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Abstract

We study the problem of information sharing and cooperation in Multi-Player Multi-Armed bandits.

We propose the first algorithm that achieves logarithmic regret for this problem when the collision

reward is unknown. Our results are based on two innovations. First, we show that a simple

modification to a successive elimination strategy can be used to allow the players to estimate their

suboptimality gaps, up to constant factors, in the absence of collisions. Second, we leverage the

first result to design a communication protocol that successfully uses the small reward of collisions

to coordinate among players, while preserving meaningful instance-dependent logarithmic regret

guarantees.

Keywords: List of keywords

1. Introduction

We consider the cooperative Multi-Player version of the Multi-Armed bandit problem. Generalizing

the single-player case, the bandit instance is defined by mean rewards, µ = (µ1, · · · , µK) ∈ [0, 1]K ,

all of which are unknown to each of M players. There is a permutation σ ∈ SK (unknown to the

players) such that µσ1
≥ µσ2

· · · ≥ µσK
. At each time step t = 1, · · · , T , each of the players

p ∈ [M ] chooses an action i
p
t ∈ [K] and observes the corresponding (random) reward. If two

players pull the same arm, they receive a reward sampled from a distribution with unknown mean

µcollision ≤ µσK
. Our objective will be to design an algorithm with sublinear pseudo-regret:

RT = T max
a∈{0,1}K :

∑K
i=1

a(i)=M

〈a,µ〉 −
T∑

t=1

M∑

p=1

µi
p
t
.

As opposed to other work, such as Avner and Mannor (2014); Rosenski et al. (2016); Alatur et al.

(2020), we do not make the assumption that collisions are announced to the players; rather, we

simply assume that whenever two players select the same arm, they both observe a reward with mean

µcollision. The players do not know for certain if there was a collision or not (cf. Boursier and Perchet,

2018; Shi et al., 2020; Bubeck and Budzinski, 2020). We will make use of the implicit information

provided by collisions (a very low reward value) to design a communication protocol that will allow

players to coordinate. We make the following boundedness assumption on the distribution of the

reward signals observed by the players:
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Assumption 1 All K arms have bounded distributions with support in [0, 1].

Our main contribution is to design an elimination-based algorithm whose regret satisfies instance-

dependent logarithmic bounds without assuming explicit knowledge of collision information. Our al-

gorithm generalizes all previous approaches (for example those where collisions are announced Avner

and Mannor (2014); Rosenski et al. (2016); Alatur et al. (2020) or even those where collisions are

unannounced but their reward equals zero Huang et al. (2021)) to this problem since it does not

require knowledge of the mean collision reward. We use the following notation to refer to the

suboptimality gaps among the arms:

∆σi,σj = µσi − µσj ,

where i < j. Our main result can be summarized as follows.

Theorem 2 (simplified) There exists a strategy such that the regret is upper bounded by:

RT ≤ Õ
(
M(K −M)K2 log(T )

∆σM ,σM+1

+ poly(log(T ),K,M)

)
,

with probability at least 1 −min
(
1
T ,

K
81

)
where Õ(·) hides factors logarithmic in M and K only

and poly(log(T ),K,M) is linear in log(T ).

2. Previous Work

The Multi-Player bandit problem with bounded communication was first introduced in Lai et al.

(2008); Liu and Zhao (2010); Anandkumar et al. (2011), and has been extensively studied since then

under various assumptions on the communication patterns and the nature of the collisions (Avner

and Mannor, 2014; Rosenski et al., 2016; Palicot, 2018; Lugosi and Mehrabian, 2018; Boursier and

Perchet, 2018; Alatur et al., 2020; Bubeck et al., 2020b). Perhaps the first instance of a centralized

version of the problem we study in this work appeared in Anantharam et al. (1987), where the

problem of a single player selecting multiple arms simultaneously is considered.

The problem of Multi-Player, Multi-Armed bandits has commonly been motivated via its ap-

plication to wireless communication and networking (Liu and Zhao, 2010; Rosenski et al., 2016);

for example as a way to model the case where several users must access a wireless channel in a

decentralized manner (Besson and Kaufmann, 2018).

We can classify the existing settings and algorithmic approaches to the Multi-Player Multi-Armed

in broadly two categories. When collision information is available to the players and when it is not.

In the first category, algorithms such as SIC-MMAB (Boursier and Perchet, 2018) or DPE1 (Wang

et al., 2020) have been developed, the second of which achieves the same asymptotic regret as that

obtained by an optimal centralized algorithm. Both of these algorithms crucially exploit the known

collision information to establish communication between the players.

In the “No Sensing” setting where collision information is not readily available to the players, but

instead players receive a diminished or zero reward, the problem of developing an optimal algorithm

is substantially more challenging and has not been fully solved yet. Most importantly the three most

prominent algorithms, SIC-MMAB2 (Boursier and Perchet, 2018), EC-SIC (Shi et al., 2020) and the

algorithm of Lugosi and Mehrabian (2018) suffer from a variety of drawbacks.
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SIC-MMAB2 satisfies a regret guarantee of order O
(∑

i>M
M log(T )
∆σM,σi

+ MK2

µσK
log(T )

)
. Un-

fortunately SIC-MMAB2 is suboptimal in two ways. First the algorithm requires knowledge of

µσK , and second its regret guarantee suffers an inverse dependence on µσK , a quantity that may

be astronomically large. Other algorithms for the No Sensing setting such as studied in Theorem

1.2 in Lugosi and Mehrabian (2018), and the ADAPTED SIC-MMAB algorithm from Boursier

and Perchet (2018) suffer from the same limitations (see Table 1 in Boursier and Perchet (2018)).

The more recent EC-SIC algorithm (Shi et al., 2020) improves the M and K dependence from

the SIC-MMAB2 regret upper bound but still suffers from the substantial drawback of requiring

knowledge of at least a lower bound to µσK . Although EC-SIC achieves a better regret guarantee

than SIC-MMAB2, it also requires knowledge of the gap ∆σM ,σM+1 to be available to all players.

Other algorithms such as the algorithm from Theorem 1.1 in Lugosi and Mehrabian (2018) suffer

from more serious problems such as quadratic dependence on the inverse gap 1
∆σM,σM+1

.

Some of these drawbacks have been addressed by recent work (Huang et al., 2021). Under the

assumption the collision reward equals 0, the authors dispense with the assumptions of shared knowl-

edge of both µσK and ∆σM ,σM+1 . Their collision communication protocol makes use of a test that is

very much in the spirit of ours (see the subroutine CollisionTest in Section 4.2). Communication is

achieved by finding large arms (that are up to a constant proportion the scale of the largest arm) and

pulling them. The authors manage to obtain a logarithmic instance dependent regret guarantee scaling

as O
(∑

i>M
log(T )
∆σM,σi

+MK2 log(T ) +KM2 log
(

1
∆σM,σM+1

)2)
. Unfortunately, their algorithm

heavily depends on the assumption µcollision = 0.

In the present paper we avoid the aforementioned drawbacks and derive the first truly logarithmic

problem-dependent guarantee for the No Sensing Multi-Player Multi-Armed bandit problem with

unknown collision rewards. We leverage the implicit communication that exists when collisions

occur, namely that the mean collision reward is small. We show that a simple modification of a

successive elimination strategy can be used to allow the players to estimate the suboptimality gaps up

to constant factors in the absence of collisions. Using this result we design a communication protocol

that successfully leverages the small reward of collisions to coordinate among players, while at the

same time preserves meaningful instance-dependent logarithmic regret guarantees.

A different setting for the Multi-Player Multi-Armed bandit problem is one in which the players

are required to avoid all collisions. It was shown by Bubeck and Budzinski (2020) that one can

obtain the optimal regret in this setting without any collisions at all. Their result was limited to two

players and three actions. A more recent version of that result Bubeck et al. (2020a) shows that it is

possible to achieve a regret scaling with
√
T for the cooperative stochastic Multi-Player Multi-Armed

bandit problem with a dependence of K11M in the number of arms K and the number of players M .

The algorithmic strategy proposed in Bubeck et al. (2020a) relies on a clever algorithm that, with

high probability, avoids collisions altogether. More recent results Liu and Sellke (2022) suggest that

achieving a logarithmic instance dependent rate is impossible in the absence of communication.

3. Assumptions and Notation

Our algorithm is based on the idea of exploiting a communication protocol that leverages collisions

while maintaining favorable regret guarantees. In comparison to other work, we do not make the

assumption that collisions are announced to the players; rather, we simply assume that whenever

two players select the same arm, they both observe an i.i.d. reward with mean µcollision ≤ µσK .
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Throughout the paper we will use the notation t to index the rounds of play. In each round all M
players select an arm and collect a reward.

We denote by Np
i (t) the (random) number of pulls of arm i by player p up until and including

round t. And let µ̂pi (t) be the empirical estimator maintained by player p of the mean reward µi of

arm i at time t. This estimator consists of an average of Np
i (t) samples. Similarly for any t, t′ denote

by µ̂pi (t : t
′) as the empirical mean estimator of arm i computed by player p during rounds t to t′

(inclusive). Let δ ∈ (0, 1) be a probability parameter. We will make use of the following confidence

interval diameter function,

D : N→ R+ such that D(n) =

√
2g(n)
n where g(n) = log(4n2MK/δ).

As a simple consequence of Hoeffding’s inequality, for any p ∈ [M ] and i ∈ [K], with probability at

least 1− δ
MK , for all t ∈ N simultaneously, we have:

|µ̂pi (t)− µi| ≤ D(Np
i (t)). (1)

The Good Event E . We will denote the (at least) 1−δ probability event that all confidence intervals

from Equation 1 hold for all p ∈ [M ], all i ∈ [K] and all t ∈ N simultaneously as E .

Round Robin Schedule. Whenever we say the arms are pulled by the players in a Round Robin

schedule, we mean that during the first round player p will pull arm p, and in subsequent rounds

player p will pull the arm with an index one more than the one she pulled in the previous rounds,

unless she has pulled arm K in which case she will pull arm 1 the next round. Whenever all players

are pulling arms according to a Round Robin schedule, they do not collide.

Special Rounds. We will refer to all rounds occurring right after a complete cycle of a Round

Robin round as special rounds. At the beginning of time, before any arm is eliminated, this will

occur exactly during rounds that are multiples of K.

We also make the following assumptions.

Assumption 3 (Collisions) Whenever two players collide, both players get a reward sampled from

a distribution with mean µcollision such that µcollision ≤ µσK .

Assumption 3 is not particularly limiting. Our main contribution is to design an algorithm

that does not require the identity of colliding arms to be announced. Since we do not assume the

collision reward to equal zero, the algorithm of Huang et al. (2021) is not applicable to our case. The

techniques in Huang et al. (2021) rely on the overwhelming probability of seeing a nonzero after

repeated sampling of a non-zero mean arm. This cannot be used in the setting where the collision

reward may have a nonzero mean.

Assumption 4 (Shared knowledge) All arms are labeled, and the labels are known by all players

p ∈ [M ].

Assumption 4 is mild in comparison with the shared randomness assumption of previous works

such as Bubeck et al. (2020a) and Bubeck and Budzinski (2020). We also assume common knowledge

of the problem-independent functions f , B and g.
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The players then re-index the arm labels1, re-computes tcollision−test (for simplicity of analysis) and

starts playing in a Round Robin fashion within their assigned group, with the smallest indexed player

in any group becoming the communicating player. Iterating over this procedure ensures the players

converge to pull only the top M arms.

Communicating Ctop (and therefore Cbottom) can be done by sending a bit string of sizeK, where

the bits corresponding to the arms in Ctop equal one and the remaining bits equal zero. Since the

players have access to no signal other than the reward, and this can be modulated only when two

players play the same arm, any communication between players needs to happen through collisions.

With this in mind we design a communication mechanism that allows player 1 to transmit a bit string

to all the other players with high probability.

While all players p ∈ {2, · · · ,K} continue playing in a Round Robin fashion, player 1 will signal

the start of the communication sequence at the second special round t1comm1 such that
⌊

t1comm1/K

g(t1comm1/K)

⌋

is a power of nine and occurs after t1first. At this time player 1 will begin to pull arm σ̂1—the arm

with the largest empirical mean at time t1comm1—for a number of rounds equal to Ktcollision−test. All

other players p ∈ {2, · · · ,M} will begin listening for the start of the communication signal from

player 1 at all special rounds2 tplisten such that
⌊

tplisten/K

g(tplisten/K)

⌋
is a power of nine and occurs after tpfirst.

Having computed empirical estimators of the arm’s rewards using data up to time tplisten, each

of the players p ∈ {2, · · · ,M} will have estimated the mean of σ̂1 to sufficiently good accuracy to

ensure that at the end of the next Ktcollision−test rounds any of them can detect if there have been

collisions with player 1 when pulling arm σ̂1 during rounds tplisten + 1 to tplisten +Ktcollision−test. If

player p detects a small reward coming from an arm with a previously recorded high reward, it can

conclude this arm is σ̂1 and that player 1 has pulled it to signal the start of a communication round.

If instead, none of the high reward arms record a substantial deviation in their collected reward

during rounds tplisten + 1 to tplisten +Ktcollision−test, player p can conclude player 1 has not started

to communicate yet. By design our algorithm ensures that with high probability tplisten ≤ t1comm1

and that after at most three trials tplisten = t1comm1. One of the main challenges in designing an

algorithm with these properties is to ensure the listening players are able to listen for the incoming

communication signal from the communicating player at the right time. The players p 6= 1 can only

start listening for an incoming signal after they have collected enough samples to get an accurate

enough estimator for σ̂1. Since the time when this happens is a random variable we need to ensure

both listening and communication protocols occur at times when all players have sufficiently accurate

estimates. This is particularly challenging because the players are only aware of their own estimates.

Let’s assume that t1listen = t1comm1. If player p ∈ {2, · · · ,M} detects a communication signal

from player 1 associated with arm σ̂1, it will listen for the next K2tcollision−test rounds (recall these

“listening” players are still playing all arms in [K] following a Round Robin schedule). Using the

resulting Ktcollision−test pulls of arm σ̂1 player p can decode the K bit message sent by player 1.

With the same test used to detect the start of communication, if the i-th block of tcollision−test pulls of

arm σ̂1 has a low reward, player p can conclude the bit value sent by player 1 is a one. If the average

reward is large, player p can conclude the bit value sent by player 1 is a zero.

1. For example the players assigned to C1 will re-index these arms so they are labeled 1 to |C1| by switching the smallest

label in C1 to a 1, the second smallest to a 2, and so on.

2. We impose the restriction that t
p
listen is such that

⌊

t
p

listen
/K−1

g(t
p

listen
/K−1)

⌋

is not a power of nine. Similarly for t1comm1.
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The regret accrued by all players until the successful communication of Ctop to all players can

be decomposed in two parts: the Round Robin regret (RoundRobinRegret([K])) and the collision

regret (CollisionRegret([K])).

