proof outline does not rely upon
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the training data being nearly orthogonal, nor that the activations are ‘leaky’, and thus may be applicable to
more general settings than the ones we consider in this work.

On the other hand, when the training data is nearly-orthogonal and the activations are ~y-leaky and H-
smooth activations, Fact E.7 shows that (2) and (3) above hold for all times ¢ > 0. Thus, to show a loss
ratio bound in this setting, the main task is to show items (1) and (4) above. Towards this end, we present
the final auxiliary lemma that will be used in the proof of Lemma E.4. A similar lemma appeared in Frei,
Chatterji, and Bartlett [FCB22a, Lemma A.3], and our proof is only a small modification of their proof. For
completeness, we provide its proof in detail here.

Lemma E.11. Let ¢ be a y-leaky, H-smooth activation. Then the following hold with probability at least
1 — 0 over the random initialization.

(a) An exponential loss ratio bound holds at initialization:

i exp(—yif (xi; W) < exp(2).

ig exp(—y;f(z; WO))

(b) If there is an absolute constant C', > 1 such that at time t we have maXZ-J{gi(t) / g](t)} < Ch, and if
forall k € [n] we have
lewl* = 2y Chm max| (@i, a)l,
(2

then for a < v*/(2HCRR?R2,,n), we have

max

2p2
forall k € [n], yrlf (2 W(Hl)) — flag; W(t))] > LRminc;(W(t))'

~ 40

(c) If for all k € [n] we have ||xi|)* > 8y 2n max;p, (T, x)|, then under Assumptions (Al) and (A2),
at time t = 1 and for all samples k € [n), we have yi f (x; W®) > 0.

Proof. We shall prove each part of the lemma in sequence.

Part (a). Since ¢ is 1-Lipschitz and ¢(0) = 0, Cauchy—Schwarz implies

m

[fa W) =D aj((ws,z)| < D a2 | (w),z)? =|[Wals.
j=1

j=1 j=1
Applying this bound to the network output for each sample at initialization, we get
() (i) /5 R2.. (i) 1
£ WO < WOl p il < Vowinie/mdlog(4m/8) Rmax < ‘fmm <= 29)

Inequality (i) uses Lemma E.1, while inequality (i¢) and (7i7) follow by Assumptions (A2) and (A1), re-
spectively. We therefore have,
exp(—yif (x; W)

= 2). 26

36



Part (b). Letk € [n]. Let us re-introduce the notation V fi(t) = Vf(z;; W®). By Lemma E.2, we know

o HR?, o?
el s WD) = Fas W) 2 | 530 V1 eV 1) | = =B IV )
i=1
By definition,
1 m
(VIO VED) = (i) - — > ¢ () ai)e' (w an)) @7)
j=1
v2.1]
‘We can thus calculate,
yilf (s WD) — (g WO)]
@) o [ (t) (t) (t) HRma
St @) 1, 37 £/ _ B Ponax @1 5 13 (1)
o} HR} an
= IV I+ D0 v s VD) - S e Gar )
i i#k
O 1) 02 (t) (0 HRyan )
> = — o omax v
> |9 IVATIF — maxg; ;\ VR - R
| (1) (t) )12 193 £ H Ry )
=— |9 ”ka [ Z| 7ka )| 7G(W )| -
n ] ( gk pom 2y/m

where Inequality (7) uses Lemma E.3. Continuing we get that

Yl f (s WD) — (s W]

i

@ (t) 2 (t) HRmax ()
> — o max T
= {gk (V 2= R > 1Y, V) ) N Gw )y

—~
=

i#k

@ o | @ 9 HRY an ~
> — g | Plleall? = CR Y N an)| | - —5"—G(W W)
n { ( o 2/m

e ny%c:(w“))]
Do L Lyeng, - Mmon gy
5 [acpeoore - Hksnaore)
(T) azéllz%n (W(t))
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Inequality (i) uses the lemma’s assumption that max; ]{gl / gj } < C%. Inequality (i7) uses that ¢ is
~-leaky and 1-Lipschitz (see eq. (27)). Inequality (ii¢) uses that the assumption that the samples are nearly-
orthogonal,
el > 29~ 2CanaX\<%xk>! > 277 2CR Y (@i )
1#£k
Inequality (iv) uses the definition Ry, = min; ||x;||. Inequality (v) again uses the lemma’s assumption of
a sigmoid loss ratio bound, so that

gz 11 1 4
J > G o9 = gr G

=1

The final inequality (vi) follows since the step-size a < 7?/(2HC},R*R2

o) is small enough. This
completes part (b) of this lemma.

