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Abstract

Offline policy evaluation is a fundamental statistical problem in reinforcement learning that involves
estimating the value function of some decision-making policy given data collected by a potentially dif-
ferent policy. In order to tackle problems with complex, high-dimensional observations, there has been
significant interest from theoreticians and practitioners alike in understanding the possibility of function

approximation in reinforcement learning. Despite significant study, a sharp characterization of when we
might expect offline policy evaluation to be tractable, even in the simplest setting of linear function
approximation, has so far remained elusive, with a surprising number of strong negative results recently
appearing in the literature.

In this work, we identify simple control-theoretic and linear-algebraic conditions that are necessary
and sufficient for classical methods, in particular Fitted Q-iteration (FQI) and least squares temporal
difference learning (LSTD), to succeed at offline policy evaluation. Using this characterization, we es-
tablish a precise hierarchy of regimes under which these estimators succeed. We prove that LSTD works
under strictly weaker conditions than FQI. Furthermore, we establish that if a problem is not solvable via
LSTD, then it cannot be solved by a broad class of linear estimators, even in the limit of infinite data.
Taken together, our results provide a complete picture of the behavior of linear estimators for offline
policy evaluation, unify previously disparate analyses of canonical algorithms, and provide significantly
sharper notions of the underlying statistical complexity of offline policy evaluation.

1 Introduction

A central component of a practical sequential decision making system is its ability to cope with high-
dimensional and complex data sources. While feature engineering or discretization techniques can in prin-
ciple be used to address the challenges associated with complex data, these approaches require significant
domain expertise and suffer from a curse-of-dimensionality phenomenon that limit their practical relevance.
Instead, the use of more general function approximation methods for reinforcement learning (RL) promises
to avoid these drawbacks. Consequently, understanding these methods has long been a topic of interest to
theoreticians and practitioners alike.

While the use of nonlinear methods is by now common in the empirical reinforcement learning literature,
the much simpler linear function approximation setting remains somewhat poorly understood theoretically,
despite decades of study. Indeed, recently there has been a surge of research effort focusing on necessary
and sufficient conditions for reinforcement learning with linear function approximation, including the first
provably efficient algorithms for online exploration [Yang and Wang, 2020, Jin et al., 2020] and a number of
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surprising statistical lower bounds that hold even under strong assumptions [Wang et al., 2021c, Weisz et al.,
2021a,b]. This line of work represents substantial progress, yet we still lack a clear picture as to precisely
when and why RL with linear function approximation is tractable.

As a step towards providing this clarity, in this paper we focus on the simpler offline policy evaluation
problem (OPE) in infinite horizon, discounted MDPs, under the assumption that the action-value function
is linearly realizable in some known features. Here, rather than interacting with an environment to maximize
reward as in the standard RL formulation, the goal is to estimate the performance of a given decision-making
policy by leveraging an observational dataset collected by a potentially different policy. OPE is perhaps the
simplest, non-trivial setting in which to study function approximation in RL. It is also practically relevant
in its own right: both OPE and the closely-related offline policy optimization problem represent a promising
avenue toward applying RL in safety-critical domains where active exploration is infeasible. Moreover, the
principles developed for OPE are routinely used in online RL algorithms.

Fitted Q-iteration (FQI) [Ernst et al., 2005, Riedmiller, 2005] and least squares temporal difference
learning (LSTD) [Bradtke and Barto, 1996, Boyan, 1999, Nedić and Bertsekas, 2003] are canonical algorithms
for offline policy evaluation with function approximation. These simple, moment-based methods are some of
the most popular approaches in practice and have served as inspiration for recent empirical breakthroughs
in RL [Mnih et al., 2015]. They have also been the subject of intense theoretical investigation, with early
results on convergence and instability described by Bertsekas and Tsitsiklis [1995], Tsitsiklis and Van Roy
[1996] as well as several more recent results [Antos et al., 2008, Chen and Jiang, 2019, Lazaric et al., 2012].
Nevertheless, a sharp finite sample characterization of the behavior of FQI and LSTD, even in the linear
realizability setting, remains undeveloped.

In this paper, we identify necessary and sufficient conditions for FQI and LSTD to succeed at offline policy
evaluation under linear realizability. In doing so, we establish a precise hierarchy of conditions under which
these methods work; in particular, we prove that LSTD succeeds under strictly weaker assumptions than
FQI. Moreover, if an offline policy evaluation problem is not solvable via LSTD, then it cannot be solved by
any linear, moment-based method (see Definition 4.1) even in the limit of infinite data. Our characterization
draws upon ideas from the theory of Lyapunov stability and provides a new, unifying perspective on the
statistical complexity of offline policy evaluation. In particular, we show how traditional quantities, such as
the “effective horizon”, fail to capture the true complexity of the problem (Sections 3.1 and 4.1) and propose
instance-dependent measures which are significantly sharper. Furthermore, our results unify previously
disparate analyses for FQI and LSTD as our conditions are implied by prior assumptions (Sections 3.2
and 4.2). Taken together, our results provide a complete picture of the possibilities and limitations of linear
estimators for offline policy evaluation under linear realizability.

1.1 Linear estimators & the offline policy evaluation problem

Let M := (S,A, P,R, γ) denote an infinite horizon, γ-discounted MDP where S is the set of states, A is the
set of actions, R : S×A → ∆([−1, 1]) is the random reward function, and P : S×A → ∆(S) is the transition
operator, which defines a distribution over states for every pair (s, a). The action-value function Qπ captures
the expected total reward achieved by a randomized policy π : S → ∆(A) from an initial state-action pair
(s, a) when the trajectory is generated such that for each time step h, ah ∼ π(sh) and sh+1 ∼ P (· | sh, ah).

Qπ(s, a) := E

[
∞∑

h=0

γhr(sh, ah) | (s0, a0) = (s, a), π

]
. (1.1)

In the offline policy evaluation problem, we are given a policy π and a dataset {(si, ai, ri(si, ai), s′i, a′i)}ni=1 of
observed transitions and rewards, where the initial pair (si, ai) is sampled from some arbitrary distribution
D, ri(si, ai) ∼ R(si, ai), the next state is sampled from the transition operator s′i ∼ P (· | si, ai), and the next
action a′i ∼ π(s′i) is sampled according to π.1 Our goal is to return an estimate Q̂π of Qπ. For concreteness,
we measure performance via E(s,a)∼D|Q̂π(s, a)−Qπ(s, a)| and we ask that this quantity is vanishingly small

1We “augment” the dataset to include the next state action a′ ∼ π(s′) purely for notational convenience.
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with high probability over the draw of the dataset. For simplicity, we assume that samples are drawn i.i.d.
via the procedure described above.2

As we would like to develop methods that scale to settings where the cardinalities of the sets S and A
are large or infinite, our focus is on understanding policy evaluation using linear function approximation, as
per the following definition:

Assumption 1 (Linear Realizability). Qπ is linearly realizable3 in a known feature map φ : S ×A → Rd if
there exists a vector θ⋆γ ∈ Rd such that for all (s, a) ∈ S ×A, Qπ(s, a) = φ(s, a)⊤θ⋆γ .

Fitted Q-iteration. As mentioned previously, fitted Q-iteration is one of the most popular algorithms
for policy evaluation in practice and can in principle work with any function approximation method. In the
linear case, given a dataset {(si, ai, ri(si, ai), s′i, a′i)}ni=1 and an initial vector θ̂0, FQI iteratively solves least
squares regression problems of the form

θ̂t+1 ∈ argmin
θ

n∑

i=1

(
φ(si, ai)

⊤θ − r(si, ai)− γφ(s′i, a
′
i)

⊤θ̂t

)2
, (1.2)

for some number of rounds T and returns the estimator Q̂π(s, a) := φ(s, a)⊤θ̂T .

Least squares temporal difference learning. In the linear function approximation setting, the vector
θ⋆γ which realizes Qπ in the feature mapping φ satisfies the fixed point equation,4

Σcovθ
⋆
γ = γΣcrθ

⋆
γ + θφ,r. (1.3)

Here, Σcov if the offline feature covariance matrix, Σcr is the cross-covariance matrix between time-adjacent
features, and θφ,r is the mean feature-reward vector. (see Eqs. (1.5) and (2.3) for formal definitions). LSTD
tries to approximate θ⋆γ by computing the plug-in estimate to the closed-form solution to the equation above,

θ̂LS := (I − γΣ̂−1
covΣ̂cr)

†Σ̂−1
covθ̂φ,r = (Σ̂cov − γΣ̂cr)

†θ̂φ,r. (1.4)

and returns Q̂π(s, a) := φ(s, a)⊤θ̂LS [Bradtke and Barto, 1996]. We focus on the unregularized variant of
both of these algorithms. However, similar insights apply to the regularized cases (see Appendix A.7).

1.2 Our contributions

The main result of our work is that we identify simple linear algebraic conditions which exactly characterize
when (and why) linear estimators will succeed at offline policy evaluation under linear realizability of Qπ.
Under these conditions, which we introduce below, we establish upper bounds on the sample complexity of
offline policy evaluation which scale with: (1) for FQI, the operator norm of the solution to a particular
discrete-time Lyapunov equation, and (2) for LSTD, the minimum singular value of an instance-dependent
matrix. In both cases, we illustrate how our results unify previously disparate analyses of these algorithms,
and demonstrate how our new instance-dependent quantities provide sharper notions of the statistical com-
plexity of OPE when compared to bounds that explicitly depend on traditional parameters such as the
“effective horizon”, i.e., 1/(1− γ).

2In particular, extensions to Markovian data, where samples are drawn from an ergodic chain, are fairly well-understood,
see e.g., Mou et al. [2021], Nagaraj et al. [2020]. Overall, the statistical rates in the Markovian setting mimic those obtained
under i.i.d assumptions, up to mixing time factors.

3Note that realizability of Qπ does not imply that the rewards are linearly realizable. We say that rewards are linearly
realizable in a feature mapping φ : S ×A → Rd if there exists θ⋆r ∈ Rd such that for all (s, a) ∈ S ×A, φ(s, a)⊤θ∗r = Er(s, a).

4This fixed point relationship comes from examining the definition of Qπ(s, a) which satisfies, Qπ(s, a) = Er(s, a) + γ ·
EQπ(s′, a′) point-wise over (s, a). The precise equation follows from substituting in Qπ = φ(s, a)⊤θ⋆γ .
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Our conditions can be introduced rather succinctly. For FQI, the key definitions and assumptions are:

Σcov := E
(s,a)∼D

[
φ(s, a)φ(s, a)⊤

]
, Σcr := E

(s,a)∼D
s′∼P (·|s,a), a′∼π(s′)

[
φ(s, a)φ(s′, a′)⊤

]
. (1.5)

Assumption 2 (Stability). The matrix Σcov is full rank and ρ(γΣ−1
covΣcr) < 1.

Here, Σcov is the offline state-action covariance, Σcr is the cross-covariance, γΣ
−1/2
cov ΣcrΣ

−1/2
cov is the

whitened cross-covariance,5 and ρ(A) = maxi |λi(A)| is the spectral radius of the matrix A. The assump-
tion that Σcov is full rank is not fundamental and is included primarily to simplify the presentation.6 If
Assumption 2 holds, we let Pγ be the unique solution (over X) to the Lyapunov equation,

X = (γΣ−1/2
cov ΣcrΣ

−1/2
cov )⊤X(γΣ−1/2

cov ΣcrΣ
−1/2
cov ) + I.

Our first main result is that, under stability, FQI satisfies the following error guarantee:

Theorem 1 (Informal). Let Q̂π(s, a) = φ(s, a)⊤θ̂T , where θ̂T is the T -step FQI solution. Under Assump-
tions 1 and 2, as well as standard regularity assumptions for linear regression, for n large enough,

ED|Qπ(s, a)− Q̂π(s, a)| . cond(Pγ)‖Pγ‖2op
√

d log(1/δ)

n
+O(exp(−T )),

with probability 1− δ. Here, cond(·) and ‖ · ‖op denote the condition number and operator norm.

For the sake of clarity, we have suppressed dependence on universal constants and other quantities
which arise from standard analysis of linear regression in the informal statement of the upper bound. Since
Pγ � I, cond(Pγ) can always be crudely upper bounded by the operator norm, so that the primary factor,
beyond the standard

√
d/n term for linear regression, is the dependence on ‖Pγ‖op. We show in Section 3.2

that, for settings where FQI was previously shown to succeed (e.g., under low distribution shift or Bellman
completeness [Wang et al., 2021a]), stability always holds and ‖Pγ‖op is never much larger than 1/(1 − γ),
demonstrating how our bound recovers and unifies prior results. However, we also find that, in general, this
quantity provides a much sharper notion of complexity for OPE. Indeed, there are simple instances where
‖Pγ‖op is O(1) for all γ ∈ (0, 1), but of course, 1/(1− γ) can be arbitrarily large.

The key insight behind this result is that, in the linear setting, FQI can be written as a power series
in the empirical versions of the second moment matrices described in Eq. (1.5). More precisely, θ̂T =∑T

k=0(γΣ̂
−1
covΣ̂cr)

kΣ̂−1
covθ̂φ,r where θ̂φ,r is obtained by solving a regression for the rewards. The behavior of

the algorithm is governed by the growth of these matrix powers. Using ideas from Lyapunov theory, we show
that if stability holds, then these decay at a geometric rate governed by ‖Pγ‖op and FQI succeeds. On the
other hand, if the spectral radius is greater than one, then these matrix powers grow exponentially, and FQI
will drastically amplify any estimation errors. This leads to the necessity of stability for FQI:

Proposition 3.4 (Informal). If ρ(γΣ−1
covΣcr) > 1, the variance of the FQI solution grows exponentially

with the number of regression rounds T .

Turning to LSTD, while the solution is defined in terms of similar moment quantities to those relevant
for FQI, it solves for θ⋆γ in a more direct manner and hence its behavior is somewhat different. We prove
that LSTD succeeds if the following condition holds:

Assumption 3 (Invertibility). The matrices Σcov and I − γΣ−1
covΣcr are both full rank.

5For any matrix A and invertible matrix L, the eigenvalues of A and L−1AL are identical. Therefore, one could equivalently

state Assumptions 2 and 3 in terms of γΣ
−1/2
cov ΣcrΣ

−1/2
cov .

6For example, the results carry over if all features φ(s, a) lie in a low dimensional subspace.
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Our main result for LSTD is that under invertibility, θ⋆γ is identifiable via LSTD as per the following
informal theorem statement:

Theorem 2 (Informal). Let Q̂π(s, a) = φ(s, a)⊤θ̂LS, where θ̂LS is the LSTD solution. Under Assumptions 1
and 3, as well as standard regularity assumptions for linear regression, if n is large enough,

ED|Qπ(s, a)− Q̂π(s, a)| . 1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )2

√
d log(1/δ)

n

with probability 1− δ. Here, σmin(·) denotes the minimum singular value of a matrix.

This result follows somewhat directly from a perturbation analysis of approximate solutions to the fixed
point equation Eq. (1.3). Perhaps surprisingly, we will see that invertibility is strictly weaker than stability
(Assumption 2), which highlights a fundamental distinction between these two methods. This comparison
also reveals that stability cannot be a necessary condition in any algorithm-independent sense, since LSTD
can succeed without stability. However, complementing Theorem 2, we prove that invertibility is necessary
for a large class of natural estimators, specifically those that rely on low-order moments of the features and
the regression function between features and the rewards (this includes FQI and LSTD). The following lower
bound shows that the value function is unidentifiable by these linear estimators if invertibility does not hold.