Recall that
t1comm1

K ≈ 1
maxi ∆2

σi,σi+1

and observe that µσ1 − µσK ≤ Kmaxi∆σi,σi+1 . During a

full Round Robin cycle over arms {1, · · · ,K} regret is only incurred when arms in {µσi}Ki=M+1 are

played. Each of these pulls may incur up to Kmaxi∆σi,σi+1 regret. Since there are M(K −M) of

these pulls, the RoundRobinRegret([K]) accrued by the M players during the Round Robin plays3

is of the order at most
KM(K−M)
maxi ∆σi,σi+1

.

Now let’s see what happens with the CollisionRegret([K]). Since tcollision−test ≈ log(t/δ)
∆2

collision

and the number of collisions experienced by player 1 during communication is upper bounded by

KMtcollision−test the CollisionRegret([K]) is of upper bounded by
KM log(t1comm1/δ)

∆collision
(notice this is

of smaller order than RoundRobinRegret([K]) since ∆collision ≥ maxi∆σi,σi+1 ).

The main challenges in our analysis are the following:

1. tcollision−test and times t1first and t1comm1 are random and thus unknown to players 2, · · · ,M .

We need to ensure that times tpfirst occur at around the same time for all p ∈ [M ] in order to

ensure players p ∈ {2, · · · ,M} start “listening” for a potential communication start signal

from player 1 at the right time. We do so by designing a mechanism that ensures
tpfirst

g(tpfirst)
is

upper and lower bounded by a constant multiple of 1
maxi ∆2

σi,σi+1

. This is the same mechanism

we use in the subroutine dedicated to the estimation of ∆collision.

2. Since communication occurs via collisions, the regret incurred by player 1 (and any player

colliding with it) may be linear in ∆collision whenever these happen. We need to ensure the

time needed for communicating and therefore the number of collisions involved is small, while

still being sufficiently large to convey enough information.

3. As we have mentioned above, the start-communication signal is sent out by player 1 at a round

such that
⌊

t1comm1

g(t1comm1)

⌋
is a power of nine. The reasoning behind this is to ensure the listening

players p ∈ {2, · · · ,M} are able to start listening at a recognizable time index. Since the

times tpfirst and t1first are not equal, and all players p ∈ {2, · · · ,M} only start listening after

tpfirst we need to ensure that t1comm1 ≥ tplisten for all p ∈ {2, · · · ,M}.

We address each of these three challenges in the sections below.

4.1. Player 1 Communication Protocol

Let Ipi (t, C̃) = [µ̂pi (t)− C̃D(Np
i (t)), µ̂

p
i (t) + C̃D(Np

i (t))] be the C̃−blowup confidence interval

for player p at round t around the mean reward of arm i. If C̃ ≥ 1, these confidence intervals are

satisfied (i.e., µi ∈ Ipi (t, C̃)) for all t ∈ N, i ∈ [K], p ∈ [M ] whenever E holds, an event that happens

with probability at least 1− δ. We now introduce the empirical arm connectivity graph with blowup

parameter C̃.

3. This is accounting for the regret collected during the time it takes for a single transmission of a partition (Ctop, Cbottom).
Since there could be up to K − 1 such rounds, the algorithm’s regret has an extra scaling with K as in Theorem 2.
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Definition 5 (C̃-blowup Arm connectivity graph) Let C̃ ≥ 1. For each player we define the

(random) C̃−blowup arm connectivity graph as Gpt (C̃) = ([K], Ep
t (C̃)) with node set [K] and edge

set Ep
t (C̃) defined as:

{i, j} ∈ Ep
t (C̃), if Ipi (t, C̃) ∩ I

p
j (t, C̃) 6= ∅.

Graph Gpt (C̃) is a collection of connected components. The nodes i, j ∈ Gpt (C̃) represent arms

i, j and are connected by an edge in Gpt (C̃) if their C̃-blowup confidence intervals overlap. If we

identify each node i of Gpt (C̃) with the empirical mean µ̂pi (t), the graph has a natural geometric

representation as a collection of intervals in [0, 1] with each connected interval in the collection

representing a connected component of Gpt (C̃). We say that two connected components of Gpt (C̃) are

adjacent if they are consecutive intervals in this geometric representation.

Let connp(t, C̃) be the number of connected components of Gpt (C̃). Let {Cpj (t, C̃)}
conn

p(t,C̃)
j=1 be

the collection of connected components at time t, ordered by adjacency in the geometric represen-

tation of Gpt (C̃), with the empirical mean values of Cp1(t, C̃) being the connected component with

the largest empirical mean values among all connected components in {Cpj (t, C̃)}
conn

p(t,C̃)
j=1 . This

is the same as Ctop in the previous discussion. Let’s assume all players are playing using a Round

Robin Schedule. Denote by tpfirst to the first special round of player p when connp(tpfirst, C̃) > 1.

We start by showing that if we set C̃ = 10, with high probability the condition connp
(
sK, C̃

)
≥ 2

is triggered for all players p ∈ [M ] at a “special” Round Robin round tpfirst (multiple of K) such that,

128

maxi∆2
σi,σi+1

≤ N(tpfirst)

g(N(tpfirst))
<

1152

maxi∆2
σi,σi+1

, (2)

where N(tpfirst) = Ni(t
p
first) for all i ∈ [K] and therefore equal to

tpfirst
K (since tpfirst is a special

round it is a multiple of K). To simplify matters we will use the notation spfirst to denote the ratios
tpfirst
K . We will use the same notational convention for all “named” rounds with subscripts such as

first, comm, comm1,etc.. Let’s start by showing that Equation 2 is a direct consequence of the

following Lemma, setting C = 10. Recall that D(n) =

√
2g(n)
n .

Lemma 6 (Confidence Bands) Let µ̂σi(t) and µ̂σj (t) be empirical estimators µσi and µσj , each

using N(t) samples. Let C > 3 be a constant. If t is the first special round such that

µ̂σi(t)− µ̂σj (t) ≥ CD(N(t)), (3)

then, whenever E holds, we have
∆σi,σj

2(C+2) < D(N(t)) ≤ ∆σi,σj

C−2 and

2(C − 2)2

∆2
σi,σj

≤ N(t)

g(N(t))
<

8(C + 2)2

∆2
σi,σj

. (4)

The proof of Lemma 6 is in Appendix D.1. Equation 2 can be derived by simply plugging

in C = 10. With the objective of ensuring all the times tpfirst occur around the same time, let’s

now show that a simple function of tpfirst is always around the vicinity of a power of 9. A simple

number-theoretic implication of Equation 2 is there exists a unique power of nine in the interval[
128

maxi ∆2
σi,σi+1

, 1152
maxi ∆2

σi,σi+1

)
(see Lemma 9 in Appendix B.2).
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Let σ̂1 be player 1’s guess for the optimal arm at time t1first, i.e., the arm with the largest empirical

mean. Let’s consider the following communication algorithm. If b = 1, starting from round t1start +1
and until round t1start +Ktcollision−test, player 1 will pull arm σ̂1. If instead b = 0, player 1 will

continue playing in a Round Robin fashion from round t1start + 1 until round t1start +Ktcollision−test,

thus avoiding collisions. If b = 1 the average expected reward collected by players p ∈ {2, · · · ,M}
is µcollision when pulling arm σ̂1 during rounds t1start + 1 to t1start + Ktcollision−test. If b = 0 the

average reward of pulling arm σ̂1 during rounds t1start + 1 to t1start +Ktcollision−test is µσ̂1
. Since

t1start ≥ t1first and t1first satisfies the boundary conditions, Equation 2 implies that with high probability,

Np
σ1(t

1
start)

g(Np
σ1(t

1
start))

≥ 128

maxi∆2
σi,σi+1

≥ 128

µ2σ1

. (5)

Since for all special rounds t the number of pulls is Np
i (t) ≈ t/K, Equation 5 implies that with high

probability at time t1start player 1 has pulled each arm Ω
(

1
µ2
σ1

)
times up to logarithmic factors. We

will now show that the following three statements hold with high probability,

1. Arm σ̂1 has a large empirical mean for all players.

• Arm σ̂1 ∈ {i ∈ [K] s.t. µ̂pi (t
1
start) − µ̂pcollision ≥ 1

2 maxj∈[K]

(
µ̂pj (t

1
start)− µ̂pcollision

)
}

for all p ∈ {2, · · · ,M} and µ̂pσ̂1
(t1start)−D(Nσ̂1

(t1start)) ≥
µσ1−µcollision

2 + µcollision.

2. Arm σ̂1 is comparable to σ1.

• The witnesses Lp
σ̂1
(t1start) satisfy, Lp

σ̂1
(t1start) ∈

[
3(µσ̂1

−µcollision)
7 ,

4(µσ̂1
−µcollision)
7

]
+

µcollision for all p ∈ {2, · · · ,M}.

3. When collisions are avoided the mean estimators µ̂pσ̂1
(t1start + 1 : +Kf(∆̂collision, t

1
start))

are far from µcollision.

• If b = 1, the estimators µ̂pσ̂1
(t1start + 1 : +Ktcollision−test) ≤ Lp

σ̂1
for all p ∈ [M ].

• If b = 0, the estimators µ̂pσ̂1
(t1start : t

1
start +Ktcollision−test) > Lp

σ̂1
for all p ∈ [M ].

If players p ∈ {2, · · · ,M} have knowledge of t1start, all they need to do to decode b is to

test for all arms with a large empirical mean (as computed by these players up to time t1start),
and compare these values with the empirical means computed during rounds t1start + 1 through

t1start +Ktcollision−test, when potential collisions may have taken place. If the two estimators are

vastly different, players p ∈ {2, · · · ,M} can conclude that b equals one. If instead these values are

“similar,” they can conclude that b equals zero. We formalize this idea via the following CollisionTest
algorithm. We use the notation tptest to denote the rounds when each of the players p ∈ {2, · · · ,M}
starts probing for a communication signal from player 1. If t1start is common knowledge, the

CollisionTest algorithm can be instantiated by setting tptest = t1start.

10
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Algorithm 1 CollisionTest (player p 6= 1)

Input tptest, witnesses {Lp
i (t

p
test)}i∈[K], empirical means {µ̂pi (t

p
test)}i∈[K], communication round

empirical means {µ̂pi (t
p
test1 + 1 : tptest1 +Ktcollision−test}i∈[K]

̂MaxArms←
{
i ∈ [K] s.t. µ̂pi (t

p
test)− µ̂pcollision ≥ 1

2 maxj∈[K]

(
µ̂pj (t

p
test)− µ̂pcollision

)}

if ∃i ∈ ̂MaxArms s.t. µ̂pi (t
p
test1 + 1 : tptest1 +Ktcollision−test < Lp

i (t
p
test) then

Return 1

end

Return 0

Notice that in contrast with the discussion that preceded it CollisionTest allows the indices

tptest and tptest1 to be different but the length of the communication rounds remains Ktcollision−test.

Our first result is to show this procedure allows players p ∈ {2, · · · ,M} to recover b with high

probability.

Lemma 7 (One Bit Recovery) Let Ap = {Lp
i (t

1
start)}i∈[K], B

p = {µ̂pi (t1start)}i∈[K] , Cp =
{µ̂pi (t1start + 1 : t1start + Ktcollision−test)}i∈[K] for all p. If the good event E holds then, with

probability at least 1 − δ
4K2 , all players p ∈ {2, · · · ,M} will be able to recover exactly the bit

transmitted by player 1 by calling CollisionTest(Ap, Bp, Cp).

The complete proof of Lemma 12 and an in-depth discussion on the CollisionTest concept

can be found in Appendices B.3 and C.4. The logic behind why the CollisionTest works is as

follows. At time tptest (in our case equal to t1comm1 all players have access to a constant accuracy

estimator for maxi∆σi,σi+1 (i.e. the empirical gap between the arms at the boundary of the two

connected components of C11(t1first, 10)). Therefore they can estimate µσ1 up to a ∆collision-accuracy.

By Hoeffding inequality testing at an accuracy of c∆collision the mean of an arm σ̂1 satisfying

µσ̂1
> µcollision + c′(µσ1 − µcollision) with c′ > c only requires Õ

(
1

∆2
collision

)
samples (up to log

factors and each with regret at most ∆collision), thus incurring regret of only O(1/∆collision) (up to

log factors).

4.3. The Listening Players

We have all the necessary pieces in place to spell out the details of the listening protocol used

by players {2, · · · ,M}. The listening players shall wait until the first special round such that

connp (sK, 10) ≥ 2. After this round has passed the players will start listening for an incoming

signal from player 1 during subsequent special rounds t = Ks such that
⌊

s
g(s)

⌋
is a power of nine.

The precise description of how to initialize the listening protocol (see Algorithm 6) can be found

in Appendix B.4. If the player detects a signal, she will start listening for a size K bit string using

the DECODE function (see Algorithm 7 in Appendix B.4 for a detailed explanation). DECODE
consists of K consecutive CollisionTest calls.

Combining these communication and listening protocols for player 1 and players {2, · · · ,M}
respectively we can guarantee that with high probability the value of tplisten passed down to the

DECODE function satisfies tplisten = t1comm1 and that the listening players {2, · · · ,M} will be able

to decode the message handed down by player 1.

11
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players 1 to |C11(t1first, 10)| will pull arms from C11(t1first, 10) following a Round Robin schedule

thereafter (these players have identified a set of arms to exploit) while the remaining players will

play arms from [K]\C11(t1first, 10) following the communication protocol we have outlined in the

previous section but now restricted to a set of arms of size smaller than M . In both cases, the problem

has been reduced to a smaller Cooperative Multi-Player Multi-Armed problem. The players then

re-index the arm labels5 and start playing following a Round Robin schedule within their assigned

group and the smallest indexed player in any group will become the communicating player. We call

the function that splits and iterates over smaller Cooperative Multi Armed Multi Player problems the

RECURSE function. It is defined formally in Algorithm 8 in Appendix B.5.2.

The RECURSE function will converge to a steady state where the players are only pulling the

top M arms as soon as ∆σM ,σM+1 is the basis of the communicated arm partition.

It can be shown the gaps recursed over are always in (roughly) decreasing order. Thus, each call

to RECURSE will incur regret upper bounded by Õ
(

M(K−M)K log(t1first/δ)
maxi ∆σM,σM+1

)
. Finally, since there

can be at most K − 1 calls to the RECURSE function, setting δ = 1
T we conclude,

RT ≤ Õ
(
M(K −M)K2 log(T )

∆σM ,σM+1

)
,

with probability at least 1− T . This finalizes the proof of Theorem 2. The detailed explanation of

each of these steps can be found in Appendices B.5 and C.3. The discussion on how to compute and

agree on tcollison−test for all players can also be found in Appendix C.3 and makes use of the same

synchronization and communication ideas we have explained here. The regret incurred during that

round is of order O
(
M(K−M)K2 log(T )

∆collision

)
.