Part (c). (z; W(©)| < 1/50. Since g is monotone this implies the sigmoid losses at
initialization satisfy gz(o) € [(1 +exp(0.02))71, (1 4 exp(—0.02)) 7] C [0.49,0.51] and so
(0)
~ 49 g 51
0)y > =2 (P g
GW™W) > 100° and max g(o) T (28)
J

Thus, the assumption that ||zg[|? > 8y~2

part (b) of this lemma as follows,

ykf (@ W) = i f (s WD) = g f (1 WO) + fa; WO)
> yi f (@ W) — yp f (g W) — | f (wi; W)

@) « 2R2 A 1i7(0)
> 97 min GWW) — V5winit/md log(4m/6) Riax

~ 4n - 51/19
@
’7 aR fwlnlt md log 4m/5 Rmax
gl aRmm 1 16\fwinitRn mleg(4m/6)

16n '7204Rmir1

nmax;zk |(x;, x)| and Assumption (A1) allow for us to apply

(zu) g aRmm
- 32n
The first term in inequality (¢) uses the lower bound pr0V1ded in part (b) of this lemma as well as (28), while

the second term uses the upper bound on | f(z; W(?))| in (25). Inequality (zz) uses (28). Inequality (ii7)
uses Assumption (A2) so that winit < ay?Ruin - (T2RCrn+/mdlog(4m/§))~" and that 16y/5 < 36. [

We now have all of the pieces necessary to prove Lemma E.4.

Proof of Lemma E.4. In order to show that the ratio of the g(-) losses is bounded, it suffices to show that the
ratio of exponential losses exp(—(-)) is bounded, since by Fact E.9,

g(yif (zs; W) , exp(—yif(zi; W)
I gy W) = AP ey fla W) ) 9
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We will prove the lemma by first showing an exponential loss ratio holds at time ¢ = 0 and ¢ = 1, and
then use an inductive argument based on Proposition E.10 with p = 5R2 /% +5 = %C R.

By part (a) of Lemma E.11, the exponential loss ratio at time ¢ = 0 is at most exp(2). To see the loss
ratio holds at time ¢ = 1, first note that by assumption, we have that the samples satisfy,

laill® > 577*Crnmax (@i, zi)| = 2y (25R* " + 25)nmax (@i, a)|. (30)

Because ¢ is a y-leaky, H-smooth activation, by Fact E.7 this implies that gradient persistence (Condi-
tion E.6) holds with ¢ = 42 and near-orthogonality of gradients (Condition E.5) holds for all times ¢ > 0
with C' > 2(25R?y~2 + 25). By Assumption (A1), we can therefore apply Lemma E.8 at time ¢ = 0, so
that we have for any ¢, j,

exp (= yif(xs; W) gj(»o)acR?rlin 4O R
<exp(2)-exp | ———— | Y57~ 5
exp (—y; f(z; WD) n 4"
aR? ~
max . (0)
xexp ((10R2/72 U )>

(2 e (2> e RzR?nina e O‘Rr2nax
X - X —— - eX
= &P P\ P\ (10R2/42 + 10)n

R? R?
— 2 . max max
op(2) - exp (“( n +(10R2/72+10)n>>

(id)
< exp(2.1) <9.

Inequality (i) uses that gi(t) < 1, while inequality (ii) uses that the step-size is sufficiently small o <

1/20R2,,, by Assumption (A1). Therefore, the exponential loss ratio at times t = 0 and ¢ = 1 is at most
9 <5R?/y? +5.

Now suppose by induction that at times 7 = 1,. .., t, the exponential loss ratio is at most 5R?/y2 + 5,
and consider t + 1. (The cases t = 0 and ¢ = 1 were just proved above.) By the induction hypothesis
and (29), the sigmoid loss ratio from times 0, ..., ¢ is at most 10R%/y2 + 10. By Assumption (A1), the
step-size satisfies

a < 2[R, R*(10R*y 2 +10) max(1, H)] ™' < +2[2HCRR?, R*n]".
Further, the samples satisfy (30), so that
lexll® = 2y (10R™ ™ + 10)n max|(zi, zx)| = 2y~ Crrmax (@i, zi)|
Thus all parts of Lemma E.11 hold with C%, = Cr = 10R?>y~2 + 10. By part (b) of that lemma, the
unnormalized margin for each sample increased for every time 7 =0, ..., ¢:
forall 7 =1,...,¢, wyelf(ze; WD) = fla; W) > 0. (31)
Since the network interpolates the training data at time ¢ = 1 by part (¢) of Lemma E.11, this implies
forallT =1,...,t, yuf(zm; W) >o0.