Theorem 3 (Informal). Even in the limit of infinite data, any OPE problem for which invertibility does
not hold cannot be solved by a broad class of linear estimators, including FQI and LSTD.

Together with our previous results, this result completes our analysis of linear estimators for offline policy
evaluation under linear realizability. We remark that our results are sharp in the sense that they stipulate
exactly which problems are solvable by linear estimators. They are not necessarily sharp in the sense that
the associated statistical rates for each problem are optimal. We believe that establishing appropriate lower
bounds for these problems is an important direction for future work.

1.3 Related work

RL with function approximation. Analyses of function approximation in reinforcement learning can
be traced to the seminal papers of Bellman and Dreyfus [1959], Bellman [1961], as well as Reetz [1977]
and Whitt [1978]. Schweitzer and Seidmann [1985] were one of the first to consider approximating value
functions using linear combinations of some known set of features. More recently, a number of modeling
assumptions—typically involving strong representational conditions on both the MDP and the features—
that enable statistically efficient online RL with linear function approximation have been proposed, along
with corresponding algorithms [Zanette et al., 2020, Yang and Wang, 2020, Jin et al., 2020].

FQI. Introduced by Ernst et al. [2005] and extended by Riedmiller [2005], fitted Q-iteration has been
analyzed several times in the context of offline policy evaluation. Building off previous studies of approxi-
mate methods in dynamic programming [Antos et al., 2008, Munos, 2007, Gordon, 1999], Chen and Jiang
[2019] establish sample complexity upper bounds for FQI assuming that the corresponding distributions and
MDP satisfy concentrability [Munos, 2003] and Bellman completeness [Szepesvári and Munos, 2005]. While
concentrability conditions are orthogonal to realizability assumptions, completeness is significantly stronger
than mere realizability of value functions. More recent work by Wang et al. [2021a,b] adapts these results
to the linear setting and additionally shows that a “low distribution shift” condition suffices for linear FQI.

LSTD. Initial analysis of least squares temporal difference learning (LSTD) date back to the work of Baird
[1995], Bradtke and Barto [1996], Boyan [1999] and Nedić and Bertsekas [2003]. Since then, the finite sample
performance of the algorithm has been analyzed by Lazaric et al. [2012], Bhandari et al. [2018], Duan et al.
[2021] and its behavior in the offline setting studied by Yu [2010], Li et al. [2021], Mou et al. [2020, 2021],
Pires and Szepesvari [2012]. Tu and Recht [2018] analyze on-policy LSTD for the LQR setting. Miyaguchi
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[2021] studies the behavior of LSTD for OPE in settings where the value function is only approximately
linearly realizable in a known feature mapping φ. We evaluate our contributions in light of these previous
works in Section 4.2.

Other OPE estimators. Apart from these methods, researchers have studied “min-max” algorithms for
OPE which estimate the value of the underlying policy using ideas from the importance sampling literature
[Liu et al., 2018, Uehara et al., 2020, Yin and Wang, 2020]. Xie and Jiang [2021] establish formal guarantees
for the BVFT algorithm which carries out policy evaluation for general nonlinear function classes assuming
realizability, albeit under stronger notions of data coverage (see Assumption 8). Recent work by Zhan et al.
[2022] extends this line of research. They introduce a new algorithm which works under weaker data coverage
assumptions than those in Xie and Jiang [2021]. However, to do so they require additional assumptions on
the expressivity of the underlying class of function approximators. In particular, Zhan et al. [2022], and
the class of minimax algorithms more broadly, rely on a function class that can (at a minimum) realize the
state-occupancy density ratio between the distribution induced by the policy π and the offline distribution
D, which is a distinct condition from linear realizability of Qπ.

Lower bounds under linear realizability. For the finite horizon, policy evaluation setting, Wang et al.
[2021a] illustrate how exponential dependence on the horizon is unavoidable, even if the offline covariance
matrix is robustly full rank. Since then, these bounds have been extended to the discounted, infinite horizon
case by Amortila et al. [2020] and Zanette [2021]. Importantly, Amortila et al. [2020] establish that OPE can
be information-theoretically intractable, even if: 1) all features are bounded, 2) Σcov is full rank, and 3) the
learner has access to infinitely many samples drawn as in Section 1.1. Analogous negative results for online
or generative-model settings have been shown to hold even in the presence of a constant suboptimality gap
[Wang et al., 2021c] or polynomially large action sets [Weisz et al., 2021a,b]. Duan et al. [2020] prove lower
bounds for OPE which hold for general function classes. Foster et al. [2021] illustrate that polynomially many
samples in the size of the state space are necessary for offline policy evaluation, even if concentrability and
realizability both hold. In summary, a clean characterization of when offline policy evaluation is tractable
using linear function approximation has, so far, proven to be quite elusive.

2 Preliminaries

Before delving into our main results, we review some of the relevant definitions and preliminaries.

Notation. We use s ∈ S and a ∈ A to denote states and actions, ⊤ to denote vector or matrix transposes,
and † to denote pseudoinverses. For a matrix X, we let cond(X) := σmax(X)/σmin(X) denote its condition
number, the ratio between the largest and smallest singular values σ(·). For symmetric matrices, A and
B, we use A � B if A − B is positive semidefinite. We let ρ(X) := maxi |λi(X)| be the spectral radius of
a matrix X where λi are the eigenvalues.7 We say that a matrix is stable if its spectral radius is strictly
smaller than 1. For square, stable matrices A, we let dlyap(A) be the solution, over X, to the discrete-time
Lyapunov equation: X = A⊤XA + I. This equation has a solution if and only if ρ(A) < 1 [Callier and
Desoer, 2012]. If the solution exists, it admits the closed-form expression dlyap(A) =

∑∞
j=0(A

⊤)jAj . Lastly,
we say a . b if a ≤ c · b for some universal constant c.

We define the next state-action covariance Σnext and the distribution shift coefficient Cds as

Σnext := E
(s,a)∼D

s′∼P (·|s,a), a′∼π(s′)

[
φ(s′, a′)φ(s′, a′)⊤

]
, Cds := inf{β > 0 : Σnext � βΣcov}. (2.1)

Note that Cds is guaranteed to be finite if Σcov is full rank. Given a dataset {(si, ai, r(si, ai), s′i, a′i)}ni=1 of
n i.i.d. data points drawn according to the data generating process described in Section 1.1, we define the

7Recall that for square, but non-symmetric matrices A, it is in general not true that ρ(A) = σmax(A). However,
ρ(A) ≤ σmax(A) does always hold.
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empirical counterparts of the second-moment matrices defined in Eq. (1.5),

Σ̂cov :=
1

n

n∑

i=1

φ(si, ai)φ(si, ai)
⊤, Σ̂cr :=

1

n

n∑

i=1

φ(si, ai)φ(s
′
i, a

′
i)

⊤, (2.2)

as well as the true, and empirical, mean feature-reward vectors:

θφ,r := EDφ(s, a)r(s, a), θ̂φ,r :=
1

n

n∑

i=1

φ(si, ai)r(si, ai). (2.3)

Linear regression. Next, we introduce moment-type quantities that arise in our analysis of linear regres-
sion. Here, we adopt the approach from Hsu et al. [2012], however, other approaches for analyzing linear
regression will yield the same qualitative results. In particular, we make use of the statistical leverages ρs and
ρs′ . These quantities correspond to the maximum length of features, φ(s, a) and φ(s′, a′), when measured in
the (inverse) covariance norm. Intuitively, they capture the worst-case coverage of the offline distribution D
over directions in feature space.

ρs := sup
(s,a)∈supp(D)

‖Σ−1/2
cov φ(s, a)‖2, ρs′ := sup

(s,a)∈supp(D),
s′∈supp(P (·|(s,a)), a′∈supp(π(s′))

‖Σ−1/2
cov φ(s′, a′)‖2. (2.4)

In addition, we define the variances σ2
cov, σ

2
r , and σ2

cr where,

σ2
cov := ‖E(Σ−1/2

cov φ(s, a)φ(s, a)⊤Σ−1/2
cov )2 − I‖op, σ2

r := E‖Σ−1/2
cov φ(s, a)r(s, a)‖22 − ‖Σ−1/2

cov θφ,r‖22, (2.5)

and σ2
cr is the maximum of the following two quantities,

sup
‖v‖2=1

E
(
v⊤Σ−1/2

cov φ(s′, a′)
)2

‖Σ−1/2
cov φ(s, a)‖22 − ‖Σ−1/2

cov Σ⊤
crΣ

1/2
covv‖22 (2.6)

sup
‖v‖2=1

E
(
v⊤Σ−1/2

cov φ(s, a)
)2

‖Σ−1/2
cov φ(s′, a′)‖22 − ‖Σ−1/2

cov ΣcrΣ
1/2
covv‖22. (2.7)

In Appendix C.3, we prove that σ2
cr and σ2

cov can always be upper bounded in terms of the statistical leverages
and the coefficient Cds.8 However, they can be much smaller in some settings.9 Therefore, for the sake of
generality, we opt to state our bounds in terms of these quantities. Informally, these variance terms measure
how much the corresponding matrices or vectors vary from their means, in the Σ

−1/2
cov geometry.

Throughout our analysis of methods for offline policy evaluation, we will repeatedly make use of the
following concentration result:

Lemma 2.1. For all n & ρ2s log(d/δ), define the estimation errors,

εop := ‖Σ1/2
cov(γΣ̂

−1
covΣ̂cr)Σ

−1/2
cov − γΣ−1/2

cov ΣcrΣ
−1/2
cov ‖op, εr := ‖Σ1/2

cov(Σ̂
−1
covθ̂φ,r − Σ−1

covθφ,r)‖2. (2.8)

With probability 1− δ, Σ̂cov is full rank and εr, εop satisfy the following inequalities:

εop .

√
max(σ2

cr, σ
2
covCds) log(d/δ)
n

+
max(C1/2

ds ρ2s, ρsρs′) log(d/δ)

n

εr .

√
max(‖Σ−1/2

cov θφ,r‖22σ2
cov, σ

2
r) log(d/δ)

n
+

‖Σ−1/2
cov θφ,r‖2ρ2s log(d/δ)

n
.

Later on, we state our upper bounds on the policy evaluation error of FQI and LSTD in terms of these
regression errors εop, εr, with the understanding that they satisfy the high probability upper bounds above.

8On the other hand, σ2
r is always upper bounded by d.

9For example, tighter bounds can be achieved if the distributions are hypercontractive, see Appendix C.3.
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3 Fitted Q-Iteration

In this section, we present our first set of results illustrating how stability (Assumption 2) characterizes the
success of fitted Q-iteration for OPE under linear realizability of Qπ. Following some initial remarks regarding
the functional form of the FQI solution, in Section 3.1, we present our upper bound on the estimation error
of FQI. Later on, in Section 3.2, we illustrate how our Lyapunov stability analysis unifies previous studies of
when FQI succeeds and conclude by discussing lower bounds and limitations of the algorithm in Section 3.3.

FQI preliminaries. From examining the definition of FQI in Eq. (1.2), we see that, at the population
level, the algorithm develops the recursion:

θt+1 = γΣ−1
covΣcrθt +Σ−1

covθφ,r.

Unrolling the recursion above, and setting θ0 = 0, the T -step regression vector is equal to:10

θT =

T∑

k=0

(γΣ−1
covΣcr)

kΣ−1
covθφ,r. (3.1)

Linear realizability of Qπ (Assumption 1) implies that the true weight vector θ⋆γ satisfies the equation,

Σcovθ
⋆
γ = θφ,r + γΣcrθ

⋆
γ . (3.2)

Hence, if I − γΣ−1
covΣcr is invertible, then θ⋆γ = (I − γΣ−1

covΣcr)
−1Σ−1

covθφ,r. We now recall the following fact:

Fact 3.1. If ρ(A) < 1, then the matrix (I −A) is invertible. Moreover, (I −A)−1 =
∑∞

k=0 A
k.

Using this, along with the observation that the spectrum of a matrix is invariant to the choice of basis,
we see that if stability (Assumption 2) holds, then the vector θ⋆γ can also be written as a power series:

θ⋆γ =

∞∑

k=0

(γΣ−1
covΣcr)

kΣ−1
covθφ,r. (3.3)

One of the key insights tying stability and FQI is that, regardless of whether γΣ−1
covΣcr is stable, the FQI

solution at the population level is always equal to the power series in Eq. (3.1). If stability holds, performing
infinitely many exact FQI updates converges to θ⋆γ . However, θ⋆γ is (in general) only equal to this power series
if stability holds, which hints at the necessity of this condition. With these connections between stability
and the functional forms of FQI and θ⋆γ in mind, we now present our upper bounds on the performance of
this algorithm.

3.1 Stability is sufficient for fitted Q-iteration

Theorem 1. Assume that Qπ is linearly realizable (Assumption 1) and that stability holds (Assumption 2).
For εop, εr defined as in Eq. (2.8), if n & ρ2s log(d/δ) and εop ≤ 1/(6‖Pγ‖2op), T -step FQI satisfies,

‖Σ1/2
cov(θ̂T − θ⋆γ)‖2 . cond(Pγ)

1/2‖Pγ‖op · εr + cond(Pγ)‖Pγ‖2op · ‖Σ−1/2
cov θφ,r‖2 · εop

+ cond(Pγ)‖Pγ‖op · ‖Σ1/2
covθφ,r‖2 · exp

(
− T + 1

2‖Pγ‖op

)
. (3.4)

Let Q̂π(s, a) := φ(s, a)⊤θ̂T . Much like in standard analyses of linear regression, from Theorem 1 we
immediately obtain: (1) a bound on ED|Qπ(s, a) − Q̂(s, a)| via Jensen’s inequality since ED(Q

π(s, a) −
10We initialize at 0 for simplicity, but this is not fundamental for the overall analysis of FQI.
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Q̂π(s, a))2 = ‖Σ1/2
cov(θ̂T − θ⋆γ)‖22 and (2) a bound on |Qπ(s, a)− Q̂π(s, a)| for any (s, a) pair since |Qπ(s, a)−

Q̂π(s, a)| ≤ ‖Σ−1/2
cov φ(s, a)‖2‖Σ1/2

cov(θ̂T − θ⋆γ)‖2 via Cauchy-Schwarz.
We defer the full proof to Appendix A.1 and instead summarize the key steps here. The theorem is

essentially a perturbation bound which distinguishes between two sources of error in policy evaluation for
FQI: εr which captures errors in learning the rewards, and the dominant error, εop, which comes from
estimating the transitions. Since under stability, we can write the true vector θ⋆γ as a power series in second

moment matrices (see Eq. (3.3)), and since θ̂T is by definition a truncated power series in the empirical
counterparts of these matrices, we can show that the error between θ⋆γ and θ̂T is bounded by the operator

norm of two power series: one in (γΣ
−1/2
cov ΣcrΣ

−1/2
cov )k and the other in (γΣ̂

−1/2
cov Σ̂crΣ̂

−1/2
cov )k. Lyapunov

arguments directly show that the powers of (γΣ−1/2
cov ΣcrΣ

−1/2
cov ) decay exponentially in k since the matrix is

stable. For the empirical version, we use the fact that any stable matrix A has nontrivial stability margin:
for small enough perturbations ∆, matrices of the form A + ∆ satisfy similar decay rates to A. Thus, we
can bound the two power series by simple geometric series and the perturbation bound follows.