5. Conclusion

We have proposed a series of algorithms for the Multi-Player Multi-Armed bandit problem. We

achieve a regret guarantee logarithmic in the number of rounds and inversely proportional to the

sub-optimality gap. In contrast with previous work, we make no assumptions regarding the player’s

knowledge about the nature of the reward vector (such as assuming a known lower bound for the

minimum reward value) and even the collision reward. This paper finally solves the no-sensing

multi-player multi-armed bandit problem in its entirety when collisions are allowed. We believe the

techniques we have introduced in this work (including for example the Bernstein ZeroTest for the

zero collision reward setting discussed in Appendix B) can be used to prove sharp instance dependent

guarantees in many decentralized bandit problems such as decentralized matching markets (see Liu

et al. (2021)). We hope future research is also spent on simplifying our algorithmic implementations.
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Appendix A. Guide to Appendix

The Appendix will be split in different sections. In Section B we include a much more detailed

discussion of the different algorithmic components sketched out in the main paper with an emphasis

in the zero collision reward case. In Section C we extend our results to a variety of settings more

general than those presented in the main. The remaining Appendix sections contain missing proofs

and supporting technical results.

Appendix B. Detailed Discussion of the zero collision reward setting

In this section we will flesh out the details of the different algorithmic components to derive our

instance dependent rates for the Multi-Player, Multi-Armed bandit problem with communication

through collisions. Throughout the proofs we will make use of the following “Boundary conditions”.

In this section the following function will be useful,

• Zero Collision Reward Length of a communication round. f : N → R+ such that f(n)

is the first integer such that
f(n)

B
(
f(n), δ

4K2M

) ≥ 24
√

n/K
2g(n/K) where B(n, δ′) = 2 log log(2n) +

log 5.2
δ′ .

Boundary Conditions We will consider the following four boundary conditions.

1. Let tboundary1 be such that
f(n)−1

B(f(n)−1, δ
4K2M

)
≥ 1 for all n ≥ tboundary1.

2. Let sboundary2 be such that
∂D(s)
∂s ≤ 0 for all s ≥ sboundary2 (sboundary2 can also be defined

in terms of g as
∂g(s)
∂s ≥ 0 for all s ≥ sboundary2).

3. Assume δ ≤ 1
162so that 4s2boundary2MKL/δ ≥ 162.

4. Let tboundary3 be such that f(n) ≤ n/K for all n ≥ tboundary3.

Let tfirstBoundary be the first special round (i.e. tfirstBoundary is a multiple of K) such that

tfirstBoundary ≥ max (tboundary1,Ksboundary2, tboundary3) .

The analysis sketch for the regret rates achieved by our algorithm presented in Section 4 is only

satisfied for timesteps larger than tfirstBoundary, these ‘boundary conditions’ appear in statements

such as

“‘By definition
⌊

tpcomm/K
g(tpcomm/K)

⌋
∈ {9u, 9u+1} for all p ∈ [M ] and thus for all players tpcomm ∈{

mint∈N s.t.
⌊

t/K
g(t/K)

⌋
= 9u,mint∈N s.t.

⌊
t/K

g(t/K)

⌋
= 9u+1

}
is one of two values provided t is

large enough so that
t/K

g(t/K) is an increasing function of t”’

from Section 4.1 (this statement here corresponds to sboundary2. Throughout our detailed analysis

of the regret rate of our algorithm presented in this section, we kept track of all the emerging boundary

conditions and have compiled them in this list. We then show tfirstBoundary is a function of log
(
1
δ

)
,

K and M and that it depends polynomially on K and M and linearly on log(1δ ). See Section B.5 for

a formal proof. The test used in the zero collision reward setting that forms the basis of our encoding

and decoding strategy will be called the ZeroTest.
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Algorithm 2 Zero Test

Input Player p 6= 1, witnesses {Lp
i (t

1
start)}i∈[K],p∈[M ]

for i such that µ̂pi (t
1
start) ≥ 1

2 maxj∈[K] µ̂
p
j (t

1
start) do

if µ̂pi (t
1
start + 1 : t1start +Kf(t1start)) < Lp

i (t
1
start) then

Return 1

end

end

Return 0

B.1. Analysis Desiderata

The main challenges in our analysis for the zero collision reward setting are the following:

1. Same as in item 1. of Section 4.

2. Since communication occurs via collisions, the regret incurred by player 1 (and any player

colliding with it) may be linear whenever these happen. We need to ensure the time needed

for communicating and therefore the number of collisions involved is small, while still being

sufficiently large to convey enough information. Aided by Bernstein-style bounds we show the

number of collisions needed to transmit information scales linearly with 1
µ1
≤ 1

maxi ∆σi,σi+1

and not quadratically.

3. Same as item 3. of Section 4.

B.2. Detailed Discussion and Missing Supporting Results Player 1 Communication Protocol.

The following supporting Lemma allows us to show there exists a unique power of nine in the interval[
128

maxi ∆2
σi,σi+1

, 1152
maxi ∆2

σi,σi+1

)
,

Lemma 9 Let x ∈ R be a positive real number and let n ∈ N be a natural number. There exists a

unique power of n in the interval [x, nx).

Proof Let nα with α ∈ N be the largest power of n such that nα < x. Multiplying both sides of

this inequality by n we obtain nα+1 < nx. Since by assumption nα is the largest power of n not in

[x, nx), it must be the case that nα+1 lies in [x, nx). This proves there must be at least one power of

n in the interval [x, nx). To show uniqueness again consider x ≤ nα+1 < nx and multiply all parts

of this inequality by n. We see that nx ≤ nα+2, thus showing that nα+2 6∈ [x, nx).

Algorithm 4 contains the protocol used by player 1 to broadcast an arbitrary bit message of

size α. The communicating player starts by sending a “ping.” During rounds t1comm1 + 1 to

t1comm1 +Kf(t1comm1) player 1 will pull arm σ̂1 with the intention of transmitting a single ON bit to

signal to the receiving players that an information transmission session has started. After this, the

transmission of the bit string takes place. The total number of rounds necessary to transmit a bit

string of size α is (α+ 1)Kf(t1comm1). One bit to signal the start of the communication and α bits

corresponding to the message.
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Algorithm 3 Prepare and Start Communication (Player 1)

Input Player 1
Initialize FLAG← NONE
for special rounds s = 1, · · · do

Pull arm K − 1 (player 1 has just finished a Round Robin round)

if conn1 (sK, 10) ≥ 2 and FLAG = NONE then

t1first ← sK

FLAG← FINDPOWER
end

if FLAG = FINDPOWER,
⌊

s
g(s)

⌋
= 9w for some w ∈ N and

⌊
s−1

g(s−1)

⌋
6= 9w then

t1comm ← Ks .

FLAG← PRECOMM.

end

else if FLAG = PRECOMM,
⌊

s
g(s)

⌋
= 9w for some w ∈ N and

⌊
s−1

g(s−1)

⌋
6= 9w then

t1comm1 ← Ks
Compute guess σ̂1 ∈ [K] for the maximal arm σ1 :

σ̂1 = argmax
i∈[K]

µ̂1i (t
1
comm1)−D(N1

i (t
1
comm1))

MESSAGE← ENCODE(C11(t1first, 10))
Run COMMUNICATE(t1comm1, σ̂1,MESSAGE) using Algorithm 4.

end

end

Properties of t1comm1. By design, the t1comm1 index passed to the COMMUNICATE function is

defined to be the second special round equal or larger to t1first satisfying t1comm1 = Ks1comm1 where⌊
scomm11

s1comm1

⌋
= 9w for some w ∈ N. Similarly the t1comm index is the first special round equal or larger

to t1first satisfying t1comm = Ks1comm where ⌊ scomm11

s1comm1
⌋ = 9w for some w ∈ N. The following lemma

addresses the question of how much larger can t1comm1 be than t1first.

Lemma 10 Let t1first = Ks1first and t1comm1 = Ks1comm1. If s1first ≥ sboundary2 and δ ≤ 1
162 then

s1comm1 ≤ 162s1first and

s1comm1

g(s1comm1)
≤ 162s1first
g(s1first)

.

The proof of Lemma 10 can be found in Appendix D.2. We can leverage Lemma 10 to derive an

explicit bound for s1comm1 that is satisfied whenever E holds.

Lemma 11 If E holds, s1first ≥ sboundary2 and δ ≤ 1
162 then

s1comm1 ≤
746496

maxi∆2
σi,σi+1

log

(
746496MK

δmaxi∆2
σi,σi+1

)
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The proof of Lemma 11 can be found in Appendix D.3.

In Algorithm 3 we detail player 1’s steps to initialize the communication protocol.

Algorithm 4 COMMUNICATE (Player 1)

Input Round number t1comm1, communicating arm icomm, message b ∈ {0, 1}α, communication

rounds length function f : R→ N

for t = t1comm1 + 1, · · · , t1comm1 + (α+ 1)Kf(t1comm1) do

if t ∈ [t1comm1 + 1, · · · , t1comm1 +Kf(t1comm1)] then
Start ping. Play communicating arm icomm.

end

else if j ≥ 2 and t ∈ [t1
comm1

+(j− 1)Kf(t1
comm1

)+1, · · · , t1
comm1

+ jKf(t1
comm1

)] and bj−1 = 1
then

Play communicating arm icomm.

end

else if j ≥ 2 and t ∈ [t1
comm1

+ (j− 1)Kf(t1
comm1

) + 1, · · · , t1
comm1

+ jKf(t1
comm1

)] and bj−1 = 0
then

Play Round Robin arm t− ⌊ t−1
K ⌋K.

end

end

B.3. Detailed Discussion and Missing Supporting Results for Communication Analysis

The main objective of this section is to present a proof of

Lemma 12 (One Bit Recovery Zero Collision Reward) LetAp = {Lp
i (t

1
start)}i∈[K],B

p = {µ̂pi (t1start)}i∈[K]

, Cp = {µ̂pi (t1start + 1 : t1start + Kf(t1start))}i∈[K] for all p. If the good event E holds then, with

probability at least 1 − δ
4K2 , all players p ∈ {2, · · · ,M} will be able to recover exactly the bit

transmitted by player 1 by calling ZeroTest(Ap, Bp, Cp).

thus establishing the reliability of the ZeroTest. We will now show that the following three

statements hold with high probability,

1. Arm σ̂1 has a large empirical mean for all players.

• Arm σ̂1 ∈ {i ∈ [K] s.t. µ̂pi (t
1
start) ≥ 1

2 maxj∈[K] µ̂
p
j (t

1
start)} for all p ∈ {2, · · · ,M}

and µ̂pσ̂1
(t1start)−D(Nσ̂1

(t1start)) ≥
3µσ1
4 .

2. Arm σ̂1 is comparable to σ1.

• The witnesses Lp
σ̂1

=
µ̂p
σ̂1

(t1start)−D(Nσ̂1
(t1start))

2 ∈ [
µσ̂1
3 ,

µσ̂1
2 ] for all p ∈ {2, · · · ,M}.

3. When collisions are avoided the empirical mean estimators µ̂pσ̂1
(t1start + 1 : +Kf(t1start))

are far from zero.
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• If b = 1, the estimators µ̂pσ̂1
(t1start + 1 : +Kf(t1start)) ≤ Lp

σ̂1
for all p ∈ [M ].

• If b = 0, the estimators µ̂pσ̂1
(t1start : t

1
start +Kf(t1start)) > Lp

σ̂1
for all p ∈ [M ].

We start by presenting an ’easy-to-read’ proof sketch, followed by an in-depth discussion of the

more nuaced aspects of the proof.

Proof [sketch] Let’s assume that E holds. We start by showing that because t1start ≥ 128
µ2
σ1

g(t1start/K)

(see Equation 5) for all p ∈ [M ] the lower confidence bound estimator around the optimal arm σ1
computed at time t1start is at least a constant proportion of its magnitude:

µ̂pσ1
(t1start)−D(Np

σ1
(t1start)) ≥

3µσ1

4
. (6)

See Lemma 13 for a proof of Equation 6. Since σ̂1 = argmaxi∈[K] µ̂i(t
1
start)−D(Np

σ1(t
1
start)) and

E holds, we conclude that µσ̂1
≥ 3µσ1

4 . In other words, the true mean of σ̂1 is at least a constant

(3/4) multiple of the mean reward of the maximal arm. This observation can be used to show that

whenever the good event holds:

A) Arm σ̂1 is always in the set of arms inspected during the ZeroTest; i.e.,

µ̂σ̂1
(t1start) ≥

1

2
max
j∈[K]

µj∈[K]µ̂
p
j (t

1
start).

B) The witnesses Lp
σ̂1
(t1start) ∈

[
µσ̂1
3 ,

µσ̂1
2

]

Both A) and B) hold whenever E holds, and thus occur with probability at least 1− δ. See Lemma 14

for a proof of this claim. The fundamental property of the witnesses Lp
σ̂1
(t1start) is that they are

neither close to zero nor close to µσ̂1
. Since µσ̂1

≥ 3µσ1
4 , the witnesses are bounded away from zero

and from µσ̂1
by a factor of at least

µσ1
4 .

The remainder of this proof sketch is based on the discussion and results from Appendix B.3.1.

Let PX be a distribution with support over [0, 1] and mean µX equal to either the null (always zero)

distribution or to the reward distribution of arm σ̂1. We consider and answer the following question.

Provided we have knowledge of the witnesses {Lp
σ̂1
(t1comm1)}p∈{2,··· ,M}, how many i.i.d. samples

from PX are needed to be able to distinguish with probability 1 − δ what type of distribution the

samples come from (either the zero distribution or the reward distribution of arm σ̂1).

Since the witnesses are all in the interval
[
µσ̂1
3 ,

µσ̂1
2

]
, it follows that µσ̂1

− Lp
σ̂1
≥ µσ̂1

2 ≥
3µσ1
8 .

This implies that in order to distinguish between these distributions it is enough to estimate µX up to

accuracy O(µσ1).
As a consequence of Assumption 1 we see the variance of the reward distribution of arm σ̂1 is

upper bounded by µσ̂1
(1− µσ̂1

) ≤ µσ1 and therefore the variance of PX is also upper bounded by

µσ1 . Using this variance bound along with a Uniform Empirical Bernstein bound (see Lemmas 35

and 36 in Appendix E) we can show that with probability at least 1− δ it is enough for player p to

look at the empirical average of Np samples from PX , where Np is such that
Np

B(Np,
δ

4K2M
)
≥ 48

Lp
σ̂1

.

We require the length of the communication rounds to be player independent. Since all witnesses

are in
[
µσ̂1
3 ,

µσ̂1
2

]
and t1start can be related to µσ1 via Equation 5, we instead define N (common to all

players p) to be a function of t1start. We show that instead ofNp we can use a player-independent value
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N = f(t1start) such that f(t1start) is the first integer such that
f(t1start)

B(f(t1start),
δ

4K2M
)
≥ 24

√
t1start/K

2g(t1start/K)

also achieves this goal. This definition of f gracefully extends to all integers t.

The following discussion will be devoted to present a detailed proof of Lemma 12.