Finally, since the learning rate satisfies o < v2[5n.R2, R*Cr max(1, H)]~!, all of the conditions necessary
to apply Proposition E.10 hold. This proposition shows that the exponential loss ratio at time ¢+ 1 is at most
5R2/~%4-5. This completes the induction so that the exponential loss ratio is at most 5?2 /2 +5 throughout
gradient descent, which by (29) implies that the sigmoid loss ratio is at most 10R2 /2 + 10. O
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E.4 Upper bound for the Frobenius norm

In this section we prove an upper bound for the Frobenius norm of the first-layer weights (recall that
StableRank(W) = ||[W||%/||W|3). Our proof follows by first bounding the Frobenius norm up to time
t using the triangle inequality,

t—1 t—1
WO e < [WOlp+ > W) — WO | p = (WO p+a > VLW )| p.
s=0 s=0

The standard approach from here is to bound the gradient norm as follows,

||VL( Np = || Zgzt)yZfo,, R))

1 .
< 2 al 19 s WO) | < B GOW),
F =1

where the last inequality uses that |V f(z;; W®)[|2 = ||z > ] '(( ](t),xi)) < R2Z,.. When the

initialization scale wipjt is small, this results in an upper bound for the Frobenius norm of the form,

t—1 t—1
[WOlp < [WOp + aBne 3 GOVS) < 0B 3GV,
s=0 s=0

However, this bound for the Frobenius norm leads to a stable rank bound that grows with n (compare with
the lower bound for the spectral norm in Lemma E.13). In Lemma E.12, we prove a tighter upper bound on
the Frobenius norm that implies that the stable rank is at most an absolute constant. Our proof uses the loss
ratio bound of Lemma E.4 to develop a sharper upper bound for |[VZ(W ®))|| -, using a similar approach to
that of Frei, Chatterji, and Bartlett [FCB22a, Lemma 4.10].

Lemma E.12. Let R,,;,, = FEES max/ Rmin, and denote Cr = 10R? /42 +
10 as the upper bound on the sigmoid loss ratio from Lemma E.4. Suppose that for all i € [n] the training
data satisfy,

> 2 5y~ Cpmma (s, ).
#i

Then under Assumptions (Al) and (A2), with probability at least 1 — 6, for any t > 1,

vV QCRRmaxOé Z G

WO p < WO p+ W)y,

Proof. We prove an upper bound on the /> norm of each neuron and then use this to derive an upper bound
on the Frobenius norm of the first layer weight matrix. First note that the lemma’s assumptions guarantee
that Lemma E.4 holds. Next, by the triangle inequality, we have

t—1 t—1
[ = [w® + o S VEWE)| < W@+ a STITLW D). (32)
s=0 F s=0
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We now consider the squared gradient norm with respect to the j-th neuron:

VLW )2

2

= ’1’32 ZQZ yzv f W(S )

:% Z@Z’S) ijf(x“WS)) ’2+ > ggs)gi(cs)yiyﬂva‘f(%;W(S)),ij(:rk;W(s))>]
=1 k#i€[n]

S% Z(QZ(S))QHVM(M ‘ > g\ if (@i W )avjf(l‘kQW(S)»‘

" | =1 k#i€[n]

W a2 | &

D R R A Z>>¢'<<w§“,xk>><xi,xk>]
=1 k#i€n]

(i) a? | & N\ 2 9 (5)

< -3 [Z (91( )) i * + Z 9; )gk (xz‘,ﬂck)]
i=1 k#i€[n]

2 n
=3 ((9530 {wﬂzg D
1=1 k;éz i
(iii) a2
< ((gﬁ)z {xi%c}qzm,m])
=1 ki
< IS (0) el

Above, inequality (i) uses that V; f(x;; W) = a;¢'((wj, z;))x;. Inequality (iz) uses that ¢ is 1-Lipschitz.
Inequality (i77) uses the loss ratio bound in Lemma E.4, and inequality (iv) uses the lemma’s assumption
about the near-orthogonality of the samples. We can thus continue,