We now highlight some of the salient aspects of the bound.

Coordinate invariance. The bound in Theorem 1 is coordinate-free, in the sense that all problem quanti-
ties are invariant to the basis in which one chooses to represent the features. Linear realizability states that
Qπ(s, a) = φ(s, a)⊤θ⋆γ . Consequently, for any invertible matrix L, it also holds that Qπ(s, a) = φ̃(s, a)⊤θ̃⋆γ
where,

φ̃(·) = Lφ(·) and θ̃⋆γ = L−1θ⋆γ .

Observe that the regression errors (εr and εop) in the data norm, the geometry induced by Σcov, do not
depend on the choice of matrix L, since the variances and statistical leverages are invariant to the coordinate
system (see Lemma 2.1). The invariance of ‖Pγ‖op and cond(Pγ) is perhaps less straightforward, but verified
in the following proposition:

Proposition 3.2. Let L ∈ Rd×d be an invertible matrix and let φ̃(·) = Lφ(·) be the feature mapping in the

new coordinates. Now, define P̃γ := dlyap(γΣ̃
−1/2
cov Σ̃crΣ̃

−1/2
cov ), where

Σ̃cov := E(s,a)∼Dφ̃(s, a)φ̃(s, a)
⊤, and Σ̃cr := E

(s,a)∼D
s′∼P (·|s,a), a′∼π(s′)

φ̃(s, a))φ̃(s′, a′)⊤. (3.5)

Then, ‖Pγ‖op = ‖P̃γ‖op and cond(Pγ) = cond(P̃γ). Furthermore,

γΣ̃−1/2
cov Σ̃crΣ̃

−1/2
cov = γUΣ−1/2

cov ΣcrΣ
−1/2
cov U⊤,

where U ∈ Rd×d is an orthogonal matrix.

Sharpness of ‖Pγ‖op vs 1/(1 − γ). Apart from showing how stability is sufficient for offline policy eval-
uation under linear realizability, another highlight of Theorem 1 is that it introduces a new measure of
problem complexity, ‖Pγ‖op, which is in general significantly sharper than previous complexity measures
traditionally considered in the literature, such as the effective horizon, 1/(1 − γ). The difference between
these two quantities is evident even in very simple settings:

Consider the following MDP (with no actions), where arrows denote transition probabilities:

s0 s1 1
1− p

p
(3.6)

If Er(s0) 6= 0 and Er(s1) = 0, realizability holds with 1 dimensional features: φ(s0) = 1 and φ(s1) = 0.
For D supported just on s0, then γΣ−1

covΣcr = pγ, and Pγ = 1/(1− (pγ)2). If p ≤ 0.7, then for all γ ∈ (0, 1),
‖Pγ‖op ≤ 2, but (1− γ)−1 can be arbitrarily large as γ → 1.
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This example illustrates how there are problems for which ‖Pγ‖op is significantly smaller than 1/(1 −
γ). In the next subsection, we complement this result by illustrating how for settings where FQI was
previously shown to succeed, ‖Pγ‖op is in fact never much worse than 1/(1−γ). Taken together, these results
demonstrate how ‖Pγ‖op provides a sharper notion of the statistical complexity of OPE than 1/(1− γ).

3.2 Contextualizing Lyapunov stability

Having presented our analysis of fitted Q-iteration through the lens of Lyapunov stability, we now illustrate
how this perspective unifies previously disparate analyses of FQI for offline policy evaluation. The central
message of this subsection is that the previously proposed conditions which guarantee that FQI will succeed
at offline policy evaluation directly imply our key assumption that γΣ−1

covΣcr is stable.
Before discussing these connections, we present the following lemma which is closely related to Theorem 1.

It upper bounds the error of FQI assuming particular decay rates on the powers of the whitened cross-
covariance matrix. Although the proof is essentially identical to the previous result, we can obtain sharper
results assuming particular rates of decay, which will be helpful for later comparisons.

Lemma 3.3. Assume n & ρ2s log(d/δ) and let εop and εr be defined as in Eq. (2.8). Under the same
assumptions as Theorem 1, if there exist α > 0 and β ∈ (0, 1) such that for all k ≥ 0,

‖(γΣ−1/2
cov ΣcrΣ

−1/2
cov )k‖op ≤ α · βk, (3.7)

then the T -step FQI solution satisfies the following guarantee. With probability 1− δ, if εop ≤ (1−β)
2α ,

‖Σ1/2
cov(θ̂T − θ⋆γ)‖2 . εr ·

α

1− β
+ εop · ‖Σ1/2

covθφ,r‖2
α2

(1− β)2
+ ‖Σ1/2

covθφ,r‖2
α

1− β
· βT+1. (3.8)

Throughout this section, we will present corollaries of this result, which can be viewed as specializations
of Theorem 1 to particular settings. In each case, we will focus on discussing variants of the perturbation
bound (Eq. (3.8)) which hold under the specific assumptions.

3.2.1 Low distribution shift implies stability

Recent work by Wang et al. [2021b] shows that FQI succeeds at OPE for infinite horizon, discounted problems
if there is low distribution shift. More formally, they prove offline evaluation is tractable if the offline
covariance Σcov has good coverage over the next state covariance Σnext as per the following assumption.

Assumption 4 (Low Distribution Shift). There is low distribution shift if Cds < 1/γ2.

Note that if D is the stationary measure for π, then Σcov = Σnext and Assumption 4 holds with Cds = 1
(recall the definition of Cds in Eq. (2.1)). Under this low distribution shift condition, we prove:

Corollary 3.1. If there is low distribution shift (Assumption 4) and if Σcov is full rank, then for all j ≥ 0,

‖(γΣ−1/2
cov ΣcrΣ

−1/2
cov )j‖op ≤ (

√
Cdsγ2)j . (3.9)

Hence, ‖Pγ‖op ≤ 1/(1−γ
√Cds) and Assumption 2 holds.11 Furthermore, for γds := γ

√Cds, if Qπ is linearly
realizable (Assumption 1), n & ρ2s log(d/δ), and εop ≤ 1/2(1− γds), then T -step FQI satisfies:

‖Σ1/2
cov(θ̂T − θ⋆γ)‖2 .

1

1− γds
εr +

1

(1− γds)2
‖Σ−1/2

cov θφ,r‖2 · εop + ‖Σ−1/2
cov θφ,r‖2

1

1− γds
γT+1
ds .

While low distribution shift implies stability, the converse is not true. It is not hard to come up with
examples where γΣ

−1/2
cov ΣcrΣ

−1/2
cov is stable, yet the distribution shift coefficient is larger than 1/γ2. We

present such an example later on in Proposition 4.4.

11A matrix A is stable if and only if limk→∞ Ak = 0.
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3.2.2 Bellman completeness implies stability

In addition to the low-distribution shift setting, FQI is known to succeed in both finite horizon and discounted,
infinite horizon settings under a representational condition known as Bellman completeness [Szepesvári and
Munos, 2005, Wang et al., 2021a,b]:

Assumption 5 (Bellman completeness). A feature map φ is Bellman complete for an MDP M, if for all
θ ∈ Rd, there exists a vector θ′ such that for all (s, a) ∈ S ×A,

φ(s, a)⊤θ′ = E [r(s, a)] + γ E
s′∼P (·|s,a),a′∼π(s′)

φ(s′, a′)⊤θ.

Intuitively, completeness asserts that Bellman backups of linear functions of the features again lie in
the span of the features. It has previously been observed [Wang et al., 2021a,b] that completeness implies a
certain “non-expansiveness” of Bellman backups. This non-expansiveness is the key step towards establishing
the connection to stability and is formalized in the following result:

Corollary 3.2. If φ is Bellman complete (Assumption 5) and Σcov is full rank, then for all j ≥ 0,

‖(γΣ−1/2
cov ΣcrΣ

−1/2
cov )j‖op ≤ ρsγ

j . (3.10)

Hence, ‖Pγ‖op ≤ ρs/(1− γ), and Assumption 2 holds. Furthermore, if Qπ is linearly realizable (Assump-
tion 1), n & ρ2s log(d/δ), and εop ≤ (1− γ)/(2ρs), T -step FQI satisfies: 12

‖Σ1/2
cov(θ̂T − θ⋆γ)‖2 .

ρs
1− γ

· εr +
ρ2s

(1− γ)2
εop +

ρs
1− γ

γT+1.

Again, as with low distribution shift setting, the converse statement is not true. There are OPE instances
which are stable, but not Bellman complete (Proposition 4.4)

The tabular case. To help contextualize this result, and build some intuition between Bellman complete-
ness and stability, we can consider the case of the tabular MDP. The tabular MDP is perhaps the simplest
setting in which the Bellman completeness holds. In our setup, it means that S and A are both finite sets
and that the feature mapping is equal to φ(s, a) = esa ∈ R|S||A| for all s and a (each input maps to a distinct
standard basis vector). The matrix Σcov being full rank means that every pair (s, a) ∈ S × A is in the
support of the offline distribution D. A direct calculation shows that

γΣ−1
covΣcrΣ

−1
cov = γPπ,

where Pπ ∈ R|S||A|×|S||A| is a row-stochastic matrix with nonnegative entries. Each row in this matrix is
indexed by a pair (s, a). Entries in each row describe the probability that the next state action pair is (s′, a′)
given that the current pair is (s, a). Because the spectral radius of any stochastic matrix is 1, when we

multiply by γ, we get that ρ(γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) < 1 and stability holds.

3.3 Stability is necessary for fitted Q-iteration

We conclude our analysis of FQI by showing that our characterization of when the algorithm succeeds is
exactly sharp, in an instance-dependent sense. If stability fails that is, ρ(γΣ−1

covΣcr) > 1, then estimation
procedures of this sort are guaranteed to have exponentially large variance.

Proposition 3.4. Let M be any infinite horizon, discounted MDP with corresponding offline distribution
D which satisfies the following properties: Σcov is full rank and γΣ−1

covΣcr has an eigenvalue λ with |λ| > 1.

Then, approximations of the T -step FQI solution, Q̂π(s, a) = φ(s, a)⊤θ̂T where,

θ̂T :=

T∑

k=0

(γΣ−1
covΣcr)

kΣ−1
covθ̂φ,r, θ̂φ,r := θ⋆φ,r + z,

12Completeness implies realizability of rewards which in turn implies ‖Σ−1/2
cov θφ,r‖22 = Er(s, a)2 ≤ 1, see Lemma A.6.
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and z is a zero-mean, random vector satisfying Λ := Ezz⊤ ≻ 0, have exponentially large variance,

E‖θ̂T − Eθ̂T ‖22 ≥ σmin(Λ) ·
(
λT+1 − 1

λ− 1

)2

.

This proposition corroborates empirical findings on the instability of FQI by Wang et al. [2021b] and
shows that an idealized variant of FQI incurs exponentially large variance (in the number of rounds T ) for an
instance that results in an unstable “backup operator” γΣ−1

covΣcr. By standard bias-variance decomposition,
this directly implies exponentially large error for estimating θ⋆γ . Although, note that since stability does
not hold, there is no guarantee that θ⋆γ can be written as a power series, so it may not even be the limiting
solution of population FQI as discussed at the beginning of this section.

The algorithm is idealized in two senses, both of which are relatively minor. First, it has perfect knowledge
of Σcov and Σcr which does not happen in practice, but is favorable to the algorithm, resulting in a stronger
lower bound. Second, the error in estimating the reward is assumed to have a full-rank covariance; this arises
naturally whenever rewards are perturbed with centered Gaussian noise since Σcov is full rank. Thus, the
result shows that even when the dynamics are known, errors in estimating the rewards will be exponentially
magnified, resulting in overall divergence of the algorithm.

While the theorem does not consider the marginally stable case where ρ(γΣ−1
covΣcr) = 1, we note in the

proof that if the spectral radius is exactly one, the variance can grow at least linearly with T . However,
marginal stability introduces other issues as we illustrate later on.

At this point, it is natural to wonder whether stability is necessary not just for the success of this
algorithm, but rather for the success of any algorithm at offline policy evaluation. It turns out that this is
is not the case. As we will show in the following section, least squares temporal difference learning works
under strictly weaker conditions than fitted Q-iteration.

4 Least Squares Temporal Difference Learning

Building on our analysis of FQI, we now analyze how a closely related algorithm, least squares temporal
difference learning, overcomes some of its shortcomings in the context of offline policy evaluation. Similarly
to the previous section, we start by illustrating how invertibility is sufficient for LSTD in Section 4.1, and
discuss connections to previous sufficient conditions in Section 4.2. Lastly, we conclude in Section 4.3 by
presenting lower bounds which show that if invertibility does not hold, then the offline policy evaluation
problem cannot be solved using linear estimators (FQI and LSTD being special cases), even asymptotically.

4.1 Invertibility is sufficient for LSTD

Theorem 2. Assume that realizability and invertibility (Assumptions 1 and 3) both hold and let εr, εop be

defined as in Eq. (2.8). If n & ρ2s log(d/δ) and εop ≤ σmin(I−γΣ
−1/2
cov ΣcrΣ

−1/2
cov )/2, then the LSTD solution,

θ̂LS := (I − γΣ̂−1
covΣ̂cr)

†Σ̂−1
covθ̂φ,r,

satisfies the following error guarantee:

‖Σ1/2
cov(θ

⋆
γ − θ̂LS)‖2 .

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

· εr +
1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )2

‖Σ−1/2
cov θφ,r‖2 · εop.

(4.1)

As per our discussion immediately following Theorem 1, the upper bound on ‖Σ1/2
cov(θ⋆γ − θ̂γ)‖2 again

directly implies guarantees on |Qπ(s, a)−Q̂π(s, a)|, both pointwise and in expectation, where now Q̂π(s, a) =

φ(s, a)⊤θ̂LS. On a technical level, the proof follows from standard perturbation bounds on matrix inverses.
Our upper bound for LSTD has qualitatively similar properties to that presented for FQI in Theorem 1.
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A sharper notion of problem complexity. Much like ‖Pγ‖op for FQI, the magnitude of our upper
bound for the policy evaluation error of LSTD is determined by an instance-dependent quantity: 1/σmin(I−
γΣ

−1/2
cov ΣcrΣ

−1/2
cov ). As before this term is: (1) never much larger than 1/(1 − γ) for settings where OPE

was previously shown to be tractable (see the next subsection for further discussion of this point), and
(2) is often significantly smaller. For example, for the OPE instance detailed in (3.6), if p ≤ .7, then

1/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) ≤ 4 for all γ ∈ (0, 1).

Coordinate invariance. From Proposition 3.2, we know that for any choice of full rank matrix L and
features φ̃(·) = Lφ(·), the whitened cross-covariance in these new features, γΣ̃−1/2

cov Σ̃crΣ̃
−1/2
cov (see definition in

Eq. (3.5)) is equal to γUΣ
−1/2
cov ΣcrΣ

−1/2
cov U⊤ for some orthogonal matrix U . Since conjugating by an orthogonal

matrix preserves singular values, 1/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) is invariant to the choice of coordinates.