Detailed Proof of Lemma 12 Algorithm 5 is a simplified version of the full communication

protocol which we introduced in Section 4. First, we assume the algorithm takes as input a known

time index t1start, a bit b ∈ {0, 1} that player 1 wishes to communicate to all other players and

the communication rounds length function f : R → N that will determine the length of the

communication rounds as a function of t. The algorithm works as follows. Initially all players in

{1, · · · ,M} play arms 1 through K in a Round Robin fashion until time t1start, which is assumed to

be a special round such that for all i, j ∈ [K] and p, p′ ∈ [M ], the counts Np
i (t

1
start) = Np′

j (t1start)

(this means t1start must be a multiple of K). After this time has elapsed each player p has access

to empirical estimators µ̂pi (t
1
start) of µi for all i ∈ [K]. At this time, player 1 (the communicating

player) computes a guess for the maximal arm σ̂1 ∈ [K]. This will be the arm that player 1 will use

to transmit bit b. The remaining f(t1start) rounds, which we call the communication rounds (where

f is a function known by all players p ∈ [M ]) are used by player 1 to transmit b and by the other

players p 6= 1 to receive it.

If b = 1, player 1 will keep playing in a Round Robin fashion during the communication rounds,

while if b = 0, player 1 will instead play arm σ̂1. When transmitting a single bit, the length of the

communication round equals Kf(t1start) rounds. At the end of the communication rounds, all players

(except possibly player 1 if transmitting b = 0) will have played each arm f(t1start) times.

Using these f(t1start) samples per arm the players p ∈ {2, · · · ,M} will conduct a test with the

objective of verifying if there was any arm whose reward estimator µ̂(t1start +1 : t1start +Kf(t1start))
was substantially lower than the average values µ̂pi (t

1
start) computed up to time t1start. If this is the

case, they can safely conclude player 1 was pulling the same arm throughout the communication

rounds [t1start + 1, · · · , t1start +Kf(t1start)], and therefore incurring in collisions with player 1, while

if they do not detect any substantial difference in their estimators, they can conclude that player 1
continued to play in a Round Robin fashion. We explain this procedure in more detail in Algorithms 5

and 2.

When b = 1 player 1 plays arm σ̂1 during all rounds from t = t1start+1 to t = t1start+Kf(t
1
start)

while the remaining players are playing in a Round Robin fashion. Collisions will occur anytime a

player distinct from 1 attempts to pull arm σ̂1. At this moment, both players will receive a reward of

zero. In case b = 0, no collisions will occur during rounds t = t1start + 1, · · · , t1start +Kf(t1start)
and the reward each player receives from pulling arm σ̂1 should have a mean value of µσ̂1

. In order

for player p′ 6= 1 to discern if player 1 is transmitting a one or a zero, there are two challenges.

First, since the optimal arm index estimator σ̂1 is random, none of the players p′ 6= 1 knows the

precise identity of arm σ̂1. Second, none of the players knows the exact value of the true mean µσ̂1

and therefore, discerning between samples of the null (always zeros) distribution Pnull and Pσ̂1
may

prove challenging. We address these issues below.

Algorithm 5 below contains the detailed description of the simplified Communication Protocol.
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Algorithm 5 One Bit Communication Protocol Appendix

Input Players [M ], arms [K], bit to communicate b ∈ {0, 1}, communication round start t1start,
communication rounds length function f : R→ N.

for t = 1, · · · , t1start do
All players p ∈ [M ] play arms [K] in a Round Robin fashion.

for p ∈ [M ] do
Play following a Round Robin schedule.

end

end

Player 1 computes a guess σ̂1 ∈ [K] for the maximal arm σ1 :

σ̂1 = argmax
i∈[K]

µ̂1i (t
1
start)−D(N1

i (t
1
start))

for t = t1start + 1, · · · , t1start +Kf(t1start) do

if b = 1 then
Player 1 plays arm σ̂1.

end

else
Player 1 plays arms [K] following a Round Robin schedule.

end

All players p 6= 1 continue playing arms [K] following a Round Robin schedule.

end

In order to recover the value of the transmitted bit b at the end of round t1start +Kf(t1start) all

players p 6= 1 will compare µ̂pi (t
1
start + 1 : t1start +Kf(t1start)) with the values µ̂pi (t

1
start). If player

p 6= 1 detects µ̂pi (t
1
start + 1 : t1start +Kf(t1start)) to be substantially lower than µ̂pi (t

1
start) for any

arm i, then it can conclude there have been collisions and that b = 1, otherwise it will conclude that

b = 0. We turn these intuitions into a precise mechanism in the discussion that follows.

For all p ∈ [M ] and all i ∈ [K] define the lower bound ’witnesses’ as,

Lp
i (t) :=

µ̂pi (t)−D(Np
i (t))

2

We now consider the following test to be executed by all players p ∈ [M ] with the data collected

during rounds t0 + 1, · · · , t0 +Kf(t0) and designed to decode bit b transmitted by player 1. Let

µ̂pi (t
1
start + 1 : t1start +Kf(t1start)) be the empirical mean of arm i computed by player p and using

only samples from t = t1start + 1, · · · , t1start +Kf(t1start). Since all players p 6= 1 are playing the

arms in [K] following a Round Robin schedule this estimator will consist of f(t1start) samples for

each arm i ∈ [K]. The following test will be used by all players p ∈ [M ] such that p 6= 1 to decode

b,
Recall that t1start is assumed to satisfy t1start ≥ t1first. Since t1start is assumed to be a special

round, for all players p, p′ ∈ [M ] and arms i, j ∈ [K] the number of pulls satisfies Np
i (t

1
start) =
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Np′

j (t1start) =
t1start
K and for the maximal arm σ1,

2

D2(Np
σ1(t

1
start))

=
Np

σ1(t
1
start)

g(Np
σ1(t

1
start))

≥ 128

µ2σ1

(7)

For the remainder of this subsection and for all p ∈ [M ] and i ∈ [K] we denote Np
i (t

1
start) as

N(t1start) to refer to
t1start
K , the number of times each arm was played by any player p ∈ [M ] up to

time t1start. In Lemma 13 we see that whenever t1start satisfies Equation 7, the lower confidence bound

estimators around the optimal arm µ̂pσ1(t
1
start)−D(Np

σ1(t
1
start)) are at least a constant fraction of the

value of µσ1 .

Lemma 13 If t1start satisfies Equation 7 and E holds, the lower confidence bound estimator around

the optimal arm σ1 is at least a constant proportion of its magnitude

µ̂pσ1
(t1start)−D(Np

σ1
(t1start)) ≥

3µσ1

4
.

Proof If E holds, µ̂pσ1(t
1
start) ∈ [µσ1 − D(Np

σ1(t
1
start)), µσ1 + D(Np

σ1(t
1
start))] and therefore

µ̂σ1(t
1
start)−D(Np

σ1(t
1
start)) ≥ µσ1 − 2D(Np

σ1(t
1
start)). Since t1start satisfies Equation 7,

D(Np
σ1
(t1start)) ≤

µσ1

8

and we conclude that µ̂pσ1(t
1
start)− 2D(Np

σ1(t
1
start)) ≥

3µσ1
4 .

We can use the result of Lemma 13 to show that whenever E is true and Equation 7 holds for

t1start the witnesses of σ̂1 are both upper and lower bounded by constant multiples of the true mean

µσ̂1
.

Lemma 14 Whenever E holds and Equation 7 holds for t1start, all witnesses of arm σ̂1 for all

p ∈ [M ] satisfy

Lp
σ̂1
(t1start) ∈

[µσ̂1

3
,
µσ̂1

2

]
(8)

Furthermore µσ̂1
≥ 3µσ1

4 and µ̂σ̂1
(t1start) ≥ 1

2 maxj∈[K] µ̂
p
j (t

1
start).

Proof Recall that σ̂1 = argmaxi∈[K] µ̂
1
i (t

1
start)−D(N1

i (t
1
start)). It follows that

µ̂1σ̂1
(t1start)−D(N1

σ̂1
(t1start)) ≥ µ̂1σ1

(t1start)−D(N1
σ1
(t1start))

(i)

≥ 3µσ1

4

(ii)

≥ 3µσ̂1

4
,

where inequality (i) holds by Lemma 13 and inequality (ii) holds by definition of µσ1 . Furthermore,

notice that since E holds,

µ̂pσ̂1
(t1start)−D(Np

σ̂1
(t1start)) ≤ µσ̂1

. (9)

for all p ∈ [M ].

Combining these two inequalities together we see that µσ̂1
≥ 3µσ1

4 . Recall that t1start is a special

round. By definition we have Np
i (t

1
start) = Np′

j (t1start) for all i, j ∈ [K] and all p, p′ ∈ [M ],

and t1start ≥ t1first therefore since E holds Equation 7 must be satisfied for all players. Equation 7
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implies that D(Np
σ̂1
(t1start)) ≤

µσ1
8 and therefore that D(Np

σ̂1
(t1start)) ≤

µσ̂1
6 . Combining these two

observations we see that for all p ∈ [M ],

µ̂pσ̂1
(t1start)−D(Np

σ̂1
(t1start))

(i)

≥ µσ̂1
− 2D(Np

σ̂1
(t1start))

(ii)

≥ 2µσ̂1

3
(10)

Inequality (i) is satisfied because E holds, and (ii) is a consequence of the observation that

D(Np
σ̂1
(t1start)) ≤

µσ̂1
6 . Combining Equations 9 and 10 we conclude that

µσ̂1(t1start)

3
≤ Lp

σ̂1
(t1start) =

µ̂σ̂1
(t1start)−D(Np

σ̂1
(t1start))

2
≤
µσ̂1(t1start)

2
.

For the second part, the following sequence of inequalities holds:

µ̂pσ̂1
(t1start)

(i)

≥ µσ̂1
−D(Np

σ̂1
(t1start))

(ii)

≥ 3µσ1

4
−D(Np

σ̂1
(t1start))

(iii)

≥ 5µσ1

8
.

Inequality (i) is satisfied because Equation 10 is true whenever E holds. Inequality (ii) is a conse-

quence of µσ̂1
≥ 3µσ1

4 and inequality (iii) holds because D(Np
σ̂1
(t1start)) ≤

µσ1
8 . The later implies

that
9

8
µσ1 ≥ µσ1 +D(Np

σ̂1
(t1start)) ≥ max

j∈[K]
µ̂pj (t

1
start),

where the inequality on the RHS holds because E is satisfied and µσ1 is the maximal arm. We

conclude that

µ̂pσ̂1
(t1start) ≥

5maxj∈[K] µ̂
p
j (t

1
start)

9
.

Since 5/9 > 1/2 the result follows.

Among other things Lemma 14 implies that whenever E holds, arm σ̂1 (the random arm used by

player 1 to communicate) is among the arms inspected by all players p 6= 1 during the Zero Test in

Algorithm 2. In section B.3.1 we show how to choose f in order to ensure that Algorithm 2 allows all

players p 6= 1 to decode b with high probability. This is the same functional form that is highlighted

at the start of Section 3.

B.3.1. DETAILED ANALYSIS OF THE ZERO TEST

We will take a small step back and consider a simplified version of the bit communication protocol

which will be useful in analyzing the Zero Test of Algorithm 2. Let X be a random variable with

support in [0, 1] and mean µX . Assume µX > L for L known. Let Z1, · · · , ZN be N i.i.d. samples

from either PX or the null distribution Pnull (all Zi = 0) and let µ̂Z = 1
N

∑N
i=1 Zi. The problem we

consider is the following:

How many i.i.d. samples are required to determine with high probability from which of the two

distributions (PX or Pnull) do the samples of {Zi}Ni=1 come from?

We will analyze the following simplified version of the zero test,

If µ̂Z ≥ L, then output PX else output Pnull (Zero-Test-Simple)
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We use the fact that for any random variable PX with support in [0, 1] and mean µX the variance

can be upper bounded by µX(1−µX) (see Lemma 34 in Appendix E) in conjunction with a Uniform

Empirical Bernstein bound (see Lemmas 35 and 36 in Appendix E) to show the following bound on

the required number of samples N ,

Lemma 15 Let δ′ ∈ (0, 1). If X is a random variable with support in [0, 1], distribution PX and

mean µX satisfying L ≤ µX , then with probability at least 1 − δ′ for all N such that N
B(N,δ′) ≥

max
(

2
µX−L ,

16min(µX ,1−µX)
(µX−L)2

)
we have,

µ̂X ≥ L,

where B(n, δ′) = 2 log log(2n) + log 5.2
δ′ .

Proof

Let α = min(µX , 1 − µX). A simple use of Lemma 36 implies that with probability at least

1− δ′ for all n ∈ N:

µ̂X ≥ µX − 2

√
αB(n, δ′)

n
− B(n, δ′)

n
.

The LHS of this inequality attains a value of at least L whenever:

µX − L ≥ 2

√
αB(n, δ′)

n
+
B(n, δ′)

n
.

We finalize the proof by noting that for all n such that n
B(n,δ′) ≥ max

(
2

µX−L ,
16min(µX ,1−µX)

(µX−L)2

)
we

have that µX−L
2 ≥ 2

√
αB(n,δ′)

n and µX−L
2 ≥ B(n,δ′)

n .

The bound in Lemma 15 implies that when the sampling distribution for Z equals PX , the

empirical mean µ̂Z will be larger than L with high probability provided the number of test samples

{Zi}Ni=1 is large enough. Observe that N has an inverse dependence on the gap µX − L. We will be

applying this result to the case where although L 6= µX it is of the order of µX .

Lemma 16 Let δ′ ∈ (0, 1). Assume that
µX
2 ≥ L ≥ µX

3 and let be N be an integer such that
N

B(N,δ′) ≥ 48
L , then Zero-Test-Simple succeeds with probability at least 1− δ′.

Proof This follows from Lemma 15 by noting that in this case 1
µX−L ≤ 1

L and
16min(µX ,1−µX)

(µX−L)2
≤ 48

L .

Lemma 16 is an instantiation of the results of Lemma 15 when µX − L is of the order of µX .

This result says that up to logarithmic factors, it is enough for N ≈ 1
µX

for the empirical estimator

µ̂Z to be at least a constant fraction of the true mean µX .

We can now apply these results to the Communication Protocol in Algorithm 5 and the Zero Test

in Algorithm 2. Recall that by definition of t1start we have t1start ≥ t1first N
p
i (t

1
start) = Np′

j (t1start) =

N(t1start) for all i, j ∈ [K] and all p, p′ ∈ [M ].
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Lemma 17 Let δ ∈ (0, 1) and t1start satisfy Equation 7. If f(t1start) is an integer such that

f(t1start)

B(f(t1start),
δ

4K2M
)
≥ 24

√
t1start/K

2g(t1start/K)
then whenever the good event E holds, at the end of the Com-

munication protocol in Algorithm 5 all players p ∈ [M ] with p 6= 1 will be able to recover exactly

the bit transmitted by player 1 via the Zero Test of Algorithm 2 with probability at least 1− δ
4K2 .