2 n
VLW 2 < 24; N 1,112
IV LW < —3 Z g9 ) il

2a2R2
< Tm. <maxgk > Zgls
2a2R12nax )\ A (s)
= T <maxgk >G(WS)
(1) 202R2,
< 7Za (Gaven)’. (33)

The final inequality uses the loss ratio bound so that we have

n (s)
(s) _ 1 MAXE G (s — CRGW
e =33 (M) < g -t
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Finally, taking square roots of (33) and applying this bound on the norm in Inequality (32) above we con-
clude that

2 max
+\/ Cr \a3|R aZG

o) < | W),

establishing our claim for the upper bound on Hwy(.t) ||. For the bound on the Frobenius norm, we have an

analogue of (32),
t—1

WOl < IWOp+a VLW,
s=0
and we can simply use that a? =1/m and
IVZ(W®)] ZHV LWY)| 7.

E.5 Lower bound for the spectral norm

We next show that the spectral norm is large. The proof follows by showing that after the first step of
gradient descent, every neuron is highly correlated with the vector i :== Y " | y;x;.

Lemma E.13. Let R, = min = Min; |7;]| and R := Ryax/ Ruin- Let Cr = 10R?*y~2 + 10.
Suppose that for all i € [n] the training data satisfy,

[5]|* > 57~ *Crn max [(w;, )|
#i

Then, under Assumptions (Al) and (A2), with probability at least 1 — 6, we have the following lower bound
for the spectral norm of the weights for any t > 1:

t—1

R
(t) Q7Y Lymin G (5
IOl (S G

Proof. We shall show that every neuron is highly correlated with the vector i := ;" | y;x;. By definition,

L aa & Y
<w§t+1) B w](-t),,U> — TJ > gft)qﬁ’((wj('t),%)) <ym72ym>
i=1 k=1

aa; "
= SR ) ol 3 )
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Positive neurons. If a; > 0, then we have,

1 ~ «|aj -
0 0,y 2 LS 00 (wl? ) | el — 3 s )
i=1 ki

@) aa;| — 1

> bl 30,0/, - gl
O“aj ’Rmm - ) ®)

> — = ) \ .

- 27'1, ;gz (z) (<w] 7xl>)

”) a7|a]|Rm1n (t)
2~y e,

Inequality () uses the lemma’s assumption that ||z;||* > nmaxy; |(z;, z1)|. Inequality () uses that ¢ is
~-leaky and gf ) > 0. Telescoping, we get

w® — @ gy > avlay Roin Z Gow avam 3G, (34)

J J

(0)

We now show that we can ignore the <wj , 1) term by taking « large relative to wiy;¢. By the calculation
in (25), we know that | f (z;; W()| < 1 for each 4 and thus

Ay - LN 1
) n Z 1+ exp(—yif(zs; WO)) = /4 %)

On the other hand, by Lemma E.1, we know that

(w\”, )| < 2winie| 7l v/ Jog (4 /6).

By the lemma’s assumption that ||z;||* > n maxy.z; |(z;, z)|,

n

n
17)1? = Z (e Z (yixi, yrpxg) | < Z |:”1’ZH + nmax|<:1;z,xk)] <2nRZ . (36)
i=1 e i=1

Substituting this inequality into the previous display, we get
(!, 7| < 4Rmaxwinity/n log(4m/3). 37)

We thus have

> 8 RmaxWinit /1 log(4m/0)

(444) R
> 2w, 7). (38)
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where (i) uses (35), (#i) uses Assumption (A2) and that Cr > 1 so that,

a > 64winiw_IC’R(Rmax/Rﬁlm)\/nm log(4m/§) = 64winit'y_1CR(R/Rmin) nmlog(4m/é),

and (7i7) uses (37). Continuing from (34) we get
(w7 > (" —wl® f) - @, 7))
ayla| B2, - A 0
> L 3 G ) — |(w,”. )|

s=0

ay|a;| R? i
J i ~ s
> =y G, (39)

where the last inequality uses (38).