4.2 Contextualizing Invertibility

Paralleling our discussion of stability for FQI, we now discuss how our notion of invertibility relates to
previous conditions analyzed in the literature. Furthermore, we will present how stability implies invertibility,
establishing a precise “nesting” between the classes of OPE problems which satisfy each condition.

4.2.1 Stability ( Invertibility

Proposition 4.1. If Σcov is full rank and γΣ
−1/2
cov ΣcrΣ

−1/2
cov is stable (Assumption 2), then I−γΣ

−1/2
cov ΣcrΣ

−1/2
cov

is invertible (Assumption 3). Furthermore,

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

. cond(Pγ)
1/2‖Pγ‖op. (4.2)

The main message of this proposition is twofold. First, for the case of linear function approximation, any
OPE problem that is solvable via FQI, must also be solvable via LSTD. Second, from Eq. (4.2) we see that

main complexity measure for Theorem 2, 1/σmin(I−γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) is never larger than the corresponding

upper bound for FQI in Theorem 1, cond(Pγ)
1/2‖Pγ‖op.

Interestingly enough, while stability implies invertibility, the converse is not true. There exist problems
for which I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov is invertible, but γΣ

−1/2
cov ΣcrΣ

−1/2
cov is not stable. For example, consider the

following 2 state MDP, with no actions:

s0 s1 1
1

If we set R(s0) = R(s1) = Unif({±1}), and φ(s0) = 1, φ(s1) = 2, then this OPE instance is trivially linearly
realizable with θ⋆γ = 0. If the offline distribution D places mass p on s0 and 1 − p on s1, it is easy to see

that I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov is invertible for all p, γ ∈ (0, 1). However, for p = γ = .9, γΣ−1/2

cov ΣcrΣ
−1/2
cov is at

least 3/2, hence stability does not hold and FQI will necessarily diverge. Together, these results establish a
separation between the set of problems solvable via FQI and those solvable via LSTD.13

Moreover, for the set of previously analyzed settings where stability holds, we can establish quantitative
upper bounds on 1/σmin(I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov ) illustrating how this quantity is comparable to 1/(1− γ).

Corollary 4.1. Assume Σcov ≻ 0. If there is low distribution shift (Assumption 4), then for γds := γ
√Cds,

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

≤ 1

1− γds
.

13The careful reader might observe that the main reason why FQI fails in this example is that the algorithm is sensitive to
the scale of the next state features. For instance, stability (and realizability) would hold if |φ(s1)| < 1.
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Moreover, if Bellman completeness holds (Assumption 5), then

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

≤ ρs
1− γ

.

This result follows from observing that 1/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) = ‖(I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov )−1‖op.

Since stability holds for both of these settings, we can use Fact 3.1 to write (I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )−1 as an

infinite power series in γΣ
−1/2
cov ΣcrΣ

−1/2
cov . Applying the triangle inequality and the bounds from Eqs. (3.9)

and (3.10) on the powers of γΣ−1/2
cov ΣcrΣ

−1/2
cov finishes the proof of this corollary.

4.2.2 Other connections

Recent work by Mou et al. [2020] analyzes oracle inequalities for solving projected fixed point equations, of
which the Bellman equation (Eq. (3.2)) is a special case. For the offline policy evaluation setting, they prove
that a stochastic approximation variant of LSTD succeeds if the following condition holds:

Assumption 6 (Symmetric Stability). The matrix Σcov is full rank, and γΣ
−1/2
cov ΣcrΣ

−1/2
cov satisfies

κ :=
1

2
λmax(γΣ

−1/2
cov ΣcrΣ

−1/2
cov + (γΣ−1/2

cov ΣcrΣ
−1/2
cov )⊤) < 1.

Here, λmax denotes the maximal eigenvalue of a matrix.14 In their paper, the authors remark how
Assumption 6 directly implies that I−γΣ

−1/2
cov ΣcrΣ

−1/2
cov is invertible. Amongst other quantities, their bounds

scale with 1/(1− κ). This quantity is always at least as large as 1/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ).

Proposition 4.2. If Assumption 6 holds, then I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov is invertible and

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

≤ 1

1− κ
.

Recent work by Li et al. [2021] extends the stochastic approximation analysis from Mou et al. [2020] to
incorporate variance reduction techniques. Their upper bounds directly assume invertibility, but also have
explicit dependence 1/(1− γ) which can be quite loose in certain settings as detailed earlier.

Apart from these analyses, Kolter [2011] proves that LSTD succeeds in the offline setting if a certain
linear matrix inequality holds:

Assumption 7 (Contractivity). The matrix Σcov is full rank and together with Σcr satisfies,

[
Σcov Σcr

Σ⊤
cr Σcov

]
� 0.

A simple Schur complement argument illustrates that this assumption from Kolter [2011] implies that
the whitened cross covariance has operator norm strictly less than 1. Since the spectral radius of a matrix
is always smaller than its operator norm, this condition directly implies that γΣ

−1/2
cov ΣcrΣ

−1/2
cov is stable

(Assumption 2) and that I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov is invertible (Assumption 3).

Proposition 4.3. If Assumption 7 holds, then ‖γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖op < 1 and stability holds.

As in the case of FQI, we see how our characterization of LSTD in terms of invertibility neatly unifies
previous analyses of when this algorithm succeeds in the offline setting. Furthermore, our invertibility-based
analysis strictly subsumes these previous studies. There exist problems for which stability and invertibility
hold but these other conditions (e.g., low distribution shift, Bellman completeness, etc.) do not.

14The matrix in Assumption 6 is symmetric so all eigenvalues are real and the maximum is well defined.
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Proposition 4.4. For each of the following cases, there exists an offline policy evaluation problem defined
by an MDP M, an offline distribution D, and a target policy π such that Qπ is linearly realizable in a feature
mapping φ (Assumption 1 holds) where:

• Stability and invertibility both hold, yet low distribution shift (Assumption 4) does not.

• Stability and invertibility both hold, yet Bellman completeness (Assumption 5) does not.

• Stability and invertibility both hold, yet symmetric stability (Assumption 6) does not.

• Stability and invertibility both hold, yet contractivity (Assumption 7) does not.

In short, there is a nontrivial gap between the problems we knew could be solved via previous analyses
and the ones we know we can solve in light of our work.

4.3 Invertibility is necessary for all linear estimators

We finish our presentation of LSTD by proving that invertibility is not just sufficient, it is also strictly
necessary for LSTD, as well as for a broad class of “linear” estimators. To do so, we first formally define
what we mean by linear estimators:

Definition 4.1 (Population Linear Estimator). Let Alg be a deterministic algorithm which given an infinite
horizon, discounted MDP M, a distribution D over S×A, and a policy π returns a function Q̂π : S×A → R.
Furthermore, let (M,D, π) and (M,D, π) be two OPE instances such that:

• The corresponding action value functions Qπ, Q̄π are both linearly realizable in a feature map φ.

• The covariance, cross-covariance and mean feature-reward vectors (as defined in Eqs. (1.5) and (2.3))
are identical in (M,D, π) and (M,D, π):

Σ̄cov = Σcov, Σ̄cr = Σcr, θ̄φ,r = θφ,r, EDr(s, a) = EDr(s, a).

We say that Alg is a population linear estimator if Alg(M,D, π) = Alg(M,D, π).

While our focus has been on studying the finite sample performance of estimators for OPE, in this defini-
tion we choose to catalogue algorithms based on their asymptotic behavior so as to neatly abstract technical
modifications like variance reduction. These techniques introduce differences in finite sample behaviors, but
are not essential to the overall identifiability concerns that are the focus of this subsection.

Intuitively, linear estimators are those whose population-level solution depends on the low-order moments
of the data. These moments correspond to the quantities which appear in the solution to the projected
Bellman equation:

Σcovθ
⋆
γ = θφ,r + γΣcrθ

⋆
γ .

From their definitions in Eqs. (1.4) and (3.1), we see that common estimators such as LSTD and FQI both
satisfy this definition. Interestingly, not all known, or least-squares-like, estimators are linear (e.g Bellman
Residual Minimization). We will discuss these after presenting the lower bound.

Theorem 3. Let M = (S,A, P,R, γ) be any MDP with associated offline distribution D with rewards
uniformly bounded by 1 (i.e., sup(s,a)∈S×A |r(s, a)| ≤ 1) such that:

• Qπ(s, a) is linearly realizable in φ.

• Σcov is full rank.

• I − γΣ−1
covΣcr is rank deficient.
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Then, there exists a different MDP M = (S,A, P,R, γ), with identical states, actions, and transitions, and
whose reward distribution R is uniformly bounded by 2, such that for the same offline distribution D:

• The Q-function for π in M, Q̄π, is linearly realizable in the same feature mapping φ.

• The covariance, cross-covariance, next state covariance, and mean feature-reward vector in M are
identical to their counterparts in M:

Σ̄cov = Σcov, Σ̄cr = Σcr, Σ̄next = Σnext, θ̄φ,r = θφ,r.

• However, the Q functions are different:

ED(Q
π(s, a)− Q̄π(s, a))2 & σmin(Σcov) / sup

(s,a)∈S×A
‖φ(s, a)‖22.

Consequently, if we define LE as the set of population linear estimators which satisfy Definition 4.1, we have
that

inf
Alg∈LE

sup
(M′,D′,π′)∈N

ED(Q
′π(s, a)− Q̂π(s, a))2 & σmin(Σcov) / sup

(s,a)∈S×A
‖φ(s, a)‖22.

where Q̂π = Alg(M′,D′, π′) and N = {(M,D, π), (M,D, π)}

In other words, this theorem states that for any OPE instance where I − γΣ−1
covΣcr, or equivalently,

I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov , is rank deficient, we can perturb the rewards to construct an alternative instance with

matching low order moments. Consequently, any population linear estimator, such as LSTD or FQI, will
return the same estimate Q̂π in both cases. Yet, since the Q-functions are distinct, they will necessarily
converge to the wrong answer in one case. Note that the alternative instance M has identical states, actions,
and transitions. Therefore, any function of these quantities, not just the ones explicitly listed above, will
be the same in M and M. Together with Theorem 2, this result illustrates how our characterization of the
settings where LSTD succeeds is exactly sharp in an instance-dependent (local) sense.

4.3.1 Going beyond linear estimators

Bellman residual minimization. Bellman residual minimization attempts to estimate the value of a
decision making policy by solving the following optimization problem, defined here at the population level:

θBRM ∈ argmin
θ

E
(s,a)∼D,s′∼P (·|s,a),a′∼π(s′)

(φ(s, a)⊤θ − r(s, a)− γ · φ(s′, a′)⊤θ)2.

In the linear function approximation setting, the BRM solution is equal to

θBRM = (Σcov − γΣcr − γΣ⊤
cr + γ2Σnext)

†(θφ,r − γEφ(s′, a′)r(s, a)).

The key difference with regards to previously analyzed estimators is that BRM depends on the correlation
between the next state feature vector φ(s′, a′) and the reward. However, FQI and LSTD only depend on the
correlation θφ,r = Eφ(s, a)r(s, a) between the current state and the reward.

To the best of our knowledge, there is no exact characterization of when BRM succeeds at offline policy
evaluation under linear realizability. In particular, it is not sufficient for the matrix,

Σcov − γΣcr − γΣ⊤
cr + γ2Σnext,

to be invertible. On the other hand, it is well-known that BRM can be inconsistent if the dynamics of the
MDP are not deterministic. In general, this algorithm requires use of the double sampling trick and the
ability to reset the environment to particular states via a simulator. We provide a more detailed discussion
of these issues in Appendix B.6 and refer the interested reader to [Baird, 1995, Saleh and Jiang, 2019].
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Algorithm independent limits of OPE Given the negative result from Theorem 3, a natural question
to ask is: what are the algorithm-independent limits for OPE under linear realizability? We close this section
with a brief discussion of how our work provides insight into this question.

We start by pointing out that there are settings where invertibility fails and for which offline policy
evaluation is information-theoretically impossible. That is, OPE is not solvable regardless of the choice of
estimator or the number of samples observed. This observation follows from the construction in Amortila
et al. [2020]. We reproduce their result for the sake of completeness:

s0 s1 1
1

There are 2 states and no actions. The feature map is defined as φ(s0) = γ and φ(s1) = 1. The rewards
are Er(s0) = 0 and Er(s1) = r⋆ 6= 0. Realizability holds for any choice r⋆ with θ⋆γ = r⋆/(1 − γ). If the
offline distribution D is supported just on s0, then Σcov = γ2, Σcr = γ and I − γΣ−1

covΣcr = 0. Hence,
invertibility fails for this problem. Furthermore, because the nonzero reward r⋆ is never observed under the
offline distribution D, OPE is impossible even in the limit of infinite data. 15 In short, this example shows
that if invertibility fails, then OPE cannot be solved in the worst case. However, there are problems where
invertibility fails, yet offline policy evaluation is still possible via nonlinear estimators.

Introduced by Xie and Jiang [2021], the BVFT algorithm is a statistically, but not computationally,
efficient algorithm for offline policy evaluation using a general function class F under two assumptions: (1)
Qπ is realizable by a function in the class F and (2) the offline distribution D and the MDP dynamics satisfy
a strong data coverage condition referred to as pushforward concentrability.

Assumption 8 (Pushforward Concentrability, Xie and Jiang [2021]). An MDP M and offline distribution
D satisfy pushforward concentrability if:

• The offline distribution D has strictly positive mass on all (s, a) ∈ S ×A: PD(s, a) > 0.

• There exists a constant 1 ≤ CA < ∞ such that for any (s, a) ∈ S ×A, PD(a | s) ≥ 1/CA.

• The exists a constant 0 < CS < ∞ such that for all s, s′ ∈ S and a ∈ A.16

P (s′ | s, a)
PD(s′)

≤ CS .

In the linear function approximation setting, realizability of Qπ in F reduces to our realizability condition
(Assumption 1). However, pushforward concentrability is in general distinct from stability or invertibility.
That is, for problems that are linearly realizable, pushforward concentrability does not imply, nor is im-
plied by, the assumption that σmin(I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov ) > 0. Therefore, there exist settings where linear

estimators may fail, yet BVFT can succeed and vice versa.
To see this, we consider a variation of the MDP defined just above. The dynamics are identical, but we

alter the reward function and the feature mapping. In particular, here we choose the feature map φ(s0) = 1
and φ(s1) = 2/γ. If we set the rewards to have nonzero variance and satisfy Er(s1) = r⋆, Er(s0) =

−γ
2(1−γ)r

⋆,
then this MDP is linearly realizable with θ⋆γ = γ

2(1−γ)r
⋆. For any γ ∈ (0, 1), a simple continuity argument

proves that there always exists a p ∈ (0, 1) such that if the offline distribution places mass p on s0 and 1− p

on s1, Σcov is full rank and γΣ
−1/2
cov ΣcrΣ

−1/2
cov = 1. Therefore, realizability and pushforward concentrability

both hold, but invertibility does not. For the converse direction, it is not hard to see how one might
construct examples where linear realizability and invertibility both hold, but Assumption 8 does not. The
first condition asserting that D be supported on all states and actions is particularly stringent.17

15We can check that invertibility holds if the distribution D places nonzero mass on the second state s1.
16We omit the last assumption on the initial state distribution from Xie and Jiang [2021] as it is not essential for the purposes

of our discussion.
17In this construction, we have departed from our assumption that sups,a |r(s, a)| < 1 since Er(s, a) is on the order of

Ω((1 − γ)−1). However, the magnitude of the rewards should not affect the identifiability of Qπ , only the estimation rate for
quantities like εop and εr.
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Recall from the construction in Theorem 3, that for any OPE instance where invertibility fails, the
alternative M has exactly the same states and transitions. Therefore, any estimator that outperforms linear
methods must necessarily consider nonlinear or higher-order interactions between features and rewards.
Interestingly enough, a simple tabular method, which ignores the feature mapping φ and directly estimates
the rewards, successfully approximates the value function in this example.