Proof Let’s assume E holds. Equation 7 implies that µσ1 ≥ 8

√
g(N(t1start))

N(t1start)
Lemma 13 tells us

that µσ̂1
≥ 3µσ1

4 and therefore µσ̂1
≥ 6

√
g(N(t1start))

N(t1start)
. Furthermore, by Equation 8 of Lemma 14,

Lp
σ̂1
(t1start) ∈

[
µσ̂1
3 ,

µσ̂1
2

]
and therefore Lp

σ̂1
≥ 2

√
g(N(t1start))

N(t1start)
. We can then conclude that 48

Lp
σ̂1

≤

24

√
N(t1start)

g(N(t1start))
for all p ∈ [M ].

Recall that N(t1start) =
t1start
K (a known function of t1start). If we define f(t1start) to be the any in-

teger6 such that
f(t1start)

B(f(t1start),
δ

4K2M
)
≥ 24

√
N(t1start)

g(N(t1start))
= 24

√
t1start/K

g(t1start/K)
, the conditions of Lemma 16

are satisfied since
f(t1start)

B(f(t1start),
δ

4K2M
)
≥ 48

Lp
σ̂1

and Lp
σ̂1
(t1start) ∈

[
µσ̂1
3 ,

µσ̂1
2

]
. We can conclude that

the Zero Tests performed by each of the players p ∈ [M ] are successful in recovering player 1’s

transmission over the pulls of arm σ̂1 with probability at least 1− δ
4K2M

each. A union bound over

the M players yields the result.

This finalizes the formal proof of Lemma 12.

B.4. Detailed Discussion and Missing Supporting Results for The Listening Players

In this section we present the full versions of the algorithms used by the listening players to 1)

prepare and start listening (see Algorithm 6) and 2) decode player 1’s message (see Algorithm 7).

We also present the proof of Lemma 8, which we restate for readability.

6. For example the first one that satisfies this bound.
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Algorithm 6 Prepare and Start Listening (p ∈ {2, · · · ,M})
Input Players p ∈ {2, · · · ,K}
Initialize FLAG← NONE
for special rounds s = 1, · · · do

Pull arm K − p (Round Robin schedule) if connp (sK, 10) ≥ 2 then
FLAG← FINDPOWER

end

if FLAG = FINDPOWER,
⌊

s
g(s)

⌋
= 9w for some w ∈ N and

⌊
s−1

g(s−1)

⌋
6= 9w then

tplisten ← Ks
Ap ← {Lp

i (t
p
listen)}i∈[K], B

p ← {µ̂pi (t
p
listen)}i∈[K]

Start listening for a communication start signal from player 1
FLAG← LISTENCOMM1

end

else if FLAG = LISTENCOMM1 and t = tplisten +Kf(tplisten) then

if ZeroTest(Ap, Bp, Cp) = 0 then

Cp ← {µ̂pi (t
p
listen + 1 : tplisten +Kf(tplisten))}i∈[K]

The algorithm did not detect a communication start signal:

FLAG← FINDPOWER

end

else

DecodedMessage ← DECODE(tplisten, A
p, Bp, Cp,message size = K) using Al-

gorithm 7.

end

end

end

Algorithm 7 DECODE

Input Round number tplisten, witnesses {Lp
i (t

p
listen)}i∈[K], empirical means {µ̂pi (t

p
listen)}i∈[K], mes-

sage size α
Ap ← {Lp

i (t
p
listen)}i∈[K], B

p ← {µ̂pi (t
p
listen)}i∈[K]

for t = tplisten + 1, · · · , tplisten + αKf(tplisten) do

if t = tplisten + jKf(tlisten) then

Cp ← {µ̂pi (t
p
listen + (j − 1)Kf(tplisten) + 1 : tplisten + jKf(tplisten))}i∈[K]

DecodedMessagej ← ZeroTest(Ap, Bp, Cp)

end

Return DecodedMessage.

end
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Lemma 18 (Message Recovery) If E holds then with probability at least 1 − δ
K for all p ∈ [M ]

the value of tplisten sent to the DECODE function of Algorithm 7 satisfies tplisten = t1comm1 and

DECODE will recover the exact K−bit message sent by player 1.

Proof Let 9u be the unique power of nine in the interval

[
128

maxi ∆2
σi,σi+1

, 1152
maxi ∆2

σi,σi+1

)
. Recall that

whenever the good event E holds by design the first tplisten of Algorithm 6 satisfies

tplisten ∈
{
min
t∈N

s.t.

⌊
t/K

g(t/K)

⌋
= 9u,min

t∈N
s.t.

⌊
t/K

g(t/K)

⌋
= 9u+1

}
.

Similarly recall that whenever the good event E holds

t1comm1 ∈
{
min
t∈N

s.t.

⌊
t/K

g(t/K)

⌋
= 9u+1,min

t∈N
s.t.

⌊
t/K

g(t/K)

⌋
= 9u+2

}
.

This means that each player p ∈ {2, · · · ,M} may require at most three invocations to the

ZeroTest function to detect the b = 1 bit that player 1 will use to signal the start of the communica-

tion sequence. Applying Lemma 12 with t1start equals the different tplisten guesses of the listening

players and over the K bits transmitted by player 1, we see that a union bound over at most K + 3
uses of Lemma 12 are required. Since K + 3 ≤ 4K the result follows.

B.5. Detailed Discussion and Missing Supporting Results for Bounding Regret

In this section we present the missing detailed proofs of Section 4.4 in the main. The discussion is

divided in two parts. First we analyze the FirstPartitionRegret([K], [M ]) derived from a single

communication and listening round required to transmit C11(t1first, 10) (see Section B.5.1). The next

section B.5.2 deals with the RECURSE function and with assembling the final algorithm.

B.5.1. BOUNDING THE FIRST PARTITION REGRET

We have now the necessary ingredients to characterize the regret of the strategy to communicate the

composition of C11(t1first, 10) from player 1 to all other players (FirstPartitionRegret([K], [M ]))
Observe that regret is generated only when collisions occur. During the communication interaction

between player 1 and any other single player p ∈ {2, · · · ,M}, the number of collisions is upper

bounded by (K + 1)f(t1comm1). Thus the total CollisionRegret experienced by the M players

during the first communication round (when player 1 informs players {2, · · · ,M} of the partition

resulting from the first time G1
t1first

(10) has more than one connected component) is upper bounded

by M(K + 1)f(t1comm1). Let’s prove an upper bound for f(t1comm1).

Lemma 19 If E holds, tcomm1 ≥ max (tboundary1, tboundary3), s
1
first ≥ sboundary2 and δ ≤ 1

162
then,

f(t1comm1) ≤
20736B

(
186624

maxi ∆2
σi,σi+1

, δ
4K2M

)

maxi∆σi,σi+1

. (11)
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The proof of Lemma 19 can be found in Appendix D.4. We can now combine Lemmas 8 and 19

to bound the regret incurred by Algorithms 3, 4, 6 and 7 during the transmission of the partition

message ENCODE(C11(t1first, 10)).

Corollary 20 (First Partition Collision Regret) If E holds and δ ≤ 1
162 then with probability

at least 1 − δ
K the total collision regret (the regret generated by collisions occurring during the

communication rounds used to communicate the composition of C11(t1first, 10) satisfies,

CollisionRegret([K], [M ]) ≤
20736(K + 1)MB

(
186624

maxi ∆2
σi,σi+1

, δ
4K2M

)

maxi∆σi,σi+1

+ c̃(δ,K,M),

where c̃(δ,K,M) is a logarithmic problem independent cost resulting from the regret incurred7

before the boundary conditions tcomm1 ≥ max (tboundary1, tboundary3), s
1
first ≥ sboundary2 hold8.

We can also get a bound for the RoundRobinRegret. By Lemma 11 whenever E holds,

s1comm1 ≤ 746496
maxi ∆2

σi,σi+1

log

(
746496MK

δmaxi ∆2
σi,σi+1

)
. During a single Round Robin cycle regret is only

incurred when arms in {µσi}Ki=M+1 are played. A full cycle consists of KM arm pulls, all players

pull each arm once. Out of these KM pulls the M2 pulls of arms µσ1 , · · · , µσM incurr in no regret.

The remaining (K −M)M pulls incur in a regret of

(K −M)

(
M∑

i=1

µσi

)
−M

(
K∑

i=M+1

µσi

)

We can further upper bound this quantity as follows,

(K −M)

(
M∑

i=1

µσi

)
−M

(
K∑

i=M+1

µσi

)
=

M∑

i=1

K∑

j=M+1

∆σi,σj

≤M(K −M)Kmax
i

∆σi,σi+1

Where we have used the bound ∆σi1
,σi2
≤ Kmaxi∆σi,σi+1 for all i1 < i2. Thus the

RoundRobinRegret incurred by the algorithm in the rounds preceding active communication can

be upper bounded by

M(K −M)Kmax
i

∆σi,σi+1s
1
comm1.

Recall that during the communication rounds, all players p ∈ {2, · · · ,M} are still using a Round

Robin schedule. This goes on for (K + 1)Kf(t1comm1) rounds after t1comm1, thus completing a total

7. A slightly more careful algorithm that uses an estimator of µσ̂1
as the input to determine the length of the one bit

communication rounds yields a regret bound of the form CollisionRegret([K], [M ]) = O
(

KM log(t/δ)
µσ1

)

. Since this

quantity would be dominated by the RoundRobinRegret([K], [M ]) it wouldn’t change the final result.

8. We will provide a bound for this quantity in the following section.
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of (K + 1)f(t1comm1) Round Robin cycles. Using Equation 11 from Lemma 19 we can upper bound

the Round Robin regret incurred during these rounds as

M(K −M)Kmax
i

∆σi,σi+1 × (K + 1)f(t1comm1)

≤ 20736(K + 1)M(K −M)KB

(
186624

maxi∆2
σi,σi+1

,
δ

4K2M

)
.

These observations imply the following upper bound for RoundRobinRegret,

Corollary 21 (First Partition Round Robin Regret) If E holds and δ ≤ 1
162 then with probability

at least 1− δ
K the Round Robin regret is bounded as follows:

RoundRobinRegret([K], [M ]) ≤ 746496M(K −M)K

maxi∆σi,σi+1

log

(
746496MK

δmaxi∆2
σi,σi+1

)

20736(K + 1)M(K −M)KB

(
186624

maxi∆2
σi,σi+1

,
δ

4K2M

)
+

c̃(δ,K,M),

where c̃(δ,K,M) is a logarithmic problem independent cost resulting from the regret incurred before

the boundary conditions tcomm1 ≥ max (tboundary1, tboundary3), s
1
first ≥ sboundary2 hold and is the

same as in Corollary 20.

Combining Corollaries 20 and 21 we can infer that if E holds and δ ≤ 1
162 then with probability

at least 1− δ
K the total regret incurred up to time t1comm1 + (K + 1)f(t1comm1), when all players are

aware of the composition of C11(t1first, 10) is upper bounded by

FirstPartitionRegret([K], [M ]) ≤ 746496M(K −M)K

maxi∆σi,σi+1

log

(
746496MK

δmaxi∆2
σi,σi+1

)
+

20736(K + 1)M(K −M)KB

(
186624

maxi∆2
σi,σi+1

,
δ

4K2M

)
+

20736(K + 1)MB

(
186624

maxi ∆2
σi,σi+1

, δ
4K2M

)

maxi∆σi,σi+1

+ c̃(δ,K,M),

(12)

Where the term c̃(δ,K,M) captures a crude linear upper bound on the regret collected before

the boundary conditions hold true. We can also invoque the results in Lemma 11 and 19 to bound on

the total number of rounds needed until all players are aware of the composition of C11(t1first, 10),

Runtime([K], [M ]) ≤ 746496K

maxi∆2
σi,σi+1

log

(
746496MK

δmaxi∆2
σi,σi+1

)
+

20736(K + 1)KB

(
186624

maxi ∆2
σi,σi+1

, δ
4K2M

)

maxi∆σi,σi+1

.
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Bounding c̃(δ,K,M) The cost of satisfying the boundary conditions bound is not additive between

the RoundRobinRegret and the CollisionRegret components of FirstPartititionRegret. In order

to deal with these we introduce a slight modification to the communication and listening protocols

of Algorithms 3, 4, 6 and 7 by modifying the definition of tpfirst for all p ∈ [M ]. Instead we

use t̃pfirst times defined as t̃pfirst = max(tpfirst, tfirstBoundary). It is easy to see this will not affect

the regret too much. If tpfirst ≥ tfirstBoundary for all p ∈ [M ], or tfirstBoundary ≥ tpfirst for some

p ∈ [M ] but not for all, the analysis will remain unchanged. If instead tfirstBoundary > tpfirst for all

p ∈ [M ], all the player’s t̃pfirst = tfirstBoundary. This definition induces that of s̃pfirst ∀p ∈ [M ], t̃1comm1

and s̃1comm1. As a consequence of Lemma 11 we see that s̃1comm1 ≤ 162s̃1first = 162
tfirstBoundary

K .

Notice that by definition of the 4−th boundary condition f(t̃1comm1) ≤
t̃1comm1/K

g(t̃1comm1/K)
≤ t̃1comm1/K ≤

162tfirstBoundary/K.

The protocol thus ensures communicating the composition of Cp1(t1first, 10) (notice that we are still

transmitting the composition of Cp1(t1first, 10) and not Cp1(t̃1first, 10) ) can be achieved while incurring

regret of at most,

M(K −M)Kmax
i

∆σi,σi+1

(
s̃comm1 + (K + 1)f(t̃1comm1)

)
+M(K + 1)f(t̃1comm1).

We define c̃(δ,K,M) to be a problem independent upper bound of this quantity.

c̃(δ,K,M) =M(K −M)K

(
162tfirstBoundary

K
+ (K + 1)

162tfirstBoundary

K

+M(K + 1)
162tfirstBoundary

K

)

= poly

(
log

(
1

δ

)
,K,M

)

And where the dependence on log
(
1
δ

)
is linear.

B.5.2. ANALYZING THE RECURSE FUNCTION

In order to implement the recursion strategy described at the start of Section 4 and at the end of

Section 4.4, when faced with a smaller Cooperative Multi-Player Multi-Armed problem the players

will restart their empirical mean estimators from scratch. In Appendix C.5 we describe a warm-start

strategy that allows the players to start their empirical mean estimators using a constant proportion

of the samples that have been gathered so far. The two strategies have the same performance up to

constant factors.
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Algorithm 8 RECURSE

Input players p ∈ {1, · · · ,M}, arm indices {1, · · · ,K}

Run Algorithms 3, 4, 6, and 7 to communicate C11(t1first, 10) to all players.

if |C11(t1first, 10)| > M then

RECURSE on C11(t1first, 10) with players [M ].
end

else

Run RoundRobin on C11(t1first, 10) with players {1, · · · , |C11(t1first, 10)|}.
RECURSE on [K]\C11(t1first, 10) with players [M ]\{1, · · · , |C11(t1first, 10)|}.

end

To analyze the regret guarantees of Algorithm 8 let’s start by noting that in case |C11(t1first, 10)| ≤<
M , the subset of players {1, · · · , |C11(t1first, 10)|} that has been assigned to RoundRobin over the

subset C11(t1first, 10) will not incur in any more regret. It is therefore only necessary to bound the

regret incurred by the algorithm during each of its successive calls to the RECURSE subroutine.