Negative neurons. The argument in this case is essentially identical. If a; < 0, then

=N ala;| —
i — w0, ) < 1% Zgﬁt’d«wﬁ“, ) lill® = Y (i )]

ki
@ ala|R; - ) 100, ()
< - %mnglgi ¢(<wj , i)

(g) O[’Y|a]2|Rmm G(W(t))

where the inequalities () and (éi) follow using an identical logic to the positive neuron case. We therefore
have for negative neurons,

R ala VRmm
(w? - w®,7) < ~ 1% nin ZG (40)

An identical argument used for the positive neurons to derive (39) shows that for negative neurons we have
(w\, —71) > Laja;|yR2;, 3212 G(W)) and hence

t—1
forall j € [m]andt>1, |(w!”, @) > a\aj\’yRmmZé(W(s)). (41)

To see the claim about the spectral norm, first note that since Ry, > 0 ](w](t), )| > 0 and hence ji # 0.
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We thus can calculate,

W3 > IIW(t)ﬁ/HﬁHH%

= |- 22: W', 72
0, R2 i
— a’ya min S
>||m|2§j< 4 §jew< >)

7j=1

~|—2 OZ’YRQ- =t ~ ?
=l (T S ev )

(i) ary R?
> 'min G W(s
( 4\/ERmaX \/> Z )

Inequality (7) uses (41) and inequality (i) uses the upper bound for ||| given in (36). This completes the
proof. O

E.6 Proxy PL inequality

Our final task for the proof of Theorem 4.2 is to show that E(W(t)) — 0. We do so by establishing a variant
of the Polyak-Lojasiewicz (PL) inequality called a proxy PL inequality [FG21, Definition 1.2].

Lemma E.14. Let R, =
Suppose the training data satisfy, for all i € [n],

max/ Bmin- Let Cp = 10R?y~2 4 10.

min = min; ||z,

|lzi* = 5y~*Crnmax|(z;, zx)]-
k#i
For a ~-leaky activation, the following proxy-PL inequality holds for any t > 0:

[720v0)] 2 Sgmemer )

Proof. By definition, for any matrix V € R™*? with |||z < 1 we have

IVE@W) 2 (VEOP), ~V) = = 3 g0y lV (e W), V).
=1

Let /i := Y., y;x; and define the matrix V as having rows a;fi/||fi||. Then, ||V ||% = > aj =1, and
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we have for each 7,

B9 £ W),V = -3 8 (G ) i, 7/ )

=1

" (e a) [l + 3 (i, )

Al & =
gﬁmgwwm»JMQ

= o §:¢ w;,2.))

(Zg) YR2.

= 2l

Inequality (i) uses the lemma’s assumption that ||z;]|?> > nmaxg; |(z;, zx)|. Inequality (i) uses that
lzs]|? > R2. , and inequality (iii) uses that ¢/(z) > ~. We therefore have,

'min’

- 1 &
WO > =57 g0, S
IVL( m_anyawm, ), V)

/yRmm (t)
> w
o 0
> 'YRmm @(W(t))z v Rmin (A;(W(t)),

2v/2 Ropax /10

where the final inequality uses the calculation (36).

E.7 Proof of Theorem 4.2

We are now in a position to provide the proof of Theorem 4.2. For the reader’s convenience, we re-state the
theorem below.

Theorem 4.2. Suppose that ¢ is a y-leaky, H-smooth activation. For training data {(x;,y;)} C R? x
{£1}, let Ryuy = max; ||x;|| and Ryin = min, ||x;]|, and suppose R = Ryax/ Riin is at most an absolute
constant. Denote by C := 10R?>y~2 + 10. Assume the training data satisfies,
Rl%un > 577201‘3” max |<x27 :I:j> ’
7]
There exist absolute constants C1,Co > 1 (independent of m, d, and n) such that the following
holds. For any § € (0,1), if the step-size satisfies a < v*(5nR2,R*Crmax(1, H))™!, and winiy <

Y2 Rpyin(T2RCrnr/mdlog(4m/5)) L, then with probability at least 1 — & over the random initialization
of gradient descent, the trained network satisfies:
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1. The empirical risk under the logistic loss is driven to zero:

~ Cin
nt>1, LW®)y< | .
forallt > ( ) < R,Zm'nat

2. The ¢s> norm of each neuron grows to infinity:

forall j € [m)], Hw](-t)Hg — 0.
3. The stable rank of the weights throughout the gradient descent trajectory satisfies,

sup {StabIeRank(W(t))} < Cs.
t>1

Proof. We prove the theorem in parts. We first note that all of the results of Lemma E.1, Lemma E.12,
Lemma E.13, and Lemma E.14 hold with probability at least 1 — § over the random initialization.