5 Offline Policy Evaluation without Realizability

Throughout our presentation thus far, our main focus has been on understanding exactly when and why
various popular estimators succeed at offline policy evaluation, under the assumption that the action value
function exactly satisfies the linear realizability condition. Of course, in practice, we might not expect linear
realizability to hold exactly, but rather only approximately.

As a sanity check, we therefore investigate how the performance of FQI and LSTD degrade if the relevant
function approximation guarantees are weakened. Relative to previous results in this paper, the results in
this section are more exploratory and speculative. We leave the problem of generating a more complete
understanding of OPE under misspecification to future work. For simplicity, here we analyze the behavior
of these estimators under an ℓ∞ guarantee on the error of the feature mapping φ.

Definition 5.1 (Approximate Realizability). We define θ⋆∞ as the vector that minimizes the worst-case error
with respect to Qπ. Formally, θ⋆∞ is the solution to the following optimization problem, where φ : S×A → Rd:

θ⋆∞ ∈ argmin
θ∈Rd

sup
(s,a)∈S×A

|Qπ(s, a)− φ(s, a)⊤θ| (5.1)

We define the approximation error of θ⋆∞ as, ε∞ := minθ∈Rd sup(s,a)∈S×A |Qπ(s, a)− φ(s, a)⊤θ|.
Since the rewards are always bounded, ε∞ is trivially always bounded by 1/(1− γ). On the other hand,

if ε∞ = 0, Assumption 1 holds, and we recover the linear realizability setting that has been the main focus
of this paper. Values of ε∞ interpolating between these two extremes measure the extent to which the value
function Qπ can be expressed as a linear function of the features φ, in a worst case sense.

Using this definition, we prove the following proposition which, together with Theorems 1 and 2, bounds
the error of FQI and LSTD under misspecification.

Proposition 5.1. Assume that invertibility (Assumption 3) holds and let Q̂π(s, a) = φ(s, a)⊤θ̂ be an esti-
mator satisfying,

‖Σ1/2
cov(θ

⋆
fp − θ̂)‖2 ≤ εfp for θ⋆fp := (I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )−1Σ1/2

covθφ,r.

Then, for any (s, a) ∈ S ×A,

|Qπ(s, a)− Q̂π(s, a)| . ‖Σ−1/2
cov φ(s, a)‖2(εfp +

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

ρsε∞) + ε∞. (5.2)

The main message of this proposition, is that if linear realizability fails, but invertibility still holds, then
the performance of LSTD and other linear estimators degrades gracefully with the level of misspecification.

To help parse the result, we can walk through each of the terms appearing on the right hand side of
Eq. (5.2). The first source of error, captured in εfp, is statistical in nature. It arises from bounding the
statistical error inherent in estimating Qπ by approximating the fixed point solution to the (projected)
Bellman equation, θ⋆fp. Note that controlling this term is the precisely the main focus on the previous results
upper bounding the error of LSTD and FQI.

Because θ⋆γ , as defined in Eq. (1.3), equals θ⋆fp, if invertibility holds, then for large enough n, Theorem 2
proves that LSTD return a vector such that, with probability 1− δ,

εfp .
1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

· εr +
1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )2

‖Σ−1/2
cov θφ,r‖2 · εop
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Likewise, Theorem 1 shows that if stability holds, then for large enough n, performing T -steps of FQI
return a solution θ̂T such that with probability 1− δ,

εfp . cond(Pγ)
1/2‖Pγ‖op · εr + cond(Pγ)‖Pγ‖2op · ‖Σ−1/2

cov θφ,r‖2 · εop +O(exp(−T )).

As we might expect, this statistical error, εfp becomes vanishingly small as the number of samples goes to
infinity, regardless of whether Qπ is linearly realizable.

The second set of terms in Proposition 5.1, depending on ε∞, come from the fact that Qπ cannot be
expressed as a linear function of the features φ. Consequently, this term does not go to zero as the number of
samples becomes large. This approximation error is amplified by a factor of ρs/σmin(I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov ).

Since this is only an upper bound, we cannot assert that these multiplicative factors are necessary. However,
the dependence on the statistical leverage ρs is reminiscent of previous upper bounds from the linear bandits
literature [Lattimore et al., 2020] where the approximation error is also amplified by a factor of

√
d.18 Du

et al. [2019] and Van Roy and Dong [2019] provide similar lower bounds under approximate misspecification
of the relevant feature mappings.

In any case, beyond the specific scaling on the various error sources, the main take away message from
this result is that FQI and LSTD are reasonable estimators to use beyond the linear realizability setting.
Under the necessary assumption that invertibility (or stability) hold, the extent to which these methods
estimate the underlying value functions is only mildy affected by the approximation error ε∞. As alluded to
previously, the results in this section are not the focus of our work. We primarily view them as a first step
towards a more complete understanding of offline policy evaluation in the absence of realizability.

6 Discussion

In this work, we characterize the exact limits of linear estimators for offline policy evaluation, under the
assumption that the value function is linearly realizable in some known set of features. Our stability and
invertibility based analyses introduce new, sharper notions of complexity for this classical setting and provide
a simple, unifying perspective which brings together previously disparate analysis of popular algorithms.

Two extensions to our results pertain to the finite horizon setting and to policy optimization. As a
starting point, we have focused on the infinite horizon, discounted setting as the conditions there are cleaner
than in the finite horizon case. Nevertheless, we conjecture that Lyapunov stability and invertibility can
be used to analyze finite horizon problems as well. Regarding policy optimization, understanding when
this task is possible under linear realizability is an important direction for future work. We hope that our
characterization of linear estimators for policy evaluation provides a useful perspective on this closely related
problem.

Apart from these extensions, it would be valuable to study quantitative, instance-dependent lower bounds
on the sample complexity necessary for offline policy evaluation under linear realizability. In particular, our
characterization of linear estimators is sharp in the sense that we precisely determine when the value function
of a policy is identifiable (alternatively, learnable) using classical methods. Having established that a problem
is learnable, it is interesting to understand whether the estimation rates for the various algorithms are sharp
in a worst case or instance dependent sense.
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A Supporting Arguments for Section 3: FQI

A.1 Proof of Theorem 1: stability is sufficient for FQI

The existence of Σ̂cov and the upper bounds on the regression errors εr and εop are guaranteed by Lemmas C.3
and C.4. To analyze the error of FQI, we introduce the shorthand,

A := γΣ−1
covΣcr, Â = γΣ̂−1

covΣ̂cr, θ⋆t :=

t∑

k=0

Akθ⋆0 , θ̂t :=

t∑

k=0

Âkθ̂0,

wt := θ̂t − θ⋆t , ∆ := Â−A,

where θ̂0 = Σ̂−1
covθ̂φ,r and θ⋆0 = Σ−1

covθφ,r. Using this notation, by stability, we observe that θ⋆γ = θ⋆∞, and we
can write the errors vectors of the t-step FQI solution as,

Σ1/2
cov(θ

⋆
γ − θ̂t) = Σ1/2

cov

∞∑

k=t+1

Akθ⋆0 +Σ1/2
covwt. (A.1)

Next, we develop the recursion in wt,

wt+1 =

t+1∑

j=0

Âj θ̂0 −
t+1∑

j=0

Ajθ⋆0

= Âθ̂t + θ̂0 −Aθ⋆t − θ⋆0

= Âwt +∆θ⋆t + w0.

Unrolling the recursion and multiplying on the left by Σ
1/2
cov , we get that

Σ1/2
covwt+1 =

t+1∑

j=0

(
Σ1/2

covÂΣ
−1/2
cov

)j
Σ1/2

covw0 +

t∑

j=0

(
Σ1/2

covÂΣ
−1/2
cov

)j (
Σ1/2

cov∆Σ−1/2
cov

)
Σ1/2

covθ
⋆
t−j .

Note that εr = ‖Σ1/2
covw0‖2 and εop = ‖Σ1/2

cov∆Σ
−1/2
cov ‖op. Therefore, taking the norm of both sides and

applying the triangle inequality,

‖Σ1/2
covwt+1‖2 ≤

t+1∑

k=0

‖
(
Σ1/2

covÂΣ−1/2
cov

)k
‖op‖Σ1/2

covw0‖2 (A.2)

+

t∑

k=0

‖
(
Σ1/2

covÂΣ
−1/2
cov

)k
‖op‖Σ1/2

cov∆Σ−1/2
cov ‖op sup

0 ≤ h ≤ t
‖Σ1/2

covθ
⋆
h‖2

= (εr + εop sup
0 ≤ h ≤ t

‖Σ1/2
covθ

⋆
h‖2) ·

t+1∑

k=0

‖
(
Σ1/2

covÂΣ
−1/2
cov

)k
‖op. (A.3)

Now, recalling the definition of θ⋆h, we bound:

sup
0 ≤ h ≤ t

‖Σ1/2
covθ

⋆
h‖2 ≤

t∑

j=0

‖
(
γΣ−1/2

cov ΣcrΣ
−1/2
cov

)j
‖op‖Σ1/2

covθ
⋆
0‖2. (A.4)
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Therefore, combining these last two inequalities (A.4), (A.3), and the identity from Eq. (A.1),

‖Σ1/2
cov(θ

⋆
γ − θ̂t)‖2 ≤

∞∑

k=t+1

‖
(
Σ1/2

covAΣ
−1/2
cov

)k
‖op‖Σ1/2

covθ
⋆
0‖2 + ‖Σ1/2

covwt‖2

≤ ‖Σ1/2
covθ

⋆
0‖2

∞∑

k=t+1

αk +

(
εr + εop‖Σ1/2

covθ
⋆
0‖2

t−1∑

k=0

αk

)
t∑

k=0

α̂k, (A.5)

where α̂k := ‖
(
Σ

1/2
covÂΣ

−1/2
cov

)k
‖op and αk := ‖

(
Σ

1/2
covAΣ

−1/2
cov

)k
‖op. Since εop ≤ 1/(6‖Pγ‖op) and

γΣ
−1/2
cov ΣcrΣ

−1/2
cov is stable, Lemma A.1 tells us that

α̂j = ‖P−1/2
γ P 1/2

γ

(
Σ1/2

covÂΣ−1/2
cov

)j
‖op

≤ ‖P−1/2
γ ‖op‖P 1/2

γ

(
Σ1/2

covÂΣ
−1/2
cov

)j
‖op

≤ ‖P 1/2
γ ‖op‖P 1/2

γ ‖op
(
1− 1

2‖Pγ‖op

)j/2

= cond(Pγ)
1/2

(
1− 1

2‖Pγ‖op

)j/2

.

Using similar reasoning, we get that

αj ≤ cond(Pγ)
1/2

(
1− 1

‖Pγ‖op

)j/2

.

In conclusion, ‖Σ1/2
cov(θ⋆γ − θ̂t)‖2 is bounded by,

‖Σ1/2
covθ

⋆
0‖2cond(Pγ)

1/2

(
1− 1

‖Pγ‖op

)(t+1)/2 ∞∑

k=0

αk +

(
εr + εop‖Σ1/2

covθ
⋆
0‖2

∞∑

k=0

αk

)
∞∑

k=0

α̂k.

The final bound comes from summing the geometric series,
∑∞

j=0(1− c)j/2 = (1−
√
1− c)−1, for c ∈ (0, 1)

and applying the numerical inequality,
(
1−

√
1− 1

2z

)−1

≤ 10z,

which holds for all z ≥ 1.

Lemma A.1. Let A be a square, stable matrix and let P = dlyap(A) Then, for all k ≥ 0,

‖Ak‖2op ≤ cond(P )

(
1− 1

‖P‖op

)k

.

Furthermore, for any matrix ∆ such that ‖∆‖op ≤ 1/(6‖P‖2op),

‖(A+∆)k‖2op ≤ cond(P )

(
1− 1

2‖P‖op

)k

.

Proof. This particular lemma is almost identical to the one from Perdomo et al. [2021]. However, we include
the proof for the sake of providing a self-contained presentation. For the first result, by definition of the
solution to the Lyapunov equation, for any unit vector x,

x⊤A⊤PAx = x⊤Px− x⊤Ix

= x⊤Px

(
1− ‖x‖22

x⊤Px

)

≤ x⊤Px

(
1− 1

‖P‖op

)
.
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Hence, A⊤PA � P (1− ‖P‖−1
op ). By iterating (Ak)⊤PAk � P (1− ‖P‖−1

op )
k and

‖P 1/2Ak‖2op ≤ ‖P‖op(1− ‖P‖−1
op )

k.

Therefore,

‖Ak‖op = ‖P−1/2P 1/2Ak‖op ≤ ‖P−1/2‖op‖P 1/2Ak‖op ≤ cond(P )1/2
(
1− 1

‖P‖op

)k/2

.

For the second result, using the insights from above,

(A+∆)⊤P (A+∆) = A⊤PA+A⊤P∆+∆⊤PA+∆⊤P∆.

Now, A⊤PA � P (1− ‖P‖−1
op ) and

‖A⊤P∆‖op = ‖∆⊤PA‖op ≤ ‖∆P 1/2‖op‖P 1/2A‖op ≤ ‖∆P 1/2‖op‖P 1/2‖op ≤ ‖∆‖op‖P‖op.
Bounding, ‖∆⊤P∆‖op ≤ ‖P‖op‖∆‖2op, and using the fact that P � I we get that for,

‖∆‖op ≤ 1/(6‖P‖2op),
the following relationship holds:

A⊤P∆+∆⊤PA+∆⊤P∆ � P
1

2‖P‖op
.

Therefore,

(A+∆)⊤P (A+∆) � P

(
1− 1

2‖P‖op

)
,

and the second result follows by using the same steps as the first.

A.2 Proof of Proposition 3.2: coordinate invariance of Pγ

If we define the whitened features, φw(·) = Σ
−1/2
cov φ(·), then φ̃(·) = L′φw(·) where L′ = LΣ

1/2
cov . Now, let

USV ⊤ be the singular value decomposition of L′. Then,

Σ̃cov = Ex∼Dφ̃(x)φ̃(x)
⊤ = L′Ex∼Dφw(x)φw(x)

⊤L′⊤ = L′L′⊤ = US2U⊤,

where we have used the fact that the whitened features have identity covariance. By this calculation, we
have that Σ̃

1/2
cov = USU⊤. Using similar substitutions, we can also deduce that Σ̃cr = L′Σ

(w)
cr L′⊤ where

Σ
(w)
cr = Σ

−1/2
cov ΣcrΣ

−1/2
cov . Therefore,

Σ̃−1/2
cov Σ̃crΣ̃

−1/2
cov = (US−1U⊤)(USV ⊤)Σ(w)

cr (V SU⊤)(US−1U⊤) = (UV ⊤)Σ(w)
cr (UV ⊤)⊤.