The main difficulty we face in deriving an upper bound for the regret of RECURSE is that a

successful execution of the communication protocol may not imply the gap between the arms in

C11(t1first, 10) and those in [K]\C11(t1first, 10) equals maxi∆σi,σi+1 . Nevertheless we can show they

cannot be more than a constant multiple fraction apart,

Lemma 22 In the event the communication protocol succeeds in transmitting the composition of

C11(t1first, 10) to all players p ∈ [P ]. If ∆̃ = minσi∈C1
1(t

1
first,10)

µσi −maxσj∈[K]\C1
1(t

1
first,10)

µσj . Then,

max
i

∆σi,σi+1 ≤ 3∆̃.

Proof If the communication protocol succeeded, then the sandwich property of Equation 4 holds for

all σi, σj and therefore,

s1first
g(s1first)

∈
[
128

∆̃2
,
1152

∆̃2

]

Since the ‘trigger’ time s̄1first for maxi∆σi,σi+1 satisfies,

s̄first
g(s̄first)

∈
[

128

maxi∆2
σi,σi+1

,
1152

maxi∆2
σi,σi+1

]

And by definition s1first ≤ s̄1first, we can conclude that 128
∆̃2
≤ 1152

maxi ∆2
σi,σi+1

and therefore,

max
i

∆σi,σi+1 ≤ 3∆̃.

Let’s consider the set of consecutive gaps {∆σi,σi+1}K−1
i=1 and assume their ordering to be

∆̄1 ≥ · · · ≥ ∆̄K−1 where ∆̄i = ∆σℓ(i),σℓ(i)+1
for some bijective mapping ℓ : [K − 1] → [K − 1].

The inverse mapping ℓ−1(i) satisfies, ∆σi,σi+1 = ∆̄ℓ−1(i).
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For all i ∈ [K] denote by Jup(i) to the index,

Jup(i) = argmax{j s.t. 3∆̄j ≥ ∆̄i}.

By definition Jup(i) ≥ i. As an immediate consequence of Lemma 22, the first sub-problem the

RECURSE algorithm will solve (in case the communication protocol was successful) will break the

arm set through one of the gaps in {∆σℓ(i),σℓ(i)+1
, i ≤ Jup(1)}. Furthermore Lemma 22 also implies

the RECURSE algorithm will break the ∆̄1 = ∆σℓ(1)),σℓ(1)+1
gap in at most Jup(1) recursive calls.

In fact the same argument holds for all i ∈ [K − 1]. The RECURSE algorithm will break the

∆̄i = ∆σℓ(i),σℓ(i)+1
gap in at most Jup(i) recursive calls.

After the RECURSE algorithm has successfully broken the ∆σM ,σM+1 gap, the players will

cease to experience any regret. As a result of the previous discussion this will happen in at most

Jup(ℓ
−1(M)) recursive calls. We are ready to bound the regret of the RECURSE Algorithm.

For any ∆ > 0 we define the partition regret function for gap ∆, number of arms K̄ and number

of players M̄ as,

PartitionRegret(∆, K̄, M̄ , δ) =
746496M̄(K̄ − M̄)K̄

∆
log

(
746496M̄K̄

δ∆2

)
+

20736(K̄2 + K̄)M̄(K̄ − M̄) B

(
186624

∆2
,

δ

4K̄2M̄

)
+

20736(K̄ + 1)M̄B
(
186624
∆2 , δ

4K̄2M̄

)

∆
+ c̃(δ, K̄, M̄)

This is the parametric form of the upper bound in Equation 12. Recall that for any sub-problem

of K̄ arms the communication protocol succeeds with probability at least 1− δ︸ ︷︷ ︸
satisfying E

− δ
K̄

(see the

discussion surrounding Equation 12). This concludes the proof of one of our main results.

Theorem 23 If δ ≤ 1
162 with probability 1 − δ

(
Jup(ℓ

−1(M)) +
∑Jup(ℓ−1(M))

i=1
1
i

)
the regret of

Algorithm 8 satisfies

RegretRECURSE([K], [M ]) ≤
Jup(ℓ−1(M))∑

i=1

PartitionRegret(∆̄i, ℓ(i),M, δ)

Using the definition δ = ξ
2K and the fact that PartitionRegret is monotonic w.r.t. 1

∆ , K̄ and M
as well as the inequalities ℓ(i) ≤ K and Jup(ℓ

−1(M)) ≤M and 3∆Jup(ℓ−1(M)) ≥ we can conclude

the following,
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Corollary 24 If
ξ
2K ≤ 1

162 then with probability at least 1− ξ the regret of Algorithm 8 satisfies

RegretRECURSE([K], [M ]) ≤ K · PartitionRegret
(
∆σM ,σM+1

3
,K,M,

ξ

2K

)

=
3× 746496M(K −M)K2

∆σM ,σM+1

log

(
18× 746496MK2

ξ∆2
σM ,σM+1

)
+

20736(K3 +K2)M(K −M)B

(
9× 186624

∆2
σM ,σM+1

,
ξ

8K3M

)
+

20736(K2 +K)MB

(
9×186624
∆2

σM,σM+1

, ξ
8K3M

)

∆σM ,σM+1

+Kc̃

(
ξ

2K
,K,M

)

Note that both g(n) and B(n, δ) are of the order of Õ(log(n/δ)) where Õ(·) hides logarithmic

factors in K and M only. By setting ξ = min
(
1
T ,

K
81

)
we can easily turn the results of Corollary 24

into the following Corollary that corresponds to the statement of Theorem 2,

Corollary 25 (Main-Simplified) There exists a strategy such that the regret is upper bounded by:

RT ≤ Õ
(
M(K −M)K2 log(T )

∆σM ,σM+1

+ poly(log(T ),K,M)

)
,

with probability at least 1−min
(
1
T ,

K
81

)
where Õ(·) hides factors logarithmic in M and K only9.

Our results also imply anytime guarantees,

Corollary 26 (Main-Simplified Anytime) Let δ ∈ (0, 1). There exists a strategy such that the

regret is upper bounded by:

Rt ≤ Õ
(
M(K −M)K2 log(t/δ)

∆σM ,σM+1

+ poly(log(t/δ),K,M)

)
,

with probability at least 1− δ for all t ∈ N and where Õ(·) hides factors logarithmic in M and K
only.

Appendix C. Sharpening of the Zero Collision Reward Setting

In this section we describe a couple of Extensions of our main results.

9. More careful analysis may be possible that could ameliorate the dependence on the number of arms by at least one

factor of K. This may be achieved by not upper bounding the RoundRobinRegret and PartitionRegret in each

partition by those of the partition defined by ∆σM ,σM+1
. We leave this sharpening for future work.
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C.1. Problem independent Collision Regret

Recall the the logic behind why the ZeroTest works. At time tptest (in our case equal to t1comm1

all players have access to a constant accuracy estimator for maxi∆σi,σi+1 (i.e. the empirical gap

between the arms at the boundary of the two connected components of C11(t1first, 10)). Therefore they

can estimate µσ1 up to a constant accuracy. By Freedman’s inequality, testing at an accuracy of cµσ1

the mean of an arm σ̂1 satisfying µσ̂1
> c′µσ1 with c′ > c only requires Õ

(
1

µσ1

)
samples (up to log

factors) since the variance of σ̂1 is upper bounded by µσ1 .

Thus, it is enough for the ZeroTest to succeed to use Õ
(
poly(K,M) log(1/δ)

µσ1

)
collisions to transmit

each bit. Since each collision incurs in regret of at most µσ1 , this implies the CollisionRegret can

be upper bounded by a problem independent term of the form O(poly(K,M) log(T )).
This can be achieved by substituting the communication length function f with an agreed

estimator tcommunication−length of order ≈ 1/µσ1 . This can be agreed upon by all players using the

same initial procedure as in the µcollision > 0 case, which would yield an estimator of 1/µ2σ1
since

∆collision = µσ1 in the zero collision reward setting.

C.2. Unknown number of players

Our algorithms work in the setting where each player has a known player index but does not

know how many players may exist with a larger index. The RECURSE algorithm needs to be

slightly modified. Instead of running RoundRobin on C11(t1first, 10) if |C11(t1first, 10)| ≤ M , the

players will simply RECURSE and run the full communication protocol on the two sub-problems

induced by C11(t1first, 10) and [K]\C11(t1first, 10). Since all players are aware of their index, upon

receiving C11(t1first, 10) each of them can determine what sub-problem it is meant to play after a

call to RECURSE, either C11(t1first, 10) or the [K]\C11(t1first, 10). Within each of the sub-problems

each player is perfectly capable of inferring if it should be the communicating player or not. The

techniques we have used to derive the regret guarantees of Corollary 25 can be used to derive the

same instance dependent logarithmic regret rate for this slightly more complex algorithm.

C.3. Unknown lower bound for the collision reward

Our algorithms work in the setting where the collision reward is a random variable with mean

µcollision ∈ [0, 1] satisfying the condition µcollision ≤ µσK and unknown to the learners in advance.

Our algorithm will consist of an initial phase aimed at discovering an estimator for µσ1 − µcollision.

This phase, not present in the vanilla version of the algorithm discussed in the previous sections

will be executed at the start of any RECURSE subroutine. The objective of this discovery phase

is to ensure player 1 can convey the identity of a round value tcollision−test to all remaining players

p ∈ {2, · · · ,M} that will be used to determine the length of the communication rounds in the second

phase of the algorithm. During the second phase of the algorithm, the players will engage in a

similar interaction as that described by Algorithms 4, 6 and 7 where instead of using f to infer the

length of the communication rounds, the players will use tcollision−test. Transmitting the identify of

tcollision−test from player 1 to all players p ∈ {2, · · · ,M} is achieved via a bastardized version of

the ZeroTest we outline below.

1. All players go through a modified version of the RoundRobin schedule that we’ll call

CollisionRoundRobin. Instead of cycling in batches of K rounds, they will use a cycle
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length of size K +M . Let’s see how the very first such cycle works. All the remaining

ones are a repetition of this basic structure. During the first K rounds all players cycle

through the K arms in [K] following the usual RoundRobin schedule. From round K + 1 to

K+M , players {2, · · · ,M} will continue pursuing a traditional RoundRobin schedule while

player 1 will instead pull arm M . All players p ∈ [M ] will build their empirical estimators

of µ1, · · · , µK using only the samples collected during the first K rounds of each K +M
CollisionRoundRobin cycle. To estimate µcollision player 1 will use the samples collected at

time K + 1 of each CollisionRoundRobin cycle while players p ∈ {2, · · · ,M} will use the

samples collected at times K +M − p+1. All other samples will be discarded. If the number

of players is unknown, we could extend the length of a CollisionRoundRobin cycle to be of

size 2K instead.

2. Define σ̂p1(t) = argmaxi∈[K] µ̂
p
k(t) be player p’s guess for the largest arm during round t.

Define as µ̂pcollision(t) to be the empirical estimator of µcollision by player p ∈ [M ] at time t.
Let tpfirst−collision be the first special round t such that when Ip

σ̂p
1(t)

(t, 10) ∩ Ipcollision(t, 10) = ∅.
The same logic used to prove Equations 2 and 5 can be used to show that whenever E holds

and for all p ∈ [M ],

128

(µσ1 − µcollision)2
≤

Np
σ1(t

p
first−collision)

g(Np
σ1(t

p
first−collision)

≤ 1152

(µσ1 − µcollision)2
(13)

3. Define t1comm1−collision and t1comm−collision as functions of t1first−collision the same way as t1comm1

and t1comm are functions of t1first in the previous sections and set the length of the communicating

sequence starting at t1comm1−collision to be of size t1comm1−collision instead of Kf(t1comm1). The

listening protocol for players p ∈ {2, · · ·M} remains unchanged except for the communication

rounds length f . Player 1 will communicate a bit by pulling arm σ̂11 = σ̂11(t
1
first−collision) from

round t1comm1−collision + 1 to round 2t1comm1−collision. The listening protocol for players

p ∈ {2, · · · ,M} remains mostly unchanged. All players p ∈ {2, · · · ,M} will compute a set

of large empirical reward arms ̂MaxArms
p

defined as ,

̂MaxArms
p ←

{
i ∈ [K] s.t.

µ̂pi (t
p
listen−collision)− µ̂

p
collision(t

p
listen−collision) ≥

1

2
max
j∈[K]

(
µ̂pj (t

p
listen−collision)− µ̂

p
collision(t

p
listen−collision)

)}
.

The players will then compute witness estimators Lp
i (t

p
listen−collision) for all arms in i ∈

̂MaxArms
p

defined as,

Lp
i (t

p
listen−collision) =

µ̂pi (t
p
listen−collision)− µ̂

p
collision(t

p
listen−collision)

2
+µ̂pcollision(t

p
listen−collision).

4. A bit b with value 1 is communicated by player 1 to make sure all players p ∈ {2, · · · ,M}
learn t1comm1−collision. During the listening protocol all players p ∈ {2, · · · ,M} will collect

samples from tplisten−collision + 1 to 2tplisten−collision following a CollisionRoundRobin sched-

ule. These samples will be used by players p ∈ {2, · · · ,M} as input to the CollisionTest
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to figure if player 1 has been pulling arm σ̂11 . Since t1comm1−collision ≥ 2t1comm−collision ≥
4t1first−collision the different tplisten−collision times do not overlap with the sample collection for

the CollisionZeroTest:

If ∃i ∈ ̂MaxArms
p

s.t. µ̂pi (t
p
listen−collision + 1 : 2tplisten−collision) < Lp

i (t
p
listen−collision) :

Return b = 1

Else :

Return b = 0 (14)

If E holds, t1comm1−collision equals the first tplisten−collision that returns b = 1 for all p ∈
[M ]. Once this signal has been received all players have shared knowledge of the value of

t1comm1−collision.

The regret incurred during this phase of the algorithm is at most 2 (µσ1 − µcollision) tpcomm1−collision.

Since tpcomm1−collision satisfies Equation 13 the same argument as in Corollary 21 implies - ignoring

any polynomial factors of K and M - the regret is upper bounded byO
(

log(1/δ)
µσ1−µcollision

)
. Once having

established shared knowledge of t1comm1−collision among all players, the second phase of the algorithm

starts. During this phase the player all players are to restart their empirical mean estimators for all

arms although all listening players will keep a copy of their last witness values Lp
i (t

p
comm1−collision)

for all arms in i ∈ ̂MaxArms
p
. The second phase of the algorithm bears more resemblance with

Algorithms 4, 6 and 7. It is designed to transmit the composition of C11(t1first, 10). The players will

start pulling arms following a traditional RoundRobin−schedule and follow the exact same logic as

Algorithms 4 and 6 including the definitions of tpfirst, t
1
comm, t1comm1 and tplisten. The only difference is

that instead of using f to decide the length of the communication rounds, each bit is to be transmitted

by player 1 using the same protocol described above where empirical estimators of the rewards of

arms i ∈ ̂MaxArms
p

are compared with the witness values Lp
i (t

p
comm1−collision). Thus each bit

transmission costs -ignoring polynomial factors of K and M - at most O
(

log(1/δ)
µσ1−µcollision

)
regret. By

the same argument as in the previous sections the lead-up to communicating C11(t1first, 10) incurrs in

regret of order O
(

log(1/δ)
maxi ∆σi,σi+1

)
. Since 1

µσ1−µcollision
≤ 1

maxi ∆σi,σi+1
, we conclude the total regret

-ignoring polynomial factors in K and M - up to the time all players have knowledge of C11(t1first, 10)
is upper bounded by O

(
log(1/δ)

maxi ∆σi,σi+1

)
. The polynomial factors in K and M remain the same as in

the zero collision reward setting. We flesh out this strategy in more detail below.