Empirical risk driven to zero. This is a simple consequence of the proxy-PL inequality given in
Lemma E.14 since ¢ is smooth; a small modification of the proof 0£ Frei, Chatterji, and Bartlett [FCB22a,
Lemma 4.12] suffices. In particular, since by Lemma E.3 the loss L(w) has R, (1 + H/\/m)-Lipschitz
gradients, we have

L) < LWY) — o VIW D)} + Ry o max(1, H/v/m)a? VLW )| 3.

max

Applying the proxy-PL inequality of Lemma E.14 and using that o < [2max(1, H/\/m)R2,,]~! we thus
have

’YzRIQniné(W(t))Q < |]V2(W(t))||2 < z E(W(tJrl)) o E(W(t))]
8R?n - F=a ’
Telescoping the above, we get
T—1 =~
~ 1 ~ 2L(W©)  8nR?
min GW'\)* < T 2 GWW)* < T R

We know from the proof of Lemma E.4 (see (3 1))Athat the unnormalized margin increasesA for each sample
for all times. Since g is monotone, this implies G(W (") is decreasing and hence so is G(W )2, which

implies
. ~ s 16L(W(0)nR2
WT-Dy _ Wy < LWV O)nR?
G ) ?EZPG( ) \/ V2R2. oT

'min

Since £(z) < 2g(z) for z > 0 and we know that the network interpolates the training data for all times
t > 1, we know that L(W®) < 2G(W®) for t > 1, so that for T > 2,

~

ERTRRN _ 16L(W(0)nR2
LW T <qgwT-Vy < 9, /2" 7%
( )< 260 )< v2R2 _oT

'min

Since | f(z; W(©)| < 1 for each i, L(W () is at most an absolute constant, and since + is an absolute
constant this completes the proof for the first part of the theorem.
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Norms driven to infinity. We showed in Lemma E.13 (see (41) and (36)) that for each ¢ > 1 and for each
Js

0 (® ol R = G

loi? | > [, /7)) > —L =0 N Gw ).

J J 4\[Rmaxf Z
It therefore suffices to show that Z’;;%) @(W(S)) — 00. Suppose this is not the case, so that there exists
some 3 > 0 such that Zi;%) G(W()) < g for all t. By Lemma E. 12, this implies that for all ¢, ||V )| <
CrRmaxa/nf. )|| 7 is bounded independently of ¢. But this contradicts
the fact that L(W ")) — 0 and ¢ > 0 everywhere, and thus Hw](-t) Il = ZZ;%) GW®) = .

Stable rank is constant. By definition,

W%

StableRank(W (")) = o

We will use the upper bound for the Frobenius norm from Lemma E.12 and the lower bound for the spectral
norm from Lemma E.13. We consider two cases.

Case 1: |[W® |z > 2|[W©)|z. In this instance, by Lemma E.12, we have the chain of inequalities,

2 e
2AWO e < WO < 7O+ V2R 0 Z
In particular, we have
2 X
WO < ¥ CRR““‘O‘ZG W)

We can thus use Lemma E.13 and Lemma E.12 to bound the ratio of the Frobenius norm to the spectral
norm:

[WOlp _ IWOle + =ge 570 G(W®)
WO, = R Y GV )
B e 57 GV )

S o
= S GV )

= 16CH*R*y . (42)
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Figure 3: The 0.1-leaky, i—smooth leaky activation ¢(z) = 0.1z + 0.91og (%( + exp(z)) (left) and the
standard leaky ReLU ¢(z) = max(0.1z, z) (right).

Case 2: |[WO|p < 2|[WO)| . Again using Lemma E.13, we have

LT T
-« Rmin -1 A
HW ||2 N%—RﬁZi:oG(W(t))

() /Bwinit/mdlog(4m/9)

< avR (0)
42 Rnll/n‘G(W )

(1)) 4v/Bwinit/md log(4m/§)
S a’yRmin

4vV2R/n
= 16vV10Cry 'RR_}

(3t)

< y/vn <16CH*R*y L. (43)

na it/ md log(4m/§)

min

Inequality (i) uses Lemma E.1. Inequality (ii) uses that G(W(?)) > 1/4 by the calculation (35). The final

inequality (7i7) uses Assumption (A2) so that winit < @y Rmin(72RCrny/mdlog(4m/5))~L. Thus, (43)
yields the following upper bound for the stable rank,

StableRank(W®) < 162CrR*y™% = 162(10R? /7 + 10)R*y ™% =: (.