Since (UV ⊤) is an orthogonal matrix, the equality of condition numbers follows by the fact that for any
matrix A and orthogonal matrix M , MAM⊤ = A have the same singular values. On the other hand, the
invariance of the operator norm of Pγ follows from the following lemma:

Lemma A.2. Let A be a stable matrix and M be any orthogonal matrix, then

‖dlyap(A⊤)‖op = ‖dlyap(MA⊤M⊤)‖op.
Proof. Let P = dlyap(A) be the unique solution over X to the matrix equation:

X = A⊤XA+ I.

Likewise, let P ′ = dlyap(MAM⊤) be the unique solution (over X ′) to the equation:

X ′ = MA⊤M⊤X ′MAM⊤ + I.

From this, we can deduce that M⊤X ′M = A⊤M⊤X ′MA + I. Therefore, P = M⊤X ′M = M⊤P ′M . The
conclusion follows from the fact that singular values are invariant to conjugation by an orthogonal matrix.
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A.3 Proof of Lemma 3.3: FQI under specific growth rates

As discussed in the main body, the proof is identical to that of Theorem 1 except that we specialize to the
particular assumptions on the growth of matrix powers. We recall the key inequality from the proof of the
main theorem, Eq. (A.5):

‖Σ1/2
cov(θ̂t − θ⋆γ)‖2 ≤ ‖Σ1/2

covθ
⋆
0‖2

∞∑

k=t+1

αk +

(
εr + εop‖Σ1/2

covθ
⋆
0‖2

t−1∑

k=0

αk

)
t∑

k=0

α̂k.

Here, αk = ‖
(
γΣ

−1/2
cov ΣcrΣ

−1/2
cov

)k
‖op and α̂k := ‖

(
Σ

1/2
cov(γΣ̂−1

covΣ̂cr)Σ
−1/2
cov

)k
‖op. By assumption, αk ≤ αβk

hence,
∑∞

k=0 αk ≤ α/(1− β). Now, by Lemma A.3 since

εop = ‖Σ1/2
cov(γΣ̂

−1
covΣ̂cr)Σ

−1/2
cov − γΣ−1/2

cov ΣcrΣ
−1/2
cov ‖op,

we have that:

α̂k ≤ α(β + εopα)
k.

Therefore, as long as εop < 9
10

(1−β)
α ,

∞∑

k=0

α̂k ≤ α

∞∑

k=0

(β + εopα)
k = α

1

1− β − αεop
≤ 10

α

1− β
.

Putting everything together,

‖Σ1/2
cov(θ̂T − θ⋆γ)‖2 . ‖Σ1/2

covθ
⋆
0‖2

α

1− β
· βT+1 +

(
εr + εop‖Σ1/2

covθ
⋆
0‖2

α

1− β

)
α

1− β
.

Lemma A.3. Let A be a square matrix such that for all nonnegative integers j, ‖Aj‖op ≤ a · bj for scalars
a > 0 and b ∈ (0, 1). Then, for any square matrix ∆ if we let ε := ‖∆‖op then,

‖(A+∆)n‖op ≤ a(b+ ε · a)n.
Proof. We begin by expanding (A+∆)n into monomials Tk,j ,

(A+∆)n =
n∑

k=0

(nk)∑

j=1

Tk,j , (A.6)

where each Tk,j has k factors of ∆ and n − k, A factors. Now, by the submultiplicative property of the
operator norm,

‖Tk,j‖op ≤ εk
∏

si∈Sk,j

‖Asi‖op,

where Sk,j is a set of positive integers si satisfying
∑

i si = n− k and |S| ≤ k + 1. Using our assumption
on the growth of ‖Ak‖op, we get that,

‖Tk,j‖op ≤ εk
∏

si∈Sk,j

(a · bsi) ≤ ak+1εkbn−k.

Going back to the original expansion into monomials, and using the identity,
n∑

k=0

(
n

k

)
xk = (1 + x)n.

We conclude:

‖(A+∆)n‖op ≤ a · bn
n∑

k=0

(
n

k

)(aε
b

)k
= abn(1 +

a · ε
b

)n = a(b+ aε)n.
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A.4 Proof of Corollary 3.1: low distribution shift implies stability

Consider the augmented covariance matrix,

E

[
φ(s, a)
φ(s′, a′)

] [
φ(s, a)
φ(s′, a′)

]⊤
=

[
Σcov Σcr

Σ⊤
cr Σnext

]
� 0.

By a Schur complement argument, Σ⊤
crΣ

−1
covΣcr � Σnext. After conjugating by Σ

−1/2
cov and multiplying by γ2,

we get that:

(γΣ−1/2
cov ΣcrΣ

−1/2
cov )⊤(γΣ−1/2

cov ΣcrΣ
−1/2
cov ) � γ2Σ−1/2

cov ΣnextΣ
−1/2
cov .

Now, by the low distribution shift assumption, γ2Σ
−1/2
cov ΣnextΣ

−1/2
cov � γ2Σ

−1/2
cov (CdsΣcov)Σ

−1/2
cov = Cdsγ2I.

Therefore, (γΣ−1/2
cov ΣcrΣ

−1/2
cov )⊤(γΣ

−1/2
cov ΣcrΣ

−1/2
cov ) � Cdsγ2I. Iterating for j ≥ 0 gives the first part of the

result. The rest follows from Lemma 3.3 by observing that Eq. (3.7) holds with α = 1, β =
√

Cdsγ2 ∈ (0, 1).

A.5 Proofs of Corollary 3.2: Bellman completeness implies stability

To take advantage of matrix notation, for this result we assume that the state-action space is finite, |S||A| <
∞. In particular, we introduce the following quantities.

1. Feature matrix Φ ∈ R|S||A|×d.

2. Offline distribution vector µ ∈ R|S||A|.

With this, we have that Σcov = Φ⊤diag(µ)Φ and Σcr = Φ⊤diag(µ)P (π)Φ where P (π) is a row stochastic
matrix representing the transition operator. Corollary 3.2 follows from the following lemma and Lemma 3.3.

Lemma A.4. If φ is complete (Assumption 5) and Σcov is full rank, then for j ≥ 0,

‖(Σ−1/2
cov ΣcrΣ

−1/2
cov )j‖op ≤ ρs.

Proof. First, we rewrite the relevant matrix as follows,

(Σ−1/2
cov ΣcrΣ

−1/2
cov )j = Σ1/2

cov(Σ
−1
covΣcr)

jΣ−1/2
cov

= Σ−1/2
cov Φ⊤diag(µ)Φ⊤(Σ−1

covΣcr)
jΣ−1/2

cov .

Therefore,

‖(Σ−1/2
cov ΣcrΣ

−1/2
cov )j‖op ≤ ‖Σ−1/2

cov Φ⊤diag(µ)1/2‖op︸ ︷︷ ︸
:=T1

‖diag(µ)1/2Φ(Σ−1
covΣcr)

jΣ−1/2
cov ‖op︸ ︷︷ ︸

:=T2

.

To bound T1, we observe that

‖Σ−1/2
cov Φ⊤diag(µ)1/2‖2op = ‖(Φ⊤diag(µ)Φ)−1/2Φ⊤diag(µ)1/2‖op.

Letting A := diag(µ)1/2Φ, the above expression satisfies,

‖(A⊤A)−1/2A⊤‖2op = sup
‖v‖2=1

v⊤A(A⊤A)−1A⊤v ≤ 1,

since A(A⊤A)−1A⊤ is a projection matrix. Moving onto T2, we recall that

‖diag(µ)1/2Φ(Σ−1
covΣcr)

jΣ−1/2
cov ‖op = sup

‖v‖2=1

‖diag(µ)1/2Φ(Σ−1
covΣcr)

jΣ−1/2
cov v‖2.
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For any fixed vector v, since the entries of µ form a probability measure,

‖diag(µ)1/2v‖2 =

√√√√
d∑

i=1

µiv2i ≤ max
i

vi = ‖v‖∞.

Therefore,

‖diag(µ)1/2Φ(Σ−1
covΣcr)

jΣ−1/2
cov ‖op ≤ sup

‖v‖2=1

‖Φ(Σ−1
covΣcr)

jΣ−1/2
cov v‖∞.

Then, by repeatedly applying Lemma A.5, we get that

‖Φ(Σ−1
covΣcr)

jΣ−1/2
cov v‖∞ ≤ ‖ΦΣ−1/2

cov v‖∞.

Lastly,

‖ΦΣ−1/2
cov v‖∞ = sup

(s,a)

|φ(s, a)⊤Σ−1/2
cov v| ≤ sup

(s,a)∈S×A
‖Σ−1/2

cov φ(s, a)‖2 = ρs.

Lemma A.5. If φ is complete (Assumption 5) and Σcov is full rank, then for all θ,

‖ΦΣ−1
covΣcrθ‖∞ ≤ ‖Φθ‖∞.

Proof. If we denote the vector of expected rewards by ~r ∈ R|S||A|, then completeness implies that for all θ,
there exists a θ′ such that

Φθ′ = ~r + γP (π)Φθ.

Choosing θ = 0, this means that there exists a vector θr such that ~r = Φθr. Consequently, we deduce that
for all θ, there always exists a θ′ such that Φθ′ = γP (π)Φθ. Using this realizability condition, for a given
distribution µ, θ′ must satisfy

θ′ = argmin
θ̄

E(s,a)∼µ,s′∼P (·|s,a)

(
φ(s, a)⊤θ̄ − γφ(s′, a′)⊤θ

)2

= γΣ−1
covΣcrθ.

Together with the previous equation, this implies that for all θ, γΦΣ−1
covΣcrθ = γP (π)Φθ. Thus, we conclude

that

‖ΦΣ−1
covΣcrθ‖∞ = ‖P (π)Φθ‖∞

≤ ‖Φθ‖∞,

where we have used the fact that P (π) is row stochastic so ‖P (π)‖1 ≤ 1.

Lemma A.6. Assume that the rewards are linearly realizable in the feature mapping φ. That is, there exists

a vector θ⋆r ∈ Rd such that for all (s, a) ∈ S ×A, Er(s, a) = φ(s, a)⊤θ⋆r . Then, ‖Σ−1/2
cov θφ,r‖2 ≤ 1.

Otherwise, if reward realizability does not hold ‖Σ−1/2
cov θφ,r‖2 ≤

√
d.

Proof. Expanding out the definition of θφ,r,

‖Σ−1/2
cov θφ,r‖22 = tr

[
Σ−1/2

cov E[φ(s, a)r(s, a)]Eφ(s, a)⊤r(s, a)Σ−1/2
cov

]
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Under realizability, E[φ(s, a)r(s, a)] = Eφ(s, a)φ(s, a)⊤θ⋆r . Hence, the expression above can be rewritten as,

tr
[
Σ−1

covE[φ(s, a)φ(s, a)
⊤]θ⋆rθ

⋆⊤
r Eφ(s, a)φ(s, a)⊤

]
= E(φ(s, a)⊤θ⋆r )

2 = Er(s, a)2 ≤ 1.

If the rewards are not linearly realizable in φ, then by Jensen’s inequality,

‖Σ−1/2
cov Eφ(s, a)r(s, a)‖22 ≤ E‖Σ−1/2

cov φ(s, a)r(s, a)‖22
= Etr

[
Σ−1/2

cov Eφ(s, a)φ(s, a)⊤r(s, a)2Σ−1/2
cov

]

≤ sup
s,a

r(s, a)2tr [I]

≤ d.

A.6 Proof of Proposition 3.4: FQI lower bound

Recall the functional form of the FQI approximation,

θ̂T =

T∑

k=0

(γΣ−1
covΣcr)

kΣ−1
cov(θφ,r + z) = µ+ v,

where Eθ̂T = µ :=
∑T

k=0(γΣ
−1
covΣcr)

−1Σ−1
covθφ,r and v :=

∑T
k=0(γΣ

−1
covΣcr)

−1Σ−1
covz. Expanding out and using

Ev = 0, we have that

E‖θ̂T − Eθ̂T ‖22 = E‖θ̂T ‖22 − ‖Eθ̂T ‖22
= E‖µ‖22 + E‖v‖22 − ‖Eθ̂T ‖22
= E‖v‖22.

Now, letting A = γΣ−1
covΣcr, we have that

E‖v‖22 = tr

[
(

T∑

k=0

Ak)⊤Λ(

T∑

k=0

Ak)

]
≥ σmin(Λ)‖

T∑

k=0

Ak‖2op = σmin(Λ) sup
‖v‖2=1

v⊤(
T∑

k=0

Ak)⊤(
T∑

k=0

Ak)v,

where we have used tr
[
A⊤A

]
= ‖A‖2F ≥ ‖A‖2op (‖ · ‖F denotes the Frobenius norm of a matrix) and the

variational characterization of the operator norm for symmetric matrices. By assumption on the spectral
radius, A has an eigenvector u with eigenvalue λ such that |λ| > 1. Therefore,

sup
‖v‖2=1

v⊤(

T∑

k=0

Ak)⊤(
T∑

k=0

Ak)v ≥ u⊤(
T∑

k=0

Ak)⊤(
T∑

k=0

Ak)u = ‖u‖22(
T∑

k=0

λk)2 =

(
λT+1 − 1

λ− 1

)2

.

Note that if |λ| = 1, this series can grow linearly in T (e.g if λ = 1) or oscillate (if λ = −1). The last equality
only holds for λ 6= 1.

A.7 Extensions to ridge regression

One might wonder whether adding ℓ2 regularization, that is, an λ‖θ‖22, λ > 0 additive penalty to the FQI or
LSTD objective in Eq. (1.2), could help mitigate the divergence phenomenon outlined in Proposition 3.4 or
the limits of linear estimators from Theorem 3.

For finite-dimensional problems with full rank covariance, typical analyses of ridge regression set the
regularizer λ to shrink with the number of samples n. In this case, the ridge estimator achieves consistent
parameter recovery and asymptotically returns the same solution as just performing ordinary least squares.
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Therefore, we can expect similar blowup if stability fails (in fact, this phenomenon is verified empirically by
Wang et al. [2021b]). On the other hand, if the parameter λ is lower bounded by a constant, then ridge
regression will have constant bias which will then be amplified by the number of rounds T . Hence, adding
regularization does not avoid the need for stability when performing fitted Q-iteration. Similar arguments
demonstrate why regularization is unlikely to overcomes the limitations of least squares temporal differencing
learning (or other linear estimators) in settings where invertibility does not hold.

B Supporting Arguments for Section 4: LSTD

B.1 Proof of Theorem 2: invertibility is sufficient for LSTD

Recall the closed form expression of the empirical LSTD estimator:

θ̂LS = (I − γΣ̂−1
covΣ̂cr)

†Σ̂−1
covθ̂φ,r.

Multiplying on the left by Σ
1/2
cov ,

Σ1/2
cov θ̂LS = Σ1/2

cov(I − γΣ̂−1
covΣ̂cr)

†Σ−1/2
cov Σ1/2

covΣ̂
−1
covθ̂φ,r

=
(
Σ1/2

cov(I − γΣ̂−1
covΣ̂cr)Σ

−1/2
cov

)†
(Σ1/2

covΣ̂
−1
covθ̂φ,r),

where we have used the identity (ABA−1)† = AB†A−1 for any invertible A and B. Similarly,

Σ1/2
covθ

⋆
γ =

(
Σ1/2

cov(I − γΣ−1
covΣcr)Σ

−1/2
cov

)−1

(Σ1/2
covΣ

−1
covθφ,r).