C.4. Detailed Analysis of Unknown Collision Reward

In this section we explore the setting where the collision reward is a random variable with a mean

of µcollision that is unknown to the learner. We assume that µcollision ≤ µσK . We focus on showing

the CollisionTest works as intended. We will follow the analysis of the communication protocol in

Section 4.2. Let t1start−collision be the known start of the communication sequence.

Since maxi∆σi,σi+1 ≤ ∆σ1,σK ≤ µσ1 − µcollision, the same logic used to prove Equations 2

and 5 can be utilized to prove that whenever E holds, in Phase 1 we have that

Np
σ1(t

1
first−collision)

g(Np
σ1(t

1
first−collision))

≥ 128

(µσ1 − µcollision)2
(15)
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and in Phase 2 of the protocol,

Np
σ1(t

1
first)

g(Np
σ1(t

1
first))

≥ 128

∆2
σ1,σK

≥ 128

(µσ1 − µcollision)2
(16)

thus during Phase 1 and Phase 2,

Np
σ1(t

1
start)

g(Np
σ1(t

1
start))

≥ 128

(µσ1 − µcollision)2
(17)

Let’s call σ̂1 to player 1’s guess for the largest arm at time t1comm1−collision. Equation 17 can be used

to show that a similar but stronger set of properties as those presented at the beginning of Section 4.2

holds with high probability,

1. If t1start = t1comm1−collision then arm σ̂1 has a large empirical mean for all players. Arm

σ̂1 ∈ {i ∈ [K] s.t. µ̂pi (t
1
start) − µ̂pcollision(t1start) ≥ 1

2 maxj∈[K]

(
µ̂pj (t

1
start)− µ̂pcollision(t1start)

)
} for

all p ∈ {2, · · · ,M} and µ̂pσ̂1
(t1start)−D(Nσ̂1

(t1start)) ≥
µσ1−µcollision

2 + µcollision.

• To see a formal proof of this statement refer to Lemma 27 in Appendix C.4. Set C̃ = 10. This

result makes sure that σ̂1 ∈ ̂MaxArms
p

with high probability. As a side product of this

result it is possible to show that µσ̂1
− µcollision ≥ 3

4(µσ1 − µcollision). In other words, the gap

µσ̂1
− µcollision is at least a constant multiple of the gap µσ1 − µcollision.

2. Arm σ̂1 is comparable to σ1. If t1start = t1comm1−collision the witnesses Lp
σ̂1
(t1start) satisfy,

Lp
σ̂1
(t1start) ∈

[
3(µσ̂1

−µcollision)
7 ,

4(µσ̂1
−µcollision)
7

]
+ µcollision for all p ∈ {2, · · · ,M}.

• To see a formal proof of this statement refer to Lemma 28 in Appendix C.4. Set C̃ = 10. This

results guarantees we can compute a ‘witness’ value that is a constant multiple of µσ1−µcollision
away from µσ1 and µcollision. Indeed it is easy to see µσ̂1

− µcollision ≥ 3
4(µσ1 − µcollision)

(see Equation 21) implies Lp
σ̂1
(t1start) ∈

[
9(µσ1−µcollision)

28 ,
16(µσ1−µcollision)

28

]
+µcollision for all

p ∈ {2, · · · ,M}.

3. When collisions are avoided with high probability the empirical mean estimators µ̂pσ̂1
(t1start +

1 : +2t1start) are far from µcollision. If E holds and

• b = 1, the estimators µ̂pσ̂1
(t1start + 1 : 2t1start) ≤ Lp

σ̂1
for all p ∈ [M ].

• b = 0, the estimators µ̂pσ̂1
(t1start + 1 : 2t1start) > Lp

σ̂1
for all p ∈ [M ].

To prove the third item, notice that in case b = 1 is to be transmitted µ̂pσ̂1
(t1start + 1 : 2t1start) ≤

µcollision +D(Nσ̂1
(t1start)) ≤ µcollision +

µσ̂1
−µcollision

r−2 where r = 2(C̃ − 2) (see Equation 22 for a

proof). Therefore µ̂pσ̂1
(t1start + 1 : 2t1start) ≤ µcollision +

µσ̂1
−µcollision

14 < µcollision +
9(µσ̂1

−µcollision)
28 .

Similarly in case b = 0, µ̂pσ̂1
(t1start + 1 : 2t1start) ≥ µcollision −

µσ̂1
−µcollision

14 > µcollision +
16(µσ̂1

−µcollision)
28 .
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Lemmas 27 and 28 comprise the bulk of the necessary steps to adapt our results where µcollision =
0 to the more general setting where µcollision > 0 and therefore these finalize the proof of Lemma 7.

Let’s assume the constant defining the C̃−blowup connectivity graph that defines time t1first equals

C̃. From Lemma 6 we can conclude that,

Np
σ1(t

1
first)

g(Np
σ1(t

1
first)

≥ 2(C̃ − 2)2

(µσ1 − µcollision)2
. (18)

And since t1start ≥ t1first and t1first ≥ Ksboundary2, the ratio
Np

σ1
(t)

g(Np
σ1

(t))
is non decreasing for all

t ≥ t1first. Thus,

Np
σ1(t

1
start)

g(Np
σ1(t

1
start)

≥ 2(C̃ − 2)2

(µσ1 − µcollision)2
. (19)

Lemma 27 If E holds and C̃ ≥ 9,

σ̂1 ∈
{
i ∈ [K] s.t. µ̂pi (t

1
start)− µ̂pcollision(t1start) ≥

1

2
max
j∈[K]

(
µ̂pj (t

1
start)− µ̂pcollision(t1start)

)}

for all p ∈ {2, · · · ,M} and µ̂pσ̂1
(t1start)−D(Nσ̂1

(t1start)) ≥
(
1− 4

r

)
(µσ1 − µcollision) + µcollision.

Proof

By Equations 18 and 19, similar to the proof of Lemma 12 we conclude that D(Nσ̂1
(t1start)) =√

g(Np
σ1

(t1start))

2Np
σ1

(t1start)
≤ µσ1−µcollision

r where r = 2(C̃− 2) if E holds, µ̂pi (t
1
start) ∈ [µi− µσ1−µcollision

r , µi+

µσ1−µcollision

r ] for all i ∈ [K] ∪ {collision} and µ̂1i (t
1
first) ∈ [µi − µσ1−µcollision

r , µi +
µσ1−µcollision

r ]
for all i ∈ [K] ∪ {collision}. These facts in conjunction with the definition of σ̂1 imply,

µσ1 −
µσ1 − µcollision

r
≤ µ̂1σ1

(t1first) ≤ µ̂1σ̂1
(tfirst1) ≤ µσ̂1

+
µσ1 − µcollision

r
. (20)

and therefore µσ1 ≤ µσ̂1
+

2(µσ1−µcollision)
r . Thus,

µ̂pσ̂1

(
t1start

)
− µ̂pcollision

(
t1start

)
≥ µσ̂1

− µσ1 − µcollision
r

− µσ1 − µcollision
r

− µcollision

≥ µσ1 −
2(µσ1 − µcollision)

r
− 2(µσ1 − µcollision)

r
− µcollision

= (µσ1 − µcollision)
(
1− 4

r

)

Similarly for any j ∈ [K],

µ̂pj (t
1
start)− µ̂pcollision(t1start) ≤ µσ1 +

µσ1 − µcollision
r

− µcollision +
µσ1 − µcollision

r

≤ µσ1 +
2(µσ1 − µcollision)

r
− µcollision

≤ (µσ1 − µcollision)
(
1 +

2

r

)
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Since C̃ ≥ 9, r ≥ 14, it follows that
(
1
2 + r

)
≤
(
1− 4

r

)
and therefore for any j ∈ [K]

µ̂pj (t
1
start)− µ̂pcollision(t1start)

2
≤ (µσ1 − µcollision)

(
1

2
+

1

r

)
≤ (µσ1 − µcollision)

(
1− 4

r

)

≤ µ̂pσ̂1

(
t1start

)
− µ̂pcollision

(
t1start

)

Thus implying the first result. The second statement is a result of the inequality,

µ̂pσ̂1
(t1start)−D(Nσ̂1

(t1start)) ≥ µσ̂1
− 2D(Nσ̂1

(t1start))

≥ µσ1 −
2(µσ1 − µcollision)

r
− 2(µσ1 − µcollision)

r

= µcollision + (µσ1 − µcollision)
(
1− 4

r

)

The result follows.

By Equation 20 in the proof of Lemma 27 we infer that:

µσ̂1
≤ µσ1 ≤ µσ̂1

+
2 (µσ1 − µcollision)

r

Therefore the gap between µσ̂1
and µcollision is lower bounded by,

µσ̂1
− µσ̂p

K
≥ (µσ1 − µcollision)

(
1− 2

r

)
. (21)

Most importantly Equation 21 shows the gap µσ̂1
− µcollision is at least a constant multiple of the

gap µσ1 − µcollision.

Lemma 28

The witnesses Lp
σ̂1
(t1start) =

µ̂p
σ̂1

(t1start)−µ̂p
collision(t

1
start)

2 + µ̂pcollision(t
1
start) satisfy,

Lp
σ̂1
(t1start) ∈ µcollision +

[(
1

2
− 2

r − 2

)
(µσ̂1

− µcollision) ,
(
1

2
+

2

r − 2

)
(µσ̂1

− µcollision)
]

for all p ∈ {2, · · · ,M} where r = 2(C̃ − 2).

Proof By Equation 19, similar to the discussion above, D(Nσ̂1
(t1start)) ≤

µσ1−µcollision

r (for r =

2(C̃ − 2)) if E holds and therefore µσ1 ≤ µσ̂1
+

2(µσ1−µcollision)
r . Hence,

µσ1 − µcollision ≤ µσ̂1
+

2(µσ1 − µcollision)
r

− µcollision.

Thus implying,

µσ1 − µcollision ≤
r

r − 2
(µσ̂1

− µcollision)
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and therefore that

D(Nσ̂1
(t1start)) ≤

µσ̂1
− µcollision
r − 2

(22)

then,

µ̂pσ̂1
(t1start)− µ̂pcollision(t1start) ≤ µσ̂1

− µcollision +
2(µσ̂1

− µcollision)
r − 2

=

(
1 +

2

r − 2

)
(µσ̂1

− µcollision)

Similarly,

µ̂pσ̂1
(t1start)− µ̂pcollision(t1start) ≥ µσ̂1

− µcollision −
2(µσ̂1

− µcollision)
r − 2

=

(
1− 2

r − 2

)
(µσ̂1

− µcollision)

Since µcollision −
µσ̂1

−µcollision

r−2 ≤ µ̂pcollision(t1start) ≤ µcollision +
µσ̂1

−µcollision

r−2 ,

µcollision +

(
1

2
− 2

r − 2

)
(µσ̂1

− µcollision) ≤ µ̂pcollision(t1start) +
µ̂pσ̂1

(t1start)− µ̂pcollision(t1start)
2

≤ µcollision +
(
1

2
+

2

r − 2

)
(µσ̂1

− µcollision)

Finally the following ‘inverted’ version of Lemma 15 will prove useful,

Lemma 29 Let δ′ ∈ (0, 1). If X is a random variable with support in [0, 1], distribution PX and

mean µX satisfying µX ≤ U , then with probability at least 1 − δ′ for all N such that N
B(N,δ′) ≥

max
(

2
U−µX

, 16min(µX ,1−µX)
(U−µX)2

)
we have,

µ̂X ≤ U,
where B(n, δ′) = 2 log log(2n) + log 5.2

δ′ .

Proof

Let α = min(µX , 1− µX). A simple use of the reversed version of Lemma 36 implies that with

probability at least 1− δ′ for all n ∈ N:

µX + 2

√
αB(n, δ′)

n
− B(n, δ′)

n
≥ µ̂X .

The LHS of this inequality attains a value of at most U whenever:

U − µX ≥ 2

√
αB(n, δ′)

n
− B(n, δ′)

n
.

We finalize the proof by noting that for all n such that n
B(n,δ′) ≥ max

(
2

U−µX
, 16min(µX ,1−µX)

(U−µX)2

)
we

have that U−µX
2 ≥ 2

√
αB(n,δ′)

n and U−µX
2 ≥ B(n,δ′)

n .
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C.5. Complex Restart Strategy

Here we describe a way to reuse some of the collected samples so far and warm start the estimators.

Let’s assume t1comm1 = mint∈N s.t.
⌊

t/K
g(t/K)

⌋
= 9w̃ for some ũ and define

trestart = min
t∈N

s.t.

⌊
t/K

g(t/K)

⌋
= 9w̃−3.

Let’s see that whenever E holds tpfirst > trestart for all p ∈ [M ]. Similar to the proof of Lemma 8

let’s denote by 9u the unique power of nine in the interval

[
128

maxi ∆2
σi,σi+1

, 1152
maxi ∆2

σi,σi+1

)
. Recall that

whenever the good event E holds
spfirst

g(spfirst)
∈
[

128
maxi ∆2

σi,σi+1

, 1152
maxi ∆2

σi,σi+1

)
for all p ∈ [M ] and

t1comm1 ∈
{
min
t∈N

s.t.

⌊
t/K

g(t/K)

⌋
= 9u+1,min

t∈N
s.t.

⌊
t/K

g(t/K)

⌋
= 9u+2

}
.

Since by definition w̃ − 3 < u it must be the case that trestart < tpfirst for all p ∈ [M ].
When jumping into these smaller problems, all players will warm-start their empirical reward

estimators at {µ̂pi (trestart)}i∈[K],p∈[M ], throwing away all the information gathered during the com-

munication rounds.

Each player will now re-index time to suit the sub-problem it has landed on by throwing away

the data corresponding to historical rounds where samples not belonging to the connected component

assigned to her were collected from t = 1 to trestart. This procedure ensures each sub-problem is

at a state where there is no player for which the condition connp (sK, 5) ≥ 2 has been triggered,

while ensuring a substantial proportion of the data collected so far can be reused.

Since the proportion of samples that can be reused using this strategy is constant, no substantial

speedup can be gained from following this strategy.

Appendix D. Missing Proofs

In this section we present the proofs of all those lemmas for which having the proof present in the

main or the Appendix discussion section would have hindered the flow of the text.

D.1. Proof of Lemma 6

We restate Lemma 6 for the reader’s convenience.