F Experiment Details

We describe below the two experimental settings we consider.

F.1 Binary cluster data

In Figure 1, we consider the binary cluster distribution described in (4). We consider a neural network
with m = 512 neurons with activation ¢(z) = vz + (1 — ) log (3(1 4 exp(z))) for v = 0.1, which is a
0.1-leaky, 1/4-smooth leaky ReLU activation (see Figure 3). We fix n = 100 samples with mean separation
|pll = d%26 with each entry of u identical and positive. We introduce label noise by making 15% of
the labels in each cluster share the opposing cluster label (i.e., samples from cluster mean +; have label
+1 with probability 0.85 and —1 with probability 0.15). Concurrent with the set-up in Section 4, we do
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Relative Rank vs. Initialization Scale Relative Rank vs. Initialization Scale
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Figure 4: With larger learning rates, most of the rank reduction occurs in the first step of gradient descent.
With smaller learning rates, training for longer can reduce the rank at most initialization scales.
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Figure 5: For the high-dimensional binary cluster data (cf. (4)), we see that using a small initialization scale
leads to a rapid decrease in the stable rank of the network. A similar phenomenon occurs with CIFAR-10
(see Figure 2).

not use biases and we keep the second layer fixed at the values +1/+/m, with exactly half of the second-
layer weights positive and the other half negative. For the figure on the left, the initialization is standard
normal distribution with standard deviation that is 50x smaller than the TensorFlow default initialization,
that is, winit = 1/50 X wF where wlF = /2/(m + d). For the figure on the right, we fix d = 10*
and vary the initialization standard deviation for different multiples of wi-lr-lli:t’ so that the variance is between
(1072w F.)? and (10%w;IF)2. For the experiment on the effect of dimension, we use a fixed learning rate
of o = 0.01, while for the experiment on the effect of the initialization scale we use a learning rate of
a = 0.16. In Figure 1, we show the stable rank of the first-layer weights scaled by the initial stable
rank of the network (i.e., we plot StableRank (1 () /StableRank(1W(9)). The line shows the average over
5 independent random initializations with error bars (barely visible) corresponding to plus or minus one
standard deviation.

In Figure 4, we provide additional empirical observations on how the learning rate can affect the initial-
ization scale’s influence on the stable rank of the trained network as we showed in Figure 1. We fix d = 10*
and otherwise use the same setup for Figure 1 described in the previous paragraph. When the learning rate
is the smaller value of @ = 0.01, training for longer can reduce the (stable) rank of the network, while for

the larger learning rate of o = 0.32 most of the rank reduction occurs in the first step of gradient descent.
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In Figure 5, we examine the training accuracy, test accuracy, and stable rank of networks trained on the
binary cluster distribution described above. Here we fix d = 10* and o = 0.01 and otherwise use the same
setup described in the first paragraph. We again consider two settings of the initialization scale: either a
standard deviation of w;nFt or 1/50 x wi-lr—lli:t‘ We again see that the stable rank decreases much more rapidly
when using a small initialization. Note that in both settings we observe a benign overfitting phenomenon as
the training accuracy is 100% and the test accuracy is eventually the (optimal) 85%.

F.2 CIFAR10

We use the standard 10-class CIFAR10 dataset with pixel values normalized to be between 0 and 1 (dividing
each pixel value by 255). We consider a standard two-layer network with 512 neurons with ReL.U activations
with biases and with second-layer weights trained. We train for 7 = 10° steps with SGD with batch size
128 and a learning rate of & = 0.01. Figure 2 shows the average over 5 independent random initializations
with shaded area corresponding to plus or minus one standard deviation.

For the second-layer initialization we use the standard TensorFlow Dense layer initialization, which
uses Glorot Uniform with standard deviation /2/(m + 10) (since the network has 10 outputs). For the
first-layer initialization, we consider two different initialization schemes.

Default initialization. We use the standard Dense layer initialization in TensorFlow Keras. In this case
the ‘Glorot Uniform’ initialization has standard deviation w'F. = /2/(m + d).

init T

Small initialization. We use winit = w;'F, /50.
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