Now defining the following quantities,

A := Σ1/2
cov(I − γΣ−1

covΣcr)Σ
−1/2
cov , Â := Σ1/2

cov(I − γΣ̂−1
covΣ̂cr)Σ

−1/2
cov

b := Σ1/2
covΣ

−1
covθφ,r, b̂ := Σ1/2

covΣ̂
−1
covθ̂φ,r.

We can rewrite the above expression as:

Σ1/2
cov(θ

⋆
γ − θ̂γ) = (A−1 − Â†)b+ Â†(b− b̂).

Therefore,

‖Σ1/2
cov(θ

⋆
γ − θ̂γ)‖2 ≤ ‖A−1 − Â†‖op‖b‖2 + ‖Â†‖op‖b− b̂‖2.

Using Lemma B.1, since εop ≤ 1
2σmin(I − γΣ−1

covΣcr):

‖Σ1/2
cov(θ

⋆
γ − θ̂γ)‖2 .

εop

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )2

‖Σ−1/2
cov θφ,r‖2 +

εr

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

.

Lemma B.1 (Theorem 3.8 in Stewart [1990]). Let A ∈ Rm×n, with m ≥ n and let Ã = A+ E. Then

‖Ã† −A†‖op ≤ 1 +
√
5

2
max{‖Ã†‖2op, ‖A†‖2op}‖E‖op.

Furthermore, if ‖E‖op ≤ 1
2σmin(A), then

‖Ã† −A†‖op . ‖A†‖2op‖E‖op.
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B.2 Proof of Proposition 4.1: Relating stability and invertibility

The first part of the proposition follows directly from Fact 3.1. For the second, again using Fact 3.1:

1/σmin(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov ) = ‖(I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )−1‖op

= ‖
∞∑

k=0

(γΣ−1/2
cov ΣcrΣ

−1/2
cov )k‖op

≤
∞∑

k=0

‖(γΣ−1/2
cov ΣcrΣ

−1/2
cov )k‖op.

≤
∞∑

k=0

cond(Pγ)
1/2

(
1− 1

‖Pγ‖op

)k/2

Here, we’ve used Lemma A.1 in the last line. The final bound follows from applying the final argument from
the proof of Theorem 1.

B.3 Proof of Proposition 4.2: Relationship to Mou et al. [2020]

The result follows from the proof of Corollary 1 in Mou et al. [2020]. We include the calculation for the sake
of completeness. For any unit vector u,

(1− κ)‖u‖22 ≤ u⊤(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )u ≤ ‖(I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )u‖op‖u‖2.

Therefore, ‖(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )−1‖op = 1/σmin(I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov ) ≤ 1/(1− κ).

B.4 Proof of Proposition 4.3: contractivity implies stability

By the Schur Complement Lemma, the contractivity condition implies that

Σcov − ΣcrΣ
−1
covΣ

⊤
cr � 0.

Rearranging and multiplying on the left and the right by Σ
−1/2
cov ,

I � (Σ−1/2
cov ΣcrΣ

−1/2
cov )(Σ−1/2

cov ΣcrΣ
−1/2
cov )⊤.

Using the fact that γ ∈ (0, 1) and the identity that for any matrix A, ‖A‖2op = ‖AA⊤‖op, we conclude

‖γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖2op < 1.

Stability follows from the observation that the spectral radius of a matrix is always smaller than the operator
norm.

B.5 Proof of Proposition 4.4: gaps between stability and other conditions

Consider the following MDP with 4 states and no actions,

s0 s1

s2 s3

1

1
1

1
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The reward distribution at every state is a mean-zero coin toss: R(s) = Unif({±1}) for all s ∈ S. Now,
consider the two-dimensional feature mapping,

φ(s0) = [1, 0]⊤, φ(s1) = [0, 1/ε]⊤, φ(s2) = [0, 1]⊤, φ(s3) = [ε, 0]⊤,

where ε > 0 is a problem parameter to be determined later. This MDP is (trivially) linearly realizable with
θ⋆γ = 0 because all rewards have 0 mean. If D place probability 1/2 on s0 and s2, then

γΣ−1/2
cov ΣcrΣ

−1/2
cov = γ

[
0 1/ε
ε 0

]
.

This matrix has eigenvalues equal to γ and −γ for all values of ε > 0. Hence, its spectral radius of this
matrix is always strictly smaller than 1 and the OPE instance is stable (and hence invertible).

For this problem, we can check that

Σnext =
1

2

[
ε2 0
0 1/ε2

]
and Σcov =

1

2

[
1 0
0 1

]
.

Therefore, Cds is the smallest positive number β such that

0 � 1

2

[
β − ε2 0

0 β − 1/ε2

]

Low distribution shift. While stability holds for all values of ε > 0, as ε → 0, Cds goes to ∞ (because
1/ε2 becomes arbitrarily large). Hence, stability holds, but low distribution shift does not. This proves the
first case.

Symmetric stability. Similarly, as ε → 0, we can check that the two eigenvalues of

γΣ−1/2
cov ΣcrΣ

−1/2
cov + (γΣ−1/2

cov ΣcrΣ
−1/2
cov )⊤,

go to ±∞. Therefore, the symmetric stability condition (Assumption 6) also fails for this problem.

Contractivity. From the argument in Proposition 4.3, we know that if contractivity (Assumption 7) held,
then

‖γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖op < 1.

However, a direct calculation shows that as ε → 0, then ‖γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖op → ∞. Therefore, while

stability holds, contractivity does not.

Bellman completeness. To prove the last case, we use a different example. In particular, consider the
following MDP (with no actions) presented in Amortila et al. [2020],

s0 s1
1

1

The rewards are R(s0) = 0 (almost surely) and ER(s1) = 1. The value function of any policy is linearly
realizable in the feature mapping φ(s0) = γ and φ(s1) = 1 with θ⋆γ = 1/(1 − γ). If the offline distribution
places mass 1/2 on each state then,

γΣ−1/2
cov ΣcrΣ

−1/2
cov =

(γ
2

) γ2 + 1

γ + 1
.
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This matrix (scalar) lies in the interval (0, 1) and is hence clearly stable and invertible. However, Bellman
completeness fails for this MDP. In particular, Bellman completeness asserts that for every θ there exist a
θ′ such that for all s ∈ S,

φ(s)θ′ = ER(s, a) + γEs′∼P (·|s)φ(s
′) · θ

In this case, this means that for all θ, there exists a θ′ such that

φ(s1) · θ′ = 1 + γ · φ(s1) · θ
φ(s0) · θ′ = 0 + γ · φ(s1) · θ.

Plugging in our choice of feature map, these equations become θ′ = 1 + γ · θ and γ · θ′ = γ · θ. They clearly
cannot be satisfied if we pick any θ 6= 0.

B.6 Bellman Residual Minimization Counterexample

Consider the following 3 state MDP with no actions and stochastic transitions:

s0

s2

s1

1/2

1/2

The feature mapping is:

φ(s0) =
γ

4
, φ(s1) =

1

2
, φ(s2) = 0.

Rewards are exactly 0 everywhere except for s1, where r(s1) = 1 deterministically. We can check that this
example is linearly realizable with θ⋆γ = 1

1−γ . However, it also holds that

Σcov =
γ2

16
, Σcr =

γ

16
, Σnext =

1

8
.

Hence, Σcov − γΣcr − γΣ⊤
cr.+ γ2Σnext ≻ 0, but BRM returns the wrong answer,

θBRM = (Σcov − γΣcr − γΣ⊤
cr + γ2Σnext)

†(θφ,r − γEφ(s′, a′)r(s, a)) = 0,

since Eφ(s, a)r(s, a) = Eφ(s′, a′)r(s, a) = 0.

B.7 Proof of Theorem 3: necessity of invertibility for LSTD

We begin by proving two auxiliary claims and then move on to proving each part of the theorem separately.

Claim B.2. If the matrix I − γΣ−1
covΣcr is singular, then there exists a real vector v ∈ Rd such that:

E
(s,a)∼D,s′∼P (·|s,a),a′∼π(s′)

φ(s, a)〈γ · φ(s′, a′)− φ(s, a), v〉 = 0.

Proof. The matrix being rank deficient implies that there exists a vector v such that (I − γΣ−1
covΣcr)v = 0,

or equivalently, that the matrix γΣ−1
covΣcr has an eigenvector v with eigenvalue 1. Because the matrix and

eigenvalue are both real, we can also take v to be real. From here, v = γΣ−1
covΣcrv. Hence, Σcovv = γΣcrv.

Expanding out the definitions of these matrices,

Eφ(s, a)〈φ(s, a), v〉 = γEφ(s, a)〈φ(s′, a′), v〉.
Rearranging both terms to be on the same side we get the claim.
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Claim B.3. For any (s, a) ∈ S ×A,

φ(s, a) = −E

[
∞∑

t=0

γt (γφ(st+1, at+1)− φ(st, at)) | (s0, a0) = (s, a), π

]
.

Proof. The sum telescopes and limt→∞ γtEφ(st, at) = 0.

We conclude with the proof of Theorem 3:

Alternate reward. As per the presentation of theorem, the only difference between M and M is the
unknown reward. In particular, we define the new reward function R as

R(s, a) = R(s, a) +
1

2B
〈γ · φ(s′, a′)− φ(s, a), v〉 (B.1)

where v is as in Claim B.2, s′ ∼ P (· | s, a), a′ ∼ π(s′), and B = sups,a ‖φ(s, a)‖2. Note that by Cauchy-
Schwarz, and the definition of B, for any s, s′, a, and a′:

| 1

2B
〈γ · φ(s′, a′)− φ(s, a), v〉| ≤ 1

2B
‖v‖2(‖φ(s, a)‖2 + ‖φ(s′, a′)‖2) ≤ 1

Therefore, |r(s, a)| is uniformly bounded by 2.

Proof of identical moments. Since the features, offline distribution, and transitions are all the same,
then Σcov = Σ̄cov,Σcr = Σ̄cr, and Σnext = Σ̄next. Next, by expanding out the new reward function:

θ̄φ,r = E(s,a)∼Dφ(s, a)r̄(s, a)

= Eφ(s, a)r(s, a) +
1

2B
E

(s,a)∼D,s′∼P (·|s,a),a′∼π(s′)
φ(s, a)〈γ · φ(s′, a′)− φ(s, a), v〉

= Eφ(s, a)r(s, a) + 0,

where the last line follows from Claim B.2.

Proof of realizability. Expanding out the definition of Q̄π,

Q̄π(s, a) = E

[
∞∑

t=0

γt · r̄(st, at) | (s0, a0) = (s, a), π

]

= E

[
∞∑

t=0

γt · r(st, at) | (s0, a0) = (s, a), π

]

+ E

[
∞∑

t=0

γt · 〈γ · φ(st+1, at+1)− φ(st, at),
1

2B
v〉 | (s0, a0) = (s, a), π

]

= Qπ(s, a)− φ(s, a)⊤v
1

2B

= φ(s, a)⊤(θ⋆γ − 1

2B
v),

where in the 3rd line we have used Claim B.3 and in the last one used the assumption that Qπ is linearly
realizable. In short, Q̄π is linearly realizable with weight vector θ⋆γ − (2B)−1v.
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Proof of different Q functions By the previous part establishing the realizability of Q̄π,

ED(Q
π(s, a)−Q′π(s, a))2 =

1

4B2
v⊤Σcovv ≥ σmin(Σcov)

4B2
‖v‖22.

The precise statement follows from the fact that v has unit length.

C Concentration Analysis: Proof of Lemma 2.1

Lemma C.1 (Matrix Bernstein, Tropp [2012]). Let S1, . . . , Sn ∈ Rd1×d2 be random, independent matrices
satisfying E[Sk] = 0, max{‖E[SkS

⊤
k ]‖op, ‖E[S⊤

k Sk]‖op} ≤ σ2, and ‖Sk‖op ≤ L almost surely for all k.
Then, with probability at least 1− δ for any δ ∈ (0, 1),

‖ 1
n

n∑

k=1

Sk‖op ≤
√

2σ2 log((d1 + d2)/δ)

n
+

2L log((d1 + d2)/δ)

3n
.

Lemma C.2 (Vector Bernstein, Minsker [2017]). Let v1, . . . , vn be independent vectors in Rd such that
Evk = 0, E‖vk‖22 ≤ σ2, and ‖vk‖2 ≤ L almost surely for all k. Then, with probability 1 − δ for any
δ ∈ (0, 1),

‖ 1
n

n∑

i=1

vi‖2 ≤
√

2σ2 log(28/δ)

n
+

2L log(28/δ)

3n
.

To shorten the notation in our concentration analysis, we use xi = φ(si, ai) and yi = φ(s′i, a
′
i), and

ri = r(si, ai). With this shorthand:

Σcov = Exx⊤, Σ̂cov =
1

n

n∑

i=1

xix
⊤
i , Σcr = Exy⊤, Σ̂cr =

1

n

n∑

i=1

xiy
⊤
i , (C.1)

θφ,r = Exr, θ̂φ,r =
1

n

n∑

i=1

xiri.

C.1 Bounding εop

Lemma C.3. If n & ρ2s log(d/δ) then, with probability 1− δ,

‖Σ1/2
cov(γΣ̂

−1
covΣ̂cr)Σ

−1/2
cov − γΣ−1/2

cov ΣcrΣ
−1/2
cov ‖op .

√
max(σ2

cr, σ
2
covCds) log(d/δ)
n

+
max(C1/2

ds ρ2s, ρsρs′) log(d/δ)

n
.

Proof. Let Â := γΣ̂−1
covΣ̂cr. We start by using the following error decomposition,

‖Σ1/2
covÂΣ

−1/2
cov − γΣ−1/2

cov ΣcrΣ
−1/2
cov ‖op

≤ γ‖Σ1/2
covΣ̂

−1
covΣ

1/2
cov · Σ−1/2

cov

(
Σ̂cr − Σcr

)
Σ−1/2

cov ‖op + γ‖Σ1/2
cov(Σ̂

−1
cov − Σ−1

cov)Σ
1/2
cov · Σ−1/2

cov ΣcrΣ
−1/2
cov ‖op

≤ γ ‖Σ1/2
covΣ̂

−1
covΣ

1/2
cov‖op︸ ︷︷ ︸

:=T1

· ‖Σ−1/2
cov

(
Σ̂cr − Σcr

)
Σ−1/2

cov ‖op
︸ ︷︷ ︸

:=T2

+ ‖Σ1/2
cov(Σ̂

−1
cov − Σ−1

cov)Σ
1/2
cov‖op︸ ︷︷ ︸

:=T3

· ‖γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖op︸ ︷︷ ︸

:=T4

.

We now bound each of these terms separately.
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Bound on T2. We apply the Matrix Bernstein inequality on Σ
−1/2
cov

(
Σ̂cr − Σcr

)
Σ

−1/2
cov . Here we define

Sk = Σ−1/2
cov

(
xky

⊤
k − Σcr

)
Σ−1/2

cov

which is centered and satisfies:

‖Sk‖ ≤ ‖Σ−1/2
cov xky

⊤
k Σ

−1/2
cov ‖+ ED‖Σ−1/2

cov xy⊤Σ−1/2
cov ‖ ≤ 2 sup

(x,y)∈supp(D)

‖Σ−1/2
cov xy⊤Σ−1/2

cov ‖

≤ 2 sup
(x,y)∈supp(D)

‖Σ−1/2
cov x‖ · ‖Σ−1/2

cov y‖ ≤ 2ρsρs′ .