Lemma 30 (Confidence Bands) Let µ̂σi(t) and µ̂σj (t) be empirical estimators µσi and µσj , each

using N(t) samples. Let C > 3 be a constant. If t is the first special round such that

µ̂σi(t)− µ̂σj (t) ≥ CD(N(t)), (3)

then, whenever E holds, we have
∆σi,σj

2(C+2) < D(N(t)) ≤ ∆σi,σj

C−2 and

2(C − 2)2

∆2
σi,σj

≤ N(t)

g(N(t))
<

8(C + 2)2

∆2
σi,σj

. (4)
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Proof Notice that whenever E holds:

µ̂σi(t)− µ̂σj (t) ≥ ∆σi,σj − 2D(N(t)).

Hence whenever D(N(t)) ≤ ∆σi,σj

C+2 ,

µ̂σi(t)− µ̂σj (t) ≥ ∆σi,σj − 2D(N(t)) ≥ CD(N(t)),

and therefore condition 3 will trigger. This implies that special round t − 1, being one before

condition 3 is ever triggered must satisfy D(N(t− 1)) >
∆σi,σj

C+2 . Since δ < 1
2 Lemma 38 ensures

that D(N(t− 1)) < 2D(N(t)) and therefore that

D(N(t)) >
∆σi,σj

2(C + 2)
. (23)

Similarly note that whenever E holds

µ̂σi(t)− µ̂σj (t)− 2D(N(t)) ≤ µσi +D(N(t))− µσj +D(N(t))− 2D(N(t)) ≤ ∆σi,σj .

and therefore if the condition µ̂σi(t)− µ̂σj (t) ≥ CD(N(t)) was true, then,

(C − 2)D(N(t)) ≤ µ̂σi(t)− µ̂σj (t)− 2D(N(t)) ≤ ∆σi,σj

Therefore,

D(N(t)) ≤ ∆σi,σj

C − 2
. (24)

We now turn our attention to lower and upper bounding ∆̂σi,σj . Since ∆̂σi,σj = µ̂σi(t)−µ̂σj (t)−
2D(N(t)) we can conclude that ∆̂σi,σj ≤ ∆σi,σj . We use Equation 24 to produce a lower bound,

∆̂σi,σj = µ̂σi(t)− µ̂σj (t)− 2D(N(t)) ≥ ∆σi,σj − 4D(N(t)) ≥ C − 3

C − 2
∆σi,σj .

Plugging in the definition of D(N(t)) and using the lower and upper bounds of equations 23

and 24 yields:

2(C − 2)2 log(4(N(t))2MK/δ)

∆2
σi,σj

≤ N(t) ≤ 8(C + 2)2 log(4(N(t))2MK/δ)

∆2
σi,σj

.

D.2. Proof of Lemma 10

We restate Lemma 10 for readability.

Lemma 31 Let t1first = Ks1first and t1comm1 = Ks1comm1. If s1first ≥ sboundary2 and δ ≤ 1
162 then

s1comm1 ≤ 162s1first and

s1comm1

g(s1comm1)
≤ 162s1first
g(s1first)

.
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Proof Notice that by definition there is a u ∈ N such that,

9u−1 <

⌊
s1first
g(s1first)

⌋
≤ 9u =

⌊
s1comm

g(s1comm)

⌋
< 9u+1 =

⌊
s1comm1

g(s1comm1)

⌋
(25)

Since by assumption δ ≤ 1
162 it is easy to see that 4

(
s1first

)2
MK/δ ≥ 162, it follows that

g(162s1first) ≤ 2g(s1first). Thus by inequality 25,

s1comm1

g(s1comm1)
≤ 9u+1 + 81 = (9u−1 + 1) · 81 ≤ 81

s1first
g(s1first)

≤ 162s1first
g(162s1first)

Recall that by definition s1comm1 is the first integer such that
⌊

s1comm1

g(s1comm1)

⌋
= 9u+1. Since D(s) is

decreasing for all s ≥ sboundary2 and s1first is assumed to be at least sboundary2, we can conclude that

162s1first ≥ s1comm1. The first result follows. Since g(s) is an increasing function we conclude that

162s1first
g(162s1first)

≤ 162s1first
g(s1first)

The second result follows.

D.3. Proof of Lemma 11

We restate Lemma 11 for readability.

Lemma 32 If E holds, s1first ≥ sboundary2 and δ ≤ 1
162 then

s1comm1 ≤
746496

maxi∆2
σi,σi+1

log

(
746496MK

δmaxi∆2
σi,σi+1

)

Proof As a consequence of Lemma 10, we see that
s1comm1

g(s1comm1)
≤ 162s1first

g(s1first)
. If E holds, Equation 2

implies that
s1comm1

g(s1comm1)
≤ 186624

maxi ∆2
σi,σi+1

. Let h(n) = n
g(n) . Notice that h′(n) = log(4MKn/δ)−1

log2(4MKn/δ)
.

Since δ < 1
162 we conclude that h′(n) > 0 for all n ≥ 1. Since by definition both s1comm1 and

186624
maxi ∆2

σi,σi+1

are both at least 1, and 4MK
δ × 186624

maxi ∆2
σi,σi+1

≥ 4 for all, a simple use of Lemma 40

where x = s1comm1, c = 4MK/δ and b = 186624
maxi ∆2

σi,σi+1

implies that,

s1comm1 ≤
746496

maxi∆2
σi,σi+1

log

(
746496MK

δmaxi∆2
σi,σi+1

)
.
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D.4. Proof of Lemma 19

We restate Lemma 19 for readability.

Lemma 33 If E holds, tcomm1 ≥ max (tboundary1, tboundary3), s
1
first ≥ sboundary2 and δ ≤ 1

162
then,

f(t1comm1) ≤
20736B

(
186624

maxi ∆2
σi,σi+1

, δ
4K2M

)

maxi∆σi,σi+1

. (11)

Proof

f(t1comm1)
(i)

≤ 48B

(
f(t1comm1),

δ

4K2M

)√
t1comm1/K

2g(t1comm1/K)

(ii)

≤ 48B

(
f(t1comm1),

δ

4K2M

)√
162t1first/K

2g(t1first/K)

(iii)

≤ 48B

(
f(t1comm1),

δ

4K2M

) √
1152 ∗ 162

maxi∆σi,σi+1

=
20736B

(
f(t1comm1),

δ
4K2M

)

maxi∆σi,σi+1

,

where inequality (i) follows from elementary properties of f(·) (see Lemma 39 in Appendix F.2)

along with the assumption t1comm1 ≥ tboundary1, and (ii) follows from Lemma 10 along with the

assumptions s1first ≥ sboundary2 and δ ≤ 1
162 . Inequality (iii) follows because E holds, N(t1first) =

t1first/K and Equation 2 implies,

N(t1first)

g(N(t1first))
=

t1first/K

g(t1first/K)
<

1152

maxi∆2
σi,σi+1

.

Finally since t1comm1 ≥ tboundary3, and B(n, δ
4K2M

) is an increasing function of n,

B(f(t1comm1),
δ

4K2M
) ≤ B

(
s1comm1,

δ

4K2M

)

Finally, following the same argument from (ii) and (iii) above by applying Lemma 10 to the ratio
s1comm1

g(s1comm1)
≤ 162s1first

g(s1first)
and using the fact that E holds (and therefore Equation 2) and that B(n, δ

4K2M
)

is increasing in n, we can conclude that

B

(
s1comm1,

δ

4K2M

)
≤ B

(
186624

maxi∆2
σi,σi+1

g(s1comm1),
δ

4K2M

)

≤ B
(

186624

maxi∆2
σi,σi+1

log

(
MK186624

δmaxi∆2
σi,σi+1

)
,

δ

4K2M

)
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Appendix E. The Zero Test - Supporting Lemmas

In order to answer this question we will make use of the following Lemmas:

Lemma 34 If X is a random variable with support in [0, 1] with mean µX then: Var(X) ≤
µX(1− µX).

Proof By definition Var(X) = E[X2] − µ2X . Since X ∈ [0, 1] then E[X2] ≤ E[X]. The result

follows.

Lemma 35 [Uniform empirical Bernstein bound] In the terminology of Howard et al. (2018), let

Sn =
∑n

i=1 Yi be a sub-ψP process with parameter c > 0 and variance process Wn. Then with

probability at least 1− δ′ for all n ∈ N.

Sn ≤ 1.44

√
(Wn ∨m)

(
1.4 log log

(
2

(
Wn

m
∨ 1

))
+ log

5.2

δ′

)

+ 0.41c

(
1.4 log log

(
2

(
Wn

m
∨ 1

))
+ log

5.2

δ′

)
,

where m > 0 is arbitrary but fixed.

Proof Setting s = 1.4 and η = 2 in the polynomial stitched boundary in Equation (10) of Howard

et al. (2018) shows that uc,δ′(v) is a sub-ψG boundary for constant c and level δ where

uc,δ′(v) = 1.44

√
(v ∨ 1)

(
1.4 log log (2(v ∨ 1)) + log

5.2

δ′

)

+ 1.21c

(
1.4 log log (2(v ∨ 1)) + log

5.2

δ′

)
.

By the boundary conversions in Table 1 in Howard et al. (2018) uc/3,δ′ is also a sub-ψP boundary

for constant c and level δ′. The desired bound then follows from Theorem 1 by Howard et al. (2018).

We now apply the results of Lemma 35 to a random variable X satisfying the assumptions of

Lemma 34:

Lemma 36 Let δ′ ∈ (0, 1). If X is a random variable with support in [0, 1] with mean µX and law

PX and let {Xi}∞i=1 be i.i.d. samples from PX , then with probability at least 1− δ′ and for all n ∈ N

simultaneously:

µX − 2

√
min(µX , 1− µX)B(n, δ′)

n
− B(n, δ′)

n
≤ 1

n

n∑

i=1

Xi,

where B(n, δ′) = 2 log log(2n) + log 5.2
δ′ .
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Proof Consider the martingale difference sequence Yi = Xi − µX . The process Sn =
∑n

i=1 Yi
with variance process Wn = nVar(X) satisfies the sub-ψP condition of Howard et al. (2018) with

constant c = 1 (see Bennett case in Table 3 of Howard et al. (2018)). By Lemma 35 the bound:

Sn ≤ 1.44

√
(Wt ∨m)

(
1.4 log log

(
2

(
Wt

m
∨ 1

))
+ log

5.2

δ′

)

+ 0.41c

(
1.4 log log

(
2

(
Wt

m
∨ 1

))
+ log

5.2

δ′

)

holds for all n ∈ N with probability at least 1− δ′. Observe that as a consequence of Lemma 34, the

variance process Wn satisfies Wn ≤ nmin(µX , 1− µX). If we set m = tµX , we can futher upper

bound the RHS as:

Sn ≤ 1.44

√
nmin(µX , 1− µX)

(
1.4 log log(2n) + log

5.2

δ′

)
+0.41

(
1.4 log log(2n) + log

5.2

δ′

)
.

The result follows.

Appendix F. Ancillary Technical Lemmas

F.1. Properties of D(·)

Lemma 37 The function D : R → R defined as D(ℓ) =

√
2g(ℓ)
ℓ for g(ℓ) = log

(
4ℓ2MK/δ

)
is

increasing for ℓ ≥ 1 whenever δ < 1
2 .

Proof Let c′ = 4MK/δ and consider the function h(ℓ) = log(c′ℓ2)
ℓ . The derivative of h equals

h′(ℓ) =
2− log(c′ℓ2)

ℓ2
.

Therefore h′(ℓ) ≤ 0 iff 2 ≤ log(c′ℓ2), which holds iff exp(2) ≤ c′ℓ2. As long as δ < 1
2 , the constant

c′ > exp(2) which implies the result.

Lemma 38 For any ℓ ≥ 1, and whenever δ < 1
2 the function D(·) doesn’t decrease too fast:

2D(ℓ+ 1) > D(ℓ)

Proof Observe that log(4ℓ2ML/δ) ≤ log(4(ℓ+ 1)2ML/δ) since log(·) is an increasing function.

Similarly for all ℓ ≥ 1 we have that

√
1
ℓ ≤

√
2

ℓ+1 < 2
√

1
ℓ+1 . Therefore:

D(ℓ) =

√
2 log(4ℓ2ML/δ)

ℓ
< 2

√
2 log(4(ℓ+ 1)2ML/δ)

ℓ+ 1
= 2D(ℓ+ 1).
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F.2. Properties of f(·)
Let’s tart by showing that f(n) can be upper-bounded.

Lemma 39 If
f(n)−1

B
(
f(n)−1, δ

4K2M

) ≥ 1 then

f(n)

B(f(n), δ
4K2M

)
≤ 48

√
n/K

2Kg(n/K)

Proof By definition of f(n),

f(n)− 1

B(f(n)− 1, δ
4K2M

)
< 24

√
n/K

2Kg(n/K)
≤ f(n)

B(f(n), δ
4K2M

)

Since B(f(n), δ
4K2M

) ≥ 1 and B(f(n)− 1, δ
4K2M

) ≤ B(f(n), δ
4K2M

),

f(n)

B
(
f(n), δ

4K2M

) − f(n)− 1

B
(
f(n)− 1, δ

4K2M

) ≤ f(n)

B
(
f(n), δ

4K2M

) − f(n)− 1

B
(
f(n), δ

4K2M

) ≤ 1

We can conclude that

f(n)

B
(
f(n), δ

4K2M

) ≤ f(n)− 1

B
(
f(n)− 1, δ

4K2M

) + 1
(i)

≤ 2
f(n)− 1

B
(
f(n)− 1, δ

4K2M

) ≤ 48

√
n/K

2Kg(n/K)
.

Inequality (i) holds because by assumption
f(n)−1

B
(
f(n)−1, δ

4K2M

) ≥ 1.

F.3. Miscellaneous

The following lemma will prove useful in upper bounding s1comm1.

Lemma 40 Let h(x) = x
log(cx) for c > 0. Let x0 be the first positive real number such that10 for all

x′ ≥ x0, h′(x) ≥ 0. Let x, b ≥ x0 such that h(x) = x
log(cx) ≤ b and cb ≥ 4 then

x ≤ 4b log(cb)

Proof We shall show the desired result by the way of contradiction. Let x′ ≥ x0 be such that

x′ > 4b log(cb). The following inequalities hold

x′

log(cx′)

(i)

≥ 4b log(cb)

log(4cb log(cb))

=
4b log(cb)

log(cb) + log(4) + log(log(cb))
(26)

10. It is easy to see that h′(x) = log(cx)−1

log2(cx)
so that x0 = e

c
.
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Inequality (i) holds because we have assumed cb ≥ 4 > 3 and therefore log(cb) ≥ 1, b ≥ x0 and

therefore that 4b log(cb) ≥ x0. Since cb ≥ 4 > 1, it follows that log(cb) ≥ log(log(cb)). We can

upper bound the denominator of 26 by 3 log(cb) thus,

x′

log(cx′)
≥ 4b log(cb)

3 log(cb)
> b (27)

Since x is assumed to satisfy x
log(cx) ≤ b this concludes the proof.
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