Therefore for σ2
cr defined as in Eq. (2.6), , we get that with probability 1− δ,

T2 ≤
√

2σ2
cr log(2d/δ)

n
+

4ρsρs′ log(2d/δ)

3n
.

Bound on T1 and T3. Essentially the same argument as for the bound on T2 reveals that,

‖Σ−1/2
cov (Σ̂cov − Σcov)Σ

−1/2
cov ‖op ≤

√
2σ2

cov log(2d/δ)

n
+

2ρ2s log(2d/δ)

3n
=: τ. (C.2)

This inequality directly implies that

1− τ ≤ λmin(Σ
−1/2
cov Σ̂covΣ

−1/2
cov ) ≤ λmax(Σ

−1/2
cov Σ̂covΣ

−1/2
cov ) ≤ 1 + τ,

which in particular implies that Σ
−1/2
cov Σ̂covΣ

−1/2
cov is invertible whenever τ < 1/2, a fact that is ensured by

our lower bound on n. Therefore:

T1 = ‖Σ1/2
covΣ̂

−1
covΣ

1/2
cov‖ =

1

λmin(Σ
−1/2
cov Σ̂covΣ

−1/2
cov )

≤ 1

1− τ
. (C.3)

More generally, we have that:

1− 2τ ≤ λmin(Σ
1/2
covΣ̂

−1
covΣ

1/2
cov) ≤ λmax(Σ

1/2
covΣ̂

−1
covΣ

1/2
cov) ≤ 1 + 2τ.

Using the fact that 1/(1 + τ) ≥ 1− 2τ and 1/(1− τ) ≤ 1 + 2τ for τ ≤ 1/2, this directly yields

T3 = ‖Σ1/2
cov(Σ̂

−1
cov − Σ−1

cov)Σ
1/2
cov‖ ≤ 2τ. (C.4)

Thus, we have bounded T1 and T3. In particular, for τ < 1/2, T1 ≤ 2, and T3 ≤ 2τ .

Bound on T4. For T4, no concentration argument is required. Instead, a Schur complement argument
implies that,

‖Σ−1/2
cov ΣcrΣ

−1/2
cov ‖2op ≤ ‖Σ−1/2

cov ΣnextΣ
−1/2
cov ‖op ≤ Cds,

where we’ve used Σnext � CdsΣcov. Hence, T4 ≤ C1/2
ds .

Wrapping up. Taking a union bound, we obtain that

εop .

√
max(σ2

cr, σ
2
covCds) log(d/δ)
n

+
max(C1/2

ds ρ2s, ρsρs′) log(d/δ)

n
.
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C.2 Bounding εr

Lemma C.4. If n & ρ2s log(d/δ) then, with probability 1− δ,

‖Σ1/2
covΣ̂

−1
covθ̂φ,r − Σ−1/2

cov θφ,r‖2 .

√
max(‖Σ−1/2

cov θφ,r‖22σ2
cov, σ

2
r) log(d/δ)

n
+

‖Σ−1/2
cov θφ,r‖2ρ2s log(d/δ)

n
.

Proof. The ideas are very similar to Lemma C.3. In this case, the relevant error decomposition is,

εr = ‖Σ1/2
covΣ̂

−1
covθ̂φ,r − Σ−1/2

cov θφ,r‖2
≤ ‖Σ1/2

covΣ̂
−1
covΣ

1/2
cov‖op︸ ︷︷ ︸

:=T1

‖Σ−1/2
cov (θφ,r − θ̂φ,r)‖2︸ ︷︷ ︸

:=T2

+ ‖(Σ1/2
covΣ̂

−1
covΣ

1/2
cov − I)‖op︸ ︷︷ ︸

:=T3

‖Σ−1/2
cov θφ,r‖2.

Bound on T1 and T3. Whenever τ , defined as in Eq. (C.2), is strictly less than 1/2, the analysis therein
(in particular, Eq. (C.4) and Eq. (C.3)) proves that T1 ≤ 2 and T3 ≤ 2τ .

Bound on T2. We apply the vector Bernstein inequality, Lemma C.2, on the vectors

vi = Σ−1/2
cov xiri − Σ−1/2

cov θφ,r.

Note that, since the rewards have magnitude bounded by 1,

sup
i

‖vi‖2 ≤ sup
i

‖Σ−1/2
cov xiri‖2 + ‖Σ−1/2

cov θφ,r‖2 ≤ ‖Σ−1/2
cov xiri‖2 + E‖Σ−1/2

cov xr‖2 ≤ 2ρs,

and,

E‖vi‖22 = E‖Σ−1/2
cov xiri‖22 − ‖Σ1/2

covθφ,r‖22 = σ2
r .

Applying vector Bernstein,

T2 ≤
√

2σ2
r log(28/δ)

n
+

4ρs log(28/δ)

3n
.

Wrapping up. Combining these, we get that,

εr .

√
max(‖Σ−1/2

cov θφ,r‖22σ2
cov, σ

2
r) log(d/δ)

n
+

‖Σ−1/2
cov θφ,r‖2ρ2s log(d/δ)

n
.

C.3 Bounding variances

Bounding σ2
r Since the rewards r(s, a) satisfy |r(s, a)| ≤ 1, we have that

E‖vi‖22 = E‖Σ−1/2
cov xiri‖22 − ‖Σ1/2

covθφ,r‖22 ≤ tr
[
Σ−1/2

cov Er2i xix
⊤
i Σ

−1/2
cov

]
≤ d.

Bounding σ2
cr. Again using the notation from Eq. (C.1), and letting

Sk = Σ−1/2
cov

(
xky

⊤
k − Σcr

)
Σ−1/2

cov

bounding σ2
cr is equivalent to bounding the operator norms of:

E[SkS
⊤
k ] = E[‖Σ−1/2

cov y‖22(Σ−1/2
cov x)(Σ−1/2

cov x)⊤]− Σ−1/2
cov ΣcrΣ

⊤
crΣ

−1/2
cov

E[S⊤
k Sk] = E[‖Σ−1/2

cov x‖22(Σ−1/2
cov y)(Σ−1/2

cov y)⊤]− Σ−1/2
cov Σ⊤

crΣcrΣ
−1/2
cov .
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We will subsequently show that, for any vector v ∈ Rd, we have

v⊤(E[SkS
⊤
k ])v ≥ 0, v⊤(E[S⊤

k Sk])v ≥ 0. (C.5)

Additionally, for any random variables (a, b) ∈ R × Rd from some joint distribution, Holder’s inequality
implies that

‖E[a2bb⊤]‖op = sup
v,‖v‖2=1

E[a2(v⊤b)2] ≤ min{sup{a} sup
v

E[(v⊤b)2], sup
b,v

{(v⊤b)2}E[a2]}

= min{sup{a}‖E[bb⊤]‖op, sup{‖b‖22}E[a2]}.

Using these two facts and positive semi-definiteness, we have that

‖E[SkS
⊤
k ]‖op ≤ ‖E[‖Σ−1/2

cov y‖22(Σ−1/2
cov x)(Σ−1/2

cov x)⊤]‖op ≤ sup
y

‖Σ−1/2
cov y‖22‖E[(Σ−1/2

cov x)(Σ−1/2
cov x)⊤]‖ ≤ ρ2s′ .

Essentially the same proof yields a similar bound on ‖E[S⊤
k Sk]‖:

‖E[S⊤
k Sk]‖op ≤ ‖E[‖Σ−1/2

cov x‖22(Σ−1/2
cov y)(Σ−1/2

cov y)⊤]‖op ≤ ρ20‖Σ−1/2
cov ΣnextΣ

−1/2
cov ‖op ≤ ρ2sCds.

Alternatively, we can get

‖E[S⊤
k Sk]‖op ≤ ‖E[‖Σ−1/2

cov x‖22(Σ−1/2
cov y)(Σ−1/2

cov y)⊤]‖op ≤ E[‖Σ−1/2
cov x‖22‖(Σ−1/2

cov y)(Σ−1/2
cov y)⊤]‖]

= E[‖Σ−1/2
cov x‖22‖Σ−1/2

cov y‖22] ≤ ρ2s′d.

Let us now verify (C.5). Rebinding x̃ = Σ
−1/2
cov x, ỹ = Σ

−1/2
cov y, we have

v⊤(E[SkS
⊤
k ])v = E[(v⊤x̃)2‖ỹ‖22]− (E(v⊤x̃)ỹ)⊤(E(v⊤x̃)ỹ) = E‖(v⊤x̃)ỹ‖22 − ‖E[(v⊤x̃)ỹ]‖22 ≥ 0,

where the last inequality is by convexity. In conclusion,

σ2
cr ≤ max(ρ2s′ ,min(ρ2sCds, ρ2s′d)).

Bounding σ2
cov. For x̃ = Σ

−1/2
cov φ(s, a), the variance σ2

cov is equal to

σ2
cov = ‖Ex̃x̃⊤x̃x̃⊤ − I‖op = ‖E‖x̃‖22x̃x̃⊤ − I‖op.

While this quantity is always less that ρ2s, one can achieve tighter bounds if the offline distribution is
hypercontractive as per the following definition:

Definition C.1. A distribution D over random vectors x is L8-L2 hypercontractive if there exists a positive
constant L such that for all unit vectors u,

Ex∼D((x− Ex)⊤u)8 ≤ L2
(
Ex∼D((x− Ex)⊤u)2

)4
.

Gaussians or strongly log-concave distributions are some examples of probability measures that satisfy
this condition. If Σ−1/2

cov φ(s, a) is L8-L2 hypercontractive, then one can show that

σ2
cov . Ltr

[
I + µµ⊤

]
‖I + µµ⊤‖op,

where µ := Σ
−1/2
cov E(s,a)∼Dφ(s, a). We point the interested reader to Lemma A.3 in Cherapanamjeri et al.

[2020] for a more formal derivation.
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D Analyzing the Misspecified Case: Proof of Proposition 5.1

By definition of θ⋆∞, we have that for all (s, a) ∈ S ×A we can write Qπ as

Qπ(s, a) = φ(s, a)⊤θ⋆γ + f(s, a), (D.1)

where f(s, a) = Qπ(s, a)− φ(s, a)⊤θ⋆γ and sups,a |f(s, a)| ≤ ε∞.

From the relationship above, we have that for Q̂π(s, a) = φ(s, a)⊤θ̂

|Qπ(s, a)− Q̂π(s, a)| = |φ(s, a)⊤(θ⋆∞ − θ̂) + f(s, a)|
≤ ‖Σ−1/2

cov φ(s, a)‖2‖Σ1/2
cov(θ

⋆
∞ − θ̂)‖2 + |f(s, a)|. (D.2)

Applying the triangle inequality again,

‖Σ1/2
cov(θ

⋆
∞ − θ̂)‖2 ≤ ‖Σ1/2

cov(θ
⋆
∞ − θ⋆fp)‖2 + ‖Σ1/2

cov(θ
⋆
fp − θ̂)‖2. (D.3)

By assumption on θ̂, ‖Σ1/2
cov(θ⋆fp − θ̂)‖2 ≤ εfp. Therefore, it remains to bound ‖Σ1/2

cov(θ⋆∞ − θ⋆fp)‖2. By
Claim D.1, we have that

Σ1/2
covθ

⋆
∞ = (I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )−1Σ−1/2

cov θφ,r

+ (I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )−1Σ−1/2

cov E
(s,a)∼D

s′∼P (·|s,a),a′∼π(s′)

φ(s, a)(φ(s, a)⊤θ⋆∞ − γφ(s′, a′)⊤θ⋆∞ − r(s, a)).

Note that Σ
1/2
covθ⋆fp is exactly equal to (I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov )−1Σ

−1/2
cov θφ,r. Furthermore, by the second part

of Claim D.1, the ℓ2 norm of the second term in the expression above is upper bounded by ρsε∞/σmin(I −
γΣ

−1/2
cov ΣcrΣ

−1/2
cov ). Consequently,

‖Σ1/2
cov(θ

⋆
∞ − θ⋆fp)‖2 ≤ ρs

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

ε∞. (D.4)

Combining Eqs. (D.2) to (D.4), we get that

|Qπ(s, a)− Q̂π(s, a)| ≤ ‖Σ−1/2
cov φ(s, a)‖2(εfp +

ρs

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

ε∞) + ε∞.
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Claim D.1. Let θ⋆∞ be defined as in Eq. (5.1) and let A := I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov then,

Σ1/2
covθ

⋆
∞ − Σ1/2

covθ⋆ = A−1Σ−1/2
cov θφ,r

+A−1Σ−1/2
cov E

(s,a)∼D
s′∼P (·|s,a),a′∼π(s′)

φ(s, a)(φ(s, a)⊤θ⋆∞ − γφ(s′, a′)⊤θ⋆∞ − r(s, a)).

where

‖A−1Σ−1/2
cov E

(s,a)∼D
s′∼P (·|s,a),a′∼π(s′)

φ(s, a)(φ(s, a)⊤θ⋆∞ − γφ(s′, a′)⊤θ⋆∞ − r(s, a))‖2 ≤ ε∞

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

ρs.

Proof. By the Bellman equation, we have that,

Qπ(s, a) = Er(s, a) + γ · E
s′∼P (·|s,a)
a′∼π(s′)

Qπ(s′, a′).

Using the decomposition from Eq. (D.1), the following relationship holds for all (s, a) ∈ S ×A,

φ(s, a)⊤θ⋆γ = Er(s, a) + γ · E
s′∼P (·|s,a)
a′∼π(s′)

φ(s′, a′)⊤θ⋆γ − f(s, a) + γ · E
s′∼P (·|s,a)
a′∼π(s′)

f(s′, a′).

Now we do a couple of things, we multiply on the left by Σ
−1/2
cov φ(s, a) and take expectations with respect to

(s, a) ∼ D. Rearranging, we get the following equation:

Σ1/2
covθ

⋆
γ = (I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )−1Σ−1/2

cov θφ,r

+ (I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )−1 E

s′∼P (·|s,a)
a′∼π(s′)

Σ−1/2
cov φ(s, a)(γ · f(s′, a′)− f(s, a))

Focusing on the second term, we have that for any (s, a) ∈ S×A, |f(s, a)| ≤ ε∞ and ‖Σ−1/2
cov φ(s, a)‖2 ≤ ρs.

Therefore,

‖(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )−1 E

s′∼P (·|s,a)
a′∼π(s′)

Σ−1/2
cov φ(s, a)(γ · f(s′, a′)− f(s, a))‖2 ≤ ε∞ · ρs

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

.

Moreover, f(s, a) = Qπ(s′, a′)− φ(s, a)⊤θ⋆∞ and Qπ(s, a) = Er(s, a) + γ · E
s′∼P (·|s,a)
a′∼π(s′)

Qπ(s′, a′).

Using these identities, we have that:

γ · f(s′, a′)− f(s, a) = φ(s, a)⊤θ⋆∞ − γφ(s′, a′)⊤θ⋆∞ − r(s, a).
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